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Abstract

L~ this pa per we introduce a methodology for approximately characterizing the
superposition process of J.V ~ 2 arbitrary discrete-time Markov Renewal Processes
(MP2). The superposition process is also a ~..,,1RP with a state space that grows expo­
nentially with N. We introduce the arbitrary anioff traffic source model as a special
case of the general~. For this special case, we devise an iterative algorithm which
can be used to characterize the superposition process in a compact form. Subse­
quently, a queueing model for a FIFO finite-buffer multiplexer with arbitrary anioff
input sources is analyzed. We provide extensive numerical and validation results
for the algorithms introduced in the paper. We also study the effect of some of the
statistical properties of anioff input sources on the multiplexer's performance.

1 Introduction

In this paper, we consider the problem of characterizing the superposition of multiple

discrete-time Markov Renewal Processes (IvfRP). A lot of research has been reported in

*Supported in part by BellSouth, GTE Corporation, and NSF and DARPA under cooperative agreement
NCR-8919038 with the Corporation for National Research Initiatives and in part by a gift from BNR INC.
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the area of characterizing the superposition process of renewal and Markovian processes.

However, to the best of our knowledge characterizing the superposition of MP~'s has not

as yet been adequately addressed.

Non-Markovian processes are more versatile since they can provide realistic models

of arrival processes in an ATM environment. However, the analysis of queueing systems

with non-Markovian input is considerably more complex than that with renewal and

Markovian arrival processes.

Cherry and Disney [1] studied the superposition of two continuous-time MRP's. The

structure of the interval process resulting from superposing two independent MRP was

characterized. The resulting stochastic process has a very large number of states which

limits the applicability of the model to two processes.

Korolyuk [6] introduced a mathematical model for the superposition of multiple inde­

pendent continuous-time lv1RP's. The model keeps track of the time each process spends

in the current state. This limits the model's applicability to cases where analytic expres­

sions for the sojourn times between states can be found. The author also introduced the

notion of phase space lumping/ an aggregation process, in crder to red uce dimensionality

of the MF.P.

Following a similar methodology to the one presented in [1] and [6], we characterize the

superposition of N 2 2 independent discrete-time MRP's. The constructed superposition

is a 11R.P with a state space that grO\VS exponentially with N. Only small values of N

can be handled on a conventional computer. An aggregation method was developed in

the case of onloff processes, where the on and off periods have an arbitrary distribution.

Such a process is hereafter referred to as an arbitrary orr/off process. This aggregation

causes a distortion of the statistical properties of the original superposition. However,

the aoczregation works well in the case of Interrupted Bernoulli Processes. Finally, a
be,

FIFO finite buffer statistical multiplexer with N arbitrary onloff arrival processes was

analyzed. The analysis is non-standard due to the new model of the superposition of the

arrival processes.

Sohraby [8] presented innovative results on the tail beha~ior of a multiplexer with

infinite waiting room shared by multiple arbitrary anioff sources. For the case of hetero-
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geneous sources, the model is valid only in heavy traffic. For the case of homogeneous

sources, the model can be used for all levels of multiplexer utilization. In the heteroge­

neous case, the asymptotic decay parameter is a simple function of the first two moments

of the on and off periods and peak rates. However, our results show that for the case

of a multiplexer with finite buffer, more parameters are needed than just the first two

moments of the on and off period lengths (when peak rate is equal to link speed).

The rest of this paper is organized as follows. In section 2, we first provide a quick

review of Markov renewal processes and present some results from discrete-time renewal

theory. We then proceed to describe the methodology for characterizing the superposition

of multiple independent:MRP's. In section 3, we present the arbitrary onloff source model.

A step-wise algorithm which uses aggregation in order to obtain a superposition process

of arbitrary onloff sources with a manageable number of states is introduced in section 3.2.

In section 4, a finite buffer FIFO statistical multiplexer shared by multiple arbitrary on/off

traffic sources is introduced and analyzed. In section 5, we present extensive validation

results of the algorithms presented in this paper. In section 6, we examine the effects of

some of the parameters of an arbitrary orr/off source on the performance of a statistical

multiplexer. Section 7 gives the conclusions of this papero

2 The Superposition of Multiple Independent Discrete-time

Markov Renewal Processes

2.1 A Revie-w of Discrete-fune Markov Renewal Processes and Some Basic

Results from Renewal Theory

A Markov renewal process GvfRP) is a stochastic process which moves from one state to

another with a random sojourn times which has a distribution that depends on the state

being visited as well as the next state to be entered. The successive states visited by the

MRP form a Markov chain. Let 3 be the state space of an :tvIRP.

Definition: The stochastic process (X, T)
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n E Z+ I and 0 == To ::; T1 ::; T2 · · ., is a discrete-time :MRP with state space :=: if

for all T, k E Z+ and z E 3. Let us further assume that (X, T) is time-homogeneous;

that is P {Xn+1 == y, Tn+1 - Tn == kl"-Yn == x} == G(x, y, k) independent of n. The family

of probabilities G == {G(x,y,k): x,y E 3,k E Z+} is called a discrete-time semi-Markov

kernel on 3. The process (X) is called the associated semi-Markov process (S1vfP) of the

11RP (X, T). Whenever appropriate, we would use the term S1vfP in place of:MRP.

