
ABSTRACT

ALEBRAHIM, EBRAHIM KH E S. Stochastic Dynamic Optimization in Spatial and Network
Resource Economic Models. (Under the direction of Paul Fackler).

Explicit spatial optimization models in resource economics, such as control of invasive

species, and disease spread, tend to be of high dimensional nature. Efficient optimization

methods, such as dynamic programming, suffer from what is known as the curse of dimen-

sionality and hence incapable of solving such problems. This dissertation explores and

tests various approximate dynamic programming methods to solve such problems. Our

analysis is based on a stylized invasive species model. The model is a stochastic discrete sus-

ceptible infected susceptible (SIS) diffusion, or transmission, model where problems such

as pest infestation, and disease and viral spread can be modeled similarly. This means our

treatment in this dissertation would be useful for a wide variety of resource problems with

spatial or network structure. The dissertation consists of four main parts. In the first part,

we provide a review of the importance of spatial models in both economics and resource

economics. In the second part, we review some fundamentals of dynamic optimization.

In the third part, we propose and explore a rank-based policy function approximation

method. In the fourth part, we introduce an overview of reinforcement learning methods,

as an approximate dynamic programming approaches, illustrate its potential in solving

small and high dimensional problems and explore the performance of it using linear in

parameters approximation algorithms for the approximation of the state-action value func-

tion. Our analysis shows that both approaches have the potential to solve moderate to high

dimensional dynamic resource economics problems.
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CHAPTER

1

INTRODUCTION

1.1 Introduction

This dissertation generally focuses on the problem of resource allocation over space and

time. We explore several approximate dynamic programming (ADP) methods (Powell 2008)

for controlling a stylized stochastic invasive species dynamic spatial model. We specifically

focus on the situation where the dimension of the problem is intractable to solve with exact

numerical methods, such as dynamic programming (Bellman 1954). Although our study

is based on a stylized invasive species problem, its implications could be useful for other

similar problems, such as disease spread.
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This chapter consists of two main parts: a literature review and a description of the

dissertation outline. The literature review starts with a discussion of the importance of the

spatial model models in economics, in general, and resource economics more specifically.

The review concludes with a discussion of the literature that has explored approximate

dynamic programming methods in resource economics problems.

1.2 Literature

Many fields of sciences use spatial models, including ecology and resource economics.

Disease spread (Ferguson et al. 2005), pest infestation (Bianchi et al. 2010), and invasive

species (Epanchin-Niell and Hastings 2010) are some examples. Spatial models can be

either implicit or explicit.

Explicit models are models that track the dynamics of the state of the locations individ-

ually. Bianchi et al. (2010) provides examples of such models. Implicit models are models

that track the dynamics of the state of the locations in a categorized aggregate way. Spatial

category count models are examples of implicit models (Fackler 2012). To illustrate the two

types of models, suppose we have several sites, n , where some pest can infest each of them.

Assume that the infestation level represents the state of each site. An explicit model in

this example tracks the evolution of the infestation level for each site, while for an implicit

model, we keep track of the evolution of the number of sites in each category of infestation

level (i.e., low, medium and high).

Spatial models have played an important role in economics for at least a century. For

example, Hotelling’s location model (Hotelling 1929) and the work by (Sraffa 1926) are

considered influential works in the theory of firms’ competition where space plays an

important role. Schelling’s segregation model (Schelling 1971) is an example of the spatially

2



explicit dynamic models and considered a seminal work in the field of urban economics

and complexity economics (Arthur 1999). In relatively recent work, the spatial nature of

economics problem is contextualized in what is known as the New Economics Geography

(Krugman 1998).

In resource economics, space plays an important role. Albers et al. (2010) classifies

spatial resource economics studies into two types. The first is positive studies; that is, they

focus on studying the effect of policy changes on some economic outcomes. The second is

normative or resource management studies.

Positive resource economics studies branch into many categories. Hedonic valuation

models (Lancaster 1966; Court 1939; Waugh 1928), and sorting models (Palmquist 2005)

are some of the well-known branches where space matters (Ando and Baylis 2014).

Hedonic valuation models are based on the idea that product prices are derived from

their characteristics (Court 1939). An example is the valuation of housing attributes such as

proximity to open space, farmlands, wetlands, and other environmental and infrastructure

amenities (Johnston et al. 2002). Hedonic methods play an important role in resource

economics policies (Palmquist and Smith 2001). Taylor (2003) provides an overview of the

hedonic valuation approach.

Sorting models are used to study the equilibrium sorting behaviors of heterogeneous

agents taken into account the endogeneity of the sorting process (Kuminoff et al. 2010).

The work of Klaiber and Phaneuf (2010) is an example. They use sorting models to address

household location preference toward open spaces. Kuminoff et al. (2010) provides an

overview of sorting models with their implications on policy evaluations.
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Space plays an essential role in many of the resource management problems. There are

two major approaches to dealing with spatial resource management problems. The first is

the dynamic optimization approach. The second is the heuristic policy approach (Chadès

et al. 2011).

The dynamic optimization approach is used to solve small tractable problems or to

get policy insights for larger problems (Epanchin-Niell and Wilen 2012). For example,

Sanchirico and Wilen (1999) studies the equilibrium nature of the dynamics of renewable

resources over space. The spatial nature in their model is manifested in the form of inter-

connected patches of habitats. Costello and Polasky (2004) explores the problem of reserve

site selection, where the objective is to maximize the number of conserved species over

a fixed planning horizon. Brock and Xepapadeas (2011) derives analytical results of the

steady-state spatial patterns due to human actions for biological processes.

Heuristic policy approach has been used in several resource economic problems with a

large dimension where dynamic optimization methods may not be tractable. For example,

Marcel Salathe (2010) develops an immunization policy and explores it in a social network

with community structure (M. Girvan and Newman 2002). Chadès et al. (2011) proposes

a rule of thumb to control the spread of invasive species over certain spatial network

structures. Perry et al. (2017) proposes a priority policy rule based on network centrality

measures to control invasive species over a spatial network structure.

There are a good number of studies of control problems for spatial models in both

biology and ecology that are very relevant to resource economics. Hof and Bevers (2002)

provides a comprehensive overview of the use of optimization and simulation models

in ecological economics applications. They also provide a discussion of why simulation-

based-optimizations has drawn less attention by resource economists. DeAngelis and Yurek

(2017) provides an extensive review of spatially explicit models in ecology.
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Spatial models can be seen, and modeled, as a network model, where a particular

connectivity structure connects sites. Chadès et al. (2011); Laber et al. (2018) are some

works that represented spatial structure in a network framework. There is a rich literature

in the network field that discusses dynamic processes over networks. Newman (2009) and

Lang et al. (2018) discuss the spread of a disease over a network. Liu et al. (2016) studies

immunization strategies in network structures. Proulx et al. (2005) provides an overview of

the network analysis for ecological applications, such as the spread of invasive species. The

works mentioned above are of resource economics nature. Newman (2007); Barabási (2016);

Strogatz (2001) provide general expositions to networks, including networks coupled with

dynamic processes.

The management and the control of invasive species, (Epanchin-Niell and Wilen 2012;

Chadès et al. 2011), is considered a critical and important problem. It has attracted the

attention of both ecologists and resource economists (Olson and Roy 2002).

Invasive species are estimated to cost more than a hundred billion dollars per year

(Olson and Roy 2002). The explicit spatial nature of invasive species management and the

uncertainty in the dynamics of the species are critical (Meier et al. 2014; Chalak et al. 2011).

Spatially explicit models suffer from the curse of dimensionality, that is they grow exponen-

tially in size with the number of sites. Efficient methods such as Dynamic Programming

(Bellman 1954) can only solve small size problems and is intractable for larger ones.

The research effort of explicit spatial modeling of the problem is quite limited (Epanchin-

Niell and Wilen 2012). Recent research concerned with relatively large dimensional explicit

invasive species spatial model is either based on deterministic models (Epanchin-Niell

and Wilen 2012) or development and testing of heuristic rules based on stochastic models

(Chadès et al. 2011; Perry et al. 2017).

Our research aim at extending the literature by exploring the potential of several approx-
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imate dynamic programming (ADP) methods (Powell 2011) in obtaining good policy rules

for stochastic dynamic spatial problems where dynamic programming is deemed infeasible.

We explore and apply some ADP methods to the invasive species stochastic spatial model

of Chadès et al. (2011). Our focus is more on the computational aspects of the methods,

in the sense of what works and what may not work. This distinguishes our research from

similar other researches, such as Epanchin-Niell and Wilen (2012), and Chadès et al. (2011).

The focus of Chadès et al. (2011) is on proposing a heuristic rule for a spatial stochastic

model. Epanchin-Niell and Wilen (2012) focuses on providing policy insights by solving a

deterministic larger dimensional spatial model using mixed-integer programming. Our

research provides insight into the potential of some approximate dynamic programming

methods.

In addition to that, we propose a simple-to-implement novel method. The method

exploits prior knowledge of the model, such as potential symmetry in the model, into the

structure of a policy rule. The method we propose utilizes some network measures. The use

of prior knowledge in function approximation has been shown to have a significant impact

on the efficiency of the function estimation (Belbute-Peres et al. 2018). We also illustrate

that the policy approximation method under our study can help in deriving simple heuristic

rules. Policymakers can apply such rules for problems with very large dimensions.

Economic research on the methods of approximate dynamic programming (ADP) is

largely based on solving small and moderate size problems (Judd et al. 2011). Springborn

and Faig (2019); Laber et al. (2018) are the only works we are aware of that explores ADP

methods for large dimensional resource management problems.

Springborn and Faig (2019) demonstrates ADP on a simple stochastic fishery problem

developed by Reed (1979). In their problem, they have one state variable, which is the stock,

and one action, which is the harvesting. Both variables are continuous. Their analysis is
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based on approximating the value function using Gaussian process regression (Rasmussen

and Williams 2005).

Laber et al. (2018) work is based on the dynamic treatment regime methods (Murphy

2003). Their novel contribution is in extending it to a spatial situation where the number

of possible actions is very large. They demonstrate their method on the control of the

white-nose disease in bats.

Our work extends the literature of ADP in resource economics in multiple aspects. First,

we explore ADP methods that have not been explored in the mentioned works. Second, we

apply those ADP methods to a spatially explicit stochastic invasive species control problem.

Third, we show that some ADP methods, such as policy approximation methods, can help

in deriving simple heuristic rules that can be applied to very large dimensional problems.

1.3 Dissertation Outline

The dissertation consists of three main parts. The first part, which is the second chapter,

provides a general overview of Markov Decision Process (Bellman 1957), Dynamic Pro-

gramming (Bellman 1954), and Approximate Dynamic Programming (Powell 2011). This

part aims to familiarize the reader with fundamental concepts that later chapters rely on.

Additionally, we provide a short introduction to the importance of approximate dynamic

programming methods and the difficulty associated with them.

The second part, which is the third chapter, presents the first method that we explore.

The method is based on policy function approximation, and the estimation method pro-

posed by Smith (1990) and explained in Judd (1998). The method also appears to be in-

dependently proposed by Moxnes (2003) in what he names as stochastic optimization in

policy space (SOPS). Our exploration is based on the invasive species model presented in
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Chadès et al. (2011).

The third part, which is the fourth chapter, discusses and explores some of the value

function approximation methods. Our treatment, in this part, has two objectives. The

first is to provide an overview of reinforcement learning (Watkins 1989; Sutton and Barto

2018), which is a different terminology of approximate dynamic programming in computer

science. The second is to illustrate and explore the method of Least-Square-Policy-Iteration

(Lagoudakis and Parr 2003) on our invasive species control problem.
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CHAPTER

2

PRELIMINARIES

2.1 Introduction

This chapter provides an overview of some fundamental methods and concepts that are

useful for subsequent chapters. The treatment of this chapter will be as follows. First,

we introduce the Markov decision process (MDP) as a framework for modeling dynamic

decision-making problems. Second, we introduce an overview of dynamic programming

(DP) and Bellman equation (Bellman 1954). Third, we provide an overview of the two

widely used dynamic programming solution methods: the value function iteration, and the

policy function iteration methods. In the last section, we provide a brief introduction to
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approximate dynamic programming (ADP) (Powell 2008).

2.2 Markov Decision Process

A Markov decision process (MDP) (Bellman 1957; Howard 1960) consists of a set of state and

action variables, a reward function, and a transition rule that models the evolution of the

state variables for each action. In the MDP, future states depend only on current states, and

actions (i.e., history is irrelevant). MDP provides an elegant framework for modeling many

practical dynamic decision-making problems of stochastic nature (Howard 1960). Dynamic

programming (Bellman 1954) is considered an efficient tool for solving MDP problems

(Howard 1960; Bellman 1957). Resource economics is pervasive with such MDP problems

where agents, such as resource managers, are in a situation where they seek to take the

best actions over some period of time in order to achieve certain goals. Such situations, or

problems, are formulated as dynamic optimization problems (Marescot et al. 2013).

2.3 Dynamic Programming

Any dynamic optimization problem generally consists of two main components (Puterman

1994): a system model, and an objective function. The system model is a model that de-

scribes how the system behaves, and it consists of three main components: state variables,

which describe the state of the system, action variables, which describe the actions that can

be taken on the system, and a transition model, which describes how the system evolves.

