
ABSTRACT 
 
 
ANDERSON, ERIC SCOTT. Spatial Prediction of Forest Soil Carbon: Spatial 
Modeling and Geostatistical Approaches (under the direction of James. A. 
Thompson) 
 
 
Understanding the carbon cycle is one of the most difficult challenges facing 

scientists studying the global environment.  Efforts to balance the global C 

budget have focused attention on terrestrial carbon storage in temperate 

ecosystems.  Historically, most estimates of soil organic C (SOC) are based on 

means extrapolated from broad categories of soils and vegetation on a regional 

scale.  Forest ecosystems of North America are of particular interest because of 

their ability to provide long-term C storage in both the forest vegetation and soils.  

Understanding spatial patterns in forest SOC may result in future development of 

techniques for conserving and enhancing terrestrial C pools.  A series of studies 

were undertaken to explore a number of current issues that contribute to our 

inability to model SOC on a regional or landscape scale.  Investigation into the 

spatial distribution of SOC occurred on a 32,500 ha forest ecosystem located 

entirely within the bounds of Hofmann Forest.  Hofmann Forest is located in 

Jones and Onslow Counties of eastern North Carolina, USA.  The objectives of 

the research were to compile and compare a remotely-sensed high-resolution 

digital elevation model (DEM) to other commonly available DEM sources, (ii) to 

utilize landscape attributes and selected soil properties to develop and validate 

an explicit, quantitative, and spatially realistic model of SOC for a 32,500 ha 

forest ecosystem; (iii) to determine if the spatial scale of environmental variables 



 

 

affects model predictions; and (iv) to quantify SOC on an areal basis using the 

newly parameterized spatial models.  The first issue at hand was to derive a 

highly precise, highly accurate DEM.  A newly emerging technology, light 

detecting and ranging (LiDAR), was selected as a source of highly precise and 

accurate source of elevation data.  Attempts to produce landscape scaled DEM 

lead to a series of issues that inhibited their production.  To resolve these issues 

a series of geostatistical approaches were developed to reduce the LiDAR data 

sets while maintaining their precision and accuracy.  A study was conducted to 

evaluate the effects of inverse distance weighted (IDW) and ordinary kriging (OK) 

linear interpolators on datasets of various levels of data reduction.  A series of 10 

forested 1000-ha LIDAR tiles on the Lower Coastal Plain of eastern North 

Carolina was used.  Results indicated, for LiDAR interpolation on low relief 

landscapes, that IDW was favored over OK methods.  Further testing indicated 

that a substantial data set reduction was possible while still maintaining a high 

level of accuracy.  An additional study was implemented to evaluate the effects of 

data density on production of DEM of various resolutions using a series of 61 

LIDAR tiles (1000 ha) covering the spatial extent of the Hofmann Forest in the 

Lower Coastal Plain of eastern North Carolina.  The study area was of relatively 

little relief where we anticipated limited impacts from data reduction.  The LIDAR 

data set was reduced to 50%, 25%, 10%, 5%, and 1% of the original density.  

We created 5-m, 10-m, and 30-m DEM with 0.1 m vertical precision for each 

density level and used paired t-tests to determine if the true mean of their 



 

 

differences were equal to zero.  Differences indicated that for the 30-m DEM, 

LIDAR data sets could be reduced to 10% of their original data density without 

statistically altering the resultant DEM.  The LIDAR data could only be reduced to 

25% of the original data set before statistically altering the 10-m DEM only to 

50% for the 5-m DEM.   

To address the issue of spatial stores of SOC a study was conducted to estimate 

SOC with in the Hofmann Forest.  This study attempted to develop explicit spatial 

models to predict landscape-scale SOC storage.  Soil-landscape modeling is an 

approach to analyzing soil variability in response to exogenous environmental 

variables related to topographic and hydrologic parameters.  A series of spatial 

models were developed to predict SOC storage.  The models included a 

geostatistical approach, OK, and two landscape models including a model that 

used land use and landscape attributes (LandTopo), and a second model that 

used landscape attributes only (Topo).  The results of this study found that 

LandTopo was able to explain 18% of the variability in SOC while Topo was only 

able to explain 10% of the variability.  Both models used landscape attributes of 

different scales, yet were relatively unsuccessful in their ability to predict SOC.  

Total SOC stores for the Hofmann Forest were calculated, with all three models 

predicted ~40 Gt C stored in the top 1m of Hofmann Forest. 
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CHAPTER 1  AN INTRODUCTION TO SOIL CARBON, LIGHT DETECTING 

AND RANGING (LIDAR) AND SPATIAL MODELLING AND GEOSTATISTICS 
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RELEVANCE 

Terrestrial Carbon Stocks 

Understanding the carbon cycle is one of the most difficult challenges 

facing scientists studying the global environment. Our limited knowledge of the 

global carbon cycle is illustrated by our inability to balance the present-day global 

carbon (C) budget (Dixon et al., 1994; Tans et al., 1990).  Efforts to balance the 

global C budget have focused attention on terrestrial carbon storage in temperate 

ecosystems (Murray et al., 2000; Fan et al., 1998; Dixon et al., 1994; Tans et al., 

1990). Soils constitute the major terrestrial C reservoir, 1400-1600 Pg (1015 g) C 

globally (Falloon 1998; Sundquist, 1993), approximately three to five times the 

amount of C contained in terrestrial biomass (Brady and Weil, 2000; Houghton 

and Woodwell, 1989). Roughly 78-85 Pg of SOC resides in the contiguous 

United States (U.S.)(Kern, 1990) with an estimated 18-19 Pg in forest soils 

(Turner et al., 1995).   

Historically, most estimates of soil organic C (SOC) are based on means 

extrapolated from broad categories of soils and vegetation on a regional scale 

(Kern, 1990; Post et al. 1982).  However, over the past 20 years a number of 

estimates of regional and global C stocks have been made on extrapolations 

from more localized empirical data (Fan et al., 1998; Eswaran et al., 1993; Post 

et al., 1982; Schlesinger, 1977).  Better analysis and forecast of spatial patterns 

of soil properties such as SOC is important for sustainable land management 

(Florinsky et al., 2002) and for potentially offsetting global C emissions. 
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Forest ecosystems of North America are of particular interest because of 

their ability to provide long-term C storage in both the forest vegetation and soils 

(Johnsen et al., 2001).  North American forests ecosystems sequester 3 to 4 Mg 

ha-1 yr-1 (Fan et al., 1998) with biomass C accumulation accounting for only 1.4 

Mg ha-1 yr-1 (Dixon et al., 1994), suggesting C accretion in forest soils (Johnson 

et al., 2002).  Hudson et al. (1994) found that approximately 40% of the total 

global carbon (C) inventory resides in forest ecosystems, with approximately 

60% of forest ecosystem C residing in soil organic matter (Birdsey et al., 1993; 

Musselman and Fox, 1991).  

Spatial Patterns of Soil Carbon 

Relationships between SOC, topography and land management are 

important in helping to formulate and evaluate global and regional process 

models as well as the effects of future climate and land use changes (Post et al., 

1996).  Furthermore, understanding spatial patterns in forest SOC may result in 

future development of techniques for conserving and enhancing terrestrial C 

pools. The importance of conservation and enhancement of SOC is owed to its 

positive influence on forest growth and long-term sustainability of soils. 

Knowledge of spatial patterns of total, labile, and recalcitrant SOC pools will aid 

in the forest management decision process.  Additionally, development of 

mesoscale (1:50,000 to 1:100,000) spatial models of SOC may provide more 

precise measurements of regional carbon inventories. 
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Spatial models derived from geographic information systems (GIS) may 

potentially improve spatial predictions of environmental variables.  Digital 

elevation models (DEM) provide the basis for spatial representation of 

environmental variables, while global positioning systems (GPS) enable accurate 

registration of sample locations within the DEM based environmental coverages. 

Our dependence on DEM for spatial modeling has contributed to a growing need 

for digital elevation data that provides a better representation of the earth’s 

surface than those derived from small-scale photogrammetric sources.   

Prediction of SOC and other soil properties is dependent upon the 

selection of pedologically important proxy landscape attributes and soil properties 

for use in explicit spatial models (Gessler et al.,  2000).  A study were conducted 

on the Lower Coastal Plain (LCP) of eastern North Carolina to develop spatial 

models that can be utilized for prediction of total, labile, and recalcitrant pools of 

SOC by using selected soil physico-chemical properties and pedologically 

important topographic variables.  Spatial models of SOC were developed and 

tested around two hypothesis: (i) that spatial patterns of SOC on a watershed 

scale are predictable by models based on pedological relationships displayed by 

topographic variation; and (ii) spatial carbon storage patterns of forest soils are 

affected by the methods of forest management. 

OBJECTIVES 

The specific objectives of this study are: 



 

5 

1. to compile and compare a remotely-sensed high-resolution DEM to 

other commonly available DEM sources  

2. to utilize landscape attributes and selected soil properties to 

develop and validate an explicit, quantitative, and spatially realistic 

model of SOC for a 32,500 ha forest ecosystem 

3. to determine if the spatial scale of environmental variables affects 

model predictions 

4. to quantify SOC on an areal basis using the newly parameterized 

spatial models 

BACKGROUND 
Spatial Modeling 

Although we are beginning to understand patterns of SOC storage at the 

site or hillslope scale (Gessler et al. 2000), we need better methods to scale our 

findings to larger landscapes.  Mental models developed by soil scientist based 

on landscape attributes, vegetation, hydrology, and other environmental 

variables have long been integrated in soil science for soil mapping purposes.  

However, these methods result in qualitative models that produce broad 

schemes that attempt to encompass the soil continuum and seek to provide 

simplistic classification regimes (Cook et al., 1996).  With the emergence of 

quantitative pedologic measurement and modeling techniques, or pedometrics, in 

the 1960’s (Webster, 1994) soil scientists have sought a more quantitative 

approach to modeling the spatial distribution of soil properties.  Pedometrics 
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resulted in the development of statistical based approaches that incorporate 

surrogate environmental and edaphic explanatory variables and provide 

estimations of selected soil properties (McBratney et al., 2000).  Several 

approaches have historically been applied to quantitatively predict soil properties 

on various scales. 

Spatial models have been developed that integrate standard measures of 

variables within discrete land units.  This modeling approach has been referred to 

as “measure and multiply” (Schimel and Porter, 1995).  Essentially, this modeling 

technique measures a soil property and multiplies by the area of a functionally 

classified land unit.  Spatial anisotropy in soil properties within discrete map units 

hinders the ability of these models to properly represent fine-scale variability 

within a landscape.  Despite their shortcomings, numerous studies have utilized 

these models to quantitatively represent soil properties.  Models developed by 

Post (1982) used world life zones to provide discrete finite land units to quantify 

SOC.  Similarly, Xu and Prisely (2000) used soil mapping units for areal 

representations of SOC and further simplified estimates on a countywide basis.  