The sum p(z , y) == Ek~O G(z , y, k) is not necessarily equal to one, but p(z , y) ~ 0 and

L:lIEs p(x , y ) must be equal to one. The p(x,y) are in fact the transition probabilities for

some Markov Chain with state space E and probability transition matrix P == [p(x,y)].

We now review some basic results from renewal theory that will be used below to

construct the superposition process. Let f(k), 0 < f(k) < 1, k ~ 0, be a probability mass

function. Let w == ~k=O f(k), a < l.k' ~ 1, and Sf == ~k==O kf(k). Let F(k) == ~7=o f(l), be

the associated cumulative probability density function of length up to k. The probability

~~:.;-~ss runcrio.. of the residual life-time is given by :

.... [W-F(k-l)]
f(k)=w M ' k=1,2, .. · (1)

Note that when w is equal to 1, we get the known results for discrete-time renewal theory

[9].

2.2 Characterization of The Superposition Process of Multiple Indepen­

dent Markov Renewal Processes

Consider pI 2: 2 independent discrete-time }ARP's. Each individual MP,j) i is characterized

in terms of c. semi-Markov kernel G i == (gi( z , y"Ic)] defined over the set of states 1,2,· · · Nil

N, > 1. In order to characterize the superposition process, we have to define the states of

the process and then for each state find the distribution of the sojourn time between the

state and any other directly accessible state of the superposition process.
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In [1] the superposition state descriptor is a vector consisting of the current state of

each component process and the time each process has spent in its current state since its

last transition. It is clear that such a characterization results in an enormous state space,

since the time a component process spends in a state can be quite large especially when

some of the functions s. (x, y, k ) have a long tail.

To show how our superposition is constructed, let us assume for the moment that only

one particular process, say process i, has just experienced a state transition and another

process j, j #- i, did not change state at that instant and that it is in state Xj. Let T(xj)

be the time that process j has spent so far in state Xj. Due to the independence of the

two processes, the distribution of T(xj) will be equal to the distribution of the life-time in

state Xj. The time T'(xj) that it takes process j to undergo a state change would have a

distribution equal to the residual time distribution at state Xj.

This is illustrated through the example given in figure 1. At the instant marked

observation Instant, process 1 makes a state transition from state 2 to state 3. The distribution

of time until processes :2 and 3 e.oerience a state transition, T'( X2) and T'( X3) respectively,

i.3 appro~<i:-n.a.tel)/ equal to the residual life-time distribution in state 2 and state 1 of each

process respectively. This is true when we take all possible realization of the above event

and assuming that all processes are independent.

We define the superposition state at instants when one or more of the individual

processes experience a state transition. The superposition state is described by the tuple

[(Xl,tl),(X2,t2),···,(XN,tN)] where Xi E {1,2,··.,Ni } is the state of process i observed

immediately after a transition occurs, and ti E {O, 1} indicates whether process i has

changed state or not, with ti == 1 iff process i has changed state.

The state space E of the superposition process is given by

Note that ~~1 ti =I- 0 because the superposition process is observed immediately after a

transition occurs. The number of states in the superposition process is obviously equal to

(I1~1 Ni)(2N
- 1).

5



Ooservalion Instan t

2 L Process 1

...-----. I ...---------.
Process 3

Process 2

L
1"(IJ

__1_------. :_---------~ I~_
Io....-----L------l

2

2

Figure 1: The distribution of residual life-time for a process not experiencing a state
change.

In order to fully characterize the superposition process as a MRP, we must obtain the

distribution of the time it takes the :t\,fr.J> to move from a state u to state v, where u, v E ::::

and v is directly accessible from u, Let the probability of going from u to v in k slots be

denoted by q(1.£, 1), k). Then Q = [q(U, 11, k)Jis the semi-Markov kernel of the superposition

process. We now proceed to calculate the functions q(u, v, k).

Let 9i(x, y, k) be the residual life-time probability mass function associated with s. (x, y, k)

which is calculated using equation 1. Also, let Gi(x,k) = :L~~1 :L7=1 9i(X,y,1), be the cu­

mulative distribution function of sojourn time up to slot k in state z for process i, and

Gi ( z , k) = :L~1 :L7=1 9i(z , v, l) be similarly defined for the functions 9i(z , y, k).

The function q(u,v,k) depends on the values of (Xi(U),ti(u)) and (Xi(V),ti(V)) for all

processes i, where (Xi(S), ti(S)) is the state of process i when the superposition is in state s.

We assume that the transition from state u to state v would take place in k slots and then

proceed to calculate the probability of this event to occur. Consider an arbitrary process

i, based on the values of ti(u) and ti(v), the following four distinct cases are possible:

1- ti(u) = ti(v) == O. In this case we have Xi(u) == Xi(v), i.e. process i does not change

state in either state u or v. The probability of such an event to occur for process i is
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approximately given by <p;(u,v,k) = 1 - G;(x;(u),k), which is the probability that

the residual life-time in state Xi(u) is greater than k.

11- tieu) = aand tiev) = 1. In this case process i changes state at vbut not at u, Since process

i has not changed state at u, the probability that this event occurs is 1Ji(u, v, k) ==
9;(X;(u),x;(v),k), which is the probability that the residuallife-tirne in state Xi(U) is

equal to k.

111- ti( u) == 1 and ti(v) == O. In this case process i changes state at u but not at v.

The probability that this event occurs is <Pi(u,v,k) == 1 - Gi(x,:(u),k), which is the

probability that the sojourn time in state Xi(u) is longer than k.

