
ABSTRACT 

LEE, DENNIS TAE-SUNG. Chemical Protective Metal-Organic Framework Thin Films on 

Fiber Systems Driven by Atomic Layer Deposition. (Under the direction of Dr. Gregory N. 

Parsons). 

 

Various toxic chemical warfare agents (CWAs) are still being regarded as an increasing 

menace not only to military populations but also to civilians since World War I in 1917. Despite 

global efforts to ban the use of CWAs through the Chemical Weapons Convention (CWC) 

effective as of April 29, 1997, terrorist groups and some unscrupulous countries are still deemed 

to secure considerable stockpiles of such hazardous chemical weapons, such as sarin, soman, VX, 

chlorine, and sulfur mustard.  

As shown in Chapter 1, this research is motivated by the international-level issue, and 

therefore is focused on novel porous materials called as metal-organic frameworks (MOFs) which 

possess high structural tunability and exceptional porosity. MOFs as unprecedented porous solids 

are constructed from inorganic metal clusters bridged by organic linkers, thus leading to highly 

tunable pore sizes and reactive sites for selective adsorption and/or catalytic detoxification of 

CWAs and their simulants. 

This doctorate dissertation mainly describes four different synthetic approaches to 

integrating various MOF crystals or thin films into polymeric fibrous platforms for their practical 

deployment and use in realistic contaminated environments. Metal oxide thin films (e.g., Al2O3, 

TiO2, or ZnO) deposited on polymeric fibrous scaffolds via atomic layer deposition (ALD) 

technique commonly play a critical role in each integration strategy, but in a different manner. 

The first integration method introduced in Chapter 2 and Chapter 4 is conventional ᾴdirect 

solvothermal growthᾴ of UiO-66-NH2 MOF onto ALD surface with different compositions (i.e., 

Al 2O3, ZnO, or TiO2) conformally coated on various polymeric fibers is implemented, and new 



insight into how the different inorganic nucleation films and the type of polymer can affect the 

quality, overall surface area, and the fractional yield of UiO-66-NH2 on the fiber substrates is 

depicted. Based on the results obtained and compared with other ALD layers, TiO2 surface results 

in the most effective MOF crystal distribution on fibers, MOF/fiber adhesion, and catalytic activity 

for a CWA simulant, DMNP with half-life of 15 min. 

In Chapter 3 ᾴMOF-assemblyᾴ on non-woven textiles is described. In this study, we 

develop a novel route to physically and chemically assemble as-synthesized UiO-66-NH2 crystals 

onto ALD metal oxide surface (i.e., Al2O3, TiO2, or ZnO) using ɓ-cyclodextrin (ɓ-CD) and 

cetyltrimethylammonium bromide (CTAB) as surfactant assembly agents at room temperature. 

We find that ZnO surface drives the highest MOF mass loading (40 wt%), and the most rapid 

catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate (DMNP), a CWA simulant, with half-

life of less than 5 min in the presence of the MOF/fiber catalyst. 

Chapter 5 demonstrates ᾴdirect replication methodᾴ, where ALD Al2O3 fil m on fiber 

surface directly reacts with porphyrin linkers (H2TCPP) in solvothermal condition and 

subsequently converts into Al-PMOF at relatively low temperature. It is substantiated that a proper 

ratio of cosolvent system (DMF and water) is signifincatly important to balance the Al2O3 

dissolution rate and the Al-PMOF crystallization rate near the surface of fibers to render Al-

PMOF/fiber textile composites. On a per unit mass of MOF basis, the surface-immobilized Al-

PMOF thin films considerably improve CEES detoxification turn-over-frequency 

(molCEES·molchromophore
-1·min-1) by a factor of 19 compared to their bulk powder counterparts 

prepared via a conventional solvothermal method. 

The last method presented in Chapter 6 is the fabrication of water-stable 2D Cu-TCPP 

MOFs densely coated and radially oriented on polymeric fibrous scaffolds by exploiting a facile 



ᾴhydroxy double salt (HDS) replicationᾴ method. Herein, the mechanism of the successful 2D 

MOF formation on the curved surface of the fiber substrates, which is not readily facilitated by the 

conventional ᾴdirect solvothermal growthᾴ approach, is elucidated. Furthermore, the intensified 

adsorptive capacity out of the MOF/fiber systems for NH3 and 2-chloroethyl ethyl sulfide (CEES), 

a blistering agent simulant, is elaborated with systematic supporting results. 
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1.1. Introduction to Metal-Organic Frameworks and Their Use 

Metal-organic frameworks (MOFs) are crystalline and highly porous materials which are 

constructed from inorganic metal clusters and organic linkers.1 The metal nodes, consisting of 

metal ions connected to non-metals (e.g., oxygen or nitrogen), are bridged by coordination bonds 

to multidentate organic struts mostly containing carboxylate and imidazolate functional groups.2 

Well-defined molecular building blocks constituting MOFs are displayed in Figure 1.1, and 

representative MOF structures made with varied combinations of building units are exhibited in 

Figure 1.2. 

Because of a tremendous variety in molecular building units, the number of MOFs has 

sharply surged in the past decade and reached a milestone of 70,000 materials in 2016 (Figure 1.3), 

which has been collected and organized by the Cambridge Crystallographic Data Center (CCDC).3 

The fast-track evolution of MOF chemistry is realized by complementary research in cluster 

chemistry for inorganic metal nodes, organic synthesis for ligands, and X-ray crystallography4 for 

structural identification. As a class of porous materials, what differentiates MOFs from the 

conventional porous solids, such as activated carbon and zeolites, is structural and compositional 

variety, ease of functional tunability, and extraordinary surface area5 as high as 10,000 m2/g 

associated with large pore volume. Fueling interest in MOFs is extended to their promise in a wide 

range of applications from gas storage for methane6 or hydrogen to CO2 capture,7 chemical 

sensing,8 catalysis,9 drug delivery,10 and hazardous gas detoxification.11 

Although MOF crystals with such fascinating characteristic features can be prepared via 

conventional solvo-/hydrothermal approaches, their bulk powder forms insoluble in many solvents 

limit their practical use in many applications.12 In the past decade, therefore, numerous research 

has focused on growth of MOF thin films on various substrates and made efforts to control the 
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Figure 1.1. Schematic illustration of representative building blocks for metal-organic framework 

(MOF) construction. 

orientation of the films to improve performance of surface-anchored MOF thin film devices in 

catalysis, gas separation, or sensor application.13 There has been representative concepts exploited 

so far to integrate MOF thin films on solid substrates: (1) the direct growth from solvothermal 

precursor solutions, (2) the assembly of pre-synthesized MOF crystals, (3) the stepwise layer-by-

layer (LBL) deposition onto the substrates, (4) the electro-chemical growth of MOF thin films on 

metal substrates, and (5) the direct or indirect conversion of metal oxide thin films on the substrates 

into thin MOF films.13 

These days, MOF thin film integration into flexible and permeable polymeric fibrous 

scaffolds using diverse synthetic strategies has garnered increasing attention. This is because 
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Figure 1.2. Chemical depiction of representative MOFs. 

 

Figure 1.3. Growth of the Cambridge Structural Database (CSD) and MOF entries since 1972 

(Figure adapted3). 
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handling and deploying the composite materials are significantly easier to effectively harness, for 

example, the desired separation and filtration properties of MOFs on fabrics compared to the native 

MOF powder materials.14 The textiles functionalized with MOF crystals have been recently 

sought-after and extended to sensing, chemical neutralization, and capture of a range of toxic 

industrial chemicals (TICs) (e.g., NH3 and H2S)15 and chemical warfare agents (CWAs) (e.g., 

chlorine; nerve agents: sarin, soman, and VX; and blistering agent: sulfur mustard (HD)) and their 

simulants (e.g., nerve agent simulants: dimethyl p-nitrophenyl phosphate (DMNP), diisopropyl 

fluorophosphate (DFP); and blistering agent simulant: 2-chloroethyl ethyl sulfide (CEES)).16ï18 
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1.2. MOF Integration Methods on Planar Substrates  

1.2.1. Conventional Solvothermal Growth 

Hermes et al. were in the first few groups who actively explored the integration of metal-

organic frameworks (MOFs) as functional units into thin film devices that bulk counterparts cannot 

drive. The researchers found that control in heterogeneous MOF nucleation on substrates 

pretreated with self-assembled organic monolayers (SAMs) is feasible. SAM of 16-

mercaptohexadecanoic acid on Au(111) surface showed the improved deposition of MOF-5 

crystals (100-500 nm) in an aged mother solution (Zn(NO3)2·4H2O (3.14 g) and terephthalic acid 

(0.67 g) dissolved in pure diethylformamide (DEF)) at 25 °C for 24 h (Figure 1.4).19 

 

Figure 1.4. (a) MOF-5 chemical structure illustrated for a single cube fragment of their respective 

cubic three-dimensional extended structure.20 (b) The concept, (c) optical microscope, and (d) an 

AFM image of anchoring a selective MOF-5 building unit to a carboxylic acid-terminated SAM. 