To state this in a mathematical form and assuming all the variables are discrete, let

St represent a vector of state variables, At a vector of action variables, and εt represents

a vector of random variables, where t represents the period. Note that in the case of an
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infinite horizon problem, we use t to represent the current period and t +1 for the next

period. Let St+1 = g (St , At ,εt ) represents the system model, which can be stochastic, and

r (St , At ) represents a reward function. A widely used objective function is the expected

discounted sum of the reward function over some time horizon T (Marescot et al. 2013;

Puterman 1994). Let β be a discount factor. An agent’s problem is to seek the optimal

actions that maximize the expected discounted rewards given the current state (S1). That is

max
At

T
∑

t=1

β t E [r (St , At )|S1] (2.1)

such that (2.2)

St+1 = g (St , At ,εt ). (2.3)

There are several ways to solve such a problem. If the problem is an MDP, which is

the case for the model under our study, then dynamic programming, (Bellman 1954), is

considered an efficient and elegant way to solve such a problem (Bellman 1957). Let π

denote a policy function, which is a mapping from the states to the actions, and let V (St )

be the value function at St , which is the expected discounted sum of rewards following a

policy π. The above optimization problem can be written in a recursive form, in what is

known as the Bellman equation, as

V (St ) =max
At

r (St , At ) +βE [V (St+1)|St , At ]. (2.4)

Bellman equation can be solved in different ways, as illustrated in the subsequent

sections. The solution is characterized by an optimal policy function, let it be π∗t (St ), which

gives the optimal action given state St , and an optimal value function, let it be V ∗
t (St ). For

infinite horizon problems, the policy rule and the value function will be stationary (i.e.,
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time-independent).

2.4 Value Function Iteration

The Bellman equation is of recursive form. The value function iteration method (Bellman

1957) states that the infinite recurrence of the Bellman equation results in the maximum

value function. To illustrate this, let V ∗ denotes the vector of maximum values for every

state, V 0 denotes a vector of initial values, which could be set arbitrarily to zero, and V n be

the vector of values at iteration n . Starting with n = 0, then value function iteration method

solves:

V n+1(St ) =max
At

r (St , At ) +βE V n (St+1), (2.5)

until |V n+1−V n |< ε , where ε is some small number. Given certain conditions (Puterman

1994), V n approaches V ∗ for large n, that is limn→∞V n =V ∗. For finite horizon problems,

one would start with the last period values and substitute backward into the Bellman

equation.

2.5 Policy Iteration

Howard (1960) proposed the policy iteration algorithm to solve infinite horizon problems.

The algorithm consists of two steps. The first is to improve the policy by using the most

recent values of the value function. That is, in iteration n ,

πn = argmax
π

r (St , At ) +βE V n (St+1). (2.6)
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The second step is to update the values of the value function given the new policy. That is

V πn (St ) = r (St ,πn (St ))+βE V πn (St+1). (2.7)

Equation (2.7) is a system of linear equations that can be solved for the value function at

each state. Let P πn denote the transition matrix, where columns represents current state

and rows future states for policy πn , then E V n (St+1) = P πn
′
V n (St+1), and Equation (2.7) can

be written as

V πn = r (S ,πn (S ))+βP πn
′

V πn (2.8)

=⇒V πn = (I −βP πn
′

)
−1

r (S ,πn (S )). (2.9)

Note that we have dropped the time scripts since we are assuming an infinite horizon and

hence V πn is stationary (Howard 1960).

The policy iteration method distinguishes itself from the value function iteration method

in two aspects (Howard 1960). First, it converges when no policy improvement occurs in

two consecutive iterations. Second, it tends to converge in fewer iterations.

2.6 Approximate Dynamic Programming

Although dynamic programming is a powerful method for solving dynamic optimization

problems, it suffers from the curse of dimensionality. Powell (2011) explains this as three

curses of dimensionality. The first one is related to the state space, which is all possible

outcomes of the state variables. The state-space dimension can easily become very large
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as it grows exponentially with the number of state variables. The second one is related

to the action space, which is all possible actions that can be taken. Similarly, the action

space grows exponentially with the number of action variables. The third one is related to

the stochasticity of the system, or the outcome (random) variables (i.e., ε). The outcome

space increases exponentially with outcome variables making the computation of the

expectation hard or even impossible. This makes dynamic programming intractable for

large dimensional problems, and hence approximate dynamic programming methods

come into play.

Approximate dynamic programming (ADP) is a collection of different methodologies

that aims at obtaining a near-optimal policy or value function (Powell 2008). Most methods

are based on approximating either the policy function or the value function by some

parametric or non-parametric functions (Powell 2011). Approximate dynamic programming

is also known by other names, such as neurodynamic programming (NP) (Bertsekas and

Tsitsiklis 1996) and reinforcement learning (RL) (Sutton and Barto 1998). The success

of approximate dynamic programming methods is problem specific (Powell 2011). This

means a method that works for a particular type of problem may not work for other types of

problems. This requires an exploration of a variety of methods for the problem of interest.

For example, a method based on policy function approximation may work better for certain

problems, while a method based on value function approximation may work better on

others.

In our research, we aim to explore and apply different methods on a stylized spatial

invasive species MDP problem. The stylized model is based on Chadès et al. (2011) stochas-

tic discrete susceptible infected susceptible (SIS) diffusion, or transmission, model. Our

findings can be useful to other problems based on SIS models, such as disease spread.
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CHAPTER

3

A RANK BASED POLICY FUNCTION

APPROXIMATION IN SPATIAL MODEL

3.1 Introduction

This chapter aims at introducing and testing the performance of a simple tunable approxi-

mate policy function. The discussion in this chapter will be as follows. In the first part, we

provide a brief review of stochastic optimization in policy space as an approximate dynamic

programming method (Moxnes 2003; Judd 1998; Smith 1990). The second part lays out

the spatial test model that we will use in the exploration of the approximate dynamic opti-
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mization method followed by a discussion of our approximate policy function. Afterward,

we provide an overview of how features of the policy function can be selected. Next, we

discuss the different types of approximate dynamic programming evaluation methods. The

last part is the analysis part, which explores our rank-based policy on both regular grids

situation as well as Chadès et al. (2011) multi-layer test network.

3.2 Policy Function Approximation

As we have mentioned in previous chapters, approximate dynamic programming is a

collection of different types of methodologies that aim at obtaining a near-optimal policy

or value function. One simple method is parametric policy function approximation. As

explained in Judd (1998) and Smith (1990), one would first propose a parametric function

for the policy rule, and then estimate the parameters through simulation, such that the

objective function is maximized.

To illustrate the method, let At =π(S ,α) be a parametric policy function approximation,

where α is a vector of parameters. Let M denote the number of simulation replications of

the system model over time T 1. The optimization problem can be solved by solving for the

vector of parameters (α) in

max
α

1

M

M
∑

m=1

T
∑

t=0

β t r (Sm t ,π(Sm t ,α)). (3.1)

There are many optimization techniques, or solvers, that can be used to solve the

problem in Eq. (3.1). The choice of the solver to be used depends on the continuity and

linearity of the objective function (Eq. 3.1). As we show in later sections, in our spatial

1Note that we have to choose T large enough such that the solution is close enough to the infinite horizon
problem. We discuss the choice of T in subsequent sections.
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problems, both the reward and policy functions are discrete. Additionally, our proposed

policy function will be non-linear. Thus, we use a robust gradient-free global optimizer

such as DIvided RECTangles (DIRECT) optimization algorithms.

Define a feature as a function of state variables that can be used as a predictor in the

policy function. The choice of features in the approximate policy function is one significant

and critical thing to be considered to obtain a good policy function. It is a very challenging

step and is based on both trial and error and the consideration of the structure of the

problem.

Once some features are decided on, it is essential to know how good or how close

is the approximate policy to the optimal one or some baseline policies. Evaluating the

performance of the approximate function is another major challenge. Powell (2008) states

three ways for policy evaluation. The first one is to compare the approximate policy to an

optimal policy of a simpler problem. The second is to compare it to an optimal policy of a

deterministic version of the problem. The third way is to compare it to a myopic or greedy

policy. Each approach will be elaborated in more depth in later sections.
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3.3 Model

Figure 3.1: An illustration of a 5x5 grid. An example site is black shaded and its neighbors

are grey shaded.

Our analysis is based on Chadès et al. (2011) model. We explore both regular grid model

and Chadès et al. (2011) multi-layer star network model. In both situations the model

consists of multiple sites numbered from 1 to Ns . Each site is represented by a state variable,

Si , that takes two values: 1: site occupied, and 0: site unoccupied. We assume that one site

is treated each period, and the action variable represents the number of that site and 0 if

no action is to be taken. We also assume that preventive action (treating an uninfected site)

is possible. Let Si denote the state variable for a site i , A the action variable, which is the

site to treat, and S+i the next period state value. Given Si , and A, the state variable of site i

evolves to the occupied state according to the probability model:

P (S+i = 1|Si , A) = Si (1−1A=i )(1−pn )+Si1A=i (1−pt )+(1−Si )(1−1A=i )[1−(1−p0)(1−p1)
qi ], (3.2)

where (1−pn ) is the probability that site i will remain occupied in the next period when
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no action is taken, (1−pt ) is the probability that site i will remain occupied in the next

period when an action is taken, [1− (1−p0)(1−p1)qi ] is the probability that site i becomes

occupied when no action is taken due to having occupied untreated neighbors ((1−p1)qi )

or due to spontaneous or exogenous occupation (1−p0) where qi is the number of directly

connected sites (neighbors) to site i that are occupied but not treated. The model also

assumes that unoccupied treated sites remain unoccupied. The neighbors of a site are

defined to be the four directly adjacent neighbors to site i , which is known as the von

Neumann neighborhood. Figure 3.1 shows an illustration of a five by five grid, where each

cell is a site. An example site is black shaded, and its neighbors are grey shaded.

Now we define the management problem. Let π(St ,α) denote a policy rule which maps

state to action at period t where St is an n-element vector that represents the state values

of the sites at time t , and α is a vector of parameters. The management problem can be

characterized by the policy rule π(St ,α∗) that achieves the minimum expected discounted

sum of the number of occupied sites, that is

min
α

E
� T
∑

t=0

β t
n
∑

i=1

Si t |π
�

, (3.3)

where β is a discount factor, and T is the terminal period. In our analysis, we assume that

the time horizon is infinite, where we approximate it by finite time horizon of T periods.

We discuss the choice of T in later sections.
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3.4 Policy Rule

The functional form of our tunable or parametric policy rule can generally be expressed as

follows:

Si t e I nd e xi =φ(S ,αi ), (3.4)

where S is a vector of the states variables,φ is a function, which can be linear or non-linear,

and αi is vector of parameters to be estimated for site i . The action to be taken is

A =π(S ,α) = argmax
i
(Si t e I nd e xi ), (3.5)

that is an action will be taken for the site with the largest index value. It should be noted

that the policy rule is non-linear in α. The non-linearity is due to the max operator, even if

the site index (φ) is linear in α.

3.5 Features Selection For Spatial Models

As stated previously, feature selection is one challenging step in the construction of approx-

imate policy rules. In spatial models, one natural feature is the state of the site itself. That

is, our proposed policy rule can be stated as Si t e I nd e xi =αi ·Si . Although such a simple

policy might result in near-optimal policy rules in small problems, it may not be sufficient

for larger problems. This requires one to add features that could be functions of the states

of other sites. Representing the spatial structure of the model efficiently is very important

and helps in the construction of features.

One simple, yet powerful, way to represent a spatial model is to represent it by, what

is known in the graph and network theory, an adjacency matrix. In its simplest form, an
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adjacency matrix is a symmetric matrix where each row represents a site i , and each cell in

row i , and column j contains "1" if site i is connected (neighbor) to site j and "0" otherwise.

There are two advantages of using the adjacency matrix. First, it allows exploiting the

graph and network theory literature in the construction of features. Second, it allows us

to calculate the features in an efficient way, which is very critical in simulation-based

optimization as the policy rule is called many times.

To illustrate this, suppose we have a two by two grid model. The model can be repre-

sented by the adjacency matrix

ζ=

















0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

















. (3.6)

Suppose that we plan to add a new feature to the policy rule, such as the total number of

neighboring sites with state values Si = 1, and denote it by qi . The feature can be efficiently

calculated as qi = ζ ·S where S is a column vector of the state values.

3.5.1 Network Centrality

In this section, we discuss how network measures, such as network centrality can be used to

construct useful features. Centrality measures define how important a node is in a network

(Newman 2007). The simplest centrality measure is known as the degree centrality. The

degree centrality for a node (or a site) in a network is defined to be the number of directly

connected nodes to that node. For example, under this definition, a node that is directly

connected to a larger number of nodes is considered more important or central than one
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that is directly connected to less number of nodes.

The degree centrality does not reflect a deep measure of centrality for a node (Newman

2007). For example, one could have two types of nodes, one that has a large number of

neighbors, hence has large degree centrality, but its neighbors have no other neighbors,

and another node that is connected to few neighbors, hence has a small degree of centrality,

but its neighbors have a large number of neighbors. Based on degree centrality, one would

conclude that the first node is more central than the second. Furthermore, in the grid

networks, the degree centrality will be the same, that is four, for all interior sites that are

one site away from the edges, and hence will not be a good measure of the position of the

sites relative to the edges.

Eigenvector centrality is a centrality measure that is deeper than degree centrality in the

sense that it considers not only the directly connected neighbors but also the neighbors of

the neighbors. This centrality measure provides a score of how central a node is (Newman

2007).

Following the treatment in Newman (2007) and Bonacich (1972), let xi represent the

eigenvector centrality of node i and ζ an adjacency matrix for the network of interest, then

the eigenvector centrality for node i is defined as2

xi =
1

λ

∑

j∈Gi

ζi j x j , (3.7)

or in vector form as

λx = ζ · x (3.8)

where x = [x1, x2, ..., xn ], and Gi is the set of neighbors for node i . The eigenvector centrality

is the vector associated with the largest eigenvalue for the adjacency matrix ζ.