IV- ti(U) == ti(V) == 1. In this case process i changes state at both u and v. The proba­

bility that this event occurs is given by cPi(u,v,k) == 9i(Xi(U),Xi(V),k), which is the

probability that the sojourn time from state Xi(u) to state Xi(v) is equal to k slots.

Thus, due to tile in.dependence of the component processes, we have the result

N

q(u,v,k) == II cPi(u,v,k)
i=1

for all u; v E :=: and k E Z+~

(2)

We now discuss the computational complexity of the algorithm for constructing the

kernel of the superposition process. Let us assume that the maximum length of the

probability density function tail in any of the kernels {Gi}~l is given by L. The storage

space needed for the semi-Markov kernel Q to be generated is 0 ((n~l N;)2 (2N
- 1?L).

The computational complexity (number of floating point multiplications) is

o ((nf:l N;) (2N - 1?L). This is due to the fact that for an arbitrary state u, the number

of states directly accessible from u after one transition is (2N
- 1). Even for a small value

of N, say N = 5, N, = 2 Vi, and L = 1000, the storage needed is 0 (220
X 1000 x L) which

is excessively large for implementation on a conventional computer. By using sparse

matrix techniques the storage capacity needed cnn be reduced to 0 ((n~l Nt) (2N
- 1)2L).

Clearly, for a large number of processes, an approximate solution should be sought instead.

For example, the MRP may be approximated by a Markov chain or by a renewal process.
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The validation of the methodology presented above for characterizing the superposi­

tion process is given in section 5.1. It is shown there that the proposed method is quite

accurate.

3 The Superposition of Multiple Arbitrary on/off Sources

3.1 The Arbitrary On/Off Source Model

In this section, we introduce the arbitrary onloff traffic source model which is to be used

throughout the paper. Consider a traffic source that alternates between active (on) and

idle (off) periods. The source always transmits one cell per slot when it is in the on state,

see figure 2. For traffic source if the length of the on and off periods has an arbitrary

distribution. For source i, let ftn (k) and It! f (k) be the probability that the length of an on

and off period is k tirne slots respectively.

'The stochastic process describing tile source is L.T). fact art alternating renewal process

with two states which can be described by means of a MRP. Let the two states be 0

and 1 corresponding to the off and on state of the source respectively. The associated

semi-Markov kernel is given by

_ [ a ftff(k) ]
Gi(k) - ft'(k) a ·

We can now directly apply the results of section 2.2 to characterize the superposition

process of N 2: 2 arbitrary onloff sources. Since N, = 2, i = 1,2,'" N, and Xi E {O,1},

the expression for ¢i(U, v, k) in equation 2 is sir.rplified. Pot N sources, the superposition

process has 2N (2 N
- 1) states.

As discussed in section 2.2, this method is limited to small number of input sources,

since the time and space complexity grows exponentially with the number of sources.

Below, we present an aggregation method for constructing the superposition of arbitrary

onloff processes.
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Figure 2: The arbitrary anioff source model.

3.2 On the Aggregation of States in the Superposition of Multiple Arbi­

trary on/off Sources

Consider a discrete-time MRP with kernel Q = [q(u,v,k)] and M states. This:MRP,

referred to as the origina111RP, is to be approximated by an aggregate :MRP with kernel Q
and M < J-'1 states which is equivalent in some sense to Q. Let the states of the original

Ml~IJ be numbered as 1,2,·· 3 ,.It;f. Let the state space of the original process be divided

into the clisjcirlt sets Zl)Z2,···,Zif' where Zi n Zj == 0, i i-), and IZil 2: 1, Vi,j. All

states in set Z; will be represented by a single state i in the aggregate process. The entries

q(i,j, k) of the kernel Qare given by

(3)

where {7ru}~l is the invariant probability vector of the underlying Markov chain with

probability transition matrix P == [P(u, v)] == [Ell: q(u, v, k)]. It can be shown that the

aggregate MRP Q has the same first order characteristics as the original NfRP Q. For

example the fundamental mean (see [7]) is the same. For the case when the original MP~

is the su.perposition of arbitrary onloff sources, the aggregate process will have the same

mean number of arrivals and mean time between instants at which arrivals occur. For

this original MRP, an intuitive approach to constructing the aggregate F)rocess is to lump

all states that have the same number of sources in the on state into a single state. This
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suggests an aggregation scheme in which superposition states

are lumped to a single state c, where 0 :s c ::; N. In essence we define the sets Z;

{[(Xl, tl),··· (XN, tN)] : 2:f:1 Xi = c}, c= 0,1··· N and then use equation 3.

In general, the aggregation is difficult to carry out since it requires to first construct

the superposition process of N arbitrary orr/off processes using the method given in

section 2.2. Time and space complexity limits this superposition to about four arbitrary

anioff processes. An alternative approach is to construct the aggregate superposition

process in a stepwise fashion as follows. First, the aggregate superposition process is

initialized to the MRP of the first orr/off source. This is followed by an iterative scheme in

which the current aggregate superposition process is superimposed with another orr/off

source using the methodology in section 2.2 at each step. The resulting intermediate

process is then aggregated as described above to provide the new aggregate superposition

process. The i.eration is repeated .i\T - 1 times.