The figure (b) represents a simplified model, not excluding alternative possibilities of the linkage.19 
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Figure 1.5. Scanning electron microscopy images of MOF-5 thin films on different pretreated 

alumina substrates. No crystal growth can be observed on CF3-terminated surfaces whereas 

densely packed MOF-5 thin films occur for ALD-Al 2O3 or COOH-terminated surfaces.20 

In addition, Hermes et al. demonstrated that the density of anchoring sites for MOF seeds 

was relatively low on almost defect free surfaces (i.e., single crystalline Al2O3 (c-plane sapphire)), 

whereas amorphous atomic layer deposition (ALD) Al2O3-treated and COOH-functionalized 

silicon substrates exhibited a dense MOF-5 film growth (Figure 1.5).20 No growth of MOF crystals 

was observed on the fluorinated surface (CF3-SAM) attributed to its low surface energy with which 

heterogeneous nucleation was remarkably prohibited (Figure 1.5). 

Zacher et al. also reported similar results with HKUST-1, displaying the impact of the 

nature of the substrate surface on the degree of MOF nucleation and subsequent growth behavior. 

What the authors further found was that acid/base properties of the substrates dictated whether the 

MOF film can grow on the substrates used. As shown in Figure 1.6, HKUST-1 densely grew on 

the more basic substrates (Al2O3, c-plane sapphire), whereas no crystals were found on the more 

acidic substrates (SiO2). This was because carboxylic acid linkers for HKUST-1 mediated the 

binding between MOF film and the substrates, therefore the MOF cannot be readily immobilized 

onto the more acidic SiO2 surface. As demonstrated with MOF-5 in Figure 1.5, the structural 
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imperfection of ALD Al2O3 film can also better promote HKUST-1 nucleation in comparison with 

the single crystalline Al2O3 surface (c-plane sapphire) (Figure 1.6b-c). Interestingly, preferred 

orientation of MOF single crystals depending upon the nature of the substrate surface were also 

observed (Figure 1.6d-e). 

 

Figure 1.6. SEM images of HKUST-1 (Cu3(BTC)2) MOF coatings on (a) bare SiO2, (b) Al2O3 

(sapphire) and (c) ALD Al2O3. (d) Single pyramidal crystal of HKUST-1 grown on c-plane 

sapphire. (e) Octahedral single crystals of HKUST-1 on COOH-functionalized Si/SiO2. (f) 

Chemical depiction of HKUST-1 MOF structures. (scale bars and figure arrangement adapted from 

Ref.21) 
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1.3. MOF Integration Methods on Polymeric Fibers (With No ALD Processes) 

1.3.1. Direct Solvothermal Growth 

Küsgens et al., who early recognized the importance of porous thin film deposition on 

suitable substrates for filter technology applications, investigated HKUST-1 (Cu3(btc)2) 

integration into pulp fibers.22 As a control experiment, as-prepared HKUST-1 powder was directly 

mixed with the pulp slurry in a Rapid-Köthen mold to render composite sheets. As shown in 

scanning electron micrograph (SEM) image (Figure 1.7a), an inhomogeneous distribution of MOF 

crystals and their aggregates was observed, and the crystal bundles were physically entrapped 

within the interstitial spaces of the fibrous network. To enhance MOF crystal mass loading with 

improved homogeneous distribution on the fibrous scaffolds, the authors conducted the in-situ 

synthesis of HKUST-1 in the presence of chemi-thermo mechanical pulp (CTMP) fibers with high 

lignin content (Figure 1.7b). Due to dense carboxylic functional groups contained in the lignin on 

the CTMP fibers, well-distributed and chemically-bound HKUST-1 crystals on the flexible 

substrates were obtained. The result was agreed well with the promoted MOF growth on the 

COOH-functionalized silicon substrates denoted in Figure 1.5. 

 

Figure 1.7. SEM images of (a) HKUST-1 (Cu3(BTC)2) paper hand sheets and (b) HKUST-1 

crystals on CMTP fibers. (figure arrangement adapted from Ref.22) 
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1.3.2. Microwave Irradiation-Assisted Solvothermal Growth 

Centrone et al. also functionalized polymeric substrates composed of polyacrylonitrile 

(PAN) with a representative MOF, MIL-47 consisting of corner-sharing vanadium(III) oxide 

octahedra bridged by terephthalate linkers (Figure 1.8).23 In this work, MIL-47 was rapidly 

synthesized using microwave irradiation method due to substantially enhanced local heating 

processes, and the effect of microwave irradiation time on the MOF growth behavior on the PAN 

surface was investigated.  

 

Figure 1.8. SEM images of (a) electrospun polyacrylonitrile (PAN) fiber mats, coated with MIL-

47 material as a function of time: (b) 5 s and (c) 6 min. SEM image of (d) MIL-47-coated grooved 

PAN. Inset in (c) is chemical structure of MIL-47 MOF. (figure arrangement adapted from Ref.23) 
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Through this study, the authors identified that PAN surface first hydrolyzed under the 

reaction conditions (MOF precursors in water, 200 °C, pH=1), thus generating poly(acrylic acid) 

groups which were subsequently cross-linked in the bulk. Therefore, the PAN substrates 

functionalized with carboxylic acid facilitated the compact growth of MOF crystals on the polymer 

surface. However, the electrospun PAN fibers lost their structural identity within the first 5 s of 

the microwave-assisted reaction so the MOF-polymer hybrid materials produced were not ideal to 

be used for membrane separations, filtration, and protective functional textiles. 

1.3.3. Direct Solvothermal Growth Using a Seeding Strategy 

Wu et al. reported a new strategy combining an electrospinning technique and a seeding 

solvothermal growth approach to produce free-standing MOF membranes.24 The electrospinning 

has been well known as a simple and versatile strategy to fabricate continuous fibrous membranes 

with highly tunable fiber diameters from nanometers to micrometers.25 The facile control in 

material compositions (e.g., inorganic, organic or hybrid) and in surface properties of the 

electrospun fibers made the electrospinning a fascinating technique to produce functional textiles. 

However, intrinsic property of functional particles entrapped within polymeric fibers could 

be considerably reduced when the particles dissolved in polymer solutions are directly electrospun. 

In order to overcome such a critical drawback, Wu et al. simply conducted a solvothermal growth 

(secondary step) in the presence of the electrospun fibers doped with MOF crystals as nucleation 

sites to improve MOF growth on the external surface area of the fiber mats (Figure 1.9a). As shown 

in Figure 1.9b-c, ZIF-8 MOF crystals strongly embedded in the polystyrene (PS) fibers were 

remained intact after the electrospinning process. Subsequently, the cyclic in-situ solvothermal 

synthesis with a growth solution containing Zn(NO3)2·6H2O and 2-methylimidazole dissolved in 
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methanol at 65 °C for 12 h in the presence of the MOF-doped fibers gave rise to a well-intergrown 

ZIF-8 MOF film (Figure 1.9f-g). 

 

Figure 1.9. (a) Schematic illustration of electrospun nanofibrous mats used as skeletons to produce 

free-standing MOF membranes. SEM image of (b) the ZIF-8 nanocrystal embedded electrospun 

nanofibrous mat (c) with magnified TEM image; SEM images of the fibrous mat after ZIF-8 

growth period of (d) 1 cycle, (e) 4 cycles, (f) 5 cycles, and (g) the cross-section of the ZIF-8 

membrane after 5-cycle growth. The insets in (b) and (f) are optical images of the corresponding 

samples. (figure arrangement adapted from Ref.24) 

Lu et al. similarly adopted a seeding strategy to integrate UiO-66-NH2, composed of 

Zr6(OH)4O4 clusters linked by aminoterephthalic acid (ATA) linkers, into PAN nanofibers.26 In 

this study, instead of as-synthesized MOF particles the authors first dissolved pure ATA linkers in 

PAN polymer solution, followed with electrospinning the solution into fibrous membranes. The 

ATA linkers densely embedded within the PAN fiber mats acted as anchoring or nucleation sites 

for heterogeneous MOF nucleation. Throughout the research, Lu et al. found that the ATA-
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embedded seeding PAN fiber scaffolds resulted in the highest MOF mass loading compared to 

MOF particle-embedded fibrous mats after the direct solvothermal growth of UiO-66-NH2 

(Figure1.10). Here acetone was employed in place of DMF as a typical solvent to initiate a 

solvothermal reaction between ZrCl4 and ATA precursors and importantly to prevent PAN fiber 

substrates from being solubilized during the reaction. Therefore, the MOF-polymer composites 

could maintain integrity of both microporous UiO-66-NH2 and macroporous PAN fibrous 

network, showing decent chlorine gas uptake compared to other control samples prepared.27 

 

Figure 1.10. Schematic of in situ growth of UiO-66-NH2 on plain polyacrylonitrile fibers and 

polyacrylonitrile (PAN) fibers seeded with the aminoterephthalic acid (ATA linker). Electrospun 

swatches are sandwiched between two cellulose filter papers before being placed in a parr bomb 

with the UiO-66-NH2 precursors: equimolar concentrations of ATA linker and zirconium chloride 

(metal), in acetone. Increasing concentrations of precursors are used for synthesis, 1, 2, and 3 

mmol, to observe effects of concentration of precursors on UiO-66-NH2 synthesized on the fiber: 

(a) control PAN swatch; (b) PAN with ATA linker. (c) Control PAN postsynthesis (d) PAN with 

ATA linker postsynthesis. Scale bar 3 ɛm.26 
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1.3.4. Growth on Surface Coated with Reactive Polymers  

As introduced in previous sections about immobilization of MOF films on any substrates, 

functionalizing the substrates with reactive groups was necessary to significantly increase 

nucleation sites for MOFs and to enhance binding strength between MOF films and the substrates. 