2Note that, as explained in (Newman 2007), the definition may seem awkward and tautological.
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Eigenvector centrality can also be used in parameter dimension reduction of a policy

function. We illustrate this by an example. Suppose we have a five by five regular grid, as

shown in Fig. 3.2. Looking at the figure, one can observe six types of locations as distin-

guished by their eigenvector centrality. In a policy function, one can utilize this symmetry

by assuming each type of site has a different set of parameters to be estimated instead of one

for each site, which would result in a significant reduction in the dimension of parameters

to be estimated. For example, suppose we have a policy function with one parameter for

each site, then we would have a total of 25 parameters. If we constrained the parameters to

be the same for each site type, then this would reduce the number to 6 parameters.

Figure 3.2: A 5x5 grid model. Sites with same eignevector centrality have the same degree

of grey shading.
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3.6 Issues and Challenges

There are several issues and challenges of the rank-based policy rule, as stated in Eq. (3.5)

and the estimation method in Eq. (3.1). The first one is that the policy rule suffers from

the identification issue. The Identification issue is a result of the ordinal nature of the

policy rule. To illustrate this, and given a specific state S , let j denote the index of the

site with the maximum value of φ as calculated in Eq. (3.4). For any δ such that |δ| <

mi n (φ j −φi )∀i , perturbation of the values ofφi by δ will still preserve the rank of site j

being the maximum. Additionally, given fixed values ofφi , the vector of αi for each site i is,

generally, non-identified. The identification issue should not be deterrent from using such

a policy rule. Some widely and successfully used function approximation methods, such as

neural networks, suffer from such an issue (Albertini and Sontag 1993). Solving or reducing

the severity of it, however, may improve the efficiency of the estimation process.

In certain problems, there could be redundancy in the parameters that contribute to the

identification issue. This is the case in our regular grid situation, where the spatial structure

is symmetric. We can resolve this redundancy by constraining the sites that have the same

eigenvector centralities to have the same parameters, as illustrated in the previous section.

The specification of the policy rule in Eq. (3.5) does not illustrate how ties could be

broken-up. In other words, in case two sites have the same values ofφ, which site do we

choose? One way is to break the ties by choosing a site randomly. Another way is to choose

the one that appears first in the list of sites ranks. For computational convenience and

efficiency, we choose the second away.

Our simulation-based estimation approach requires setting certain hyper-parameters

such as the number of replications and the time horizon. We choose the number of repli-

cations, such that the variance of the estimated value function is small enough. In our

24



estimation stage, where we use simulation to estimate the parameters of the policy rule, we

set it to a hundred replications. In the evaluation stage, we set the number of replications

to ten thousand in order to make the simulated time paths smoother. In all our analyses,

we use the simulation-based expected number of occupied sites at each time period over

the number of replications as our policy performance measure. We use fewer replications

in the estimation stage than the evaluation stage as it is very computationally intensive

since the optimizer calls our simulator thousands of times.

The other thing to decide on is the time horizon. Note that we can express the infinite

horizon value function (V∞) following a policy π as

V π
∞ =

∞
∑

t=0

β t E Rπ
t ≈

T
∑

t=0

β t E Rπ
t +β

T+1
∞
∑

t=0

β t R̃π =
T
∑

t=0

β t E Rπ
t +
βT+1R̃π

1−β
, (3.9)

where Rπ
t is the reward at time t following policy π and R̃π is the expected equilibrium level

following policy π. The time horizon (T ) is chosen, such that the second term in (3.9) is

negligible. In our situation, T is set to 200.
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3.7 Policy Evaluation

In order to test or explore the performance of our proposed policy function, we need to use

some evaluation methods. The literature seems to lack a thorough treatment of evaluation

methodologies for approximate dynamic programming methods. Nevertheless, Powell

(2008) states three methods where some or all may apply to the problem of interest.

The first method is to compare the policy obtained using the approximate dynamic

programming methods, such as the stochastic optimization in policy space, with optimal

policy for a simplified or smaller version of the problem. For example, in a spatial model,

we can compare the policy rule obtained using approximate methods with the optimal rule

by solving a problem with a number of sites up to a level where it can be solved optimally.

The second method is to solve a deterministic version of the problem optimally and

to use approximate methods and compare those two policies. In some problems, the

deterministic version of the problem allows one to solve a larger problem using other

optimization methods.

The third method is to compare the approximate policy rule with a myopic or greedy

rule. For example, in our spatial model, the myopic rule is to take action on the site that

minimizes the expected next period damages.

In our analysis, we apply the first and third evaluation methods but not the second one.

We avoid the second one as there does not seem to be an obvious way to get a deterministic

version of the model without making some critical assumptions. For example, in our model,

the diffusion of pests to a site depends on its infected neighbors in a probabilistic way, that

is the higher the number of infected neighbors, the higher is the probability of that site to

be infected next period. If we are to make this part of the model deterministic, then we

need to decide on a threshold such that the site becomes infected if the number of infected
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neighbors exceeds the threshold. This is tricky and may result in misleading conclusions

on how the policy might do in the stochastic situation. Another difficulty is that the way

we would be able to solve a larger version of our deterministic model is through integer

programming (Epanchin-Niell and Wilen 2012), which means that the solution obtained

will be defined as a sequence of actions for every period. It is not apparent how would one

convert this, if even possible, to a policy function that is defined for every possible state.

3.8 Analysis

We will start our analysis with an extreme network of four isolated sites. This aims to

familiarize the reader with the idea of this research and the methodology. Additionally, we

use it to illustrate some concepts.

Next, we aim at exploring the performance of our approximate policy for larger networks.

We will explore both regular grid networks and Chadès et al. (2011) multi-layer star network.

The objective of this exploration is to seek answers to several main questions. The first is

whether the stochastic optimization method with our non-linear policy function would

work or not. By this, we mean that even if the approximate policy has a correct functional

form in the sense that it could result in the optimal policy, the optimization method may or

may not result in good estimates of the parameters. In analogy to a simple linear regression

model, suppose we know the correct model or the data generation process. If we do not use

a good estimation method (i.e., OLS), then we may not get a good estimate of our correctly

specified model. The second point is that if it works, then how good is it compared to other

baseline policies, and how would it perform when the problem increases in size.
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Figure 3.3: A star network.

To be able to answer those questions, we need to define features for the policy rule in

Eq. (3.5), and define baseline comparison policy rules. The features that we will use in the

policy rule are the state of the site itself, and the number of infected neighbors interacted

with the state of the site. That is

Si t e I nd e xi =α1i ·S1i +α2i ·S1i ·qi , (3.10)

where qi is the number of infected neighbors. We selected those features as they generalize

the inside-out and outside-in rules of thumb used in the literature, and explained next
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(Chadès et al. 2011). Additionally, we believe that the rule also generalizes the Chadès et al.

(2011) rule of thumb. We illustrate this on the star network mentioned in Chadès et al. (2011)

and shown in Fig. 3.3. An inside-out rule prioritizes the treatment of the central node over

the outer nodes, that is central node is treated first. Let i represents the outer nodes, and j

represents the central node, then to implement the inside-out using our rule, we can set

α1i , α1 j and α2i to 1 and α2 j to 1 + a small number. The outside-in rule does the opposite:

which is to treat the outer nodes first, then the central ones. This can be implemented by

setting α2i to -1 and α2 j to -1- a small number, while setting α1i and α1 j to 1. Chadès et al.

(2011) rule of thumb treat half the outer nodes first then the central node then continuing

treating the rest of the outer nodes. To implement it we can set α1i to 1 α1 j to 3 , and α2i

and α2 j to -1.

We will be using four policy rules for comparison. The first one is the optimal policy,

and this will only be used in the largest problem that can be solved optimally, which is the

four by four grid problem. The second is the myopic or greedy policy, which is to treat the

site that would minimize the expected damages in the next period. Mathematically, the

greedy policy is

G r e e d y (S ) =min
A

E
� n
∑

i

(S+i )|A,S
�

=min
A

n
∑

i

S+i ·P (S
+
i = 1|S , A), (3.11)

where S is a vector of the state of each site, Si is the state of site i , A is an integer number that

represents the site to be treated. The third rule is an inside-out rule, where the most central

site, according to the eigenvector centrality, is treated first. The fourth is the outside-in

rule, where the least central site is treated first. We will use two variations of the third and

the fourth rules. The first prioritizes the treatment to the site with the highest number

of infected neighbors, while the second prioritizes it to the site with the least number of
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infected neighbors. The third and fourth policy rules are special cases of the policy in Eq.

(3.5) where we set the coefficients at certain values, as has been illustrated in the previous

paragraphs.

It should be noted that in our analysis, we assume that cost is irrelevant as we assume

that only one action per period is allowed. The one action per period assumption allows us

to solve the problem optimally, for comparison purposes, for a relatively larger number of

sites (about 16 sites). Model baseline parameters are shown in Table 3.1. In all our analyses,

we use the expected number of occupied sites (i.e., the damage) per period as a measure

of the performance of the policies. The default initial state for our simulations is the state

where all sites are being occupied. We will explicitly state the initial states for other cases

that we explore as well.

Table 3.1: Baseline and adjusted model parameters.

Parameter Base values
p0 0
p1 0.15
pn 0.1
pt 0.7,1
β 0.95
T 200
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3.8.1 Isolated Network

To do a basic check of the proposed solution method and to illustrate and make some points

more concrete, we start by solving a simple and trivial problem. The problem consists of

four isolated sites with the setup mentioned previously, and the model parameters are set

according to the base values in Table 3.1.

This problem is trivial as a preventive action, which treats a site in order to prevent

the spread of infection, plays no role. This is because sites are isolated from each other,

and hence an optimal solution is trivial, which is to treat one of the occupied sites at each

period.

We solve this problem both optimally and using the approximate policy. There are

several points to illustrate. First, looking at Table 3.2, we can see that both the optimal and

the approximate policy solution give what we expect, which is to treat an infected site.

It should be noted that the approximate policy does not seem to break ties in the order,

as mentioned in the previous section. The reason for this is that, although one expects ties

for states that have more than one infected site, the coefficients of the approximate policies,

as shown in Table 3.3, for some sites are different, resulting in no ties in the rank for some

states. This also illustrates the identification issue in our policy rule.

Second, if we look at the long-run distribution in Table 3.2, computed using the pre-

sented optimal solutions, we see that complete eradication is certain. This means, in the

long run, and under the optimal policy, most states are never visited. It should be noted that

eradication is certain since spontaneous infection is ruled out in our setup. This necessitates

that we start with some sites being infected in the estimation of the approximate policy.

If we do not do so and alternatively started the simulation with all sites being uninfected,

then regardless of what policy we implement, the sites will stay uninfected. This is because

31



the objective function, as in Eq. (3.3), will be the same for any parametric values, which is

zero.

Table 3.2: Policy rule: optimal versus approximate policy.

Action

S1 S2 S3 S4 Optimal Approximate Policy Long Run Distribution
0 0 0 0 0 1 1
0 0 0 1 4 4 0
0 0 1 0 3 3 0
0 0 1 1 3 4 0
0 1 0 0 2 2 0
0 1 0 1 2 2 0
0 1 1 0 2 2 0
0 1 1 1 2 2 0
1 0 0 0 1 1 0
1 0 0 1 1 4 0
1 0 1 0 1 1 0
1 0 1 1 1 4 0
1 1 0 0 1 2 0
1 1 0 1 1 2 0
1 1 1 0 1 2 0
1 1 1 1 2 2 0

Table 3.3: Estimated coefficients of the policy in Eq. 3.10 It should be noted that we have

infinite solutions (i.e., any positive coefficients result in the same policy).

Coefficient S1 S2 S3 S4

α1 0.4444 0.6667 0.4444 0.6667
α2 0 0 0 0
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3.8.2 Grid Networks

In this section, we analyze the policy rule in Eq. (3.10) on three regular grid networks: 4x4,

6x6, and 8x8. We constraint the coefficients of the policy rule for the sites with the same

eigenvector centrality measures to be the same as described in the previous section. We

analyze the policy rule in two versions of the system model. The first assumes that action is

partially effective , that is pt = 0.7, while the other assumes that action is perfectly effective

pt = 1.

Looking at Figs. 3.4 and 3.5, we find that the approximate policy generally does well

compared to other policies, which suggests that the simulation-based estimation works for

our non-linear policy rule. As the size of the network increases, the gap increases between

the approximate policy and the greedy policy.

By constraining the number of coefficients to be estimated using the eigenvector cen-

trality, we significantly reduce the dimension of the policy function, and hence the burden

on the optimizer. The difference between the dimensions of the constrained and uncon-

strained policy functions for different grid sizes is illustrated in Table 3.4.

Table 3.4: Dimension of the constrained and unconstrained policy functions for different

grid sizes. Exploiting spatial symmetry in the problem by using eigenvector centrality

significantly reduces the number of parameters to be estimated.

Grid Size
Policy Function Dimension

Unconstrained Constrained

4x4 32 6
6x6 72 12
8x8 128 20
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(a) 4x4 grid network.
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(b) 6x6 grid network.
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(c) 8x8 grid network.

Figure 3.4: Time path simulations for a 4x4, 6x6 and 8x8 grid network where actions is

assumed to be partially effective (p0 = 0, p1 = 0.15, pn = 0.1, pt = 0.7). The time paths

represent an average over a ten thousands replications. The gap between policies widens

as the grid size increases.
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(a) 4x4 grid network.
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(b) 6x6 grid network.
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(c) 8x8 grid network.

Figure 3.5: Time path simulations for a 4x4, 6x6 and 8x8 grid network where actions is

assumed to be completely effective (p0 = 0, p1 = 0.15, pn = 0.1, pt = 1). The time paths

represent an average over a ten thousands replications. The gap between policies widens

as the grid size increases.
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The performance of the policy function crucially depends on the parameters of the

system model. For example, introducing some probability of spontaneous infection (p0 =

0.01) eradication to be unachievable, as shown in Fig. 3.6 where the equilibrium level

has increased to around 35. This effect is due to the fact that spontaneous infection is

propagated and amplified through the system by the diffusion process (i.e., infected site

infects their neighbors, which themselves infect their neighbors, and so on).