The advantage of this algorithm is that the space and time complexity is reduced from

an exponential to a polynomial function of the number of superimposed sources. The

algorithm is shown in figure 3.

c Let the kernel of the MRP of source i be G i

o Let Q = G 1

o For i = 2 to N do
- Let Q = superposition of Q with G i

using the method described in section 2.2
- Aggregate Q into Q by lumping all states with the same
number of active sources into one state I

Figure 3: Th.e Step-WL?,2 aggregation alglJritrtffi for constructing the superposition process.

The resulting process has N + 1 states. TIle largest nurnber of states encountered

is during the last iteration where we superpose a process an orr/off source (2 states)

with a process with N states (aggregate superposition of N - 1 sources). The resulting

intermediate process has 6N states according to section 2.2. This is then aggregated to
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Figure 4: The Statistical Multiplexer Model with S servers and B total waiting capacity.

provide the final approximate process with N + 1 states.

The accuracy of this aggregation scheme depends on the characteristics of the input

traffic sources and the extent of their homogeneity. The aggregation distorts the statistical

properties of the original superposition:tvIRP. Even in the case of completely homogeneous

sources, the proposed aggregation scheme may give inaccurate results. However, it is

quite accurate when all the input sources are IBP's. Validation results for the aggregation

algorithm are gi"\len in section 5.3.

4 Analysis of a Statistical Multiplexer with Multiple Arbi­

trary on/off Input Sources

Consider a FIFO finite buffer multiplexer serving N 2: 2 arbitrary anioff sources as

depicted in figure 4. Each source is described in terms of the probability density function

of its on and off periods. A source emits cells at each time slot when it is in the on state.

The multiplexer has S ~ 1 servers and can accommodate a total of B 2: S cells at any time

instant including those in service. The service time for all cells is constant al1d is equal to

one time slot. The multiplexer can serve S cells every time slot. 'rVe assume that N > S,

otherwise no queue will ever form in the multiplexer and the problem will be trivial to

handle.

We seek the steady state probabilities, 71"(n), a ~ n ~ B - 5, that there are n cells in the
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k+2 k+3

Time Slot

Figure 5: Timing of events in the early arrival model.

multiplexer's queue. From this we can obtain other measures of interest such as the mean

queue length, the probability of full buffer and the cell loss probability.

Let us first discuss the timing of events in our system. We follow an early arrival timing

model as defined by Hunt [5]. That is, during an arbitrary time slot, the sequence of events

is as follows: a state transition in the superposition may occur, followed immediately by

cell arrivals (if any), which is followed by service of waiting cells if there are any, and

finally departure of cells that received service. This is shown in figure 5. If an arbitrary

cell sees one or more empty servers upon its arrival, it is immediately admitted to one of

the available servers without waiting till the next slot. Hence, the multiplexer is effectively

of the cut-through type.

The superposition process of the JV sources is first characterized as a MRP. Let M be

the number of states of the MRP, with states numbered O,I,···,M -1 Q == [q(x,y,k)]

its semi-Markov kernel with M states numbered 0,1,···, M - 1. The superposition can

be constructed using the method described in section 2.2 or the aggregation method

described in section 3.2. Let a(h) be the number of active sources at state h E {a, 1, · · · , M -

1} of the superposition process.

System State: The system state at any particular slot is described by the pair (n, h)

where 0 ~ n < B - S is the number of cells in the multiplexer buffer at the beginning

of the slot (not counting the cells that are to arrive at this slot) and 0 ~ h ~ M - 1 is the

current state of the superposition process. We note here that the process (n, h)at successive

time slots does not form a Markov chain. This is due to the non-Markovian nature of the
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superposition process. However, by observing the system at instants immediately after

the superposition process experiences a state transition, the states (n, h) at these instants

form an embedded Markov chain since successive states visited by a MRP form a Markov

chain.

Solution Method: The probability transition matrix P governing transitions between

all possible states (n, h) is first generated. Then the embedded steady state probabilities

i(n, h) are calculated. Finally, the arbitrary point probabilities of observing state (n, h),

7r(n, h), are obtained from ~(n, h). The two fundamental technical difficulties that arise

here are generating the matrix P and the calculation of 7r(n, h) from ir(n, h).

Generation of the Probability Transition Matrix: Consider the queue occupancy evolu­

tion process at the multiplexer. Assume that the superposition has just made a transition

to state h and that the number of cells in the multiplexer immediately before that transition

occurs was no. During the time interval at which the superposition process is i11 state h,

a(h) cells arrive at the beginning of each slot. At each time slot, if the number of newly

arrived cells plus the number already in the system is greater than B, then the excess

(2115 are dropped randomly, i.e. independently of which source they originate from. By

the er.d cf a tirr-e slot a maximum of S cells in the multipl-xer (possibly including those

who have just arrived) are served. Assume that the superposition is in state h and that

it makes a transition to state hi in k slots. Also, assume that the number of cells in the

multiplexer when the superposition process made the transition to state h was no. Then,

the number of cells in the multiplexer after T slots can be calculated using the following

recursive equation:

n; == max (O,min(nr-l + a(h), B) - S), T == 1,2,··· (4)