However, reactive sites anchored on the substrates were not always amenable to MOF nucleation 

so developing a new and universal technique for effective integration of MOF materials on 

polymer surface was highly desirable. Considering the importance of the issue, Zhou et al. paid 

attention to polydopamine (PDA) as a glue layer on substrates as well as a nucleation layer for 

MOFs. As described in Figure 1.11a, without the use of any other additives, dopamine can self-

polymerize and morph into a strongly adhesive PDA coating on any surface by simply immersing 

substrates into polymerization media. 

With this facile approach, the researchers realized successful PDA coatings on 

commercially available and even on chemically inert nanofibrous polymer membranes (e.g., 

polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyvinylidene fluoride (PVDF)). 

PDA was uniformly coated on PP membranes, for instance, with a distinct color change from white 

to dark brown (Figure 1.11b-c), and HKUST-1 and MOF-5 materials were continuously integrated 

into PDA-modified membranes via layer-by-layer (LBL) deposition method at room temperature 

(Figure 1.11d-e). In contrast to the conventional solvothermal methods, LBL strategy is driven by 

sequential immersion of substrate in an alternating bath of organic linker solution and metal ion 

solution to precisely control thickness of MOF thin film on substrates. 
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Figure 1.11. (a) Schematic illustration of the strategy of effective deposition MOF on the ᾴinertᾴ 

polymer fibrous membranes by using polydopamine layer as nucleation center to fabricate 

hierarchically structured porous films. SEM images of (b) original PP fibrous membrane and (c) 

PDA-coated PP membrane; SEM images of PDA-modified PP membrane followed by the 

deposition of (d) HKUST-1, and (e) MOF-5. (figure arrangement adapted from Ref.28) 
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1.4. MOF Integration Methods on Polymeric Fibers (ALD -Driven) 

1.4.1. Atomic Layer Deposition (ALD) to Polymer Textiles 

Atomic layer deposition (ALD)29 is a well-known vapor-phase thin-film deposition 

technique together with physical vapor deposition (PVD)30 and chemical vapor deposition 

(CVD)31 methods. Among the techniques, ALD uniquely possesses a capability to produce highly 

uniform and exceptionally conformal thin film of metal oxides or elemental metals on nonuniform 

high aspect ratio surfaces.32 The matchless attribute of ALD has made it become commercially 

significant process in large-scale semiconductor manufacturing and the fabrication of 

semiconductor devices since the early 2000s when the semiconductor industry started adopting the 

method.33 

Due to its relatively low temperature processability, conventional thermal ALD technique 

has been also widely used to add new functionality to various polymer substrates to realize multi-

functional textiles.34 In practice, many attempts to coat different synthetic and natural polymer 

textiles with various inorganic films have been made through thermal ALD reactors (Figure 1.12). 

In one ALD cycle for Al2O3 deposition, for instance, trimethylaluminum (TMA) and water are 

sequentially dosed into the deposition chamber, with a N2 purge step in between to get rid of any 

unreacted species and by-products. The dosing step with diethylzinc (DEZ) instead of TMA can 

form ZnO thin film on substrates. Repeating the ALD cycle with selected precursors can result in 

a fine control in film thickness at atomic level on any substrates with complex geometries. 

ALD process on soft substrates (e.g., polymers), as opposed to hard ones (e.g., silicon 

wafers), can cause a very different outcome in the extent of precursor diffusion into the polymers 

and in film roughness depending upon different ALD precursors, polymer types, and deposition 

conditions. 
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Figure 1.12. (a) Schematic illustration of the homemade hot-wall viscous-flow ALD reactor used 

for ALD metal oxide coatings on polymeric fibers. Optical images of (b) inserting fabric samples 

into the deposition chamber and (c) representative fabric swatches used. All reactor lines of the 

setup were resistively heated to around 100 °C to avoid precursor condensation during the gas 

carrying process. 

As represented in Figure 1.13a, cotton fibers with reactive Lewis basic sites (e.g., hydroxyl 

groups) are favorable to immediate chemical reactions with Lewis acidic reactants (TMA, TiCl4, 

or DEZ), thus giving rise to a relatively abrupt interface between polymer surface and inorganic 

film. On the other hand, the reactants are prone to diffuse into the chemically inert PP fibers and 

subsequently brings about metal oxide nuclei formation within the subsurface region, which 

ultimately produces a roughened inorganic film texture on the fibers (Figure 1.13b). 

The mechanism studies on the interaction between reactants and polymer substrates during 

the ALD processes manifest that ALD has a great potential to tune or modify surface properties of 

any type of polymer membranes to become functional platforms for even further processing. 
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Figure 1.13. (a) ALD on a hydroxyl rich polymer surface leads to conformal deposition as shown 

in the example of Al2O3 ALD growth on cotton (top TEM image). (b) ALD on a polymer surface 

that lacks reactive functional groups can result in subsurface diffusion and growth within the fiber 

core, resulting in a less uniform coating at some temperatures. ALD growth on polypropylene (PP) 

at high temperatures (90 °C) results in this kind of subsurface deposition (lower TEM image).32 
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1.4.2. MOF Integration into ALD-treated Textiles 

1.4.2.1. Direct Solvothermal Growth (MOF on ALD) 

Zhao et al. reported that highly packed hydroxyl terminal groups on ALD metal oxide 

coatings onto polymeric fibrous mats can provide decent nucleation sites where MOF crystals can 

heterogeneously nucleate and be chemically bound (Figure 1.14a-c).  

The authors found that, the solvothermal synthesis of HKUST-1 MOF at 120 °C for 24 h 

in the presence of ALD Al2O3-coated PP nonwoven textiles gave rise to MOF mass uptake around 

50% larger than that on bare fiber substrates (Figure 1.14d). The resulting MOF-coated textiles 

exhibited 700 m2/g(MOF+fiber) of high surface area and showed >5 molNH3/kg(MOF+fiber) of NH3 

adsorptive capacity which was larger than the capacity from other MOF films on fibers reported. 

In a separate study, the researchers successfully fabricated chemical protective textiles 

functionalized with Zr-based MOFs (e.g., UiO-66, UiO-66-NH2, and UiO-67) for efficiently 

detoxifying chemical warfare agents (CWAs) and their simulants. To help promote nucleation of 

catalytic MOF crystals onto polyamide-6 nanofibers (PA-6) as a chosen substrate in the study, the 

authors treated the PA-6 nanofibers with ALD TiO2 (~7 nm), followed by solvothermal growth 

for the Zr-based MOFs (Figure 1.15a). As shown in Figure 1.15b-c, irregular round-shaped UiO-

66 MOF crystals were completely immobilized around the TiO2 thin film deposited on a free-

standing PA-6 nanofiber mat. As expected, on the other hand, very sparse and patchy distribution 

of UiO-66-NH2 crystals were observed on untreated PA-6 nanofiber substrates under the same 

synthetic conditions. 

The best hydrolysis performance with the resulting textile catalysts displayed that the half-

lives of soman (GD) and its simulant dimethyl p-nitrophenyl phosphate (DMNP) were as short as 

2.3 min and 7.3 min, respectively.  
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Figure 1.14. (a-c) Schematic illustration of the synthesis route. (a) Polymer fiber substrate. (b) Al2 

O3-coated polymer fiber via atomic layer deposition (ALD). The cross section in the dashed square 

illustrates the conformal coating of ALD Al2O3 with hydroxyl surface termination. (c) MOFs 

integrated on Al2O3-coated polymer fiber using solvothermal MOF synthesis. (d) SEM image of 

HKUST-1 MOF crystals grown on an ALD-Al 2O3-coated polypropylene fiber (MOF-PP/ALD). 