One might expect that the initial state plays a role in the policy rule’s performance in

terms of the achieved equilibrium levels. Our analysis shows that this is not necessarily

true. Figure 3.6b shows that even if the system starts with an extreme case where there are

no infected sites, the equilibrium level is still the same as when it starts with all sites being

infected. This suggests that our system is recurrent; that is, the equilibrium distribution of

states is independent of the initial state (Howard 1960). Nevertheless, there are situations

where the system is not recurrent. This is apparent when we study the sensitivity of the

policies and the system to the changes in the spontaneous infection parameter (p0).

36



100 200 300 400

Time Period

0

10

20

30

40

50

60

A
v
er

ag
e 

N
u
m

b
er

 o
f 

T
o
ta

l 
O

cc
u
p
ie

d
 S

it
es

Do Nothing

Greedy Policy

Random Policy

Approximate Policy

Outside-in H

Outside-in L

Inside-out H

Inside-out L

(a) Inital state is where all sites are infected
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(b) Inital state where all sites are uninfected

Figure 3.6: Time path simulations for 8x8 grid network where actions is assumed to be com-

pletely effective, and spontaneous infection is set to small non-zero value (p0 = 0.01, p1 =

0.15, pn = 0.1, pt = 1). The time paths represent an average over a ten thousands replications.

The results show that the system is likely to be recurrent. That is, the initial state doesn’t

affect the equilibrium level.

37



Figure 3.7 shows sensitivity analysis of the effect of different values of the spontaneous

infection parameter on the average equilibrium of occupied sites. Figure 3.7a is for the

situation where the initial state is such that all sites are being infected, while Fig. 3.7b is for

the situation where the initial state is such that all sites are being uninfected.

In the first situation, all policies are unable to achieve complete eradication except for

the greedy and approximate policies, and that is for certain small values of spontaneous

infection. The approximate policies achieve almost a complete eradication for values of p0

less than 0.003. The gap between the approximate and greedy policy, in terms of equilibrium

level, appears to be largest when p0 is between 0.004 and 0.006. The performance of the

greedy and approximate policy, in terms of achieved equilibrium levels, degrades as p0

increases. The equilibrium level starts to level off for values of p0 greater than 0.006.

In the second situation, the performance of both the approximate and the greedy

policies are comparable to the first situation. An interesting thing to note is that both the

outside-in and inside-out policies are now effective in some range of the spontaneous

infection parameter (p0). Both the outside-in policies, the ones that prioritize sites with less

infected neighbors (outside-in L), and high infected neighbors (outside-in H), do better

than the inside-out policies. The rationale is that the outside sites have lower probabilities

of being infected in the subsequent periods. Additionally, clearing the outside sites first will

also lower the probability of the inner sites to get infected once clear.

An important thing to note is that while all policies are monotonic with changes in

spontaneous infection parameter (p0), the greedy policy is not. The greedy policy, as shown

in Eq. (3.11), is a direct function of the model parameters. We examined it for the different

values of p0, given specific states, and have found that it results in jumps in actions. Our

investigations of the approximate policy reveal that the estimated coefficients are equivalent

for all parametric values of the spontaneous infection (p0).
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(b) Inital state where all sites are uninfected.

Figure 3.7: Sensitivity analysis of the spontaneous infection parameter(p0) for an 8x8 grid

case. Other parameters are set to the baseline (p1 = 0.15, pn = 0.1, pt = 1). The average is

calculated over a ten thousands replications. Equilibrium levels increase as p0 increases.

The initial state appears to play an important role in the effectiveness of both the outside-in

and inside-out heuristic rules.
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Another thing to note is that the performance of the policies degrades as the grid size

increases. This is expected, as we only take one action per period. The effectiveness of

action (pt ) is also very crucial. Eradication takes noticeably longer when action is partially

effective (pt = 0.7). In the 8 x 8 grid situation, eradication is not achievable. However, when

action is completely effective (pt = 1), eradication is achieved in all grid sizes under study.

The variability of the number of occupied sites given a specific control policy is an

important aspect. Our results represent an average of the total number of occupied sites

over ten thousand time replications. This means that the number of occupied sites can vary

across the time paths for each implemented policy. Figure (3.8) shows that the standard

deviation of the total number of occupied sites for effective policies, such as the approxi-

mate policy, tends to increase during eradication periods and decreases as it gets close to

complete eradication.

Variability is greatest when there are a moderate number of occupied sites, and this

gives the greatest scope for change. For example, when the system starts with all sites being

infected, then in the next period, we can only have at most one site being cleared due to

treatment. The variance in this situation will be minimal. However, when we start with

a situation where more sites have already been cleared, then in the next period, we can

clear at most one site. Additionally, the already cleared sites can get infected due to the

neighboring infected sites, which results in a higher variance. When most sites are cleared,

then fewer sites can be infected due to neighboring infected sites, and this results in a

reduction in the variance.

Our analysis shows evidence that our proposed policy, generally, outperforms other

common heuristic policy rules used in the literature. The sensitivity analysis in the appendix

shows that it consistently outperforms other comparison policies. In most situations, most

of the comparison policies cannot achieve eradication except in the case where the diffusion
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Figure 3.8: The standard deviation for the number of occupied sites. Model parameters

values are p0 = 0, p1 = 0.15, pn = 0.1, pt = 1. The time paths represent an average over a ten

thousands replications.

probability due to infected neighbors is relatively low (p1 = 0.1), and the probability of a site

to naturally clear is high (pn = 0.1). In such a situation, both versions of the inside-out and

outside-in policies can achieve eradication. The outside-in policies outperform inside-out

policies.

Although we have tested our policy rule on a specific stylized model, its flexible nature

makes it potentially suitable for many other applications of network or spatial nature

problems. Additionally, it can help in deducing a heuristic rule that applies to a larger

problem, as we illustrate in the following section.
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3.9 Heuristic Rule For Grid Space

Our analysis in the previous sections suggests a simple heuristic policy rule for a regular

grid space. The policy rule is a priority that first treats the upper left corner of the first

column moving downward, then once the first column is clear, we move to the next one

and so on. This is illustrated in Fig. 3.9.

There are several reasons why this rule appears to work well. First, the corner sites have

the least number of neighbors, which is two. This means that once they are treated, they

have the lowest probability of being infected in the next period. Second, once a corner site

is cleared, the next site below will will have the least number of infected neighbors. Once

all sites are cleared in the first column, each will have only one infected neighbor.

When a rectangular grid (i.e., non-square) is considered, then the rule must be modified.

It is important that we start with the shorter side of the grid. For example, in a 4x6 grid, as

in Fig. 3.9, we start with the side that has four sites rather than the one with six sites. The

reason for this is that once the side is cleared, then the probability of at least one site getting

reinfected in the longer side is higher than the shorter side.

To explain this, first assume that we start with all sites are being infected. Once all sites

are cleared on one side, then all of them will have the same probability of being infected

in the next period. Let po represents the probability that a cleared site is infected in the

next period after all sites on that side are cleared. The probability that at least one of the

cleared sites gets reinfected is 1− (1−po )Nl , where Nl is the number of sites of side l . The

probability is increasing with the number of sites on side l ( Nl ). It should also be noted that

a site that gets reinfected increases the probability of the neighbors to become infected, as

the cleared neighbors will now have two infected neighbors instead of one.
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Figure 3.9: An example 4x6 grid that illustrates the heuristic priority rule. It also illustrates

how sites are ordered in our simulation code.

3.9.1 Simulation Results

We simulate our heuristic rule for a 10x40, 8x50, and 5x80. All cases consist of four hundred

sites. We conclude several points. First, the heuristic rule does better than all comparison

policy rules in all cases. Second, the length of the grid side where we start the treatment

(the shortest side in case) plays a critical rule in the performance of the policy. This also

shows evidence of our argument, where prioritizing treatment of shorter side is better than

prioritizing treatment of the longer one. Third, the greedy policy appears to be affected

by the dimension of the grid. It should be noted that the greedy policy takes action that

minimizes the damages in the next period. In some states, such as when all sites are infected,

the greedy policy can result in multiple equivalent actions. We break the ties by choosing

the site that appears first in the list of greedy actions, starting from the left side, as shown

in Fig. 3.9. Hence, the grid dimension can affect the greedy policy as well.
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(a) 10x40 grid network.
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(b) 8x50 grid network.
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(c) 5x80 grid network.

Figure 3.10: Time path simulations for a 5x80, 8x50 and 10x40 grid network where actions

is assumed to be completely effective (p0 = 0, p1 = 0.15, pn = 0.1, pt = 1). The heuristic policy

performance improves as the length of the shorter side decreases.
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3.9.2 Heuristic Rule in Clustered Situation

Figure 3.11: An illustration of an 8x8 grid with clustered infected sites. Infected sites are

black shaded.

We explore our heuristic rule in the situation where we have a clustered infested grid.

We explore two versions of the rule. The first prioritizes the treatment of the least clustered

ones. The second prioritize it to the most clustered ones. The first case can be implemented

by prioritizing our heuristic rule, starting from the most northwest site while the second

one prioritizes it from the most southeast site. It should be noted that in general situations,

one needs to apply some clustering methods.

Simulation results are shown in Fig. 3.12. Our heuristic rule outperforms other compari-

son rules. Estimating our approximate policy rule using the clustered situation as an initial

state gives the same results. Our heuristic rule can be improved for clustered situations, and
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that is by prioritizing a less dense cluster. The rationale is that sites in less dense clusters

tend to have a lower probability of being infected in subsequent periods once treated. Pri-

oritization over clusters is a problem that deserves a detailed exploration in future research.
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(a) Large cluster prioritization case.

100 200 300 400

Time Period

0

10

20

30

40

50

60

A
v
er

ag
e 

N
u
m

b
er

 o
f 

T
o
ta

l 
O

cc
u
p
ie

d
 S

it
es

Do Nothing

Greedy Policy

Random Policy

Heuristic Rule

Outside-in H

Outside-in L

Inside-out H

Inside-out L

(b) Small cluster prioritization case.

Figure 3.12: Effect of clustered initial infestation in an 8x8 grid case. Parameters are set to

the baseline (p0 = 0, p1 = 0.15, pn = 0.1, pt = 1). The average is calculated over a one thousand

replications. Prioritization of the small cluster results in a slightly better performance.
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3.10 Star Network

Star networks are considered the fundamental element in the analysis of Chadès et al. (2011)

work. In this section, we first analyze different sizes of simple star networks with the model

parameters used in Chadès et al. (2011). Table 3.5 shows the model parameters. We then

analyze Chadès et al. (2011) two-layers test network. We compare our approximate policy

with our comparison policies in addition to Chadès et al. (2011) rule of the thumb. Their

rule of thumb states that we first prioritize the treatment of half of the satellite infected

nodes then the central node.

Table 3.5: Chadès et al. (2011) star network baseline model parameter.

p0 p1 pn pt

0 0.1 0 0.7

Our analysis on a star network with 20, 40, and 60 nodes shows that our approximate

policy results in an inside-out rule that outperforms other comparison policies. Our policy

also achieves eradication, while others do not achieve it except for Chadès et al. (2011) rule

in the 20 nodes case. Table 3.6 shows the estimated policy coefficients as shown in Equation

(3.10). Figure 3.13 shows the time path simulation results. Our approximate rule prioritizes

the treatment of the central site. In other words, when the central node is infected, we treat

it; otherwise, we treat the satellite nodes. By doing so, we ensure that satellite nodes will

not have infected neighbors (i.e., the central node) and hence cannot get reinfected as we

treat them.
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(a) Twenty nodes case.
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(b) Forty nodes case.
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(c) Sixty nodes case.

Figure 3.13: Time path simulations for a 20, 40, and 60 nodes star network (p0 = 0, p1 =

0.1, pn = 0, pt = 0.7).
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Table 3.6: Estimated coefficients of the policy in Eq. 3.10. The policy rule prioritizes the

treatment of the central sites (i.e., it is an inside-out rule).

Node α1 α2

Satellite 0.6667 -0.6667
Central 0.6667 0

3.10.1 Multi-layer Star Network

Chadès et al. (2011) has used the multi-layer start network with 101 nodes, as shown in Fig.

3.14 as the main test case for their rule of thumb. We analyze our approximate policy on

the same network with their baseline model parameters. Figure 3.15 shows the time path

simulation results for the baseline model.

Our approximate policy outperforms all other comparison policies, including Chadès

et al. (2011) rule of thumb. Table 3.7 shows the estimated coefficients. It should be noted

that because of the network symmetry, there are only three different types of nodes. By

using the eigenvector centrality, we reduce the number of parameters from two hundred

(two per node) to only six parameters (two per type). This reduction in parameters can

significantly reduce the computational burden on the optimizer. Our sensitivity results in

the appendix show that our approximate policy consistently outperforms other comparison

policies.
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Figure 3.14: Chadès et al. (2011) test network.

Table 3.7: Estimated coefficients of the policy in Eq. 3.10. The rule prioritizes the outer

central node over the satellite node, and the most central one over the outer central one as

long as it has no more than one neighbor.

Node α1 α2

Satellite 0.6667 -0.2222
Outer Central 0.6667 0
Most Central 0.9630 -0.2222
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Figure 3.15: The average number of occupied sites per period for a multi-layer star network

with 101 nodes (p0 = 0, p1 = 0.1, pn = 0, pt = 0.7).
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3.11 Conclusion

Our analysis of our proposed policy shows that it consistently does better than our compar-

ison policies. In the grid situation, both the greedy policy and our approximate policy can

achieve eradication when there is no or very low probability of spontaneous infection. The

differences between the two policies widen as the grid size increases. Our results for the

grid case show that the approximate policy can be expressed in a simple heuristic rule that

only depends on the state of the sites and the treatment’s order. While this may be true for

the densely infected unclustered grid, our further analysis of clustered situations shows

that our rule consistently outperforms our comparison rules.