By applying the above equation k times we can find the number of cells in the multiplexer

k slots after a transition to state h occurs. By conditioning on the probability that super­

position makes a transition from state h to state h' in k steps, we increment the probability

of going from state (no, h) to state (nk,h') by q(h,h',k). Note that it is possible that a

specific state (n', hi) can be visited from state (no, h) for different values of k. For example

if no = aand a(h) = 0, then for all k 2 1, state (0, hi) will be the next visited state of

the embedded Markov chain. This suggest the algorithm in figure 6 for generating the
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o Let p[(n, h), (n', h')] == 0 for all states.
o For all states (no, h) do

* For all values of k and h'
* Find tu; using equation 4
* If q(h, h', k) =I 0 then let p[(no, h), (n1c, h')] == p[(no, h), (nk' hi)] +q(h, i', k)

Figure 6: The algorithm for generating the probability transition matrix.

probability transition matrix P = [p[(n, h), (n', h')]]'

Once the probability transition matrix P is generated, we solve for the invariant

probability vector ir(n, h) which is the probability of observing the queueing system in

state (n, h) given that the superposition process has just undergone a state transition.

Arbitrary-time Probability Calculation: The key to the calculation of the arbitrary-time

probability distribution of the queue occupancy is that the system evolution is determin­

istic given a specific state h of the superposition process, an initial queue occupancy level

no, and the number of slots k measured from the instan: when the superposition process

moved to state h.

Let the state of the system at an instant where a transition occurs be (no 1 h). Let us

assume that the superposition process makes a transition to state h' after k 2:: aslots with

probability q(h, h', k). Then, all states (nr , h), 1 ::; T ::; k - 1, where ti; is calculated using

equation 4, will be observed with probability one, conditioned on the initial state (no, h)

and that a transition from state h to state h' occurs in I > k slots. Probabilities 7r(n, h) can

then be calculated using the algorithm shown in figure 7. Note the essential normalization

step.

Once the arbitrary point probabilities 7\(n, h) have been found, performance measures

of the multiplexer like the mean queue length and the cell loss probability can be ob­

tained. The mean queue length can be easily obtained from the probabilities :r(n, h). The

probability of loss P( Loss) is calculated as follows:

(5)

which is equal to the average loss rate divided by the average arrival rate.
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o For all states (n, h), let 7r(n, h) == 0
<> For all states (no, h) do
o For all possible states h'

For all possible values of 1
If q( h, h', 1) i- athen

for all values of i, a < k < 1
Find n/c from equation 4
Let 7r(nk' h) == 7r(n/c, h) + ir(no, h) q(h,h', k)

<> Let K, == I:(n,h) 7r(n, h)
o For all states (n, h), let 1r(n, h) = ....(:,h) (Normalization)

Figure 7: The algorithm for calculating the arbitrary-time probability

5 Validation Results

In this section, numerical results are presented in order to study the accuracy of the

algorithms presented in sections 2.2, 3.2, and 4. The accuracy of these algorithms is

assessed by comparing their results with detailed simulation results. First, we present

results for the approximation method for characterizing the superposition process of

discrete-rime Mr'-t.D's presented in section 2.20 Validation of the statistical multiplexer

model follows. The validation of these two algorithms is carried out assuming two :MRP/s

or two onloff sources. The methodology can be used for a small number of processes,

say three or four, without running into computational problems. We conjecture that the

methodology should remain accurate for than two processes, however, we do not have

data to support our claim. Finally, we provide results for testing the accuracy of the

stepwise aggregation algorithm for more anioff sources.

5.1 Validation of the Superposition of Discrete-time Markov Renewal

Processes

In this section, we report results for testing the accuracy of the approximate characteriza­

tion of the superposition process of multiple discrete-time MRP'described in section 2.2.

We consider the superposition of two:tvfRP' s with the following structure. Let g(i, k) be the

probability that the sojourn time in state i is k slots long, and let p(i, j) be the underlying
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probability of going from state i to state j. Then, g(i,j,k) is equal to g(i,k)p(i,j), where

g(i,j, k) is the probability that the sojourn time from state i to state j is of length k.

The first MRP has three states, the distribution of the sojourn time in each state is

truncated geometric with the parameters shown in table 1. The underlying probability

transition matrix is also shown in table 1. The second process has four states, the distri­

bution of the sojourn time in states 0 and 2 is uniform and in states 1 and 3 is modified

binomial. The parameters of the distributions and the underlying probability transition

matrix are shown in table 2. In both tables 1 and 2, the column marked Prob(Len == k)

gives the probability that the sojourn time in a particular state is equal to k.

The approximate superposition process was obtained as described in section 2.2 and

it is characterized by a MRP with 36 states. In order to validate the superposition process

we conducted a long simulation experiment and observed the statistical properties of

the superposition process. In the results shown below, the relative error for a measured
. . d f d I:r(analytic)-:r:(JJimulation) I 100 h ( I·) d (. I . )quantity x 15 e me as :r:(an-alytic) X , were z ana yttC an z sirrni ai.ioti

is the estimate of z as obtained by analysis and simulation respectively.

'TJ.-L2 embedded probability of visiting a particular state and the associated rela.: »e

error is shown in figure 8, the largest error is 0.53%. We also show the mean sojourn time

in states of the superposition and the associated relative error in figure 9. The largest

relative error is approximately 5.7%. The results in figure 10 show the distribution of

sojourn time between two arbitrary source-destination pairs. The first pair is [(1,1),(1,0)]

and [(1,0),(2,1)], while the second pair is [(0,0),(0,1)] and [(2,1)/(0/0)]. The analytic and

simulation results are almost identical.