(figure arrangement adapted from Ref.35) 
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Figure 1.15. (a) Synthetic procedure for Zr-based MOFïnanofiber kebab structures on polyamide-

6 nanofibers (PA-6). The MOF crystal structures are illustrated in the dashed box. (b) SEM and 

(c) TEM images of PA-6@TiO2@UiO-66. (d) SEM image of UiO-66-NH2 grown on untreated 

PA-6 nanofibers (PA-6@UiO-66-NH2). (figure arrangement adapted from Ref.36) 
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1.4.2.2. Direct Replication Method (ALD to MOF) 

Khaletskaya et al., for the first time, investigated and demonstrated the self-directed 

localization of ZIF-8 thin film on solid substrates by conversion of ALD and sputter deposited 

ZnO thin film (Figure 1.16a).37 The vapor phase deposition techniques (ALD and magnetron 

sputtering) used in the study are reliable methodology for spatial positioning of ZnO film onto 

solid substrates. The well-controlled ZnO nanolayers can be used as a localized Zn2+ source for 

ZIF-8 formation on the substrates by reacting with 2-methylimidazole (Hmim) ligands. 

The specimen of ZIF-8 thin film directly converted from ALD ZnO on silicon (Si/SiO2) 

was prepared by a focused ion beam (FIB) milling technique (Figure 1.16b), and its cross-sectional 

views were imaged by TEM to identify each layer of the film. As shown in Figure 1.16c-d, 

intergrown polycrystalline ZIF-8 film (Ḑ95 ± 10 nm) was integrated into the silicon substrate with 

the remaining ZnO interlayer (~50 nm) relatively uneven compared to the initial seamless ALD 

ZnO film. 

The authors emphasized that Hmim organic linkers dissolved in mixed solvent medium 

(DMF and water) acts both as an etching agent to partially dissolve ZnO films to offer Zn2+ ions 

and as a ligand for the coordination with the ions to crystallize ZIF-8, respectively. In addition, the 

residual ZnO interlayer between the ZIF-8 film and the silicon substrate provides a robust adhesion 

for the ZIF-8 film on the substrate. 

A similar synthetic approach was employed by Bechelany et al. who created a composite 

material where highly crystalline MOF crystals were densely coated on a flexible scaffold of 

electrospun polymeric fibers.38 As shown in Figure 1.17a and c, a conformal ZnO thin film 

deposited via ALD on electrospun polyacrylonitrile (PAN) nanofibers was transformed into ZIF-

8 crystals by reacting with Hmim linkers under microwave (MW)-assisted or conventional 
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solvothermal conditions. Furthermore, conversion of ALD Al2O3 film into MIL -53-NH2 MOF 

crystals on nanofibers was demonstrated by the same approach with aminoterephthalic acid (ATA) 

linkers in place of Hmim ligands (Figure 1.17b and d). Both MOF crystals (ZIF-8 and MIL-53-

NH2) converted under optimized conditions from each corresponding metal oxide film on fiber 

substrates exhibited highly porous and crystalline solids with conversion yield of around 90%. 

 

Figure 1.16. (a) Schematic illustration of the synthesis of ZIF-8 films from ZnO precursor films 

deposited on solid substrates. TEM images of (b) a FIB-prepared cross-sectional specimen, (c) an 

enlargement of ZIF-8 film (Ḑ95 ± 10 nm) grown from ALD-ZnO with the observed layers 

indicated, and (d) magnification image of (c). Thick Pt layers are deposited on the top of the 

material prior to milling for protection. (figure arrangement adapted from Ref.37) 
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Figure 1.17. SEM images of PAN nanofibers coated by ALD with thin layers of (a) ZnO and (b) 

Al 2O3. SEM images of (c) PAN/ZnO/ZIF-8 and (d) PAN/Al2O3/MIL -53-NH2 composite materials 

obtained under MW-assisted heating (1.5 h); (diffraction peaks of Al-foil are marked with (*) and 

diffraction patterns of ZIF-8 and MIL-53-NH2 reference powders are reported for comparison). 

(figure arrangement adapted from Ref.38) 
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1.4.2.3. Hydroxy Double Salt Replication Method (ALD to HDS to MOF) 

Zhao et al. discovered a novel strategy for the rapid synthesis of MOF crystals at room 

temperature using hydroxy double salts (HDSs) as intermediates.39 In general, HDSs can form by 

reaction between one divalent metal oxide and another discrepant divalent cation. The layered 

structure of HDSs is comprised of cationic sheets linked by inorganic/organic interlamellar 

anions.40 Due to their structural feature, HDSs with excellent anion exchangeability can be 

intentionally harnessed to transform into new other functional materials. 

Figure 1.18a describes a representative two-step method for the rapid synthesis of HKUST-

1 MOF crystals. First, crystalline ZnO reacts with Cu(NO3)2 dissolved in solvent mixture (DMF 

and water) to produce (Zn,Cu)HDS compounds, and the intermediate HDS is directly converted 

into HKUST-1 within 1 min via rapid anion exchange with 1,3,5-benzenetricarboxylic acid 

(H3BTC) as a linker. The calculated space-time-yield (STY) for HKUST-1 synthesized by the 

HDS conversion method showed 3.6  104 kg·m-3·d-1, at least 1 order of magnitude greater than 

any previous reports.39 

To apply the facile HDS conversion approach to surface-bound HKUST-1 film on various 

form factors, ALD technique was adopted to provide conformal ZnO thin film with well-controlled 

thickness at atomic regime (Figure 1.18b). Polystyrene (PS) spheres, Si wafers, and 

polyacrylonitrile (PAN) fibers were exemplified as substrates to be coated with ZnO (~36 nm). 

After being exposed to the mother solution (Cu(NO3)2 and H3BTC dissolved in 

DMF/water/ethanol solvent mixture) for HKUST-1 at room temperature, ZnO thin film deposited 

on each substrate was immediately converted to dense films of HKUST-1 within 1 min (Figure 

1.18c).  All the substrates tested maintained their structural integrity intact after the procedure, 
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indicating its high practicality not only for powder synthesis but also for surface-functionalized 

thin film formation. 

 

Figure 1.18. (a) Schematic drawing of the rapid room-temperature synthesis of HKUST-1. ZnO 

reacts with Cu(NO3)2 to form (Zn,Cu) HDS, which converts to HKUST-1 via fast anion exchange. 

(b) Schematic of the rapid room-temperature synthesis of MOF coatings on various form factors. 

(c-e) SEM images of HKUST-1 deposited onto PS spheres, Si wafer, and PAN nanofibers, 

respectively. (figure arrangement adapted from Ref.39) 
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Pimentel et al. took advantage of the facile synthetic method of converting HDS 

intermediates into MOFs,39 and ultimately facilitated high volume loadings of HKUST-1 (85 wt%) 

or ZIF-8 (66 wt%) crystals within porous polymer fiber sorbents for application in gas separation. 

The researchers first prepared ZnO-loaded cellulose acetate (CA) fiber sorbents utilizing a 

dry-jet, wet-quench spinning technique using water as a quench bath coagulant.41 After the fiber 

spinning process, the relatively flexible CA/ZnO fibers obtained were assembled into close-packed 

modules (left in Figure 1.19a). Liquid reservoirs of Cu(NO3)2·3H2O (12 g) in DI water (120 mL) 

and of H3TBC (0.583 g) in ethanol (90 mL) and DI water (27 mL) were then alternatingly flowed 

through the module with fibers to generate (Zn,Cu)HDS intermediates and subsequently form 

sorbent fibers with high HKUST-1 loading (right in Figure 1.19a and Figure 1.19b). 

The MOF-loaded porous polymer sorbents inside the sealed Swagelok module (Figure 1.19 

c) was all prepared in dry conditions with minimal handling processes, so that even water-sensitive 

MOFs can preserve their adsorptive performance during the gas separation processes. 
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Figure 1.19. (a) Optical image of ZnO-loaded fiber sorbent bundles (left) and the postsynthesis 

MOF-loaded fiber sorbent bundles (right) in the Swagelok stainless tube. (b) (Top) Synthesis of 

MOF materials within ZnO-loaded fiber sorbent materials. (Bottom) SEM images of the green 

ZnO-loaded fiber sorbents (left) and the postsynthesis MOF-loaded fiber sorbent (right). (c) Image 

of the sealed Swagelok® module used to house, transport, and test the fibers. The gas-tight 

connections maintain an inert atmosphere and protect the fibers from humid degradation. All 

connections are ıò 316 SS fittings. (figure arrangement adapted from Ref.41) 
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CHAPTER 2 

UiO-66-NH2 MOF Nucleation on TiO2, ZnO, and Al2O3 ALD -treated Polymer Fibers: Role 

of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent 
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2.1. Abstract 

Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles 

show promising performance for many future applications. In particular, Zr-based UiO-66-family 

MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents 

(CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale 

metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation 

mechanism of Zr-based MOFs on different metal oxides and how product performance is affected 

are not well understood. Herein, we provide new insight into how different inorganic nucleation 

films (i.e., Al2O3, ZnO, or TiO2) conformally coated on polypropylene (PP) nonwoven textiles via 

atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield 

of UiO-66-NH2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, 

we find that TiO2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, 

and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate 

(DMNP) with t1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. 