Batjes (2000) utilized small- scale (1:5,000,000) maps of soil zones to predict 

SOC stocks for South America.  “Measure and multiply” models provide a coarse 

estimation of selected soil properties but often lack the ability to predict soil 

properties on scales of 1:50,000 to 1:100,000 needed for intensive land 

management (McKenzie and Ryan, 1999).  
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Conversely, a spatial extrapolation approach referred to as “paint by 

numbers” (Schimel and Potter, 1995) integrates a series of independent soil and 

environmental variable classes with a known relationship to the dependent soil 

variable.  Thus, discrete classes with defined combinations of explanatory 

variables are formed for model parameterization.  An output value is determined 

through a deterministic function typically based on empirical data.  Outputs are 

associated with each combinatory class and all classes are summed to represent 

an ecosystem response.  Johnson and Kern (2003) and Falloon et al. (1998) 

utilized a similar modeling approach to predict SOC stores on an areal basis.  In 

both cases, combinations of land units were integrated to produce prediction 

systems within a landscape. 

Similarly, an approach to spatial extrapolation that has found recent use in 

soil science and geomorphology is soil-landscape modeling.  Soil-landscape 

modeling is an approach to analyzing soil variability in response to exogenous 

environmental variables related to topographic and hydrologic parameters 

(McSweeney et al., 1994; Paustian et al., 1997; Thompson et al., 2001).  

McSweeney et al. (1994) incorporated three stages for soil-landscape modeling: 

(i) physiographic representation through DEM and terrain attributes; (ii) 

georeferenced training data with information about soil properties; and (iii) 

development and validation of explicit quantitative models.  The approach 

provided a hierarchal regime of dissimilarly scaled variables for soil-landscape 

modeling.  This is an important concept of landscape models because it allows 
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for multi-resolution modeling of the soil properties.  Furthermore, soil-landscape 

models provide quantification of soil properties through proxy variables and are 

not intended to provide a process-level understanding of individual soil 

properties. 

Soil-landscape models utilize discrete land units of similar vegetation, soils 

or ecological zones to guide representative sampling strategies to help integrate 

process dynamics on the landscape.  Most models are founded in Jenny’s (1941) 

“Factors of Soil Formation” equation: 

S = f (cl, o, r, p, t) 

where S is a selected soil property as a function of climate (cl), organisms (o), 

relief (r), parent material (p), and time (t).  Soil-landscape models normally 

assume that at the county (10 km2) or regional (10 km3) scale, (Ryan et al., 2000) 

variability within cl, p and t are controlled across the study site (Paustian et al., 

1997).  To this end, sampling strategies are designed to control for those factors 

that vary across the area of interest.  Thus, the driver of soil-landscape modeling 

is that variation in topography and vegetation provide responsive proxy variables 

that can be utilized for prediction of soil properties.  

Topographic-based spatial models derived using GIS have been utilized 

for spatial predictions of soil properties (Gessler, 2000; Ryan et al. 2000; Moore 

et al., 1993), including forest SOC pools (McKenzie and Austin, 1993).  A number 

of soil-landscape modeling techniques that use readily available geomorphic and 

pedologic based environmental explanatory variables to quantitatively predict 
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spatial patterns of soil properties have been developed (McSweeney et al., 1994; 

Odeh et al. 1994, Gessler et al., 1995; McKenzie and Ryan, 1999; McKenzie et 

al., 2000; Florinsky et al., 2002).  Studies using soil-landscape spatial models 

have been able to predict and quantify specific soil properties such as A-horizon 

depth (Moore et al., 1993; Bell et al., 1994; Gessler et al., 1995; McKenzie and 

Ryan, 1999; Gessler et al., 2000), organic matter content (Moore et al., 1993), 

and total SOC (Arrouays et al., 1998; McKenzie and Ryan, 1999; Gessler et al., 

2000; Ryan et al., 2000).  These studies were able to explain 40 to 85% of the 

variability in the predicted soil properties.   

Digital Elevation Models 

Scaling is a serious issue in the study of C cycling in terrestrial 

ecosystems (Schimel and Potter, 1995).  One underlying problem is that the 

factors that control soil variability occur across a range of scales.  Proximal 

factors (i.e. pH, soil moisture) that influence SOC contribute to the variability on a 

much smaller scale.  Distal factors (viz. Jenny’s (1941) factors) vary over a much 

larger scale.  Integration of multiple attributes at varying scales imposes a 

problem for developing models that predictably explain SOC variability across a 

landscape. Moreover, there is an inherent discord between the scale at which 

soil property dynamics occur (microscale), the scale at which they are measured 

(mesoscale) and the scale at which they are modeled (macroscale).  With each 

increase in coarseness of scale, the variability, and therefore the uncertainty of 

the prediction increases (Kern, 1994; Gessler et al., 2000; Ryan et al., 2000). 
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An issue in soil-landscape modeling is that competing models often use 

DEM from different sources with various resolutions and precisions.  Resolution 

is defined as the dimensions of raster grid cells. Precision refers to the number of 

significant digits used to report a measurement. Comparison between the models 

is seldom straightforward and may be confounded by DEM differences rather 

than by pedological differences. Landscape attribute prediction exhibits a direct 

dependency on the qualities of the DEM used for surface representation and 

attribute derivation (Jenson, 1991; Thieken et al., 1999).  Thieken et al. (1999) 

and Thompson et al. (2001) indicated that DEM resolution contributes to 

differences in the distribution and representation of landscape attributes.  Gessler 

et al. (2000) found little difference among landscape models based on a 

landscape attribute derived from a series of DEM with 2- to 10-m resolutions.  

Likewise, Chaplot et al. (2000) found that 10- to 30-m DEM generally provided an 

unbiased prediction of landscape terrain but prediction was influenced as DEM 

resolution increased to 50-m.  Florinsky and Kuryakova (2000) emphasized that 

DEM resolution was highly dependent on the scale of the process modeled, 

concluding that high resolution (between 2.25 and 3.25 m) DEM were important 

for modeling processes at the microscale. In general, these studies indicated that 

attribute value ranges increased and predictive capabilities decreased as DEM 

grid size increased.  The amount of relief on a landscape contributes to the 

effects of DEM resolution on terrain attributes, with low relief landscapes being 
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less sensitive to resolution impacts.  Consequently, large study areas that may 

incorporate a larger range of relief may require higher resolution DEM. 

Thompson et al. (2001) found statistical differences in landscape attributes 

(specific catchment area, compound topographic index) when comparing DEM of 

1 m and 0.1 m vertical precisions.  Paired data revealed that lower precision (1 

m) DEM had higher slope gradients and lower values for specific catchment area 

and compound topographic index (Thompson et al., 2001).  Gyasi-Agyei et al. 

(1995) concluded that changes in vertical precision, particularly in low relief 

landscapes, affected individual cell values for terrain attributes such as slope, 

specific catchment area and compound topographic index, but did not affect the 

cumulative distribution of theses attributes.  When precision was held constant, 

Thompson et al. (2001) indicated that there was a dependency on horizontal 

resolution, with low resolution DEM creating smoother transitions between 

adjacent cells than did high resolution DEM.  However, Sasowsky et al. (1992) 

found that low vertical precision often results in a “stair stepped” appearance.  

Similarly, Thompson et al. (2001) found that decreased vertical precision created 

a greater segregation of slope values that included a large number of zero slope 

areas and steeply sloped areas.  A possible solution to this may be found in 

calculating attributes over greater distances rather than by using only adjacent 

cells (Sasowsky et al., 1992). 

The horizontal and vertical qualities of a DEM are directly linked to the 

source of data used for its production.  Traditionally, DEM have been derived 
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from photogrammetric techniques (includes contour mapping) and ground 

elevation surveys, with more recent application of remotely sensed elevation data 

acquired through interferometric synthetic aperture radar (IFSAR), light detecting 

and ranging (LiDAR) or similar technologies.  The most widely used DEM within 

the United States have historically been the 30-m DEM (level 1) produced by the 

U.S. Geological Survey (USGS).  DEM were produced using stereocorrolation 

techniques that estimate elevations from relief displacement from areas within 

the stereomodel.  A lattice of elevation points within a pair of stereomodels was 

developed and resampled to a digital 30-m grid to create the DEM.  A more 

recent approach has been the use of radar- or laser-based remotely sensed 

elevation data for model derivation.  Application of remotely sensed data requires 

digital spot elevation data interpolation into raster-based DEM. 

Landscape modeling studies have made use of a large variety of sources 

of elevation data for terrain representation.  Photogrammetrically derived DEM at 

multiple horizontal resolutions and vertical precisions have been used to provide 

landscape attribute characterization, comparison, and environmental modeling 

(Gessler, 2000; Arrouays et al., 1998; McKenzie and Ryan, 1999; Ryan et al., 

2000; Thompson et al., 2001).  Moore et al. (1993), Gessler et al. (2000), 

Thompson et al. (2001) and Florinsky et al. (2002) utilized DEM derived from 

intensive land-based elevation surveys for DEM comparisons, landscape 

attribute evaluations, and environmental modeling.  Additionally, Thieken et al. 

(1999), White and Wang (2002) and, Woolard and Colby (2002) used DEM 
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produced from remotely sensed elevation data in similar capacities.  Continued 

exploration of available elevation data sources of various precisions and 

resolutions will enhance our ability to model the soil landscape continuum. 

Carbon Pools 

Relating SOC, topography, and land management is an important step in 

formulating landscape models to aid in understanding the effects of future climate 

and land use changes (Post et al., 1996). Sequestration of C into soil systems 

has been conceptualized as a possible mechanism for offsetting C containing 

atmospheric gases.  Southern managed pine forests play an important role in 

sequestering and maintaining SOC.  Johnsen et al. (2001) proposed that future 

carbon accretion in managed forests is dependent on three factors: (i) land-use 

changes and management regimes that increase biomass carbon; (ii) remaining 

recalcitrant SOC following timber harvest; and (iii) long-term carbon storage in 

forest products.  Understanding the spatial distribution of terrestrial C pools is 

paramount in initializing a C sequestration program.  Furthermore, knowledge of 

spatial patterns of total, labile, and recalcitrant SOC pools will aid in the forest 

management decision process. 

The SOC component within mineral soil, defined as that which passes 

through a 2 mm sieve or that which is associated with mineral material (Johnsen 

et al., 2001), is the keystone of perennial C storage.  However, SOC accretions 

in mineral soil are often slow in the southern forests because of high 

decomposition rates of new carbon added to the soil system (Richter et al., 
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1999).  Thus, knowledge of the landscape or regional scale quantities of discrete 

C pools will allow for prescription of long-term land management regimes 

designed to enhance our ability to sequester atmospheric C. Several studies 

have indicated that a reasonable estimate for total SOC in southeastern forest 

ecosystems should range from 6-20 kg C m-2 for mineral soils and around 80 kg 

C m-2 for organic soils to a depth of 1 m (Johnson and Kern, 2003; Birdsey and 

Lewis, 2003; Garten et al., 1999). 