The approximation model was observed, in general, to be accurate. We have experi­

mented with other types of distributions and different processes and found the accuracy

to be reasonable. Also, we observed that the more the states' sojourn time distribution re­

sembles a mernor vless distributions, the better the approximation is. This is due to the fact

that if all the sojourn time distributions are memoryless the approximate superposition is

actually an exact description of the actual superposition process.
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State Prob(Len == k), k == 1 ... L
0 (1- a)a.l.:-1 / (1 - 0:£), a == 0.998,L == 1000
1 (1 - a)ak- 1/(1 - o:L), a == 0.995, L == 1000
2 (1 - a)ak

-
1 /(1 - a L ) , a == 0.99, L == 200 [

0.2 0.7 0.1]
0.0 0.3 0.7
0.6 0.3 0.1

(a) Sojourn time distribution. (b) Prob. transi­
tion matrix.

Table 1: Parameters for the first MRP.

State Prob(Len == k), k == 1 ... L
0 I/L, L == 800

1 (~=D ci-1(1 - a)L-k, L = 100,a = 0.7
2 1/ L, L == 300

3 (~=D a k-1(1 - a)L-k, L = 50,a = 0.3

(a) Sojourn time distribution.

0.1 0.4 0.1 0.4
0.4 0.1 0.4 0.1
0.3 0.2 0.3 0.2
0.2 0.3 0.3 0.2

(b) Probe transition
matrix.

Table '2: Parameters for the second MRP.
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5.2 Validation of the Statistical Multiplexer Model

In section 4 we presented a stochastic queueing model for the analysis of a finite buffer

FIFO statistical multiplexer whpse input is a MRP which can be the superposition of a

number of independent arbitrary onloff sources. We report results from two experiments

that have been carried out. In the two experiments the buffer size B was taken to be

40 and there was only one server (5 == 1) in the multiplexer. In the graphs showing the

obtained results, the curves labeled as detailed, aggregate, and simulation demonstrate the

results obtained by characterizing the superposition process in terms of a l2-state MRP

obtained using the results from section 2.2; by characterizing the superposition process in

terms of a 3-state MRP obtained by the iterative aggregation algorithm; and by simulation

respectively. We note here that confidence intervals for the simulation results are not

shown because they were very narrow. This is also true for the curves shown in the

remaining sections.

Exan1ple 1: In the first experiment, we let the multiplexer input be two homogeneous

onloff sources, where the on period is deterministic and the off period is hyper-geometric

with parameters given in table 3. The constant on period length is taken from the set

{28, 63, 108,167,251} providing a source throughput or {G.l, 0.2, 0.3, 004, O.S} respectively.

Figure 11 shows the results for this particular model. We again observe here the proximity

of the results obtained by simulation and detailed superposition. The results obtained by

the aggregate superposition model are less accurate.

Mean CV2\
Off period 251 1.5 I

Table 3: Parameters of off period for results in example 1.

Example 2 - Heterogenous Sources: We tested the effect of source heterogeneity on the

accuracy of the queueing model by studying the case of two heterogeneous onloff sources

with hyper-geometric distribution for the on and off periods with the parameters shown

in table 4(a) and table 4(b). For the second source the mean on period an is adjusted such

that the source throughput takes values from L'1e set {O.l, 0.2,0.3,0.4,0.5,0.6,0.7, O.8}. The

throughput of the first source is fixed to 0.2.

In accordance with the results of the previous experiments, we note here that the
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detailed model and simulation results are pretty close, while the aggregate superposition

model is less accurate. The results are shown in figure 12. In example 1 the aggregate

model provided higher values than simulation, whereas in this case, it provides values

that are lower than simulation. It is not clear which parameters of the input sources

make the aggregation model give higher or lower values than the simulation results. We

observed the same behavior in the case of more than two input sources, discussed in

section 5.3.

Mean CV2
On period 62.5000 5.0
Off period 250 1.5

(a) Firs t source parameters

Mean CV2
On period 011, 5.0
Off period 250 1.5

(b) Second source parameters

Table 4: Parameters for example 2.

5.3 Validation of the Iterative Aggregation Algorithm

In sec:i~Jn 3.2, we introduced an iterative algorithm based on the notion of aggregation

to characterize the superposition process of N ~ 2 arbitrary orr/off source. We study the

accuracy of this algorithm by examining the following three examples.

Example 1: We consider a finite buffer multiplexer with buffer size equal to 40 and one

server. All input sources are homogeneous and the on and off periods are hyper-geometric

with parameters shown in table 5. The throughput of a single source is equal to 0.0385.

The number of input sources was increased from 2 to 20. The simualtion and analytic

results for the cell loss probability and the mean number of cells in the multiplexer queue

are shown in figure 13.

iV-lean CV2

On period 10.0 5.0

Off period 250.0 1.5

Table 5: Parameters of on and off periods.

These results indicate that the aggregation method does not have a good accuracy.

Note that the larger the number of sources, the larger the relative error in the analytic
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results. For this particular example, the iterative aggregation method seems to smooth

out the original superposition process by making it less bursty and less correlated. This

effect is magnified as the number of sources increases, because of the errors introduced

at each stage of the aggregation method. The aggregate superposition, however, still

captures the first order characteristics of the real superposition process and hence the

multiplexer witnesses a longer queue buildup and a larger cell loss probability as the

number of sources increases.