Interestingly, compared to ALD TiO2 and Al2O3, ALD ZnO induces a larger MOF yield in solution 

and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical 

instability of the ZnO layer under MOF formation condition, leading to Zn2+ ions that promote 

further homogeneous MOF growth. Insights presented here improve understanding of 

compatibility between active MOF materials and substrate surfaces which we believe will help 

advanced MOF composite materials for a variety of useful functions. 
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2.2. Introduction 

Highly toxic compounds such as chemical warfare agents (CWAs) (e.g., sarin (GB), soman 

(GD), VX),1-2 chlorine gas,3-4  or common toxic pollutants like NOX-based chemicals5 pose a 

significant health threat in tactical or emergency response, or in industrial environments. Current 

approaches to circumvent such threats include filters or respirators containing metal oxides6-7 or 

impregnated activated carbon-based materials.8 However, these display limited degradation of the 

toxic chemicals after prolonged environmental exposure. As a more general problem, oxide or 

carbon-based materials have limited ability to be chemically adjusted or ñtunedò to improve 

reaction rates with toxic compounds.   

In recent work, various solid materials with catalytic performance for destroying CWAs 

have been synthesized and demonstrated.9-14 In particular, highly crystalline and porous Zr-based 

metal-organic frameworks (MOFs) functionalized with amine groups show high catalytic 

performance in decontaminating CWAs and their simulants. Specifically, soman (GD), a nerve 

agent, was catalytically hydrolyzed with a half-life of less than 3.5 min, and under similar 

conditions, the simulant dimethyl p-nitrophenyl phosphate (DMNP) showed a half-life of ~1 min.9, 

15-16 This outstanding performance is ascribed to the presence of Lewis acidic sites within the 

metal-containing Zr4+ centers17 acting synergistically with Brønsted base amino moieties15 in the 

organic linkers to adsorb and catalyze agent hydrolysis. 

While MOF powders show very good performance, a key problem is that isolated powders 

are not ideal for hazard abatement in practical applications such as on the battlefield. More 

specifically, when physically adhered MOF particles to scarves or clothes are used in the real 

applications, the particles on the substrates tend to be not only aggregated, but also easily fall off 

from the substrates. This can diminish the MOF catalytic activity, and procedures to effectively 
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contain, transport and rapidly distribute powder materials under emergency conditions are not well 

defined. A desirable approach, therefore, is to covalently integrate and evenly distribute diverse 

types of MOFs onto polymeric textiles or fibrous mats that can be worn as protective clothing or 

readily deployed under imminent threat.18-24  

Previously, our group demonstrated that pretreating various polymer fiber substrates with 

thin conformal metal oxide coatings formed by atomic layer deposition (ALD) enables dense, 

uniform and conformal MOF crystal layers to form via hydrothermal synthesis on the fiber 

surfaces.25  Several reports analyzed of a range of ALD material coatings (i.e., Al2O3, ZnO, or 

TiO2) as viable nucleation sites for growth of HKUST-1 (Cu-BTC) MOF crystals, and 

demonstrated that the metal oxide composition played a critical role in defining the initial MOF 

nucleation reaction.26-28 In other related work, UiO-type MOFs were also studied on fibrous nylon 

(PA-6) scaffolds pre-treated with ALD TiO2, and these materials showed high rates for catalytic 

decomposition of CWAs and their related simulants.19 Specifically, the agent, soman (GD) and a 

CWA simulant, DMNP reacted with half-lives as short as 2.3 min and 7.3 min, respectively.19 

Furthermore, we recently proved that ALD ZnO coating (vs Al2O3 and TiO2) on PP polymeric 

fibrous mats can act as effective adhesion layers where presynthesized UiO-66-NH2 crystals can 

self-assemble at ambient temperature.24 These MOF-cloths also exhibited a fast catalytic 

degradation rate of DMNP with a half-life of less than 5 min.24 However, MOF nucleation and 

growth mechanisms and how differently they are induced by ALD metal oxide composition have 

remained as an open question. 

Therefore, in this work, we address the question of the role of ALD metal oxide 

composition as heterogeneous MOF nucleation sites for UiO-66-NH2 MOF crystals on 

polypropylene fibers. We demonstrate that the starting metal oxide and substrate control both MOF 
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growth rates, the extent of MOF loading during growth, and the fractional yield of MOF film 

formation on fibers vs homogeneous MOF crystal formation. Furthermore, for the first time, we 

quantitatively analyze the quality of MOF on ALD surfaces as well as the extent of MOF loading 

in relation to the subsequent rate of DMNP simulant degradation kinetics. 

 

2.3. Experimental Section 

All reagents were purchased from commercial sources and used without further treatment. 

Tri-methyl aluminum (TMA, 98% STREM Chemicals, Inc.), titanium (IV) chloride (TiCl4, 99%, 

STREM Chemicals), diethylzinc (DEZ, 95% STREM Chemicals, Inc.), Zirconium(IV) chloride 

(ZrCl4, Alfa Aesar, Ó99.5%), 2-aminoterephthalic acid (2-ATA, Acros Organics, 99%), N,N-

dimethylformamide (DMF, Fisher), deionized water, anhydrous ethanol (200 proof, VWR), N-

ethylmorpholine (Sigma-Aldrich, Ó97%), and dimethyl p-nitrophenyl phosphate (DMNP, Sigma-

Aldrich). 

Polymeric fibrous scaffolds. Non-woven polypropylene (PP) micro-fibrous mats were 

used as received from Nonwovens Cooperative Research Center (NCRC), North Carolina State 

University.29 The polymeric fibrous mats are 0.30 mm thick, with fiber diameter ranging from 0.6 

ɛm to 9.0 ɛm. 

Atomic layer deposition (ALD) on PP microfibers and on Si wafers. Non-woven 

polypropylene (PP) fibrous mats were conformally coated with inorganic Al2O3, TiO2, and ZnO 

using a home built hot-wall viscous-flow atomic layer deposition reactor. The reactor design for 

the processes was described in previous work.27 ALD deposition with the inorganic materials was 

conducted at 90 oC under ~1.8 Torr. The sequence times (in second) of x exposure/N2 purge/H2O 

exposure/N2 purge were 1/30/1/30 for Al2O3, 1/40/1/40 for TiO2, and 2/60/2/60 for ZnO 
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deposition, where x is TMA, TiCl4, and DEZ, respectively. These samples are referred to as 

PP@Al2O3, PP@TiO2, and PP@ZnO, respectively.  

Silicon wafers with thin native oxide (~2 nm) (Si@SiO2) were also placed together with 

PP fibrous mats inside the reactor under the same ALD condition. PP mats were prepared with 

200-, 300-, and 200 cycles of ALD Al2O3, TiO2, and ZnO, respectively, on PP fibrous mats. Si 

wafer monitors were also used to measure thickness of the ALD coatings along with PP substrates. 

Around 20 nm of inorganic film on the Si@SiO2 was confirmed from a J.A. Woollam alpha-

spectroscopic ellipsometry (SE) ellipsometer at an incidence angle of 70o. These samples are 

referred to as Si@SiO2@Al2O3, Si@SiO2@TiO2, and Si@SiO2@ZnO, respectively. 

Synthesis of UiO-66-NH2 MOFs. 0.080 g (0.343 mmol) of ZrCl4 was first loaded in 20 

mL glass scintillation vial and dissolved in 20 mL of DMF via 1 min of sonication, followed by 

stirring the solution for 5 min. 0.062 g (0.343 mmol) of 2-ATA and 20 ɛL of deionized water were 

subsequently added to the prepared solution under stirring (~500 rpm). This as-prepared mixture 

was heated at 85 °C for 24 h in a box furnace (Thermo Scientific). The UiO-66-NH2 MOF product 

was then collected by filtering out unreacted precursors, byproducts, and residual DMF through 

polypropylene membrane (0.45 ɛm pore size, Whatman). After that, the filtered solid was rinsed 

with 80 mL of DMF and 80 mL of anhydrous ethanol in a sequential manner in the filtration 

system. Eventually, the final solid was obtained via filtration and dried at room temperature at 

reduced pressure for 12 h. The fully dried MOF powder was stored in a desiccator until being used 

for further characterizations. 

Synthesis of UiO-66-NH2 MOF coatings on PP@ALD fibrous mats and Si@SiO2@ALD 

substrates. Precursor solutions (20 mL) for each UiO-66-NH2 MOF coating on PP@ALD fibrous 

mats and Si@SiO2@ALD substrates were prepared using the same recipe depicted above for the 
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synthesis of UiO-66-NH2 MOF powder. A free-standing PP fabric swatch (1" × 2") coated with 

ALD Al 2O3, TiO2, or ZnO was soaked in the as-prepared precursor solution in 20 mL scintillation 

vial. ALD coated Si@SiO2 planar substrates (1" × 1") were also immersed in the as-prepared 

precursor solution in 20 mL scintillation vial. These vials with samples were placed in a box 

furnace (Thermo Scientific) and heated at 85 °C for 24 h. After the solvothermal synthesis 

procedure is finished, the MOF coated PP fibrous mats were transferred into a fine aluminum mesh 

and rinsed with 80 mL of DMF twice under magnetic stirring (~500 rpm) for 12 h. Subsequently, 

the MOF coated fibrous mats were further washed with 80 mL of anhydrous ethanol, and the 

solvent was replaced every 12 h for at least a total of three times. As for the MOF coated 

Si@SiO2@ALD planar substrates, they were vigorously rinsed with anhydrous ethanol for 10 min. 