Location of SOC within the soil profile also plays a critical role in 

determining turnover rates of specific fractions.  Garten et al. (1999) found that 

the upper 30 cm accounted for 70-90% of all C in forest soils.  Additionally, they 

found that within the upper 5 cm, approximately 31% of the total SOC was in the 

labile fraction, but fell to 20% in the 5-30 cm depth.   

Catenary landforms may provide a basis for predicting SOC on a 

landscape scale.  Moore et al. (1993) rationalized that in many landscapes 

catenary soil development occurred in response to surface and subsurface water 

movement across the landscape.  Bell et al. (2000) found significant relationships 

between SOC and landscape position and characterization including slope 

gradients, elevation above peatlands, and distance from peatlands. Moore et al. 

(1993) and Arrouays et al. (1998) found a spatial dependence of organic matter 

accretion associated with landscape morphology and position.  Gessler et al. 

(2000) found landform and landscape position to be significant in SOC prediction, 

but was openly curious about the efficiency of similar models applied to low-relief 
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landscapes.  However, it is thought that pedologic processes in the LCP of 

eastern NC are responsive to changes in hydrology across broad interstream 

divides (Daniels et al., 1999).  These broad low-relief interfluves are composed of 

mineral soils that often encircle Histisols containing large stores of SOC.  These 

large organic flats are a result of shallow groundwater and are generally located 

in areas furthest from major drainages.  Thus it is anticipated that landscape 

position could contribute to SOC stores, and that these stores could be predicted 

based on landscape attributes. 

Land Use and Forest Management 

Humans have the potential to alter the magnitude and direction of forest 

SOC stores through forest management activities and land-use change (Brown 

et al. 2002).  The U.S. is composed of nearly 204 million ha of forest ecosystems 

(Birdsey and Lewis, 2003). The southern U.S. contains roughly 81 million ha of 

land classified as timberland (Southern Forest Resource Assessment, 2002), 

including an approximate 15 million ha of managed plantation forests (Birdsey 

and Lewis, 2003).  Management activities in production forestry plantations 

generally practiced in the southeastern U.S. include mechanical site preparation, 

fertilization and competition control (Harding and Jokela, 1994).  These 

management regimes govern our ability to sequester SOC and sustain current 

SOC stores on lands actively managed for timber resources through 

manipulation of edaphic and vegetative components. 
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Some uncertainty remains as to the effects of forest management 

activities on the accretion, allocation, and dynamics of total forest C (Harding and 

Jokela, 1994).  Even less is known about SOC dynamics in forest soils because 

many of the controlling variables lack extensive research (Sanchez and Eaton, 

2001). Several studies have addressed the rates of change in SOC under 

specific conditions at selected sites, however the quantity of SOC on regional 

scales remains unknown (Johnson et al., 2002).  Understanding the effects of 

land use and forest management allow for appropriate stratified sampling 

regimes for integration of controlling factors across regional-scaled landscapes 

and subsequent improved spatial modeling of soil resources. 

Land use and land change play a crucial role in determining morphology, 

physiology, and quantities of SOC.  It is well understood that conversion of non-

forested land to forests (afforestation) causes increased C sequestration, and 

conversely that conversion of forests to non-forested land causes decreased 

SOC storage.  Afforestation of abandoned agricultural lands has been shown to 

increase SOC at a rate of 0.03 to 0.89 Mg C ha-1 yr-1 (Huntington, 1995; Richter 

et al., 1995; Van Lear et al., 1995).  Hu et al. (1997) found that total SOC was 2 

to 25 times greater for forest soils as compared to adjacent agricultural lands.  

This large range was likely due to the inherent variability of forest SOC pools, yet 

Trettin et al. (1999) found that SOC pools in undisturbed forests tend to remain 

relatively stable over long periods. In a review of published and unpublished 
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studies, Paul et al. (2002) found that SOC data were highly variable, particularly 

in reestablished stands less than 10 yr of age. 

Mechanical and chemical site preparation and mid-rotation amendments 

of intensively managed pine plantations result in transitory perturbations in SOC 

pools (Carter et al., 2002; Shan et al., 2001; Johnson, 1992). Mechanical site 

preparations such as bedding, disking, and sub-soiling are performed to 

ameliorate soil physical properties.  Laiho et al. (2003) found that intensive site 

preparation such as bedding, fertilization, and herbicide increased SOC stores.  

Additionally, a literature review by Paul et al. (2002) found that there were no 

significant effects of disturbance levels on SOC and that the lack of litter input 

following the site preparation application was potentially the cause for some of 

the decreases detailed in the reviewed articles.  However, Burger and Pritchett 

(1984) found nearly 68% reduction in SOC following disking and bedding.  

Existing SOC levels prior to mechanical site preparations would likely influence 

the total change in SOC levels. 

Contrasting results were seen in studies that focused on the effects of fire 

and herbicide on SOC stores.  These treatments primarily release pine 

plantations from competing vegetation, improve equipment mobility within sites, 

or achieve tertiary management goals.  After a review of some 15 studies, 

Johnson (1992) concluded that low intensity prescribed fire resulted in minor 

changes in SOC while more intense burns resulted in large SOC losses. A more 

recent review indicated that prescribed fire resulted in SOC loss in the A horizons 
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while wildfires positively influence SOC levels (Johnson and Curtis, 2001).  

Herbicide treatments have generally proved deleterious to SOC, resulting in as 

much as 20% decrease by herbicide treatment alone (Burgess et al., 1995).  

Likewise, Shan et al. (2001) found that herbicide control of competing vegetation 

in slash pine (Pinus elliottii) reduced SOC.  They concluded it was a result of 

decreased root mass and litter inputs in conjunction with elevated microbial 

decomposition rates. 

Fertilizer applications are often used in multiple applications to improve 

the nutrient status of production pine plantation sites (Harding and Jokela, 1994).  

A study conducted by Carter et al. (2002) found no effects on SOC in the upper 

60 cm from nitrogen (N) fertilization 16 months after application on a loblolly pine 

(Pinus taeda) stand.  Similarly, Harding and Jokela (1994) found no effects on 

SOC levels to a depth of 91 cm 25 yrs after an application of superphosphate.  

However, these results were in contrast to the general trend of increasing SOC 

with fertilization as reported in a meta-analysis by Johnson (1992). 

Consequently, it would appear that there are conflicting reports as to the overall 

effect of fertilization on SOC levels.  Fertilization results in improved biomass 

production and increased microbial decomposition of new organic inputs, thus 

regulating the net change in SOC. 

Current assessment models assume a 20% decline in SOC following 

clear-cut harvesting and intensive site preparation (Birdsey, 1996).  However, a 

recent review by Johnson and Curtis (2001) concluded that forest harvesting had 
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little impact on SOC in the A horizon, yet indicated that sawlog harvesting had a 

slight increase and whole-tree harvesting had a slight decease in SOC levels.  

Johnson et al. (2002) found no lasting effect of sawlog or whole-tree harvesting 

on SOC in slash pine flatwoods sites in Florida or in loblolly pine sites in South 

Carolina.  However, harvesting resulted in an initial increase in SOC during the 

first 2-5 yrs (Laiho et al., 2003; Johnson et al., 2002) after harvest that 

subsequently declined to levels slightly elevated from pre-harvest stores by year 

4 (Johnson et al. 2002).  Knoepp and Swank (1997) found similar results on 

white pine (Pinus strobus) in western North Carolina, with an initial increase over 

a 3 yr period following harvest that eventually reverted to pre-harvest levels. Van 

Lear et al. (2000) suggested that increased SOC levels following harvest were 

due to decomposing root systems.  A study conducted by Carter et al. (2002) 

found that harvesting had no effects on SOC compared to pre-harvest levels and 

meta-analysis (Johnson, 1992) of numerous studies indicated that harvesting 

introduced a ± 10% change in SOC pools.  In general, small short-term changes 

in SOC could be expected but over the long run SOC will remain relatively stable 

following harvests of timber.  

Environmental dynamics coupled with numerous permutations of possible 

management regimes makes prediction of SOC a difficult task.  Often site 

manipulations are made in conjunction with one another and on a sliding 

temporal scale.  Inherent and management induced variability of SOC in forest 

soils emphasizes the need for wariness in modeling efforts yet also suggests the 
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need for improved spatial modeling techniques.  However, it appears that in 

general forest management has only modest effects on long term SOC.  In 

addition, its important to add that spatial modeling within this study concerns 

residual SOC pools and will not be focused on obtain or predicting carbon 

accretion rates. 

APPROACH 

Study Site 

Investigation into the spatial distribution of SOC will occur on a 32,500 ha 

forest ecosystem located entirely within the bounds of Hofmann Forest.  

Hofmann Forest is located in Jones and Onslow Counties of eastern North 

Carolina, USA (Figure 1) and lies on the LCP Wicomico and Talbot 

morphostratigraphic units of the mid-Atlantic seaboard.  Located in the temperate 

climate zone, the study area is characterized by warm summers and mild winters 

with a mean summer temperature of 25°C and a mean winter temperature of 

7°C.  Mean annual precipitation is 1400 mm with a large portion of the rainfall 

received in late summer.  Elevations range from 12 to 20 m above mean sea 

level (Daniels et al., 1977), with the landscape characterized by broad, flat 

interfluves.  In some areas, relief may be as low as 1.5 m elevation difference in 

3 to 4 km (Daniels et al., 1999). 

Soils 

Soils of the Hofmann Forest were derived from surficial marine sediments 

of the Wicomico and Talbot morphostratigraphic units, alluvial deposits, and 
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organic deposits on low-relief interfluves. The soils are predominately poorly to 

somewhat-poorly drained Saprists, Aquults and Aquepts (Figure 1).  Organic 

soils dominate Hofmann Forest, representing nearly 24,000 ha (Daniels et al., 

1977).  The Hofmann Forest landscape indicates poorly drained organic soils 

occurring on broad low-relief interfluves and better-drained soils occurring in 

close proximity to drainages.  Mineral soils fringe the broad interstream divides 

and are typified by deep water tables with light surface and subsurface horizons.  

Daniels et al. (1977) provides a detailed description of the stratigraphy, 

geomorphology and pedological units with the Hofmann Forest.   

Hydrology 

The unique hydrological conditions within Hofmann Forest appear to be 

beneficial to the accumulation of C within interfluve areas.  Preliminary 

examination of soil survey information indicates a topographic influence on 

spatial patterns of SOC, with C accretions occurring in interfluves furthest from 

major drainages.  Thick organic layers occur within the Forest interior and grade 

to mineral soils with minor SOC components nearest to streams.  Daniels et al. 