Our approximate rule in Chadès et al. (2011) multi-layer star network case outperforms

the comparison rules. Both Chadès et al. (2011) rule of thumb, and our approximate policy

can achieve eradication. However, the gap between the two policies is very wide Other

policies, including the greedy policy, cannot achieve eradication. Our approximate policy

rule in the star network model is more complex and depends on both the state of the node

and the number of infected neighbors.

Our sensitivity analysis illustrates several points. First, the policies’ performance im-

proves as the probability of sites to naturally clear (pn ) or the action effectiveness (pt )

increases. Second, the performance degrades as the probability of a site to get infected

due to neighboring sites (p1) increases. Third, spontaneous (p0) infections increase the

equilibrium level of the average number of occupied sites.

Despite the good performance we attain in our analysis, the stochastic optimization in

the policy space approach, combined with our rank-based policy rule, has some potential

issues and problems. First, the success of the approach relies on the optimizer used. This

means that even if we have a rank rule with a good set of features, the optimizer may not
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necessarily converge to a good solution, or it may take prohibitively substantial time before

it converges to a good solution. Hence, it is important that one uses a robust optimizer global

optimizer. Second, the choice of features plays an important rule and can be complicated,

especially for a spatial problem with discrete variables. For example, incorporating a feature

that prioritizes the treatment based on the clustering of the occupied sites is not obvious.

In addition to that, features have to be calculated in a very efficient way.

A major contribution in this research, in addition to the testing of the stochastic op-

timization in the policy space method, is proposing a method of exploiting symmetry in

spatial and network models. Our approach relies on the use of eigenvector centrality mea-

sure. We have shown that it can result in a significant reduction in the number of parameters

in the policy rule and hence decrease the computational burden on the optimizer.
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CHAPTER

4

REINFORCEMENT LEARNING METHODS

4.1 Introduction

Dynamic programming is a widely used optimization method in the resource economics

and ecology fields. Marescot et al. (2013) provides a primer and some applications of the

dynamic programming from the literature. There are two issues with dynamic program-

ming. First, it suffers from what is known as the curse of dimensionality; that is, the state

space increases exponentially with the number of state variables. This makes the dynamic

programming problem with large state variables unsolvable. The second problem is that

dynamic programming requires the calculation of the expectation of the value function of
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the future states, which may not be possible with large dimensional problems.

One way to get around these issues is to use approximate dynamic programming tech-

niques. Powell (2011) provides a detailed exposition to such techniques. This chapter

focuses on reinforcement learning (RL) methods, such as Q-learning, which is widely used

in robotics and artificial intelligence (AI), but less in resource economics and ecology fields.

Approximate dynamic programming methods are know as reinforcement learning (RL)

methods in computer science (Bertsekas 2019).

The treatment of this chapter will be as follows. First, we provide an overview of rein-

forcement learning, describe the Q-learning algorithms, and illustrate how it works using

a simple single site pest infestation MDP model. This will familiarize the reader with the

method as well as illustrate some key points and issues that apply to many other RL al-

gorithms as well. Second, we provide a review of recent variations of the RL algorithms

in the literature. The literature review will focus more on the algorithms that are likely to

be suitable for planning problems, where one seeks an optimal or near-optimal policy

rule in order to achieve a specific objective over time without the need to update the rule

frequently. Third, we explore and test the Least Square Policy Iteration (LSPI) (Lagoudakis

and Parr 2003) on our spatial problem that has been introduced in the previous chapter.

4.2 Overview

The fundamental idea of reinforcement learning traces back to psychology, more specifically

in the study of how animals learn by trial and error (Sutton and Barto 1998). This idea is

attributed to Thorndike (1911), which basically states that actions by animals that result

in good outcomes are more likely to be taken when the situation occurs again, while ones

that result in bad outcomes are less likely to be taken. In his dissertation, Watkins (1989)
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provided a unified view of reinforcement learning. He also proposed an algorithm that

solves dynamic control problems, which he calls it Q-learning. Since the introduction of

Q-learning, reinforcement learning techniques has witnessed a large use and research in

the area of artificial intelligence (AI) and machine learning (Sutton and Barto 2018).

This raises a question: why reinforcement learning methods have witnessed a large use

in the field of artificial intelligence but much less in resource economics, given that both

fields involve some types of control problems? In other words, what are the differences

between control problems in artificial intelligence and resource economics that potentially

slows down the penetration of the reinforcement learning method to resource economics?

One significant difference is that resource economists tend to have an explicit mathe-

matical system model of their problems, while in artificial intelligence problems, an explicit

system model may not exist. For example, the environment of a robot may not be known or

may change depending on where the robot is deployed. This makes solution methods, such

as dynamic programming, which requires an explicit model, in-feasible. Reinforcement

learning methods, such as Q-learning, is a way that mitigates this issue (Sutton and Barto

2018).

A second difference is that online problems where one needs to frequently update the

policy rule are more common in the field of artificial intelligence. For example, a robot in a

new environment would have to update its policy frequently as it explores the new envi-

ronment. However, in economics, the environment is assumed to be known. Additionally,

observations from the environment occur less frequently. An important aspect of many

economics problems is that interaction with the environment for learning purposes can

result in irreversible situations. For example, relaxing some hunting or fishing policies in

order to learn better management policies can drive certain species to extinction.
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4.3 Literature Review

The fact that many of the RL methods have been developed within a community interested

in online problems, where one would follow a policy rule and frequently improve it, has

resulted in many algorithms that update control rules on an observation by observation

basis, such as the Q-learning (Watkins and Dayan 1992). This may not necessarily be

efficient for planning problems (Lagoudakis and Parr 2003). It is not until recently where

more effort has been put to improve the efficiency of such methods that make them more

appealing for planning problems (van Otterlo and Wiering 2012).

Rather than updating the policy on an observation by observation basis, the recent

methods update the policy using batches of observations. The Least Square Policy Iteration

(LSPI) (Lagoudakis and Parr 2003) algorithm is an example of that. The LSPI assumes that

the value function is approximated by a linear in parameters function, and it estimates the

parameters of the approximate function using a batch of data, or observations generated

by a random policy using a simulator. Ernst et al. (2005) proposes an alternative algorithm

to estimate value function approximated by a broader class of approximate functions, such

as tree-based functions, in what he names as Fitted Q-iteration (FQI) algorithm. Riedmiller

(2005) extends that to a neural network value function approximation, in what is know as

Neural-Fitted-Q (NFQ). More recently, Mnih et al. (2013) proposed a similar algorithm to

NFQ but argued to be more efficient, called Deep Q-Network (DQN). The DQN differs from

the NFQ in two main aspects. First, it stores the simulated observations in memory, and

randomly (uniformly) samples small batches of observations from memory for estimation

of the parameters. Second, the value function is updated less frequently. They have applied

their method using deep convolution neural networks to several Atari games, where the state

variables are the raw screen pixels of the games. Their algorithm was able to outperform a
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professional player in about 29 games out of 49.

Among the mentioned algorithms, the Least Square Policy Iteration and FQI are the only

ones that are purely batch-based and generally do not require setting any hyperparameters.

It should be noted that both methods can be adapted to work on small batches of observa-

tions. Such a situation may arise in large dimensional problems where working on large

batches is not feasible. In such problems, one may use smaller batches of observations.

Neural Fitted Q requires setting some hyper-parameters such as learning rate and batch size

for the neural network estimation step. The DQN is not a pure batch method and requires

setting several hyper-parameters. Our analysis in this research will focus on pure batch

methods. We are, more specifically, interested in the LSPI method with linear in parameter

approximation of the value function.

4.4 Q-Learning

Q-learning, as introduced in Watkins (1989), and Watkins and Dayan (1992), is considered

an incremental dynamic programming. Unlike dynamic programming, Q-learning does

not require knowledge of the system model; that is, it is a model-free method. Q-learning is

a direct method; that is, it learns the optimal policy without the need to learn the underlying

model. Compared to indirect methods, which obtain an optimal policy through the learning

of the system model, such as the method by Sato et al. (1988), Q-learning, generally, tends

to be more efficient (Barto and Singh 1990). The Q-learning method is characterized by

what is known as the Q-value (Watkins and Dayan 1992). The Q-value can be expressed as

Qπ(S , A) =R (S , A) +βE [V π(S+)|S , A], (4.1)

58



where S is a vector of state variables for the current period, S+ is a vector of state variables

for the next period, A is a vector of action variables, R (S , A) is some reward function, π is

some policy rule, and β is a discount factor. Additionally, and given some Q-values for some

policy π, the state value function (V (S )) can be expressed as

V π =max
A

Qπ(S , A). (4.2)

The optimal Q-values can be estimated incrementally (Watkins 1989) from a sequence of

(Si , A, R ,Si+1) observations by the equation

Qi+1(Si , Ai ) = (1−αi )Qi (Si , Ai ) +αi [R (Si , Ai ) +max
A
βQi (Si+1, A)], (4.3)

where i represents the time step, αi is the learning rate, Si is the current state realization,

Si+1 is the future state, and A is the action to be taken. A large learning rate implies that

the updated value will put more weight on the predicted maximized value and less on the

previous value. The algorithm in its simplest form is shown in algorithm 1.
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Algorithm 1 Primitive Q-Learning

Initialize S0 and α

i ← 0

repeat

Choose a random action Ai

Calculate R (Si , Ai )

Simulate Si+1 given Si and Ai

Calculate Qi (Si , Ai )

i ← i +1

until Certain criteria is satisfied

4.5 Illustration of Q-learning on a Simple Pest Infestation

Problem

We illustrate how Q-learning can be used to solve a dynamic problem with a simple pest

infestation problem. The problem is based on a demonstration in the MDPSOLVE (Fackler

2011) package for Matlab. The problem is as follows: there is one state variable, S , that takes

three values representing the infestation level. The levels are 1: low infestation, 2: medium

infestation, 3: high infestation. There is one action variable, A. The action variable takes

two values: 0 if no treatment is taken, and 1 if treatment is to be taken. The transition matrix

for no action case is

P0 =











0.65 0.15 0.05

0.25 0.4 0.2

0.1 0.45 0.75











, (4.4)
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and for the action case is

P1 =











0.85 0.45 0.35

0.15 0.5 0.5

0 0.05 0.15











. (4.5)

The reward function is

R (S , A) =−D (S )−C ·A, (4.6)

where D=0, 5 and 20 for S =1,2, and 3 respectively, and C = 10. The problem is to find the

best policy, let it be π∗(S ), that maximizes the expected discounted rewards, that is

max
π(S )

E

∞
∑

i=0

β i R (Si ,π(Si )). (4.7)

We have solved the problem using MDPSOLVE (Fackler 2011) package in Matlab, and the

optimal policy is shown in Table 4.1. We have also solved the problem using the ε−g r e e d y

Q-learning algorithm with So = 1, ε= 0.5. The ε− g r e e d y policy assumes that action will

be taken according to the Q-function with a probability ε and randomly (uniformly) with

probability 1−ε. Figure 4.1 shows the Q-values at state S = 1 for different values of learning

rates along with the optimal value.

There are two things to note. First, a large learning rate results in a fast learning but

high variance in the Q-values, while a low learning rate results in slow learning but a low

variance in the Q-values. Second, learning rate plays a critical role in the convergence of the

Q-function to the optimal one. Watkins and Dayan (1992) have proved that given certain

conditions for the learning rate, the algorithm converges to the optimal Q-function. The

conditions require that the learning rate goes to zero as the number of steps (i ) goes to

infinity.
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Table 4.1: Optimal policy.

A S
0 1
1 2
1 3

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

0 50 100 150 200
0

100

200

Figure 4.1: Optimal Q-values at S=1 for different learning rates. The red dashed line repre-

sents the optimal value at S=1, calculated using dynamic programming.
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4.6 Least Square Policy Iteration

Suppose the Q-function is approximated with

Q (S , A|θ ) =
∑

k

φk (S , A) ·θk , (4.8)

whereφk are some basis function, and θi are parameters to be estimated. Suppose that we

have a set D of tuples (S , A, R ,S ′)where S is the current state, A is the action, R is the reward

and R ′ is the future state. The Least-Square Policy Iteration (LSPI) (Lagoudakis and Parr

2003) algorithm consists of two alternating steps. The first updates the Q-function, and

that is through updating the vector of parameters θ . The parameters update equation is

θ =
�

∑

j

φ(Sj , A j )(φ(Sj , A j )−β ·φ(S ′j ,π(S ′j ))
T
�−1
∑

j

�

φ(Sj , A j )R j

�

(4.9)

where β is the discount factor andφ is a column vector of the basis functions. The second

is the policy updating step, which depends on the updated Q-function. The policy updating

step is

π(S ) = argmax
A

Q (S , A|θ ). (4.10)

The LSPI algorithm alternates between the policy evaluation step (4.9), and the policy

improvement step (4.10), until there is no change in the policy. There are two advantages of

LSPI. First, it does not require setting a hyperparameter, such as the learning rate. Second,

it is has been proved to be stable (Lagoudakis and Parr 2003); that is, it either converges to

some Q-values or fluctuates within a bound of Q-values (i.e., it does not diverge).
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4.7 Fitted Q Iteration

Like LSPI, Fitted Q Iteration (FQI) (Ernst et al. 2005) is a pure batch RL algorithm that

estimates an approximate Q-function. Unlike the LSPI, the FQI can fit a broader class of ap-

proximating functions, such as kernel-based, and tree-based methods. The FQI algorithm,

as shown in algorithm 2, is analog to the value function iteration algorithm in dynamic

programming.