The finally obtained products were dried at room temperature at a reduced pressure for 12 h and 

stored in a desiccator until being used for further characterizations. 

Stability tests of ALD ZnO layer on PP micro fibers in UiO-66-NH2 precursor solutions. 

PP polymeric fibrous mats (1" × 2") coated with ALD ZnO (PP@ZnO) were submerged in a DMF 

(20 mL) + DI water (25 ɛL) mixture, and then heated at 85 oC for 24 h. This experiment was 

carried out to identify stability of the ZnO layer in DMF solvent under the synthetic condition of 

MOF growth. 

PP polymeric fibrous mats (1" × 2") coated with ALD ZnO (PP@ZnO) were submerged in 

a 2-ATA (0.062 g (0.343 mmol)) + DMF (20 mL) + DI water (25 ɛL) mixture, and then heated at 

85 oC for 24 h. This experiment was conducted to figure out the effect of the organic linkers (i.e., 

2-ATA) on stability of the ZnO layer under the synthetic environment of MOF growth. 

PP polymeric fibrous mats (1" × 2") coated with ALD ZnO (PP@ZnO) were submerged in 

a ZrCl4 (0.080 g (0.343 mmol)) + DMF (20 mL) + DI water (25 ɛL) mixture, and then heated at 
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85 oC for 24 h. This experiment was performed to examine the influence of the metal-containing 

precursors (i.e., ZrCl4) on stability of the ZnO layer under the synthetic environment of MOF 

growth. 

Catalytic hydrolysis reaction of dimethyl p-nitrophenyl phosphate (DMNP) using 

UiO-66-NH2 powder. The catalytic hydrolysis reaction with as-synthesized UiO-66-NH2 powder 

was carried out at room temperature.19 Three respective runs were conducted with varied amounts 

of UiO-66-NH2 powder as catalysts (1) 2.6 mg (0.0015 mmol), 2) 4.0 mg (0.0023 mmol), and 3) 

5.6 mg (0.0033 mmol)) added to an aqueous solution of N-ethylmorpholine (1 mL, 0.45 M) in a 

1.5 mL Eppendorf micro-centrifuge tube at room temperature. The mixture was vigorously stirred 

(1100 rpm) for 30 min until well enough to disperse the UiO-66-NH2 powder in the solution. 

DMNP (~6.2 mg (0.025 mmol)) was then added to the suspension. The final reaction solution was 

kept stirred at 1100 rpm. 20 ɛL of aliquot was taken out of the reaction mixture and diluted with 

10 mL aqueous solution of N-ethylmorpholine (0.45 M) to investigate the extent of reaction as a 

function of time. The progressive changes in absorbance intensity between 250 and 500 nm 

wavelength range during the hydrolysis reaction were monitored by a Thermo Scientific Evolution 

300 UV/Vis spectrophotometer. We especially focused on tracing an alteration in an absorbance 

peak intensity at 407 nm corresponding to p-nitrophenoxide produced during the reaction. 

Catalytic hydrolysis reaction of dimethyl p-nitrophenyl phosphate (DMNP) using 

UiO-66-NH2 coated fabric or control samples. The catalytic hydrolysis reaction with UiO-66-

NH2 MOF coated fibrous mats or with control samples was similarly implemented as described in 

section 2.7 for the reaction with MOF powder. We tested the catalytic reaction with untreated PP, 

PP@ALD, and PP@ALD@MOF, where ALD is Al2O3, TiO2, or ZnO. We kept consistency in the 

amount of all fabric samples (14 mg) added to the reaction solution. The fabric samples were cut 
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into several pieces to be well immersed in the reaction solution.24 The way of monitoring the 

reaction progresses was carried out as explained above for the experiments with MOF powder. 

Material Characterization. Scanning electron microscopic (SEM) and energy dispersive 

X-ray analysis (EDX) were carried out using an FEI Verios 460 L field emission SEM. A thin 

layer of Au-Pd (5~10 nm) was sputter-coated onto the prepared samples before SEM imaging. We 

microtomed the ALD coated PP microfibrous mats to image cross section through a JEOL 2010F 

transmission electron microscope (TEM). X-ray diffraction (XRD) was conducted with a Rigaku 

SmartLab X-ray diffraction tool (Cu KŬ X-ray source) for crystalline phase analysis. UiO-66-NH2 

MOF powder diffraction pattern was simulated using Mercury 3.0 software and the 

crystallographic information file from Cambridge Crystallographic Data Centre (CCDC 837796 

for UiO-66). A Quantachrome Autosorb-1C surface area and pore size analyzer was utilized for 

measuring N2 adsorption-desorption isotherms at 77 K. The fabric-based samples were dried in 

vacuum (~1 × 10-5 Torr) in BET instrument at room temperature for 1 h and at 110 °C for 24 h in 

a subsequent way before N2 adsorption-desorption measurement. BET surface area was calculated 

on the basis of the N2 adsorption data within a relative pressure range of P/P0 = 0.02 ~ 0.08.30-31 A 

Thermo Scientific Nicolet 6700 Fourier transform infrared spectrometer was used for analyzing 

MOF growth on IR silicon wafers coated with ALD metal oxides (i.e., Al2O3, TiO2, or ZnO). A 

progressive change in absorbance intensity during the DMNP hydrolysis reaction was traced by a 

Thermo Scientific Evolution 300 UV/Vis spectrophotometer. 

 

2.4. Results and Discussion 

Scanning electron microscope and cross-sectional TEM images of PP fibers as-received, 

and after coating with ALD Al2O3, ZnO, or TiO2 are shown in Figure 2.1. As-received PP fibers 
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were found to have a smooth surface, whereas after coating with the ALD metal oxides, the PP 

fibers showed a slightly roughened surface. From the cross-sectional TEM images, the ALD Al2O3 

coating on PP fibers27 revealed an abrupt interface between the polymer and the metal oxide with 

minimal subsurface growth, whereas the ALD ZnO and TiO2 coating process both led to a graded 

polymer/inorganic layer. These results are consistent with previously quantified growth 

temperature- and precursor-dependent diffusion and sub-surface reaction during ALD on 

polypropylene and other polymers.25 The surface roughness generated by ALD on polymers is also 

previously described and understood in terms of the propensity for ALD reactants to adsorb on the 

fiber surface vs diffuse into the polymer near-surface region.32-37 For all ALD-treated fiber 

materials studied here, the ALD conditions and coating thickness were defined such that the  outer 

surface of the substrate was fully coated with the targeted metal oxide. 

Figure 2.2 illustrates the procedure for creating UiO-66-NH2 MOF thin films onto non-

woven PP textiles. The ALD technique was used to conformally coat the inert PP microfibers with 

Al 2O3, ZnO, or TiO2 under conditions described in the experimental section. We expect the MOF 

crystal size and nucleation rate to depend upon the composition of the ALD metal oxide, thus 

providing flexibility and control to modulate the ultimate reactivity and performance for efficiently 

detoxifying CWA agents or simulants. 

As demonstrated in SEM images shown in Figure 2.3, PP fibers that are pre-treated with 

ALD Al 2O3, ZnO or TiO2 lead to well-distributed and relatively dense UiO-66-NH2 crystals, 

whereas fewer MOF crystals grow on PP without the ALD pre-treatment. In practice, the MOF 

crystals on the native untreated PP fibers are loosely entrapped within the fiber mat so that the 

powders easily fall off during common sample handling. SEM images at relatively low 

magnification (Figure 2.3a-d) further confirm that the extent of UiO-66-NH2 growth on ALD 
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surface exceeds that on a bare PP, particularly for the ALD ZnO and TiO2. The XRD patterns in 

Figure 2.4 show main characteristic peaks (7.45Á and 8.6Á 2ɗ) of UiO-66-NH2 on all ALD surfaces, 

matching the spectra collected from powder UiO-66-NH2. Interestingly, for the PP coated with 

ZnO, three distinct XRD peaks associated with wurtzite hexagonal ZnO phase (31.7°, 34.4°, and 

36.2Á 2ɗ) are present after ALD, but disappear after solvothermal growth of UiO-66-NH2. 

Furthermore, a new finding from this work found the MOF/fiber assemblage created using ZnO-

coated PP microfibers was markedly different from those with ALD Al2O3 or TiO2. Specifically, 

the ZnO-coated substrate generated MOF crystals within the spaces and voids of the fiber mesh, 

whereas the TiO2 coating formed dense MOF crystals uniformly dispersed and attached to the 

fibers. Thus, we speculate that the ALD ZnO layer may dissolve into the UiO-66-NH2 

solvothermal synthesis solution, leading to Zn2+ ions in solution that promote homogeneous MOF 

crystallization near and within the fiber mesh, facilitating entrapment and physisorption of MOF 

crystals within the fabric and on the fiber surface. 