(1977) indicated an influence of distances to nearest major drainage on organic 

material accumulation within Hofmann Forest.  The wide spacing and low slope 

between natural drains inhibit lateral water movement, thus creating large 

partially saturated regions within the centers of the forest.  These areas, 

commonly referred to as pocosins, are often characterized by substantial 

accumulation of organic materials (Figure 2).  Gilliam (1991) found that pocosins 
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are generally infertile due to deficient base cations, low effective cation exchange 

capacity and reducing conditions below the water table.  Without intensive 

management, pocosins do not normally support productive loblolly pine stands.  

Natural pocosins occupy large extents of the landscape but their role in the 

regional and global carbon and water cycles is undetermined (Brinson, 1991). 

Vegetation 

The Hofmann Forest contains a large range of vegetation, both as a result 

of natural regeneration and intensive forest management.  Natural palustrine 

wetland plant communities dominate the pocosin area with the presence of pond 

pine (Pinus serotina), redbay (Persea borbonia), loblolly bay (Gordonia 

lasianthus), sweetbay (Magnolia virginiana), bamboo (Smilax laurifolia) and 

gallberry (Ilex glabra), and many others.  A major portion of the land surrounding 

the pocosin includes managed pineland dominated by loblolly, slash and longleaf 

pine (Pinus palustris) plantations.  Other vegetation land use/land classification in 

Hofmann Forest includes bottomland hardwood, hardwood flats, headwater 

swamps, non-managed pine flats, swamp forests, agricultural fields and pine 

savannas (unpublished data). 

Forest Management 

Moderate to intensively managed pinelands occupy nearly 15,000 ha of 

Hofmann Forest.  Drainage networks have been installed throughout most of the 

managed pine plantation lands with minor drainage networks on approximately 

100 m spacing between adjacent drains.  Management goals mandate 
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establishing plantation to meet target survival rates of roughly 205 trees ha-1.  

Bedding is ubiquitous and is generally performed at 3-4 m spacings.  Often sites 

are windrowed, however this practice has been reduced somewhat because of 

suspected negative impacts on long term site sustainability.  Due to a relative 

universal phosphorus (P) deficiency in the soils of Hofmann Forest, sites 

normally receive at least 35 kg ha-1of P as diammonium phosphate (DAP) 

incorporated into the planting bed.  Fire is common as a pre-planting silvicultural 

prescription and on 3-5 yr intervals as an understory vegetation control 

mechanism. 

Most stands are thinned every 5 to 10 yrs with fertilization with N and P 

often occurring following mid-rotation thinnings.  Pine plantations in Hofmann 

Forest range in age from 0 to 67 yrs, fairly distributed across the age groups of 0-

5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40 yrs.  However, the 20-25 yrs 

age group was by far the largest, representing over 3000 ha (20% of total 

plantations).   Harvesting is performed on a commercial contract basis.  Harvest 

regimes are site specific and may include whole-tree and sawlog-only harvests.  

Digital information regarding tree volume removals and other details of the 

harvest are acquired and incorporated into a GIS database for Hofmann Forest.  

Other information including soils, vegetation, land use/land classification, and 

age class are digitally georeferenced and integrated into the database. 
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Analysis of LiDAR Data 

The need for high-resolution, high accuracy elevation data for purposes of 

landscape-scale modeling has resulted in the application of various technologies 

for digital elevation acquisition. Light Detecting and Ranging (LiDAR) technology 

is a source of high-precision, high-accuracy data and may be used to produce 

high-resolution, high-accuracy DEM.  The LiDAR system uses thousands of laser 

pulses (4,000-50,000 returns sec-1) directed from an airborne transmitter to 

accurately measure distances to ground features.  LiDAR returns are generated 

and recorded as spot elevation data of known accuracy within a given land class 

(forest criteria: RMSE = 20 cm; agriculture criteria: RMSE = 15 cm).  Compilation 

of the spot elevation data with subsequent data interpolation could provide a 

high-resolution, high-accuracy DEM for landscape-scale spatial modeling.  

Actively acquired LiDAR spot elevation data of known accuracy were utilized for 

derivation of a high resolution DEM. 

A series of 10 replicate 1000-ha LiDAR data tiles were acquired from the 

North Carolina Flood Mapping Program.  The tiles will represent LiDAR acquired 

digital spot elevation data for forested sites in the Lower Coastal Plain of eastern 

North Carolina. Data densities are expected to range from roughly 100 to 300 

spot elevations ha-1.  While an abundance of data has traditionally been 

positively viewed, it has come to our attention that typical LiDAR datasets impose 

serious computing constraints and are often problematic.  The initial step were to 

perform a sequential reduction in dataset size through random selection of a 
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predetermined percentage of the original LiDAR dataset (Figure 3).  The total 

LiDAR dataset were initially reduced by 50% to better accommodate computing 

requirements.  One half were used as a training dataset and a source of 

subsequent datasets while the remaining half of the dataset were used as a 

validation dataset for a prediction error analysis.  The sequential reduction were 

performed in this manner so as to not include any validation data points in the 

training datasets. 

An exploratory analysis of the spatial structure of the LiDAR dataset were 

performed.  The global exploratory analysis were performed on the 50% training 

dataset produced from the original LiDAR dataset.  The initial step in the 

exploratory analysis were to determine an appropriate lag interval for producing 

the semivariograms.  The novariogram procedure were employed using the 

spatial module of SAS (SAS Institute, 2000) to evaluate and determine a lag 

distance that appears to be most beneficial for further analysis of the spatial 

structure of each dataset.  A restricted maximum likelihood (REML) analysis 

were used to parameterize kriging variograms to provide the “best” possible fit of 

the theoretical semivariogram with the empirical data. Omni-directional 

semivariograms were produced for each tile to analyze global trends in the data.  

Four-directional semivariograms were produced to evaluate global anisotropic 

tendencies within each LiDAR dataset.  Spherical, log, or other mathematical 

transformations were employed to correct anisotropy within the datasets.  A 

subsequent evaluation were performed at small lags to adjust the scale of the 
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evaluation so as to focus on variance at smaller distances (particularly within 30-

50 m). 

There are two main groupings of linear interpolation: deterministic and 

geostatistical.  Deterministic interpolation techniques like inverse distance 

weighted create surfaces from measured points based on the extent of similarity. 

Geostatistical interpolation methodologies such as those imposed by kriging 

utilize the statistical properties of the measured points.  Two common 

interpolation procedures were evaluated across the density range of training 

datasets.  Inverse distance weighted squared (IDW2) and ordinary kriging (OK) 

were utilized to produce interpolation models. IDW2 assumes that each 

measured point has a local influence that diminishes with distance. It weights the 

points closer to the prediction location greater than those farther away. Kriging 

forms weights from surrounding measured values to predict values at 

unmeasured locations. As with IDW2, the closest measured values usually have 

the most influence. Kriging weights come from a theoretical semivariogram fitted 

to empirical data that was developed by looking at the spatial structure of the 

data in question (Kitanidis, 1997). 

Inverse distance weighted squared takes the form w(d) = 1 / d2  where 

w(d) is the weight at distance d that is determined by the inverse of the distance 

at a user defined power (in this case power = 2)(Wilson and Gallant, 2000).  

Ordinary kriging takes the form Z(s) = µ(s) + ε(s) where Z(s) is the variable of 
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interest, decomposed into a deterministic trend µ(s) and a random, 

autocorrelated error in the form of ε(s) (Kitanidis, 1997). 

These methods were evaluated by cross-validation and through prediction 

and standardized error analysis of the validation dataset. Parameters gained 

from global exploratory analysis were used to parameterize both the IDW2 and 

OK models.  Model evaluation were performed in ArcInfo/ArcGIS (ESRI, 2002) 

with data analysis, model parameterization and prediction and standardized error 

analysis performed in the geostatistical module.  Interpolation models were used 

to predict elevations of the independent validation datasets.  Prediction and 

standardized errors for the validation dataset were based on the irregularly 

spaced LiDAR spot elevation locations.  The same validation dataset were used 

at each training density within a given LiDAR tile to ensure comparable results 

across the range of LiDAR densities. 

Selection of the most efficient and statistically valid LiDAR interpolation 

technique were used to produce a DEM for Hofmann Forest.  It is assumed that 

given that Hofmann Forest is predominantly composed of forested land and 

located within the same physiographic region as the analyzed LiDAR tiles, similar 

techniques may be used to produce a valid DEM. 

Terrain Modeling 

The topographic features of the landscape display pedologic variation 

within the Hofmann Forest.  Terrain modeling and landscape characterization to 

elucidate edaphic relationships is key to understanding biogeochemical cycling 
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because they often indicate spatial distributions of soil processes (Gessler et al., 

2000).  Spatial models derived from GIS may potentially improve spatial 

predictions of environmental variables.  These models have myriad uses that are 

applicable to scientific, economic, and political disciplines. 

Most spatial models depend on DEM to provide the basis for spatial 

representation of environmental and landscape variables.  The initial step in 

terrain modeling is developing or acquiring a DEM that provides suitable spatial 

representation of landscape morphology.  Photogrammetrically derived 30-m 

horizontal resolution, 1-m vertical precision seamless National Elevation Dataset 

(NED) DEM for Hofmann Forest were acquired.  Though NED-DEM are 

commonly used for landscape-scaled surface representations, many 

discrepancies are often apparent in the broad low-relief interfluves of the LCP. 

A comparison of NED-DEM and LiDAR-DEM produced from selected 

interpolation procedure with 17 North Carolina Geodetic Survey (NCGS) control 

points located within Hofmann Forest were performed.  This will provide an 

evaluation of each DEM source to accepted “true” ground elevations within 

Hofmann Forest.  Also, a direct comparison were made between the NED- and 

LiDAR-DEM.  This comparison will focus on differences generated as a result of 

source information and not an evaluation of precisions.  The two sources of DEM 

were compared for differences in elevation and other terrain attributes between 

co-registered grid cells.  Differences were evaluated for spatial autocorrelation to 

measure strengths in tendencies for differences from nearby regions to be more 
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(or less) alike than differences from regions further apart.  Moran’s I and Geary’s 

c statistics for continuous data were utilized for autocorrelation analysis of 

difference grids produced from competing DEM. 

It is anticipated that the low relief landscape of the Lower Coastal Plain of 

eastern North Carolina were best represented with a coarse horizontal resolution, 

high vertical precision DEM.  A statistical evaluation of the two competing DEM 

and an assessment of the required precision were performed.  Based on the 

information gleaned from this analysis, a elevation data source and interpolation 

technique were selected for producing the final DEM for Hofmann Forest. 

Terrain Attributes 

Terrain attributes were calculated from the selected DEM that may be 

used in the prediction of soil properties were compiled.  Terrain attributes are 

designed to provide quantitative parameters indicative of landform shape, 

connectivity, and adjacency that control external landscape geomorphology and 

represent hydrologic tendencies (Gessler et al., 2000).   Topographic descriptors 

correlated to soil properties generally provide some indication of overland or 

subsurface lateral flow of water across the landscape.   