Algorithm 2 Fitted Q Iteration

Given a set of tuples (S , A, R ,S+),

Initialize the approximated Q-function (let be q̂ ) to zero

repeat

for j=1 to n do

q̃ j ←R (Sj , A j ) +βmaxA q̂ (S+j , A)

end for

fit q̂ using q̃ , S,and A by some regression/fitting method

until Certain criteria is satisfied

4.8 llustration of LSPI and FQI on a Simple Pest Infestation

Problem

We re-solve the previously introduced simple pest infestation problem using both LSPI and

FQI algorithms. We estimate the Q-value with a parameter for each state-action combina-
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tion, that is the Q-function to be estimated is

Q̂ (S , A) =
3
∑

i=1

1
∑

j=0

θi j ·1S=i ,A= j . (4.11)

The Q-values at S=1 for each iteration is shown in Fig. 4.2. The LSPI converges in the first

few iterations while the FQI converges after about a hundred iterations. We have repeated

the estimation process a hundred times for sample sizes of 100, 1000, and 10000. Both FQI

and LSPI have been able to find the optimal policy 51, 90, and 100 percent of times for the

three different sample sizes, respectively. It should be noted that in order to get an optimal

or near-optimal policy, we need a sample size of more than a thousand observations.
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Figure 4.2: Q-values for S=1 for each iteration using the optimal action according to the

Q-function using ten thousand simulated observations.
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4.9 Analysis

In this section, we aim to explore and analyze linear in parameters approximate Q-functions

and estimate them using the Least Square Policy Iteration. In the first part, we identify a

good parametric approximation of the Q-function. In the second part, we estimate our

approximate function using the LSPI algorithm for 4x4, 6x6, and 8x8 grid size problems of

the invasive species model introduced in the previous chapter.

4.9.1 Approximate Q-function Specification

Deciding on the functional form of the Q-function is an essential step in the value function

(or Q function) approximation methods. This step relies on both trial and error and, more

importantly, the understanding of the problem structure. In this part, we plan to solve a

3x3 grid size problems and compute the optimal Q-function. We use the Q-optimal values

to find a good functional approximation of the Q-function. We do so by exploring several

features and fitting the Q-values using the Ordinary-Least-Square Method. We find that a

good specification of the Q-function is:

Q =
N
∑

i=1

(α1i ·Si ·+α2i ·Si ·qi ) ·Ai +α3+α4 ·Q N N e i g h I n f

+α5 ·To t I n f +α6 ·To t I n f ·Q N N e i g h I n f , (4.12)

where Si is the state of site i , qi is the number of infected neighbors of site i , Ai is an action

variable that equals 1 if site i is to be treated, Q N N e i g h I n f is the total number of infected

neighbors for the uninfected sites, To t I n f is the total number of infected sites, and N is

the total number of sites. We restrict α1i and α2i by the eigenvector centrality of the sites, as
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described in the previous chapter. That is, sites that have the same eigenvector centrality

will have the same coefficients. Our approximate Q-function consists of two parts. The first

describes the variation in action for a given state. The second describes the variation in the

value function over different states. The rule predicts the optimal policy for 85% of state

space.

Our investigation of the states where the model in Eq. (4.12) fails to predict the optimal

actions show that the model will predict the second-best (see Table 4.2). Each row in Table

4.2 shows the value function value for a specific state. The value at the optimal action is

dark grey shaded, and the action resulting from the approximate Q function is light gray

shaded. The difference between the best and second-best Q-values in the states where the

model fails to predict the optimal action is very small. This is summarized in the box and

whisker plot in Fig. 4.3.

67



Correctly Predicted States Incorrectly Predicted States

0

20

40

60

80

100

120

140

160

180

P
er

ce
n

ta
g

e 
C

h
an

g
e 

o
f 

T
h

e 
S

ec
o

n
d

 B
es

t 
Q

-v
al

u
e 

R
el

at
iv

e 
to

 T
h

e 
B

es
t

Figure 4.3: Box and whiskers plot of the percentage change of the second best Q-values

relative to the best for both the states where the model predicts the optimal actions (correctly

predicted) and the states where it predicts sub-optimal actions (incorrectly predicted). The

whiskers length are 1.5 times the interquartile, which is the difference between the 75th

and 25th percentiles values. The red pluses represent outliers. It should be noted that the

percentage change of the second best Q-values relative to the best for the correctly predicted

states are quite wide compared to the incorrectly predicted states.

68



Table 4.2: The Q-values for both the optimal action and predicted action using Equation

(4.12). The parameters for the model are estimated using OLS with the optimal Q-values.

The Q-values are for the states where the model fails to predict the optimal action. The dark

gray shaded values represent the optimal ones while the light gray shaded ones represent

the ones predicted by the model.

State Action
S1 S2 S3 S4 S5 S6 S7 S8 S9 1 2 3 4 5 6 7 8 9 Q-func. Action Opt. Action
0 0 0 0 1 1 0 1 0 -22.5484 -21.2363 -21.5369 -21.2363 -17.0329 -17.6898 -21.5369 -17.6898 -21.4029 8 5
0 0 0 1 1 0 0 1 0 -21.5369 -21.2363 -22.5484 -17.6898 -17.0329 -21.2363 -21.4029 -17.6898 -21.5369 8 5
0 0 0 1 1 1 0 1 0 -30.7112 -30.5574 -30.7112 -26.6099 -27.9871 -26.6099 -30.4624 -27.4402 -30.4624 8 4
0 0 1 0 0 0 1 0 1 -22.4495 -21.1547 -17.0315 -21.1547 -22.4495 -20.8018 -17.0315 -20.8018 -17.7977 9 3
0 0 1 1 0 0 1 0 1 -31.1013 -30.9961 -26.3015 -26.4707 -31.0462 -30.5238 -28.3594 -30.6942 -27.1916 9 3
0 0 1 1 0 1 1 1 0 -37.8419 -37.7949 -34.2743 -34.0682 -36.7155 -34.4662 -36.3997 -34.7810 -37.6109 8 4
0 0 1 1 1 0 0 0 1 -32.8219 -32.1815 -29.3375 -27.8691 -28.5303 -32.3423 -32.8219 -32.1815 -29.3375 5 4
0 0 1 1 1 0 0 1 1 -38.4038 -37.7263 -34.7774 -34.2088 -35.5030 -37.9070 -37.9677 -36.2958 -36.6089 3 4
0 0 1 1 1 0 1 0 1 -39.8095 -39.0311 -35.7699 -36.8868 -35.9196 -38.9511 -37.4487 -39.2202 -36.6680 5 3
0 0 1 1 1 1 0 1 0 -37.7864 -37.1226 -35.2135 -33.5185 -35.6917 -35.8096 -37.1099 -34.1675 -37.5213 8 4
0 0 1 1 1 1 1 0 1 -43.2390 -42.5886 -40.5347 -40.2731 -40.3508 -42.3357 -40.7104 -42.6989 -41.3808 5 4
0 0 1 1 1 1 1 1 1 -46.2976 -45.6132 -43.5919 -43.5433 -44.3085 -45.4212 -44.9131 -45.7001 -45.5061 3 4
0 1 0 0 1 0 1 0 1 -32.8219 -27.8691 -32.8219 -32.1815 -28.5303 -32.1815 -29.3375 -32.3423 -29.3375 5 2
0 1 0 0 1 1 0 0 0 -21.5369 -17.6898 -21.4029 -21.2363 -17.0329 -17.6898 -22.5484 -21.2363 -21.5369 2 5
0 1 0 0 1 1 1 0 1 -38.4038 -34.2088 -37.9677 -37.7263 -35.5030 -36.2958 -34.7774 -37.9070 -36.6089 7 2
0 1 0 1 0 0 0 1 0 -24.9432 -20.0779 -25.1084 -20.8631 -23.7743 -26.2538 -24.9432 -20.0779 -25.1084 4 2
0 1 0 1 0 0 0 1 1 -32.3190 -27.5439 -32.9471 -28.2449 -31.7873 -32.9808 -32.7654 -29.9359 -29.9264 4 2
0 1 0 1 0 1 1 0 0 -32.7654 -28.2449 -32.3190 -29.9359 -31.7873 -27.5439 -29.9264 -32.9808 -32.9471 2 6
0 1 0 1 1 0 0 0 0 -21.4029 -17.6898 -21.5369 -17.6898 -17.0329 -21.2363 -21.5369 -21.2363 -22.5484 2 5
0 1 0 1 1 0 1 0 1 -37.9677 -34.2088 -38.4038 -36.2958 -35.5030 -37.7263 -36.6089 -37.9070 -34.7774 9 2
0 1 0 1 1 1 0 0 0 -30.4624 -27.4402 -30.4624 -26.6099 -27.9871 -26.6099 -30.7112 -30.5574 -30.7112 2 6
0 1 0 1 1 1 0 0 1 -37.1099 -34.1675 -37.5213 -33.5185 -35.6917 -35.8096 -37.7864 -37.1226 -35.2135 2 4
0 1 0 1 1 1 1 0 0 -37.5213 -34.1675 -37.1099 -35.8096 -35.6917 -33.5185 -35.2135 -37.1226 -37.7864 2 6
0 1 1 0 0 0 1 0 1 -31.1013 -26.4707 -28.3594 -30.9961 -31.0462 -30.6942 -26.3015 -30.5238 -27.1916 9 7
0 1 1 0 1 0 1 0 1 -39.8095 -36.8868 -37.4487 -39.0311 -35.9196 -39.2202 -35.7699 -38.9511 -36.6680 5 7
0 1 1 0 1 0 1 1 1 -43.2390 -40.2731 -40.7104 -42.5886 -40.3508 -42.6989 -40.5347 -42.3357 -41.3808 5 2
0 1 1 0 1 1 1 1 1 -46.2976 -43.5433 -44.9131 -45.6132 -44.3085 -45.7001 -43.5919 -45.4212 -45.5061 7 2
0 1 1 1 0 0 0 1 0 -32.7654 -29.9359 -29.9264 -28.2449 -31.7873 -32.9808 -32.3190 -27.5439 -32.9471 4 8
0 1 1 1 0 0 1 1 0 -37.6109 -34.4662 -34.2743 -34.7810 -36.7155 -37.7949 -36.3997 -34.0682 -37.8419 2 8
0 1 1 1 0 1 1 0 0 -37.6109 -34.7810 -36.3997 -34.4662 -36.7155 -34.0682 -34.2743 -37.7949 -37.8419 2 6
0 1 1 1 0 1 1 0 1 -44.1297 -41.4354 -43.3227 -41.2187 -43.7152 -42.8925 -41.7155 -44.2196 -42.2496 2 4
0 1 1 1 1 0 0 0 1 -37.9677 -36.2958 -36.6089 -34.2088 -35.5030 -37.9070 -38.4038 -37.7263 -34.7774 9 4
0 1 1 1 1 0 1 1 1 -48.1853 -46.3398 -46.1838 -46.5702 -47.1813 -47.9868 -47.3788 -47.8582 -46.6760 9 3
0 1 1 1 1 1 1 0 1 -48.1853 -46.5702 -47.3788 -46.3398 -47.1813 -47.8582 -46.1838 -47.9868 -46.6760 9 7
1 0 0 0 0 1 1 0 1 -26.3015 -30.9961 -31.1013 -30.5238 -31.0462 -26.4707 -27.1916 -30.6942 -28.3594 7 1
1 0 0 0 1 1 1 0 0 -29.3375 -32.1815 -32.8219 -32.3423 -28.5303 -27.8691 -29.3375 -32.1815 -32.8219 5 6
1 0 0 0 1 1 1 0 1 -35.7699 -39.0311 -39.8095 -38.9511 -35.9196 -36.8868 -36.6680 -39.2202 -37.4487 5 1
1 0 0 0 1 1 1 1 0 -34.7774 -37.7263 -38.4038 -37.9070 -35.5030 -34.2088 -36.6089 -36.2958 -37.9677 1 6
1 0 0 1 0 1 0 1 0 -29.9264 -32.9808 -32.9471 -29.9359 -31.7873 -27.5439 -32.7654 -28.2449 -32.3190 8 6
1 0 0 1 0 1 0 1 1 -34.2743 -37.7949 -37.8419 -34.4662 -36.7155 -34.0682 -37.6109 -34.7810 -36.3997 8 6
1 0 0 1 1 1 0 1 0 -35.2135 -37.1226 -37.7864 -35.8096 -35.6917 -33.5185 -37.5213 -34.1675 -37.1099 8 6
1 0 0 1 1 1 1 0 1 -40.5347 -42.5886 -43.2390 -42.3357 -40.3508 -40.2731 -41.3808 -42.6989 -40.7104 5 6
1 0 0 1 1 1 1 1 1 -43.5919 -45.6132 -46.2976 -45.4212 -44.3085 -43.5433 -45.5061 -45.7001 -44.9131 1 6
1 0 1 0 0 0 0 1 1 -26.3015 -30.5238 -27.1916 -30.9961 -31.0462 -30.6942 -31.1013 -26.4707 -28.3594 3 1
1 0 1 0 1 0 0 1 0 -29.3375 -32.3423 -29.3375 -32.1815 -28.5303 -32.1815 -32.8219 -27.8691 -32.8219 5 8
1 0 1 0 1 0 0 1 1 -35.7699 -38.9511 -36.6680 -39.0311 -35.9196 -39.2202 -39.8095 -36.8868 -37.4487 5 1
1 0 1 0 1 0 1 1 0 -36.6680 -38.9511 -35.7699 -39.2202 -35.9196 -39.0311 -37.4487 -36.8868 -39.8095 5 3
1 0 1 0 1 0 1 1 1 -42.8107 -45.2599 -42.8107 -45.5085 -42.9120 -45.5085 -44.0826 -45.3378 -44.0826 5 3
1 0 1 0 1 1 0 1 0 -34.7774 -37.9070 -36.6089 -37.7263 -35.5030 -36.2958 -38.4038 -34.2088 -37.9677 1 8
1 0 1 0 1 1 1 0 0 -36.6680 -39.2202 -37.4487 -38.9511 -35.9196 -36.8868 -35.7699 -39.0311 -39.8095 5 7
1 0 1 0 1 1 1 0 1 -42.8107 -45.5085 -44.0826 -45.2599 -42.9120 -45.3378 -42.8107 -45.5085 -44.0826 5 7
1 0 1 1 0 1 0 1 1 -41.7155 -44.2196 -42.2496 -41.2187 -43.7152 -42.8925 -44.1297 -41.4354 -43.3227 8 4
1 0 1 1 0 1 1 1 0 -42.2496 -44.2196 -41.7155 -42.8925 -43.7152 -41.2187 -43.3227 -41.4354 -44.1297 8 6
1 0 1 1 1 0 0 0 1 -37.4487 -39.2202 -36.6680 -36.8868 -35.9196 -38.9511 -39.8095 -39.0311 -35.7699 5 9
1 0 1 1 1 0 0 1 0 -36.6089 -37.9070 -34.7774 -36.2958 -35.5030 -37.7263 -37.9677 -34.2088 -38.4038 3 8
1 0 1 1 1 0 1 0 1 -44.0826 -45.5085 -42.8107 -45.3378 -42.9120 -45.2599 -44.0826 -45.5085 -42.8107 5 3
1 0 1 1 1 1 0 0 1 -40.7104 -42.6989 -41.3808 -40.2731 -40.3508 -42.3357 -43.2390 -42.5886 -40.5347 5 4
1 0 1 1 1 1 0 1 1 -46.1838 -47.9868 -46.6760 -46.3398 -47.1813 -47.8582 -48.1853 -46.5702 -47.3788 3 1
1 0 1 1 1 1 1 0 0 -41.3808 -42.6989 -40.7104 -42.3357 -40.3508 -40.2731 -40.5347 -42.5886 -43.2390 5 6
1 1 0 0 0 1 0 1 1 -34.2743 -34.4662 -37.6109 -37.7949 -36.7155 -34.7810 -37.8419 -34.0682 -36.3997 2 8
1 1 0 0 1 0 1 0 1 -37.4487 -36.8868 -39.8095 -39.2202 -35.9196 -39.0311 -36.6680 -38.9511 -35.7699 5 9
1 1 0 0 1 0 1 1 1 -40.7104 -40.2731 -43.2390 -42.6989 -40.3508 -42.5886 -41.3808 -42.3357 -40.5347 5 2
1 1 0 0 1 1 1 0 0 -36.6089 -36.2958 -37.9677 -37.9070 -35.5030 -34.2088 -34.7774 -37.7263 -38.4038 7 6
1 1 0 0 1 1 1 1 1 -46.1838 -46.3398 -48.1853 -47.9868 -47.1813 -46.5702 -46.6760 -47.8582 -47.3788 7 1
1 1 0 1 0 1 0 0 1 -36.3997 -34.7810 -37.6109 -34.0682 -36.7155 -34.4662 -37.8419 -37.7949 -34.2743 2 4
1 1 0 1 0 1 1 0 1 -43.3227 -41.4354 -44.1297 -42.8925 -43.7152 -41.2187 -42.2496 -44.2196 -41.7155 2 6
1 1 0 1 1 0 1 1 1 -44.9131 -43.5433 -46.2976 -45.7001 -44.3085 -45.6132 -45.5061 -45.4212 -43.5919 9 2
1 1 1 0 1 0 0 1 1 -40.5347 -42.3357 -41.3808 -42.5886 -40.3508 -42.6989 -43.2390 -40.2731 -40.7104 5 8
1 1 1 0 1 0 1 0 1 -44.0826 -45.3378 -44.0826 -45.5085 -42.9120 -45.5085 -42.8107 -45.2599 -42.8107 5 7
1 1 1 0 1 0 1 1 0 -41.3808 -42.3357 -40.5347 -42.6989 -40.3508 -42.5886 -40.7104 -40.2731 -43.2390 5 8
1 1 1 0 1 1 0 1 1 -43.5919 -45.4212 -45.5061 -45.6132 -44.3085 -45.7001 -46.2976 -43.5433 -44.9131 1 8
1 1 1 1 1 0 1 1 0 -45.5061 -45.4212 -43.5919 -45.7001 -44.3085 -45.6132 -44.9131 -43.5433 -46.2976 3 8
1 1 1 1 1 1 0 0 1 -44.9131 -45.7001 -45.5061 -43.5433 -44.3085 -45.4212 -46.2976 -45.6132 -43.5919 9 4
1 1 1 1 1 1 1 0 0 -45.5061 -45.7001 -44.9131 -45.4212 -44.3085 -43.5433 -43.5919 -45.6132 -46.2976 7 669