The N2 adsorption-desorption isotherms (Figure S2.1a) were measured to confirm the 

quality of MOF crystals grown on PP@ALD surfaces. Both PP@ALD@UiO-66-NH2 and UiO-

66-NH2 powders plateau out in N2 uptake at a low relative pressure range (i.e., P/P0 = 0.02-0.80) 

without detectable hysteresis, indicative of the expected physical structure provided by 

microporous MOF. The rapid increase in N2 uptake at high relative pressures (i.e., P/P0 > 0.90) is 

probably due to the presence of nonporous or macroporous gaps between fibers or MOF crystals 

within the structure. Without the MOF coating, the ALD-treated PP fibers show a Brunauer-

Emmett-Teller (BET) surface area of only 1-2 m2/g consistent with N2 adsorption only on the 

external fiber surface. The BET surface area after UiO-66-NH2 coating on PP@ALD (Figure 

S2.1b) shows that the ALD ZnO treatment produces the largest N2 gas physisorption capacity, 
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consistent with corresponding SEM images (Figure 2.3) and XRD analysis (Figure 2.4). For the 

ZnO case, some of the MOF crystals between fibers may be poorly adhered, but significant MOF 

shedding was not observed during routine laboratory handling.  

To determine the total MOF mass on the fibers, we found that solvent and water absorption 

in the fibers during handling and MOF growth led to significant uncertainties in physical mass 

measurements. Therefore, following previous methodology,38 the total MOF mass was determined 

from the BET surface area of the MOF/fiber samples normalized to that of the free MOF powder 

(Table 2.1).  As expected from the SEM and XRD results, the PP@ZnO@MOF showed the largest 

MOF mass fraction (~15 wt%), compared to ~3.5 and ~7 wt% for the PP@Al2O3@MOF and 

PP@TiO2@MOF samples, respectively. The nonwoven polypropylene fiber mats have a starting 

mass of approximately 40 grams per square meter (gsm).36 Therefore, MOF mass fraction values 

of ~15, 3.5 and 7 wt% correspond to a MOF mass of ~7, 1.5 and 3 gMOF/m
2
swatch for the MOF/fiber 

composites created here. 

To explore the role of the ALD metal oxide more fully, we used Fourier transform infrared 

(FTIR) spectroscopy to analyze the reaction during MOF growth on ALD Al2O3, ZnO and TiO2 

on silicon wafers, and results are shown in Figure 2.5a. For this experiment, first we collected IR 

transmission spectra for blanket ALD films on silicon. The samples were then subjected to MOF 

solvothermal growth under the same conditions used for the fiber samples. The samples were then 

analyzed again by IR. Results in Figure 2.5a show the spectra associated with each starting ALD 

metal oxide, as well as spectra collected after MOF growth. For the MOF spectra, the 

Si@SiO2+ALD data are subtracted as background. The ALD coatings display absorbance peaks 

near 600 cm-1 for Al2O3 and ~400 cm-1 for ZnO and TiO2, respectively. After UiO-66-NH2 growth, 

we observe characteristic vibrational modes from the amine-functionalized MOF linkers 
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including: vasym[COO-] (1570 cm-1), vsym[COO-] (1390 cm-1 and 1430 cm-1), vasym[NH2] (3515 cm-

1), vsym[NH2] (3390 cm-1), and v[C-N] (1260 cm-1). A range of Zr-OH stretching modes (from the 

MOF Zr6O4(OH)4 nodes) are seen centered near 3650 cm-1.39 These MOF modes are readily 

observed on the samples which started with ALD Al2O3 or TiO2, but are notably absent for the 

ZnO samples. Also, remarkably, the ZnO sample shows a negative-going feature near 400 cm-1 

after MOF synthesis, demonstrating dissolution of the ZnO thin film. The disappearance of the 

ZnO during MOF growth is also consistent with the XRD data shown in Figure 2.4. Also, 

consistent with ZnO dissolution, the ZnO-coated samples tend to produce more extensive 

homogeneous MOF crystal growth compared to Al2O3 and TiO2. As for the samples we tested, no 

strong vibration modes of C=O of DMF (1660 cm-1) were not observed, indicating that the 

activation processes we conducted were enough to exchange and remove DMF out of the MOF 

structures.40 

XRD patterns and digital photographs of silicon wafer samples after ALD and MOF 

solvothermal synthesis are shown in Figure 2.5b and c, respectively, revealing that UiO-66-NH2 

crystals are adhered to the surface of Al2O3- or TiO2-coated silicon wafer, whereas the original 

ALD ZnO-treated silicon appears to have no MOF crystals. These findings suggest the more basic 

ZnO tends to dissolve during UiO-66-NH2 solvothermal synthesis. 

To further understand the mechanisms of the ALD ZnO layer on PP during MOF synthesis, 

we performed a series of stability experiments. Control substrates of PP@ZnO fibrous mats were 

prepared and immersed in various MOF synthesis solutions at 85 oC for 24 h, as described in detail 

in the experimental section. SEM images (Figure S2.2), and mass changes and XRD data (Figure 

S2.3) were analyzed to study the mechanism.  From the mass and images collected, we find that 

ALD ZnO layer on PP microfibers is vulnerable under acidic conditions present during exposure 
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to either 2-ATA or ZrCl4. The 2-ATA organic linkers react with ZnO to form surface-bound non-

crystalline salts. On the other hand, ZrCl4 reagents completely dissolve the ZnO layer, leaving only 

uncoated PP microfibers. We conclude that acidic HCl produced by ZrCl4 in DMF + DI water at 

85 oC readily etches the ZnO layer on the PP microfibers.41 These results are further supported by 

energy-dispersive X-ray spectroscopy (EDS) mapping of the material (Figure S2.4). 

To probe the catalytic efficacy of MOF-microfiber composite materials, we investigated 

the rate of DMNP hydrolysis in contact with the coated fibers (Figure 2.6a). Starting with an 

aqueous solution of DMNP with N-ethylmorpholine buffer (0.45 M, pH 10), we added 2.6 mg of 

MOF powders and 14 mg of either untreated PP or PP@ALD@MOF composite materials, and 

determined the rate of DMNP hydrolysis by periodically measuring the absorbance at 407 nm 

corresponding to the p-nitrophenoxide reaction product. The absorbance data and corresponding 

fractional conversion are plotted in Figure 2.6b and c, respectively. For the MOF powder, we 

observed 100% conversion after approximately 60 min, with a half-life (t1/2) of ~4.8 min. This 

value is similar, but slightly slower than reported previously.19 The previous report used MOFs 

with a higher surface area (1334 m2/g vs 956 ± 81 m2/g used here) consistent with a higher density 

of active missing linker sites.19 After reacting for 60 minutes, DMNP conversion was 21%, 83%, 

and 94% for PP@Al2O3@MOF, PP@TiO2@MOF, and PP@ZnO@MOF, respectively, and the  

corresponding t1/2 values (Table 2.1) were PP@Al2O3@MOF: 78 min; PP@TiO2@MOF: 15 min; 

and PP@ZnO@MOF: 10 min. The fastest degradation kinetics was observed for 

PP@ZnO@MOF, consistent with these materials exhibiting the highest MOF loading (Figure 

S2.1b). The comprehensive analyses of the above reaction kinetics are presented in Figure S2.5. 

As a control, the untreated PP shows DMNP hydrolysis with t1/2 exceeding 6 days. Previous results 

from our lab (Figure S2.6) show that the ALD layers (without MOF present) can also promote 
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DMNP hydrolysis, but with very slow kinetics (t1/2 = 77, 40, and 20 hours for Al2O3, TiO2, and 

ZnO, respectively).19, 24 Generally, we find that the rate of degradation correlates with the extent 

of MOF mass loading, which is influenced by the composition of the ALD metal oxide nucleation 

layer. In addition to characterizing the effect of metal oxide nucleation layer on subsequent MOF 

growth, we are interested in understanding any quantitative differences in the catalytic 

performance of the surface-bound MOFs relative to similarly prepared powders. To determine the 

fraction of ñcatalytically activeò MOF on the fibers relative to the total mass of surface-bound 

MOF, we first analyzed the rate of DMNP hydrolysis using various amounts of UiO-66-NH2 

powder.  Following the reaction scheme in Figure 2.7, the rate data (Figure S2.7) was fit to a 

pseudo-first-order rate expression (Figure S2.8 and Table S2.1) yielding an apparent rate constant 

for the hydrolysis reaction, kapp,powder = 93 ± 1.7 M-1min-1. Using this value, the mass of the 

ñcatalytically activeò MOF on the fibers can be estimated by fitting the observed degradation rate 

data for the MOF/fiber composites. Comparing the ñactiveò MOF mass to the total MOF mass, we 

find the PP@ZnO@MOF samples, both show ~15 wt%. The Al2O3 and TiO2 coated fibers also 

show reasonable agreement, with ñactiveò vs total of 2.1 vs 3.5 wt% and 9.3 vs 7 wt%. for the 

PP@Al2O3@MOF and PP@TiO2@MOF samples, respectively. These results suggest that the 

PP@TiO2 provides a surface that is more favorable for growth of high-quality UiO-66-NH2 MOFs 

that readily adhere to the oxide surface compared to PP@ZnO and PP@Al2O3. 