Digital modeling uses a host of terrain attributes for describing landscape 

morphology and often point toward landscape functionality and control 

biogeochemical cycling mechanisms.  Terrain attributes can be divided into 

primary and secondary attributes. Primary attributes such as elevation and slope 

gradient are derived directly from DEM, whereas secondary attributes are 
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derived from combinations of primary attributes (Moore et al., 1991).  Secondary 

attributes serve as surrogates for complex hydrological, geomorphological and 

pedological processes (Moore et al., 1991).  Studies by Bell et al. (1995) and 

Moore et al. (1993) explored the rationale and importance of elevation data and 

derived terrain attributes for prediction of soil properties.  A list of terrain 

attributes that may provide relational patterns to soil properties were compiled, 

yet does not represent an exhaustive list of all possible terrain attributes 

desirable for this study (Table 1).  These terrain attributes were included in a 

statistical evaluation and model parameterization of the spatial patterns of SOC. 

Sample Stratification Regime 

A stratified random sampling scheme for collection of SOC samples were 

used to minimize variability in physical and chemical differences between 

samples, while maintaining adequate coverage of the watershed.   Variation may 

be reduced when sampling on a stratification scheme based on a priori 

understanding of factors that potentially influence the prediction variable (Ryan  

et al., 2000; Turner and Lambert, 2000; Zinke and Stangenberger, 2000).  The 

stratified sampling regime were based on three criteria: (i) plantation pine versus 

natural pocosin plant communities, (ii) age groupings within pine plantations, and 

(iii) distance from major streams. 

Hofmann Forest were divided into two major vegetation classes 

(plantation and pocosin) for initial stratification.  In the LCP, vegetation and land 

use are often indicative of underlying soil conditions.  These two vegetation 
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groups were selected based on their influence on C storage and their dominant 

areal extent within Hofmann Forest.  Pocosin areas are anticipated to represent 

areas of greatest SOC accumulation.  Plantation areas are suspected to occupy 

drier, less organic soils or have less SOC as a result of anthropogenic activities. 

Plantation and pocosin vegetation classes were subsequently stratified 

into 4 groups representing distances of 0-2000m, 2000-3000m, 3000-4000m and 

4000+m to major natural drainages.  It is suspected that distance to natural 

drainage is extremely influential in the genesis of soils within Hofmann Forest.  

Previous research in Hofmann Forest by Daniels et al. (1977) indicated that 

morphological differences occurred on the broad flat interfluves as result of 

distance from major streams and drains. 

A further stratification of pine plantations were based on plantation age.  

Numerous research studies indicate the highly variable nature of SOC pools 

within different aged pine stands (Huntington, 1995; Richter et al., 1995; Van 

Lear et al., 1995; Trettin et al., 1999; Paul et al., 2002). Age groupings will 

include 0-5, 5-15, 15-25, 25-35 and 35+ yr.  This strategy should help ensure 

proper stratification based on stand establishment (0-5yr), initial stand closure, 

thinning, and fertilization (5-15yr), late rotation thins or other silvicultural activities 

(15-25yr), stands scheduled for harvest (25-35yr) and mature older plantations 

(35+yr). 
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Soil Sampling and SOC Analysis 

Soil samples were collected at 190 georeferenced locations throughout 

the study site for chemical analysis and determination of soil bulk density. Four 

sub-samples were taken at roughly 7.5 m at approximate cardinal directions from 

each prescribed geo-referenced sampling location.  Sub-samples on bedded 

plantation sites were oriented to provide 2 inter-bed and 2 intra-bed samples.  

Soils were collected in 3 cm butyrate plastic liners with a stainless steel soil 

recovery probe with slide hammer attachment (JMC Soils-ESP soil sampler).  

Measurements from small diameter coring systems have similar variability as 

large diameter (15 cm) coring systems (Ruark and Zarnoch, 1992) and provide 

an amicable means of capturing intact soil cores on the remote sites within 

Hofmann Forest. 

Intact volumetric soil samples were collected to a depth of approximately 1 

m from the surface, including the organic horizon.  Samples were stored indoors 

at 16 to 20˚C in the plastic butyrate liners during the sample collection period.  

Subsequently, soil samples were extruded and divided into 20 cm depth 

increments.  Each sample were dried in a forced-air oven at approximately 40˚C 

for 72h.  Bulk density were measured on oven-dried samples by standard 

technique using the cylindrical volume and soil mass within a given depth 

increment.  Moisture corrected mass of 5 g sub-samples were calculated and 

entered into the overall bulk density calculation.  Bulk density will represent an 

average of the 4 sub-samples or the total number of uninterrupted cores from a 
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given location.  Soil samples will then be aggregated with the other sub-samples 

from each sampling location.   Cores from interrupted samples were composited 

with others from the given sampling location, but these composites will only be 

used for chemical analysis of total SOC.  Total SOC of whole soil samples were 

determined by dry combustion in a Perkin-Elmer Series II 2400 CNH analyzer 

(Nelson and Sommers, 1996; Bremner, 1996).  All soil samples were ground to 

pass a 0.250 mm (no. 60) sieve and analyzed for total SOC.   

Statistical Analysis 

 The development of useful statistical models for soil distribution is 

dependent on the explanatory variables (environmental variables) being more 

easily observed or quantified than the soil properties of interest.  The task is to 

determine the minimal quantity of the physical resource needed to produce the 

spatial model in compliance within a success criterion threshold or error 

estimates.  Likewise, we continue to desire new methods to evaluate and 

validate our predictions. Model evaluation helps to determine under what 

circumstances and with what reliability a model will function.  Landscape 

attributes coordinated with geo-referenced soil samples were integrated with 

measured SOC to produce spatial models.  Spatial models were interfaced into 

GIS and used to spatially quantify SOC. 

Seventy-five percent of the 190 geo-referenced sampling locations were 

used as model training data with the remaining 25% of the sites serving as a 

validation dataset for a prediction error analysis.  A range of statistical 
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methodologies were employed on the training data to develop models for spatial 

prediction of the SOC.  Methods such as backward and forward stepwise multiple 

regression analysis (McKenzie and Austin, 1993; Gessler et al., 1995; Gessler et 

al., 2000), tree-based methods (McKenzie and Ryan, 1999), maximum and 

minimum R2 analysis (SAS Institute, 2000) and geostatistical techniques were 

used for development of model parameters and spatial predictions.  Primary and 

secondary landscape attributes were used as explanatory variables in the 

prediction models. 

Stepwise multiple regression methods relate target variable (SOC and N) 

to explanatory prediction variables.  A predefined significance level were 

assigned and an F-test statistic were used to decide whether an explanatory 

variable were added to the regression model (Neter et al., 1989; SAS Institute, 

2000).  Forward stepwise regression successively adds variables to the 

prediction model that exceed the established partial F-test statistic threshold, yet 

only adds variables that improve the overall predictive capabilities of the model 

(Neter et al., 1989; SAS Institute, 2000).  Backward stepwise regression begins 

with all potential variables and successively removes variables from the model.  

Variables are removed from the model when they are less than the minimum 

required F value (Neter et al., 1989; SAS Institute, 2000).  Maximum and 

minimum R2 evaluations work in similar fashion but rather than looking at F 

values, it focuses on the change in model R2 as a result of adding variables to 

the model (SAS Institute, 2000). The difference between the stepwise regression 
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methods and the maximum/minimum methods is that all possible variable 

replacements are evaluated before any replacement is implemented (SAS 

Institute, 2000). 

Regression trees are regarded as a variant of decision trees, designed to 

approximate values instead of being used for classification tasks.  The final 

results of using tree methods for regression can be summarized in a series of 

logical if-then conditions at tree nodes (Breiman, 1984). Therefore, there is no 

implicit assumption that the underlying relationships between the predictor 

variables and the dependent variable are linear, follow some specific non-linear 

function (Breiman, 1984).  They are particularly useful in that they work well 

when regression variables are a mixture of categorical and continuous variables.  

They may allow for regression models using categorical separation of the 

landscape (e.g. vegetation classes) in conjunction with continuous data from 

calculated landscape attributes (e.g. elevation, profile curvature). 

Landscape attributes for the prediction model were developed from digital 

elevation models (DEM) of Hofmann Forest using standard GIS methodologies 

as described by Moore et al. (1991), Moore et al. (1993), Ryan et al. (2000), 

Wilson and Gallant (2000). Primary and secondary landscape attributes will 

include, but are not limited to those attributes described in the previous sections.  

Regression models were implemented into the GIS and displayed on a raster 

basis.  Map algebra were employed to provide quantification with raster units. 
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Predictive maps and models were evaluated against the remaining 25% 

subset established for model testing.  Both validation and cross-validation 

techniques were used to provide error estimates of the SOC multiple regression 

model.  Mean predicative error and RMSE were calculated for the testing 

dataset.  The end result were a predictive map of areal quantities of SOC with 

known error estimates and predictive capabilities. 
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Figure 1.  Delineation of soil orders within Hofmann Forest, Jones and Onslow 
Counties, North Carolina. 
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Figure 2.  Cross-section of a pocosin illustrating the relationships between pedology, topography and vegetation. From 12 

J.A. Gagnon, Jr. Unpublished figure. 13 
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Figure 3.  Schematic of LiDAR dataset reduction methodology. 14 
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Table 1.  Potential primary and secondary terrain attributes that may be used for 1 
soil landscape modeling. 2 

Attribute Description Hydrologic Significance Source 

    
Elevation (Ζ), m Elevation above 

mean sea level 
Proximity to surrounding 
landscape 

Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002 

Slope gradient (S), % Gradient between 
adjacent grid 
cells 

Velocity of substance flow Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002  

Aspect (ψ), ˚ Slope azimuth Direction of substance flow Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002 

Specific Catchment 
Area (As), m2 m-1 

Area draining to 
the catchment 
outlet, 
contributing 
upslope area 

Runoff volume Moore et al. 1993; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002 

Flow length (Lf), m Maximum 
distance of water 
flow to a point in 
catchment  

Erosion rates, sediment 
yields, time of flow 

Moore et al. 1991 

Profile Curvature (Kp), 
m-1 

Slope profile 
curvature 

Relative deceleration and 
acceleration of substance 
flows, deposition rates 

Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002; Ryan et al. 
2000 

Contour Curvature 
(Kc), m-1 

Contour 
curvature 

Convergence and 
divergence of substance 
flows, soil water content 

Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002; Ryan et al. 
2000 

Tangential Curvature 
(Kt), m-1 

  Wilson and Gallant, 
1996 

Dispersal Area (Da), 
m2 

Area down slope 
from a short 
length of contour 

Soil drainage rates Moore et al. 1991; 
Ryan et al. 2000 

Linear Distance to 
Stream (Lds), m 

Distance from 
cell location to 
nearest stream 

Soil drainage potential  

Topographic Wetness 
Index (ω) 