Example 2: We consider the same multiplexer parameters and we let the anioff source

have a deterministic on period with length equal to 50 and a geometric off period with

mean equal to 1101.484. The throughput of a single source is equal to 0.0434. The number

of input sources was increased from 2 to 20. The simualtion and analytic results are shown

in figure 14. We observe a similar behavior as in the first example. However, in this case

the analytic results are doser to the simulation data than in the first example and they

provide an upper bound of the cell loss probability and the mean number of cells.

Exam.pIe 3: We consider a finite buffer multiplexer with buffer size equal to 60 and one

server. PJl input sources are homogeneous and the on and off periods are geometric with

means 11.77 and 2:3.23 respectively. The throughput of a single source is equal to 0.05. The

number of input sources was increased from 2 to 20. The results are shown in figure 15.

We note that the aggregation method is accurate in the case of Interrupted Bernoulli

Processes. We can then conclude that the inaccuracy in the previous cases is not due to

the successive iterations but mainly due to the aggregation process which distorts the

statistical characteristics of the original superposition process. In the case of heterogenous

IBP'5, the accuracy of the aggregation is acceptable if the ratio of maximum to minimum

squared coefficient of variation of the inter-arrival time is small, as demonstrated in [3].

6 Studv of the Effect of Traffic Parameters on Queueing Per-
.,;

formance

In this section, we conduct a study of the effect of various traffic parameters on the

performance of the statistical multiplexer.
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Figure 13: Validation of the iterative method. Buffer Size = 40. All sources are identical and
have a hyper-geometric distribution for the on and off periods. (a) Cell loss probability,

(b) Mean number of cells.
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6.1 Effect of the Distribution of the On and Off Periods on the Multi­

plexer's Pe.rforrnarice

In this section, we study the effect of the distribution of the on and off periods on the

multiplexer's behavior. In the literature, it is common to approximate the distribution of

sojourn times in a state by a geometric or a hyper-geometric distribution. The geometric

distribution characterization requires only the first moment, while the hyper-geometric

distribution characterization requires the first two moments. The question that usually

arises is whether these approximations are accurate. We consider an extreme case where

the original input source is correlated and then study how the multiplexer's performance

would change if the source is replaced by an IBP (sojorun times are geometric) or by

a source with hyper-geometric on and off periods. Note that in these two models the

inter-arrival times are uncorrelated. We consider a single server multiplexer with two

homogeneous input sources and a buffer size taken from the set {lO, 20, 30, 40, 50, 60}.

The distribution of the on and off periods of the original input source is a mixture of

tvo deterministic distributions. The inter-arrival time lag-1 correlation is equal to 0.048.

The parameters of the pdf of the on and off periods are shown in table 6. The throughput

of a single source is equal to 0.296, the mean on and mean off periods are 50 and 119

respectively, and the CV~ and the C~2ff are 2.332 and 13.150 respectively. Given these

values we can approximate the original source by an IBP source and a source with a

hyper-geometric on and hyper-geometric off periods.

On period Off period
Length Prob. Length Prob.

1 0.708333 20 0.95
169 0.291667 2000 0.05

Table 6: Parameters of the pdf of the on and off periods.

In figure 16 we plot the mean number of cells and cell loss probability for the orig­

inal source, the single-moment approximation by an IBP source, and the two-moment

approximation by a source with the hyper-geomtric on and off periods. The IEP model

underestimates the cell loss probability and overestimates the mean number of cells (ex­

cept when the buffer size increases above 52). This suggests that the rBP is not a faithful

model for the original source of table 6.
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Sohraby [8] introduced a model for handling general on/off sources. The model

gives an approximate upper bound for the cell loss probability as a function of the first

two moments of the on and off periods assuming multiplexer with an infinite buffer

size. This suggests that only the first two moments of the one an off periods affect the

performance. However, the results in figure 16, demonstrate the inaccuracy of the two­

moment approximation when the buffer size is fmite. The approximate source model with

two-moments matching provides an underestimation of the cell loss probability and mean

number of cells. This shows that the two-moment approximation may not be accurate in
all cases.

6.2 Effect of the Interrival-time Correlation of Traffic Sources on the Mul­

tiplexer's Performance

For an arbitrary onloff source, the lag-l correlation coefficient of the inter-arrival time is

gi\ren by Calmes [4]:

fI = 1on(1) - ~
1 + C~2jf - ~

where f on(l) is the probability that the on period is of length 1, on is the mean on period,

and CV;}f f is the squared coefficient of variation of the off period length. We have been

able to identify some distributions for which the value of ¢>l is non-negligible. The key

to obtaining such distributions is to concentrate a large portion of the probability mass at

length 1 of the on period distribution, i.e. make fon(l) as large as possible while satisfying

some of the other source characteristics (e.g. given values of on and/or CV~.) One

such distribution is the mixture of two deterministic distributions which is a distribution that

can be of length L 1 or ~ with probabilities p and 1 - p respectively. We fix one of the

deterministic lengths to be equal to 1 and let the other be of a variable length L. Given a

particular value of an and ~ and the off period distribution, we can find values for p and L

which would satisfy the given values of o1l, and ¢>l using a simple enumerative algorithm.