4.10 Analysis Results

We estimate the approximate Q-function in Eq. (4.12) by the LSPI algorithm using a sam-

ple size of one million observations. The sample is generated by simulating forward for

hundred-time steps using a random policy. We do this for ten thousand randomly (uniform)

generated starting points. Simulation results for different grid size cases and different action

effectiveness are shown in Figs (4.4) and (4.5).

The LSPI policy does well compared to the optimal policy in the 4x4 grid case. Its

performance is better than any other policies in the situation where the action is partially

effective (pt = 0.7), and does as well as the optimal and approximate policies from the

previous chapter. The performance gaps between the different policies shrink as the action

becomes more effective (i.e., as we increase pt from 0.7 to 1).

The performance gaps between policies increase as the grid size increases. Eradication

starts to become harder to achieve as the grid size increases. This is more apparent when one

compares the 8x8 grid case for the situations when action is partially effective (pt = 0.7) and

fully effective (pt = 1). While in the 4x4 grid size, eradication is achieved in both situations,

it is not the case for the 8x8 grid size.

The LSPI policy does not perform as well as the approximate policy in the 6x6 grid size,

where the action is partially effective (pt = 0.7) and in the 8x8 grid size when action is fully

effective (pt = 1). While there could be many factors that result in this, two main factors are

the sample size used in the estimation and the functional form of the estimated Q-function.

We have replicated the estimation for sample sizes up to a hundred million observations

for the 6x6 grid size case and have noticed no improvement in the policy performance.

This suggests that the functional form is likely to be the issue. We have experimented with

additional features, such as polynomial terms of the basic features and their interactions.
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The additional features, however, did not result in an improvement.

Nevertheless, and aside from the approximate policy and greedy policies, the LSPI policy

appears to do better than other policies in all situations. Additionally, it has the potential

to do better than even the approximate and greedy policies in some situations. This is

illustrated in the sensitivity analysis in the appendix.
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(a) 4x4 grid network.
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(b) 6x6 grid network.
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(c) 8x8 grid network.

Figure 4.4: Time path simulations for a 4x4, 6x6 and 8x8 grid network where actions is

assumed to be partially effective (p0 = 0, p1 = 0.15, pn = 0.1, pt = 0.7). The time paths

represent an average over a ten thousand replications.
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(a) 4x4 grid network.
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(b) 6x6 grid network.
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(c) 8x8 grid network.

Figure 4.5: Time path simulations for a 4x4, 6x6 and 8x8 grid network where actions is

assumed to be completely effective (p0 = 0, p1 = 0.15, pn = 0.1, pt = 1). The time paths

represent an average over a ten thousand replications.
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4.10.1 Multi-layer Star Network

We analyze our approximate policy on Chadès et al. (2011) 101 nodes multi-layer star

network with their baseline model parameters. Figure 3.15 shows the time path simulation

results for the baseline model. Our LSPI policy outperforms our approximate policy from

the previous chapter. It also outperforms all other comparison policies, including Chadès

et al. (2011) rule of thumb. The sensitivity analysis results in the appendix show that the LSPI

policy’s performance is comparable to our approximate policy and consistently outperforms

other comparison policies.
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Figure 4.6: Simulations results on Chadès et al. (2011) 101 nodes multi-layer star network

(p0 = 0, p1 = 0.1, pn = 0, pt = 0.7).
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4.11 Conclusion

Our analysis shows that the LSPI algorithm results in a near-optimal policy rule for a small

dimensional grid spatial problem that can be solved using dynamic programming. However,

as the dimension of the problem increases, the LSPI method policy performance degrades.

Nevertheless, the LSPI policy appears to do well in Chadès et al. (2011) 101 nodes multi-layer

star network.

The choice of features is a main factor. Unlike problems with continuous state variables,

the use of a large number of polynomials terms and basis functions as features is not

applicable when the state variables are discrete. This makes features selection a more

complicated process as one needs to construct features based on the understating of the

problems. Things are even more complicated with spatial grid problems where spatial

aspects can play critical parts in the features construction. This is especially true as the

number of sites gets larger.

In higher-dimensional problems, our objective is to construct a set of features for the

approximate Q-function that can generalize out of sample states. This is different from

having features that fit the simulated observations well. For example, a functional form

that fits the observed states well, may not necessarily generalize well over the unobserved

states.

Despite that, our analysis shows that the LSPI algorithm can result in a good policy

for a large-dimensional problem if one can determine a good set of features for the Q-

function. Additionally, it can be handy when one does not have an explicit model that can

be solved using dynamic programming. Such problems arise when a sophisticated black-

box simulator represents the model of the problem. Both policy and value approximation

methods deserve further exploration in realistic resource management settings.

75



REFERENCES

Albers, H. J., Ando, A., and Shogren, J. F. (2010). Introduction to spatial natural resource
and environmental economics. Resource and Energy Economics, 32(2):93–97.

Albertini, F. and Sontag, E. (1993). Uniqueness of weights for neural networks.

Ando, A. W. and Baylis, K. (2014). Spatial Environmental and Natural Resource Economics,
pages 1029–1048. Springer Berlin Heidelberg, Berlin, Heidelberg.

Arthur, W. B. (1999). Complexity and the economy. Science, 284(5411):107–109.

Barabási, A.-L. (2016). Network science. Cambridge University Press.

Barto, A. G. and Singh, S. P. (1990). On the Computational Economics of Reinforcement
Learning. Connectionist Models: Proceedings of the 1990 Summer School, pages 35–44.

Belbute-Peres, F. D. A., Smith, K. A., Allen, K. R., Tenenbaum, J. B., and Kolter, J. Z. (2018).
End-to-End Differentiable Physics for Learning and Control. Technical report, 32nd
Conferenceon Neural Information Processing Systems.

Bellman, R. (1957). A Markovian Decision Process.

Bellman, R. E. (1954). The Theory of Dynamic Programming.

Bertsekas, D. P. (2019). Reinforcement learning and optimal control. Athena Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific,
1st edition.

Bianchi, F. J., Schellhorn, N. A., Buckley, Y. M., and Possingham, H. P. (2010). Spatial variabil-
ity in ecosystem services: Simple rules for predator-mediated pest suppression. Ecological
Applications, 20(8):2322–2333.

Bonacich, P. (1972). Technique for Analyzing Overlapping Memberships. Sociological
Methodology, 4(1972):176–185.

Brock, W. A. and Xepapadeas, A. (2011). Optimal Control and Spatial Heterogeneity: Pattern
Formation in Economic-Ecological Models. pages 1–44.

Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., and Buckley, Y. M.
(2011). General rules for managing and surveying networks of pests, diseases, and
endangered species. Proceedings of the National Academy of Sciences of the United States
of America, 108(20):8323–8328.

76



Chalak, M., Ruijs, A., and Van Ierland, E. C. (2011). Biological control of invasive plant
species: A stochastic analysis. Weed Biology and Management, 11(3):137–151.

Costello, C. and Polasky, S. (2004). Dynamic reserve site selection. Resource and Energy
Economics, 26(2):157–174.

Court, A. T. (1939). Hedonic price indexes with automotive examples. The dynamics of
automobile demand, pages 99–119.

DeAngelis, D. L. and Yurek, S. (2017). Spatially Explicit Modeling in Ecology: A Review.
Ecosystems, 20(2):284–300.

Epanchin-Niell, R. S. and Hastings, A. (2010). Controlling established invaders: Integrating
economics and spread dynamics to determine optimal management. Ecology Letters,
13(4):528–541.

Epanchin-Niell, R. S. and Wilen, J. E. (2012). Optimal spatial control of biological invasions.
Journal of Environmental Economics and Management, 63(2):260–270.

Ernst, D., Glavic, M., Geurts, P., and Wehenkel, L. (2005). Approximate value iteration
in the reinforcement learning context. application to electrical power system control.
International Journal of Emerging Electric Power Systems, 3(1):1–35.

Fackler, P. L. (2011). Mdpsolve: Matlab tools for solving markov decision problems.

Fackler, P. L. (2012). Category count models for resource management. Methods in Ecology
and Evolution, 3(3):555–563.

Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iam-
sirithaworn, S., and Burke, D. S. (2005). Strategies for containing an emerging influenza
pandemic in SE Asia . Supplementary Information. Nature, 437(7056):1–25.

Hof, J. and Bevers, M. (2002). Spatial Optimization in Ecological Applications. Columbia
University Press.

Hotelling, H. (1929). Stability in Competition. The Economic Journal, 39(153):41–57.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA.

Johnston, R. J., Grigalunas, T. A., Opaluch, J. J., Mazzotta, M., and Diamantedes, J. (2002).
valuing Estuarine Resource Services-Robert J Johnston. pages 47–65.

Judd, K. (1998). Numerical Methods in Economics, volume 1. The MIT Press, 1 edition.

77



Judd, K. L., Maliar, L., and Maliar, S. (2011). Numerically stable and accurate stochastic
simulation approaches for solving dynamic economic models. Quantitative Economics,
2(2):173–210.

Klaiber, A. and Phaneuf, D. J. (2010). Valuing open space in a residential sorting model of
the Twin Cities. Journal of Environmental Economics and Management, 60(2):57–77.

Krugman, P. (1998). What’s new about the new economic geography? Oxford Review of
Economic Policy, 14(2):7–17.