Area of flow 
accumulation, 
specific 
catchment area 
to slope ratio 

Extent of soil wetness Moore et al. 1991; 
Wilson and Gallant, 
1996; Florinsky et al. 
2002; Ryan et al. 
2000 

    
 3 
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CHAPTER 2  LIDAR DATA DENSITY AND LINEAR INTERPOLATOR 2 

INFLUENCE ON ELEVATION PREDICTION ESTIMATES 3 

 4 

 5 

 6 

 7 
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INTRODUCTION 1 

Digital elevation models (DEM) traditionally have been derived from 2 

photogrammetric techniques and ground elevation surveys (U.S. Geological 3 

Survey (USGS) 1998).  Our dependence on DEM for spatial modeling has 4 

contributed to a growing need for digital elevation data that provides a better 5 

representation of the earth’s surface than those derived from small-scale 6 

photogrammetric sources (Priestnall et al. 2000; Bishop and McBratney 2002; 7 

White and Wang 2003).  The need for high resolution, high accuracy elevation 8 

data for purposes of landscape-scale modeling has resulted in the application of 9 

various remote sensing technologies and platforms for digital elevation 10 

acquisition including interferometric synthetic aperture radar (IFSAR) (Lloyd and 11 

Atkinson 2002; Hodgson et al. 2003), light detecting and ranging (LIDAR) (Hill et 12 

al. 2000; Lloyd and Atkinson 2002; White and Wang 2003) and remote sensing 13 

platforms (e.g. ASTER [Advanced Spaceborne Thermal Emission and Reflection 14 

Radiometer]; IRS-P6 [Indian Remote Sensing satellite]).  15 

Increasingly, LIDAR is a source of highly precise, highly accurate 16 

elevation data used to produce quality DEM (Lohr 1998; Wehr and Lohr 1999; 17 

Lefsky et al. 2002).  The principles of LIDAR are well documented and readily 18 

accepted as a source of elevation data of known accuracy (Huising et al. 1998; 19 

Lohr 1998; Axelsson 1999; Wehr and Lohr 1999).  Although LIDAR allows 20 

elevation sampling at exceptionally high densities (>1000 points ha-1 in some 21 
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cases), rasterization of elevation points entails a high degree of uncertainty 1 

(Lloyd and Atkinson 2002). 2 

Interpolation of irregular spaced LIDAR data sets is needed to develop 3 

DEM (Lloyd and Atkinson 2002) to provide better representation of land surfaces 4 

and improve spatial modeling.  Generally, interpolation is completed using any 5 

number of techniques that fall under the broad category of linear interpolators. 6 

There are two main groupings of linear interpolation: deterministic and 7 

geostatistical.  Deterministic interpolation techniques like inverse distance 8 

weighted (IDW) create surfaces from measured points (Watson 1992) but do not 9 

take into account a model of the spatial processes within the data. Geostatistical 10 

interpolation methods such as those imposed by kriging utilize the statistical 11 

properties (spatial correlation) of the measured points (Cressie 1993).  12 

Comparisons between interpolation methods have been inconclusive, with some 13 

research indicating that kriging procedures perform best (Laslett and McBratney, 14 

1990; Weber and Englund 1994; Laslett 1994; Phillips et al. 1997), while other 15 

research indicates splines or IDW interpolations were as good or better (Weber 16 

and Englund 1994; Gallichand and Marcotte 1993; Brus et al. 1996; Declercq 17 

1996).  Lloyd and Atkinson (2002) suggested that in many cases a simple IDW 18 

approach would suffice but as sample spacing increases, more robust kriging 19 

approaches (viz. ordinary kriging [OK]) may be required. 20 

Inverse distance weighted assumes that each measured point has a local 21 

influence that diminishes with distance.  Points closer to the prediction location 22 
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exert greater weights than those farther away.  Wood and Fisher (1993) indicated 1 

that IDW is best suited for interpolation of sample elevation points that are 2 

regularly spaced.  Weights in the IDW methodology take the form w(d) = 1 / dx  3 

where w(d) is the weight at distance d that is determined by the inverse of the 4 

distance at a user defined power x (Wilson and Gallant 2000). 5 

Ordinary kriging relies on the spatial correlation structure of the data to 6 

determine weighting values. This is a more rigorous approach to modeling than 7 

IDW, as correlation between data points determines estimate values at 8 

unsampled points (Cressie 1993).  As with IDW, the closest measured values 9 

usually have the most influence.  However, OK weights are derived from a 10 

theoretical semivariogram fitted to empirical data developed by exploring the 11 

spatial structure of the data within a given domain (Cressie 1993; Kitanidis 1997).  12 

The semivariogram model is based on a statistical approximation of the truth 13 

represented by the empirical data.  Ordinary kriging takes the form Z(s) = µ(s) + 14 

ε(s) where Z(s) is the variable of interest, decomposed into a deterministic trend 15 

µ(s) and a random, autocorrelated error in the form of ε(s) (Kitanidis 1997). 16 

Advantages of using IDW for interpolation of elevation data include its 17 

simplicity of underlying principles, the lack of explicit model parameterization, the 18 

speed in calculation, and realistic results produced for many types of data, 19 

including elevation (Lloyd and Atkinson 2002).  Disadvantages of IDW are that 20 

weighting functions may introduce ambiguity, and the interpolation may be 21 

affected by non-Gaussian distributions of observational data points given that 22 
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equal weights are assigned to data points despite spatial clustering.  Kriging 1 

overcomes many shortcomings of most traditional linear interpolation methods.  2 

Kriging is considered the optimal interpolator in the sense that prediction 3 

estimates are unbiased and have known minimum variances (Cressie 1993; 4 

Kitanidis 1997).  Additionally, kriging provides standard error (SE) confidence 5 

estimates that help identify unreliable predictions.  Kriging weights depend not 6 

only on the distances between observational points and estimation locations but 7 

on the mutual distances among observational points as well (Cressie 1993).  8 

Weaknesses of kriging are that original data points are seldom honored (Kitanidis 9 

1997) and it is often difficult to determine whether a particular semivariogram 10 

estimate is in fact a true estimator of the spatial correlation within the data set 11 

domain (Cressie 1993; Kitanidis 1997). 12 

Both methodologies have been shown to be effective in interpolating 13 

LIDAR data sets (Lloyd and Atkinson 2002).  However, LIDAR data set size is 14 

often prohibitively large, resulting in extensive computational requirements for 15 

kriging interpolations.  While an abundance of data has traditionally been 16 

positively viewed, typical LIDAR data sets may contain hundreds or thousands of 17 

georeferenced returns ha-1 (Lohr 1998) and may impose serious computing 18 

constraints.  Because of the copious numbers of LIDAR spot elevations returned 19 

on an areal basis, even for average field-scaled study areas (~10 ha or >10,000 20 

points), the effects of data density reduction on interpolation errors are 21 

noteworthy.  With a reduction in data, a more manageably and operationally 22 
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sized elevation data set is possible.  Despite substantial data reduction, LIDAR 1 

data sets contain a far greater number of elevation reference points than USGS 2 

photogrammetrically derived raster DEM. 3 

A statistical evaluation is warranted to determine the interpolation 4 

technique(s) that maintains landscape morphology yet requires a manageable 5 

data set for computer-based operations.  The objective of this study was to 6 

evaluate interpolation techniques and to analyze the effects of spot elevation 7 

data density on the statistical validity of model predictions.  No raster DEM were 8 

created in this statistical review.  Rather, cross-validation and validation with an 9 

independent data set were used to assess the prediction errors of IDW and OK 10 

linear interpolation techniques.  The specific objectives of the study were to (i) 11 

perform a statistical analysis of the spatial correlation structure of LIDAR data 12 

sets; (ii) determine the effects of data density reduction on prediction estimates 13 

through cross-validation and independent validation; and (iii) determine the 14 

impacts of IDW and OK linear interpolations on prediction estimates through 15 

cross-validation and independent validation. 16 

STUDY AREA 17 

A series of 10 replicate 1000-ha LIDAR data tiles (figure 1) was acquired 18 

from the North Carolina Floodplain Mapping Program 19 

(http://www.ncfloodmaps.com).  Data densities for the LIDAR returns ranged 20 

from roughly 100 to 300 points ha-1, with a mean of 183 points ha-1. Tiles used for 21 

the study represented LIDAR-acquired digital spot elevation data from forestland 22 
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in the Lower Coastal Plain (LCP) of eastern North Carolina.  Selection criteria 1 

focused on maintaining similar landscape morphology and landuse.  Elevation 2 

ranges varied across the tiles, however a concerted effort was made to select 3 

tiles with maximum elevations of 30 m and with similar elevation ranges (figure 4 

2).  Digital orthophoto quarter quadrangles (DOQQ) were acquired for each tile 5 

and were used to verify similar land cover.  Each tile was estimated to contain a 6 

minimum of 80% forested land cover. 7 

Prior to public release of LIDAR data sets, the North Carolina Floodplain 8 

Mapping Program processed raw LIDAR data using proprietary-based algorithms 9 

to remove artifacts of vegetation, water bodies, and manmade objects.  The 10 

resulting end products were bare-earth elevation data sets.  Processing resulted 11 

in a landuse-dependent gradient in the density of bare-earth LIDAR returns, with 12 

agriculture lands, shrub lands, and urban lands having much higher point 13 

densities than forestlands.  All LIDAR data was reviewed and analyzed to assess 14 

the quality of the data. The statistics for the combined land cover and the trends 15 

for each specific land cover type were reviewed and data that fell outside of the 16 