As a final analysis (Figure S2.9), we also examined the fractional yield of MOF crystals 

on the fiber surfaces relative to the starting solution molar precursor concentration. We find that 

PP@ZnO fiber presents the highest MOF growth yield on the surface (9.6%) compared to 1.6% 

for PP@Al2O3 and 3.8% for PP@TiO2 surface (Table S2). This result coincides well with the trend 
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of other analyses observed from SEM, XRD, FTIR, and BET and calculated from DMNP 

degradation. 

In addition, we find that the presence of the ZnO appears to produce a catalytic 

enhancement to the overall MOF yield. Specifically, in the presence of PP@ZnO fabric, the overall 

MOF yield (MOF on fabric + MOF powder) is measured to be ~47%. However, without the ZnO 

the yield is slightly smaller, ~43% (Table S2). This yield calculation further supports our reasoning 

that Zn2+ ions dissolved from ZnO layer can function as additional nucleation sites, promoting 

extensive homogeneous MOF growth near and within the fiber networks. 

 

2.5. Conclusions 

We quantitatively compared ALD metal oxide surfaces including Al2O3, ZnO, and TiO2 

on polypropylene textiles as starting surfaces for heterogeneous nucleation of UiO-66-NH2 MOF 

as catalysts for hydrolysis of DMNP, as chemical warfare agent simulant. Compared to ALD ZnO 

and Al2O3, the TiO2 layers led to more uniform MOF coating with highest overall MOF loading 

and net surface area (m2/g(MOF+Fiber)). We confirmed the MOFs on TiO2 treated polypropylene 

catalyzed the DMNP hydrolysis with t1/2= 15 min, comparable to previous results and appreciably 

faster than PP fibrous mats with only the ALD coating. The Al2O3 coated PP performed nearly the 

same as TiO2 in MOF nucleation and growth, but the ALD ZnO was unstable under MOF 

solvothermal synthesis conditions, resulting in ZnO dissolution and more favorable homogeneous 

MOF nucleation, likely promoted by the presence of Zn2+ ions in solution. Faster homogeneous 

nucleation led to more MOF crystals entrapped within the fiber mat, and an overall net larger mass 

loading. While the larger MOF loading increased the net rate of DMNP degradation (t1/2= 10 min), 

we find the entrapped crystals are less robust under mechanical handling, and therefore likely less 
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desirable than covalently-bound crystals obtained on the TiO2 surface. Further work is needed to 

specifically identify the likely nucleation sites and reactive species that enable favorable MOF 

nucleation on metal oxide or other growth surfaces. 
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2.6. Figures 

 

Figure 2.1. SEM images of (a) a bare polypropylene (PP) and ALD-treated PP: (b) PP@Al2O3, 

(c) PP@ZnO, and (d) PP@TiO2. Cross-sectional TEM images of (e) PP@Al2O3, (f) PP@ZnO, 

and (g) PP@TiO2 microfibers. 
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Figure 2.2. Synthetic procedure for integrating UiO-66-NH2 MOF onto ALD-treated polymeric 

fibrous scaffolds. 
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Figure 2.3. SEM images of UiO-66-NH2 crystals solvothermally grown on (a, e) PP, (b, f) 

PP@ZnO, (c, g) PP@Al2O3, and (d, h) PP@TiO2 microfibers. Insets in (a-d) are optical 

photographs of corresponding actual samples. 
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Figure 2.4. XRD patterns of untreated PP, PP@ALD, UiO-66-NH2 MOF coated PP or PP@ALD, 

and UiO-66-NH2 MOF powder. 
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Table 2.1. Fiber-Based Material Properties, Calculated ñActiveò MOF Fraction, and Catalytic 

Performance toward a CWA Simulant, DMNP 

 

a93 ± 1.7 M-1·min-1 of a reaction constant (kapp, powder) is an average value from kapp values in 

Table S1. This value was used to estimate ñcalculated activeò MOF wt % on PP@ALD@UiO-66-

NH2 fabric samples. bñMeasuredò MOF wt % was estimated based on BET surface area of MOF 

powder (956 ± 81 m2/g) collected from liquid phase after a solvothermal synthesis at 85 °C for 24 

h. Turn over frequency (TOF) was calculated per Zr6 cluster at t1/2. 
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Figure 2.5. (a) FTIR spectra captured in differential mode, (b) XRD patterns of UiO-66-NH2 

grown on ALD-coated silicon wafer pieces (Si@SiO2), and (c) optical photographs of samples 

after the solvothermal reaction for MOF integration. The dark coating corresponds to visible UiO-

66-NH2 MOF film growth. 
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Figure 2.6. (a) Catalytic destruction of DMNP using MOF powder or PP@ALD@MOF 

microfibers. (b) UVīvis trace of the hydrolysis of DMNP as a function of reaction time using 

PP@ZnO@UiO-66-NH2 as a catalyst. (c) Conversion profiles of DMNP to p-nitrophenoxide 

versus reaction time using PP, PP@ALD@MOF, or UiO-66-NH2 MOF powder. 
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Figure 2.7. Equations for the hydrolysis of DMNP catalyzed by MOF into the nontoxic products. 
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2.8. Supporting Information 

 

Figure S2.1. (a) N2 isotherms and (b) overall BET surface area for UiO-66-NH2 MOF, 

PP@ZnO@MOF, PP@TiO2@MOF, and PP@Al2O3@MOF. 

 

 

 

Figure S2.2. SEM images of a stability test for ALD ZnO layer on PP immersed in various 

solutions at 85 oC for 24 h. (a and e) a control PP@ZnO, (b and f) PP@ZnO in DMF + DI water, 

(c and g) PP@ZnO in 2-ATA + DMF + DI water, and (d and h) PP@ZnO in ZrCl4 + DMF + DI 

water. 
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Figure S2.3. (a) Mass changes and (b) XRD patterns of PP@ZnO microfibers after being 

immersed in the various solutions at 85 oC for 24 h 

 

 

 

Figure S2.4. SEM and EDS mapping images of PP@ZnO microfibers after being immersed in the 

various solutions at 85 oC for 24 h. (a) PP@ZnO in DMF + DI water, (b) PP@ZnO in 2-ATA + 

DMF + DI water, and (c) PP@ZnO in ZrCl4 + DMF + DI water. 
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Figure S2.5. Kinetic analysis of (a) untreated PP, (b) PP@Al2O3@MOF, (c) PP@TiO2@MOF, 

(d) PP@ZnO@MOF, and (e) UiO-66-NH2 MOF powder. 
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Figure S2.6. (a) Conversion profiles and (b) kinetic analysis of untreated PP, PP@Al2O3, 

PP@TiO2, and PP@ZnO. 

 

 

 

 

 

Figure S2.7. (a) Conversion profiles and (b) kinetic analysis of DMNP to p-nitrophenoxide versus 

reaction time using UiO-66-NH2 MOF powders with different amounts as catalysts. 
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Figure S2.8. Calculated reaction rate constant, kapp, versus the amount of MOF powder catalyst 

added for destructing DMNP to p-nitrophenoxide. 
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Table S2.1. Material properties and catalytic performance of UiO-66-NH2 MOF powder towards 

a CWA simulant, DMNP. 

 

*The half-lives are obtained on the basis of first-order kinetics. Turn over frequency (TOF) was 

calculated per Zr6 cluster at t1/2. 

 

Derivations for DMNP hydrolysis reaction 
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Figure S2.9. (a) Actual UiO-66-NH2 MOF/fabric composites and MOF powder synthesized in 20 

mL scintillation vial (ZrCl4 (0.080 g, 0.343 mmol) + 2-ATA (0.062 g, 0.343 mmol) + DMF (20 

mL) + DI water (25 ɛL) mixture). (b) Histogram of the fractional yield of MOF crystals on the 

different fiber surfaces and MOF powder collected from the liquid phase relative to the starting 

solution molar precursor concentration. 
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Table S2.2. Material properties used for calculating overall MOF yield and extracting MOF yield 

on fabric.  

 

* Theoretical mass of UiO-66-NH2 MOF powder synthesized from our standard precursor 

concentration (ZrCl4 (0.343 mmol) + 2-ATA (0.343 mmol) + DI water (25 ɛL) in 20 mL DMF) is 

0.0979 g (0.014 mmol). PP@ALD indicates substrates before growing MOF on them. MOF 

powder is collected from liquid phase left behind the MOF growth reaction. Mass of the powder 

is measured after being activated at 110 oC for 24 h. Mass of MOF on fabric is obtained considering 

BET surface area of the MOF/fiber samples (Table S1) normalized to 956  81 m2/g of MOF 

powder. 

 

 

 

 

 

 

 

 

 