To study the effect of the inter-arrival time correlation on the multiplexer behavior,

we consider the case of two input homogeneous sources where the off period of a source

has a geometric distribution with mean 92.7787 and the mean length of the on period
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is fixed at 50, making the source's throughput equal to 0.35. Using the mixture of two

deterministic distributions for the on period, we vary 4>t so that it takes values from the

set {O.lO, 0.15,0.20,0.25,0.30,0.35,0.40, 0.45}. The value of p and L satisfying the given

parameters is then calculated. The cell loss probability and the mean number of cells in

the multiplexer queue are shown in figure 17.

We note that by increasing the lag-l correlation, the cell loss probability and the mean

number of cells increase. As it can be seen from figure 17, the cell loss probability increases

more sharply than the mean number of cells with the increase of the correlation coefficient.

The mean number of cells is almost constant and increases very slowly with the increase

of the correlation coefficient.

6.3 Effect of the Squared Coefficient of Variation of the on and off periods

on the Multiplexer's Performance

Using the versatile hyper-geometric distribution we studied the effect of the squared

coeffident of variation of the on and off periods, respectively CV;. and cvo~f' on the

multiplexer's performance. By specifying the mean and squared coefficient of variation of

the period length, it is possible to fit a hyper-geometric distribution given some conditions

are met by the specified mean and coefficient of variation ( see [2] for more details).

We considered two input sources each with a throughput fixed at 0.4. The mean on and

off periods were fixed at 100 and 150 respectively. CV;. and CVo
2
f ! take values from the set

{l.O, 5.0, 10.0, 15.0.20.0}. The results obtained from simulation and detailed superposition

are shown in figure 18. Note that by increasing the CV~, while CVo~f is kept constant,

both the cell loss probability and mean number of cells increase (see parts (a) and (b) of

figure 18). Also, note that the rate of increase of the mean number of cells and cell loss

probability when CV;. E [1,5] is larger than for the rest of the values. Moreover, for larger

values of CV;ff' the rate of increase of cell loss probability and mean number of cells

as a function of CV;. is relatively slower than for smaller values of cV;JJ. A surprising

result is observed when varying C~2ff while CV~ is kept constant (see parts (c) and (d)

of figure 18). As CV;ff increases, the cell loss probability increases while the mean number

of cells decreases.
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7 Conelusions

In this paper we presented a new approximation method for characterizing the superposi­

tion of multiple independent Markov Renewal Processes. The presentation here focused

on discrete-time processes, but the methodology is readily applicable to continuous-time

processes with little modification. The model developed for characterizing the superpo­

sition can be directly applied to the area of tele-traffic engineering and statistical multi­

plexing. One special case of this model is the arbitrary onloff source that was used in this

paper. We have presented a queueing model for the analysis of a statistical multiplexer

whose input is a :rvfRP representing the superposition of multiple traffic sources.

The advantage of our methodology is that it provides a uniform framework in which

a variety of models of traffic sources can be handled. The basic limitation is the huge state

space and the computational complexity of the algorithms. These disadvantages can be

overcome if an elegant state aggregation scheme is found such that the resulting aggregate

process has a number of states which is preferably a linear function of the number of

sources while still preserving the characteristics of the real superposition process. We

introduced an aggregation scheme for reducing the dimensionality of the superposition

process. However, during the aggregation, the statistical properties of the original process

may be distorted and may subsequently lead to inaccurate results for the multiplexer's

performance metrics.

The work presented here introduces many challenging issues. An important problem

that is yet to be considered is the characterization of the departure process from a mul­

tiplexer with multiple arbitrary orr/off input sources, or in general, with an :rvfRP input.

Characterizing the departure process of one of the input sources is ev~n more challenging.

The methodology presented here introduced a new versatile modeling device for arrival

processes which can be called the Batch Semi-Markov Arrival Process (B-SMAP). This is

a semi-Markov process with as many states as necessiated by the physical source being

modeled, and in which the sojourn times in states are arbitrarily distributed. This process

is analogous to the well-known BMAP. However, it is more flexibile than a BMAP but

more complex to analyze.

33



References

[1] W. P.Cherry and R. L. Disney. The Superposition of Two Independent Markov Renewal
Processes. Zastosowania Matematyki, 17:567-602, 1983.

[2] T. E. Eliazov, V. Ramaswami, W. Willinger, and G. Latouche. Performance of an ATM
Switch: Simulation Study. In Proceedings of the IEEE Infocom, pages 644-659, 1990.

[3] K. M. Elsayed and H. G. Perras. A Computationally Efficient Algorithm for Character­
izing the Superposition of Multiple Heterogeneous Interrupted Bernoulli Processes.
Submitted for publication, 1994.

[4] S. Calmes. Analysis of On-Off Processes With Independent Arbitrary Distributions.
Unpublished technical report, North Carolina State University, 1992.

[5] J. Hunter. Mathematical Techniques ofApplied Probability. Volume 2: Discrete TimeModels:
Techniques and Applications, chapter 9. Academic Press, 1983.

[6] V. S. Korolyuk. Superposition of Markov Renewal Processes. Cybernetics, 17:556-560,
1981.

[7] M. F. Neuts. Matrix-Geometric Solution in Stochastic Models: An Algorithmic Approach.
John Hopkins Univ. Press, 1981.

[8] K. Sohraby. On the Theory of General On-Off Sources With Applications in High­
Speed Networks. In Proceedings of the IEEE Infocom, pages 401-410, 1993.

[9] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling, chapter 7. Academic
Press, 1984.

34