20-25 cm root mean square error (RMSE) criteria were removed from the data 17 

sets (http://www.ncfloodmaps.com). 18 

SPATIAL ANALYSIS – SEMIVARIOGRAM 19 

An exploratory analysis of the spatial structure of the LIDAR data set was 20 

performed.  The global exploratory analysis was performed on the total LIDAR 21 

data sets for each of the 10 tiles.  The initial step in the exploratory analysis was 22 
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to determine an appropriate lag interval for producing the semivariograms.  Initial 1 

lag intervals were established by a criteria based on the minimum number of data 2 

points required for model parameterization.  The minimum points criteria was 3 

arbitrarily set so that the shortest acceptable lag contained a minimum of 300 4 

elevation points.  Lag intervals were determined with the variogram procedure 5 

(proc variogram) executed under the no variogram option of SAS 8.0 (SAS 6 

Institute 1999).  7 

Large-scale spatial trends in each data set were removed to eliminate any 8 

linear trends.  A modeled surface was best-fit and used to remove the large-scale 9 

trend and establish a set of residuals.  Detrending operations were completed 10 

using regression procedures (proc reg) of SAS 8.0 (SAS Institute 1999).  First, 11 

second and third order polynomials were calculated and best-fit using a 12 

maximization of R2 and adjusted-R2 for each tile.  Residual components derived 13 

from detrending procedures were used for fitting and development of empirical 14 

semivariograms. 15 

Weighted nonlinear least squares (WNLS) analysis was used to 16 

parameterize variograms to provide best-fit theoretical semivariograms with the 17 

empirical data (SAS Institute 2000).  Variogram parameters were estimated using 18 

the nonlinear least squares procedure (proc nlin) of SAS 8.0 (SAS Institute 19 

1999).  Under the assumption that the standard deviation of the sum of squares 20 

error term is not constant over all sum of squares residual values, WNLS was 21 

used to determine variogram parameters that produce the lowest sum of squares 22 
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error.  The WNLS handled regression situations in which the data points were of 1 

varying quality but operated on the assumption that the weights were known.  2 

Weighted least squares modeled the behavior of the random errors and 3 

optimized the weighted fitting criterion to find the parameter estimates that fit 4 

each observation to the final parameter estimates.  5 

Omni-directional semivariograms were produced for each tile to analyze 6 

global trends in the data.  Theoretical spherical semivariograms were fitted based 7 

on parameter estimates from WNLS procedures.  Selection of the best-fit 8 

theoretical model was based on comparisons between spherical, exponential, 9 

and Gaussian models.  Theoretical models were selected by determining which 10 

model produced the lowest standard error estimates for sill, nugget, and range 11 

estimates.  Four-directional semivariograms were produced to evaluate global 12 

anisotropic tendencies within each LIDAR data set.  Semivariograms along the 13 

four directions (0º, 45º, 90º and 135º) were evaluated for similarities in order to 14 

assure isotropic variance along directional axes. 15 

DATA REDUCTION 16 

The initial step was to sequentially reduce data density through random 17 

selection of a predetermined percentage of the original LIDAR data set.  Data set 18 

reduction was performed using the Geostatistical Analyst module of ArcGIS 8.1 19 

(ESRI 2003).  Total LIDAR data sets were initially randomly reduced by 50%.  20 

One half of each total data set was used as a training data set and a source of 21 

subsequent reduced data sets while the remaining half was used as an 22 



 

 66

independent validation data set for prediction error analysis.  The 50% data set 1 

selected for subsequent reduction was used to produce a series of data sets 2 

representing a selected percentage of the original data sets.  Reduction resulted 3 

in additional data sets that represented 25%, 10%, 5%, and 1% of the original 4 

LIDAR tile (figure 3).  The reduction process was repeated for each of the 10 5 

LIDAR tiles.   6 

LINEAR INTERPOLATION – IDW AND OK 7 

A statistical evaluation procedure was performed to facilitate a comparison 8 

of IDW and OK linear interpolation techniques.  Model evaluation, data analysis, 9 

model parameterization and elevation prediction and standardized error analysis 10 

was performed in the Geostatistical Analyst module of ArcGIS 8.1 (ESRI 2003).  11 

Parameters gained from WNLS exploratory spatial analysis were used to 12 

populate nugget, range and sill parameters for the OK models.  Inverse distance 13 

weighted power parameter was set to a power of 2.  Both OK and IDW were 14 

constrained to isotropic neighborhoods of 30 m and 100 > n > 15 nearest 15 

neighbors were used to predict locational elevations.  The search radius was 16 

flexible in that it always allowed for a neighborhood of at least 15 elevation 17 

points. 18 

Prediction and standardized error analysis of both interpolation methods 19 

were evaluated by cross-validation and validation using the Geostatistical Analyst 20 

module of ArcGIS 8.1 (ESRI 2003).  The process was repeated for each density 21 

level of each LIDAR tile.  Error statistics of cross-validation and independent 22 
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validation were used to provide a means of evaluating the effects of linear 1 

interpolation techniques and data density reduction.  Error estimations for all 10 2 

tiles were compiled following completion of cross-validation and validation 3 

procedures.  4 

Cross-validation provided an approach to review potential biases in 5 

interpolation methods and data densities.  This method, often referred to as the 6 

jackknife technique, was used to generate confidence limits on a elevation 7 

estimate by iteratively re-estimating the elevation with each of the observations 8 

held out; the jackknifed estimates were the mean of these pseudovalue 9 

estimates (Crowley 1992).  Estimates identified potential bias issues within the 10 

data by evaluation of estimation errors.  However, cross-validation lacked the 11 

ability to determine which interpolator or data density provided the most accurate 12 

estimates.  Independent validation provided a better approach to evaluate the 13 

accuracy of interpolation estimates.  Training models were used to predict 14 

elevation values for an independent location with a LIDAR estimated elevation.  15 

Estimates were then evaluated for accuracy of prediction for the independent 16 

location’s elevation.  This approach allowed for an analysis of the effects of 17 

interpolation techniques and data densities on the accuracy of the elevation 18 

estimate. 19 

Semivariograms for each data density were parameterized with values 20 

established by spatial analysis of the original 100% data set.  The parameter 21 

values assumed a stationary spatial structure across the range of randomly 22 
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reduced data sets.  Therefore, semivariograms developed from the original 100% 1 

data set were assumed to represent the spatial correlation structure of each of 2 

the reduced data sets.  The 50% reduced independent validation data set was 3 

used for comparison with each training data set density to ensure comparable 4 

results across the range of LIDAR densities.   5 

For IDW and OK, comparisons were made between mean error (ME), 6 

RMSE.  For OK only, SE, standardized mean error (SME), and root mean square 7 

standardized error (RMSStdE) were used for comparison across the range of 8 

data densities.  Standardized errors are only generated for OK.  This suite of 9 

errors was selected for comparison because they are customary error reports 10 

generated in the Geostatistical Analyst module of ArcGIS 8.1 (ESRI 2003). 11 

RESULTS AND DISCUSSION 12 

Global Spatial Exploratory Analysis 13 

Exploratory analysis provided estimates of the spatial structure of the data 14 

sets needed for parameterization of interpolation models.  Histograms and 15 

normality plots indicated that the data were normally distributed across the 16 

varying elevation densities.  For better understanding of the spatial correlation 17 

structure of the data sets and to look for large-scale anisotropic tendencies, four-18 

directional semivariograms were produced with similar lags and maximum lag 19 

distances as the omni-directional semivariograms.  A visual analysis indicated 20 

the data was isotropic.  A four-directional semivariogram at a shorter maximum 21 

lag distance of approximately 30 m was used to confirm isotropic conditions. 22 
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Fitting procedures were generally successful with theoretical spherical 1 

semivariogram models, however some LIDAR tiles had more linearly shaped 2 

spatial correlation structures.  Exponential and Gaussian models most often 3 

yielded semivariograms that fit empirical data poorly or failed to meet 4 

convergence criteria.  Alternative models were attempted in each case, but 5 

parameterization procedures yielded unrealistic nugget, range and sill estimates.  6 

Evaluation of nugget-to-sill ratios indicated different levels of spatial 7 

dependencies among tiles.  Lower spatial correlation within some tile may 8 

possibly be accounted for with additional detrending of the data sets.  Detrending 9 

depended on our a priori knowledge of the landscape along with some 10 

subjectivity to determine when maximum trend removal was met.  Each data set 11 

was detrending using third order polynomial regression models.  A best-fit 12 

semivariogram was produced for each of the ten LIDAR tiles using a theoretical 13 

spherical model and the WNLS procedure (figure 4).  Inconsistencies in 14 

semivariograms between tiles may be an artifact of minor spatial clustering 15 

resulting from processing procedures to provide only bare earth returns. 16 

Cross-Validation and Validation 17 

Comparison of cross-validation errors between OK and IDW indicated that 18 

within a given data density, models were unbiased in their predictions.  Errors 19 

between IDW and OK were remarkably similar, yet IDW had slightly greater ME 20 

and tended to have higher RMSE (table 1).  The results indicated no obvious 21 

advantage in using OK over IDW.  However, we must remember that cross-22 
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validation only provides information about model bias and not about the accuracy 1 

of the predictions.  2 

Both cross-validation and validation indicated that errors increased as 3 

data density decreased (table 1).  This trend was expected because lower 4 

density tiles had larger point spacing.  The larger distance between neighbors 5 

negatively impacted the models ability to estimate an elevation for a given 6 

location. 7 

Independent validation was used to compare the differences in accuracy 8 

of predictions between OK and IDW and examine the effects of data reduction.  9 

By calculating SE, SME, and RMSStdE during OK operations, we were able to 10 

better address the variability of our predictions.  Unfortunately interpolation with 11 

IDW does not allow for the calculation of error estimates, however, evaluation of 12 

ME and RMSE between OK and IDW generated from independent validation 13 

indicated no advantage of using OK over IDW (table 1).  Both ME and RMSE 14 

followed similar trends for OK and IDW across the density ranges.  The 15 

maximum difference in RMSE between OK and IDW was less than 2 cm, with 16 

IDW having the higher RMSE.   17 

Our conclusions of no discernable difference between OK and IDW for 18 

interpolation of LIDAR data sets were in opposition to the results of Lloyd and 19 

Atkinson (2002).  Weber and Englund (1994) found that OK, when performed 20 

with variograms estimated from the sample data was more robust than IDW 21 

methods.  The errors indicated that accuracies of predictions of OK and IDW 22 
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were very similar within a given data density.  Mean errors were consistently less 1 

than 1 cm and RMSE were less than 36 cm for all densities for both OK and 2 

IDW, and were comparable for interpolators within each data density class. 3 

Under the assumption of normally distributed data, SE can be used as a 4 

confidence interval around the true value.  If the average SE were close to the 5 

RMSE, then the model was correctly assessing the variability in prediction (SAS 6 

Institute 2000; Kitanidis 1997). If the average SE were greater than the RMSE, 7 

then there was an overestimation of the variability of predictions.  Conversely, if 8 

the average SE were less than the RMSE, an underestimation in the variability of 9 

predictions was assumed.  The error estimates indicated that OK interpolations 10 

were overestimating the variability of elevation predictions.  At each density level, 11 

RMSE were less than SE (table 1).  We were able to confirm that OK was 12 

overestimating prediction variability by evaluating the ratio of each prediction 13 

error to its estimated prediction SE.  When ratios approached 1 the prediction SE 14 

was assumed to be valid.  If the RMSStdE were greater than 1, variability was 15 

underestimated in predictions and if the RMSStdE were less than 1, variability 16 

was overestimated (ESRI 2003).  In all cases within our data set the RMSStdE 17 

were less than 1 (table 1). 18 

 Data reduction procedures resulted in a range of data densities from less 19 

than 2 to more than 180 return points ha-1 (table 1).  Review of independent 20 

validation prediction errors indicated that LIDAR data sets from low-relief forested 21 

lands have the ability to withstand data reduction.  The density of data used in 22 
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this study was much greater than was needed for interpolation of a specific 1 

location.  Following independent validation, data sets reduced to 5% of their 2 

original size had RMSE only about 8 cm greater than the 50% data sets.  Similar 3 

results between OK and IDW support the conclusions that there was no obvious 4 

advantage in using OK over IDW.   5 

 Though there was some decline in RMSE between data sets of different 6 

densities, a minor increase in predictions errors across the range of data 7 

densities may be acceptable given the improved user-friendliness of the smaller 8 