Kuminoff, N. V., Smith, V. K., and Timmins, C. (2010). The new economics of equilibrium
sorting and its transformational role for policy evaluation.

Laber, E. B., Meyer, N. J., Reich, B. J., Pacifici, K., Collazo, J. A., and Drake, J. M. (2018).
Optimal treatment allocations in space and time for on-line control of an emerging
infectious disease. Journal of the Royal Statistical Society. Series C: Applied Statistics,
67(4):743–789.

Lagoudakis, M. and Parr, R. (2003). Least-Squares Policy Iteration. Journal of Machine
Learning Researh, pages 1107–1149.

Lancaster, K. J. (1966). A new approach to consumer theory. Journal of political economy,
74(2):132–157. Date revised - 2013-06-12; Last updated - 2013-09-16; SubjectsTermNotL-
itGenreText - 3372 3883 971; 2777 2803 3874 556 3889 6071 1542 11325.

Lang, J. C., De Sterck, H., Kaiser, J. L., and Miller, J. C. (2018). Analytic models for SIR disease
spread on random spatial networks. Journal of Complex Networks, 6(6):948–970.

Liu, Y., Deng, Y., Jusup, M., and Wang, Z. (2016). A biologically inspired immunization
strategy for network epidemiology. Journal of Theoretical Biology, 400:92–102.

M. Girvan and Newman, M. E. J. (2002). Community structure in social and biological
networks. PNAS.

Marcel Salathe, J. H. J. (2010). Dynamics and Control of Diseases in Networks with Com-
munity Structure. PloS Computational Biology.

Marescot, L., Chapron, G., Chadès, I., Fackler, P. L., Duchamp, C., Marboutin, E., and
Gimenez, O. (2013). Complex decisions made simple: A primer on stochastic dynamic
programming. Methods in Ecology and Evolution, 4(9):872–884.

Meier, E. S., Dullinger, S., Zimmermann, N. E., Baumgartner, D., Gattringer, A., and Hülber, K.
(2014). Space matters when defining effective management for invasive plants. Diversity
and Distributions, 20(9):1029–1043.

78



Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv e-prints, page
arXiv:1312.5602.

Moxnes, E. (2003). Uncertain measurements of renewable resources: Approximations,
harvesting policies and value of accuracy. Journal of Environmental Economics and
Management, 45(1):85–108.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 65(2):331–355.

Newman, M. E. J. (2007). The mathematics of networks. The New Palgrave Encyclopedia of
Economics, 2:1–12.

Newman, M. E. J. (2009). The spread of epidemic disease on networks. Physical Review E,
66(1).

Olson, L. J. and Roy, S. (2002). The economics of controlling a stochastic biological invasion.
American Journal of Agricultural Economics, 84(5):1311–1316.

Palmquist, R. B. (2005). Chapter 16 Property Value Models. Handbook of Environmental
Economics, 2(05):763–819.

Palmquist, R. B. and Smith, V. K. (2001). The Use of Hedonic Property Value Techniques for
Policy and Litigation. International Yearbook of Envrionmental and Resources Economics,
6:78.

Perry, G. L., Moloney, K. A., and Etherington, T. R. (2017). Using network connectivity to
prioritise sites for the control of invasive species. Journal of Applied Ecology, 54(4):1238–
1250.

Powell, W. (2011). Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley Series in Probability and Statistics. Wiley.

Powell, W. B. (2008). What You Should Know About Approximate Dynamic Programming.
Naval Research Logistics, 55(Dec 2009):240–249.

Proulx, S. R., Promislow, D. E., and Phillips, P. C. (2005). Network thinking in ecology and
evolution.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley Sons, Inc., USA, 1st edition.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press.

79



Reed, W. J. (1979). Optimal escapement levels in stochastic and deterministic harvesting
models. Journal of Environmental Economics and Management, 6(4):350–363.

Riedmiller, M. (2005). Neural Fitted Q Iteration – First Experiences with a Data Efficient
Neural Reinforcement Learning Method BT - Machine Learning: ECML 2005: 16th Euro-
pean Conference on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings.
Ecml 2005, pages 317–328.

Sanchirico, J. and Wilen, J. (1999). Bioeconomics of Spatial Exploitation in A Patchy Envi-
ronment. Journal of Environmental Economics and Management, (37):129–150.

Sato, M., Abe, K., and Takeda, H. (1988). Learning control of finite Markov chains with an
explicit trade-off between estimation and control. IEEE Transactions on Systems, Man
and Cybernetics, 18(5):677–684.

Schelling, T. C. (1971). Dynamics Model of Segregation. Journal of Mathematical Sociology,
1(May 1969):143–186.

Smith, A. A. (1990). Three essays on the solution and estimation of dynamic macroeconomic
models. Duke University. Dissertation.

Springborn, M. R. and Faig, A. (2019). Moving Forward: A Simulation-Based Approach for
Solving Dynamic Resource Management Problems. Technical report.

Sraffa, P. (1926). The Laws of Returns under Competitive Conditions. The Economic Journal,
36(144):535.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825):268–276.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT
Press, second edition.

Taylor, L. O. (2003). The Hedonic Method, pages 331–393. Springer Netherlands, Dordrecht.

Thorndike, E. L. (1911). Animal intelligence; experimental studies,. New York,The Macmil-
lan company,. https://www.biodiversitylibrary.org/bibliography/1201 — The study of
consciousness and the study of behavior.–Animal intelligence.–The instinctive reactions
of young chicks.–A note on the psychology of fishes.–The mental life of the monkeys.–Law
and h.

van Otterlo, M. and Wiering, M. (2012). Reinforcement Learning and Markov Decision
Processes, pages 3–42. Springer Berlin Heidelberg, Berlin, Heidelberg.

80



Watkins, C. J. and Dayan, P. (1992). Technical Note: Q-Learning. Machine Learning, 8(3):279–
292.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK.

Waugh, F. V. (1928). Quality factors influencing vegetable prices. Journal of Farm Economics,
10(2):185–196.

81



APPENDIX

82



APPENDIX

A

SENSITIVITY ANALYSIS

The sensitivity analysis are conducted for three grid sizes: 4x4, 6x6, and 8x8 and 8x50. In each

grid size we conduct a sensitivity for three parameters: action effectiveness (pt ), diffusion

due to infected neighbors (p1), and natural remission or clearance (pn ). Each panel shows

a sensitivity analysis for the combination of pn and p1 values where each can take three

possible values given a fixed value of action effectiveness (pt ). We follow the treatment of

Chadès et al. (2011) for the sensitivity of pt , which we do it for pt = 0.7 and pt = 1. Table A.1

lists the different sensitivity analysis cases.
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Table A.1: List of sensitivity analysis cases.

Figure Number Grid(or network) Dimension Fixed Parameters Value Description
A.1 4x4 p0 = 0, pt = 0.7 Mean of the occupied sites
A.2 4x4 p0 = 0, pt = 0.7 Std. Dev. of the occupied sites
A.3 4x4 p0 = 0, pt = 1 Mean of the occupied sites
A.4 4x4 p0 = 0, pt = 1 Std. Dev. of the occupied sites sites
A.5 6x6 p0 = 0, pt = 0.7 Mean of the occupied sites
A.6 6x6 p0 = 0, pt = 0.7 Std. Dev. of the occupied sites
A.7 6x6 p0 = 0, pt = 1 Mean of the occupied sites
A.8 6x6 p0 = 0, pt = 1 Std. Dev. of the occupied sites sites
A.9 8x8 p0 = 0, pt = 0.7 Mean of the occupied sites

A.10 8x8 p0 = 0, pt = 0.7 Std. Dev. of the occupied sites
A.11 8x8 p0 = 0, pt = 1 Mean of the occupied sites
A.12 8x8 p0 = 0, pt = 1 Std. Dev. of the occupied sites
A.13 8x50 p0 = 0, pt = 0.7 Mean of the occupied sites
A.14 8x50 p0 = 0, pt = 0.7 Std. Dev. of the occupied sites
A.15 8x50 p0 = 0, pt = 1 Mean of the occupied sites
A.16 8x50 p0 = 0, pt = 1 Std. Dev. of the occupied sites
A.17 Multi-layer Star (101 nodes) p0 = 0, pt = 0.7 Mean of the occupied sites
A.18 Multi-layer Star (101 nodes) p0 = 0, pt = 0.7 Std. Dev. of the occupied sites
A.19 Multi-layer Star (101 nodes) p0 = 0, pt = 1 Mean of the occupied sites
A.20 Multi-layer Star (101 nodes) p0 = 0, pt = 1 Std. Dev. of the occupied sites
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Figure A.1: Average number of occupied sites over ten thousands replications and four

hundreds periods for different policies for a 4x4 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be partially effective (pt = 0.7).
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Figure A.2: Standard deviation of the number of occupied sites over ten thousand replica-

tions and four hundred periods for different policies for a 4x4 grid situation. The sponta-

neous infection parameter is set to zero (p0 = 0). Action is assumed to be partially effective

(pt = 0.7).
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Figure A.3: Average number of occupied sites over ten thousand replications and four

hundred periods for different policies for a 4x4 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be completely effective (pt = 1).
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Figure A.4: Standard deviation of the number of occupied sites over ten thousand repli-

cations and four hundred periods for different policies for a 4x4 grid situation. The spon-

taneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).
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Figure A.5: Average number of occupied sites over ten thousand replications and four

hundred periods for different policies for a 6x6 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be partially effective (pt = 0.7).
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Figure A.6: Standard deviation of the number of occupied sites over ten thousand replica-

tions and four hundred periods for different policies for a 6x6 grid situation. The sponta-

neous infection parameter is set to zero (p0 = 0). Action is assumed to be partially effective

(pt = 0.7).
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Figure A.7: Average number of occupied sites over ten thousand replications and four

hundred periods for different policies for a 6x6 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be completely effective (pt = 1).
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Figure A.8: Standard deviation of the number of occupied sites over ten thousand repli-

cations and four hundred periods for different policies for a 6x6 grid situation. The spon-

taneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).
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Figure A.9: Average number of occupied sites over ten thousand replications and four

hundred periods for different policies for a 8x8 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be partially effective (pt = 0.7).
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Figure A.10: Standard deviation of the number of occupied sites over ten thousand repli-

cations and four hundred periods for different policies for a 8x8 grid situation. The sponta-

neous infection parameter is set to zero (p0 = 0). Action is assumed to be partially effective

(pt = 0.7).
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Figure A.11: Average number of occupied sites over ten thousand replications and four

hundred periods for different policies for a 8x8 grid situation. The spontaneous infection

parameter is set to zero (p0=0). Action is assumed to be completely effective (pt = 1).
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Figure A.12: Standard deviation of the number of occupied sites over ten thousand repli-

cations and four hundred periods for different policies for a 8x8 grid situation. The spon-

taneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).

96



100 200 300 400
0

100

200

300

400
P

1
 = 0.1 , P

n
 = 0

100 200 300 400
0

100

200

300

400
P

1
 = 0.15 , P

n
 = 0

100 200 300 400
0

100

200

300

400
P

1
 = 0.2 , P

n
 = 0

100 200 300 400
0

100

200

300

400
P

1
 = 0.1 , P

n
 = 0.05

100 200 300 400
0

100

200

300

400
P

1
 = 0.15 , P

n
 = 0.05

100 200 300 400
0

100

200

300

400
P

1
 = 0.2 , P

n
 = 0.05

100 200 300 400
0

100

200

300

400
P

1
 = 0.1 , P

n
 = 0.1

100 200 300 400
0

100

200

300

400
P

1
 = 0.15 , P

n
 = 0.1

100 200 300 400
0

100

200

300

400
P

1
 = 0.2 , P

n
 = 0.1

Do Nothing

Greedy Policy

Random Policy

Heuristic Rule

Outside-in H

Outside-in L

Inside-out H

Inside-out L

Time Period

A
v

er
ag

e 
N

u
m

b
er

 o
f 

T
o

ta
l 

O
cc

u
p

ie
d

 S
it

es

Figure A.13: Average number of occupied sites over a thousand replications and four

hundred periods for different policies for a 8x50 grid situation. The spontaneous infection

parameter is set to zero (p0 = 0). Action is assumed to be partially effective (pt = 0.7).
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Figure A.14: Standard deviation of the number of occupied sites over a thousand replica-

tions and four hundred periods for different policies for a 8x50 grid situation. The sponta-

neous infection parameter is set to zero (p0 = 0). Action is assumed to be partially effective

(pt = 0.7).
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Figure A.15: Average number of occupied sites over a thousand replications and four

hundred periods for different policies for a 8x50 grid situation. The spontaneous infection

parameter is set to zero (p0 = 0). Action is assumed to be completely effective (pt = 1).
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Figure A.16: Standard deviation of the number of occupied sites over a thousand replica-

tions and four hundred periods for different policies for a 8x50 grid situation. The spon-

taneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).
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Figure A.17: Average number of occupied sites for four hundred periods for different

policies for a multi-layer star network with 101 nodes. The spontaneous infection parameter

is set to zero (p0 = 0). Action is assumed to be partially effective (pt = 0.7).
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Figure A.18: Standard deviation of the number of occupied sites over a thousand replica-

tions and four hundred periods for a multi-layer star network with 101 nodes. The sponta-

neous infection parameter is set to zero (p0 = 0). Action is assumed to be partially effective

(pt = 0.7).
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Figure A.19: Average number of occupied sites over a thousand replications and four

hundred periods for different policies for a multi-layer star network with 101 nodes. The

spontaneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).
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Figure A.20: Standard deviation of the number of occupied sites over a thousand replica-

tions and four hundred periods for a multi-layer star network with 101 nodes. The spon-

taneous infection parameter is set to zero (p0 = 0). Action is assumed to be completely

effective (pt = 1).
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