LIDAR data sets.  Interestingly, even at the lowest density tested, there were still 9 

nearly 2 points ha-1, well above the traditional number of reference points used 10 

for photogrammetrically derived elevation models (USGS 1998).  If LIDAR data 11 

set integrity can withstand a reduction of multiple data points, the computing time 12 

for producing DEM could be greatly reduced.  While we realize that there would 13 

be some resistance to elimination of valid points from elevation data sets, any 14 

reduction could be potentially beneficial from a user’s standpoint.  One of the 15 

most vexing issues concerning large LIDAR elevation data sets is the 16 

computational time involved for performing even simple statistical exercises. 17 

CONCLUSIONS 18 

Preliminary spatial analysis revealed the possibility of data set reduction 19 

without increased prediction errors.  Statistical evaluations lead to the conclusion 20 

that LIDAR data sets can withstand significant data reductions while maintaining 21 

adequate accuracy of predictions of elevations.  Errors for OK may have been 22 
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reduced if variograms were parameterized for each data density rather than 1 

assuming the variogram from 100% data set was appropriate for each data 2 

density.  Despite this, statistical analysis indicated that simple straightforward 3 

interpolation approaches such as IDW could be sufficient for interpolating 4 

irregular spaced LIDAR data sets.  Interpolation techniques such as IDW are not 5 

computationally intensive and generally provide for quick interpolation of land 6 

surfaces.  Reduced data set sizes coupled with a rapid interpolation approach 7 

such as IDW could reduce computation times considerably. 8 

Users of LIDAR who are seeking to reduce computation times must 9 

consider several factors prior to reducing data sets.  Is random reduction the best 10 

method or should a systematic method of point removal be implemented?  Data 11 

sets may have different tolerances for reduction and some may simply not allow 12 

for any data reduction.  Users must have an understanding of acceptable errors 13 

for a given function of prediction variables.  Those looking for highly accurate 14 

micro-scale topographic influences may wish to retain all LIDAR spot elevations 15 

for interpolation purposes.  However, users looking to simply improve on USGS 16 

30-m resolution DEM may be willing to except much greater prediction errors and 17 

would benefit from a data reduction strategy.    18 

A more robust evaluation of other kriging models and methods (i.e. 19 

universal kriging, block kriging and point kriging) is needed to adequately 20 

address whether other types of kriging may produce better results than IDW.  A 21 

complete statistical analysis with procedures to evaluate prediction errors would 22 
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be required.  However, without significant improvements in prediction accuracies, 1 

the advantages of IDW outweigh those of the less time efficient kriging 2 

interpolators.  Additionally, kriging requires the user to have a firm grasp of 3 

geostatistics in order to properly parameterize the kriging models.         4 

Further analysis is needed to provide replicated analysis of density 5 

reduction to elucidate possible strategies for reducing LIDAR data sets sizes on 6 

other landuses and landscapes.  Given that the density bare earth returns is a 7 

function of both landscape morphology and landuse, we must stress that our 8 

results may only apply to similarly forested, low-relief landscapes.  Similar 9 

studies across multiple low, medium, and high relief landscapes under various 10 

landuses may elucidate various spatial tendencies not seen in our data set.  Our 11 

conclusions regarding data reduction also raise the question of scale 12 

dependency in interpolation of elevations and the potential for determining an 13 

optimum regularly spaced grid resolution for a given density within a LIDAR data 14 

set.  Future research is needed to determine the effects of data reduction of 15 

LIDAR data sets on the creation of raster DEM at multiple resolutions.  16 
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Figure 1.  Ten selected LIDAR tiles located on the Lower Coastal Plain of eastern North Carolina, USA.  Inset: Location of 28 
NC in continental USA. 29 
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Figure 2.  Elevation mean, maximum, and minimum for the 10 forested LIDAR tiles located in the Lower Coastal Plain of 30 
eastern North Carolina, USA, arranged from highest to lowest maximum elevation. 31 
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Figure 3. a) Example of spot elevation density gradient following sequential reduction of a LIDAR data sets.  Scale was 29 
increased to show a sub-region of individual tiles b) Reduction scheme for deriving test and validation LIDAR data sets 30 
form the original LIDAR data set.  31 
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Figure 4.  Selected semivariograms from LIDAR tiles fit with theoretical spherical models.  Tile a and b illustrate our best 29 
fits with spherical models, while tiles c and d had more linear trends fitted with spherical models. 30 
 31 

0 10 20 30 40 50 60 70 80 90

Lag Distance (m)

0.00

0.02

0.04

0.06

0.08

0.10

Se
m

iv
ar

ia
nc

e

Parameter          Estimate    Std Error      

c0 (nugget)          0.0135        0.0033     
c1 (partial sill)      0.0746        0.0031      
a  (range)          24.0325         2.6671       

(b) 

0 10 20 30 40 50 60 70 80 90

Lag Distance (m)

0.00

0.03

0.06

0.08

0.11

0.14

Se
m

iv
ar

ia
nc

e

Parameter          Estimate    Std Error      

c0 (nugget)          0.0176        0.0012     
c1 (partial sill)      0.2493        0.0210      
a  (range)         139.7421      16.5781    

(c) 

0 10 20 30 40 50 60 70 80 90

Lag Distance (m)

0.00

0.02

0.04

0.06

0.08

0.10

Se
m

iv
ar

ia
nc

e

Parameter          Estimate    Std Error      

c0 (nugget)         0.00493        0.0003     
c1 (partial sill)     27776253     155859      
a  (range)           2.549*1010         -         

(d) 

0 10 20 30 40 50 60 70 80 90

Lag Distance (m)

0.00

0.01

0.02

0.03

0.04

0.05

Se
m

iv
ar

ia
nc

e

Parameter          Estimate    Std Error      

c0 (nugget)          0.0127        0.0005     
c1 (partial sill)      0.0309        0.0005      
a  (range)           12.8497        0.4157         

(a) 

82
 



 

 83

Table 1. Mean cross-validation and validation prediction errors for 10 forested LIDAR data sets with different densities 1 
using IDW2 and OK interpolation methodologies. 2 

  

CROSS VALIDATION VALIDATION 
 

 

% 
Density 

(pts ha-1) ME RMSE SE SME 
RMS 
StdE % 

Density 
(pts ha-1) ME RMSE SE SME 

RMS 
StdE 

 
  m   m 

1 1.80 0.0033 0.3566 - - - 1 1.80 -0.0027 0.3576 - - - 

 

5 9.02 0.0032 0.2672 - - - 5 9.02 0.0045 0.2648 - - - 

10 18.09 0.0024 0.2375 - - - 10 18.09 0.0025 0.2374 - - - 

ID
W

2  

25 45.25 0.0018 0.2075 - - - 25 45.25 0.0017 0.2080 - - - 

50 90.48 0.0016 0.1888 - - - 50 90.48 0.0017 0.1891 - - - 

 

100 181.03 0.0015 0.1731 - - - 100 181.03 - - - - - 

               

1 1.80 0.0029 0.3424 0.7564 0.0061 0.8512 1 1.80 -0.0015 0.3397 0.9506  0.0002 0.8575 

 

5 9.02 0.0017 0.2607 0.4548 0.0045 0.8167 5 9.02 -0.0030 0.2592 0.5957  0.0068 0.7989 

10 18.09 0.0018 0.2556 0.4663 0.0045 0.8150 10 18.09  0.0007 0.2498 0.4682  0.0033 0.8250 

O
K

 

25 45.25 0.0006 0.2000 0.4200 0.0017 0.7893 25 45.25  0.0004 0.2025 0.4160 -0.0006 0.8056 

50 90.48 0.0006 0.1854 0.4567 0.0012 0.7667 50 90.48  0.0010 0.1857 0.4793  0.0016 0.7793 

 

100 181.03 0.0007 0.1725 0.3713 0.0009 0.7706 100 181.03 - - - - - 
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 1 

CHAPTER 3 HORIZONTAL RESOLUTION AND DATA DENSITY EFFECTS ON 2 

REMOTELY SENSED LIDAR-BASED DEM 3 

 4 
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INTRODUCTION 1 

With the emergence of quantitative pedologic measurement and modeling 2 

techniques, or pedometrics, in the 1960’s (Webster, 1994) soil scientists have sought a 3 

more quantitative approach to modeling the spatial distribution of soil properties.  4 

Pedometrics resulted in the development of statistical approaches that incorporate 5 

surrogate environmental and edaphic explanatory variables and provide estimations of 6 

selected soil properties (McBratney et al., 2000).  An approach to spatial extrapolation 7 

that has found recent use in soil science and geomorphology is soil-landscape 8 

modeling.  Numerous soil-landscape modeling studies have demonstrated the 9 

importance of land surface representation through digital elevation models (DEM) and 10 

terrain attributes (McSweeney et al., 1994; Bell et al., 2000; Gessler et al., 2000).  Given 11 

the role of DEM in spatial modeling, it is important to consider the accuracy of the 12 

elevation input data that are used.  Data source, vertical precision, and horizontal 13 

resolution are crucial in determining accuracy of DEM and derived landscape attributes 14 

(Thompson et al., 2001). 15 

The horizontal and vertical qualities of a DEM are directly linked to the source of 16 

data used for its production.  Traditionally, DEM have been derived from 17 

photogrammetric techniques.  A widely used DEM within the United States (U.S.) has 18 

been the 30-m DEM (level 1) produced by the U.S. Geological Survey (USGS).  These 19 

DEM are produced using stereocorrelation techniques that estimate elevations from 20 

relief displacement for areas within the stereomodel.  A lattice of elevation points within 21 

a pair of stereo models was developed and resampled to a digital 30-m grid to create 22 
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the DEM.  At best, the USGS photogrammetrically derived 30-m level 1 DEM have a 1 

vertical precision of 1 m with an accuracy of ≤15 m.  Other USGS DEM such as 10-m 2 

level 1 DEM have improved resolution and precision, but these DEM are not be readily 3 

available for all areas of the U.S. 4 

More recently, light detecting and ranging (LIDAR) has been used as a source of 5 

elevation data for producing quality DEM (Lohr, 1998; Wehr and Lohr ,1999; Lefsky et 6 

al. 2002).  Typical LIDAR data sets may contain hundreds to thousands of 7 

georeferenced returns per ha (Lohr, 1998).  Federal Emergency Management Agency 8 

(FEMA) reported LIDAR accuracies of less than 1 m for both low and medium relief 9 

terrain (FEMA, 2003).  Application of LIDAR elevation data to produce raster DEM 10 

requires interpolation of spot elevation LIDAR points (Lloyd and Atkinson, 2002).  11 

Raster DEM created from bare earth LIDAR points can be interpolated to a 0.1m 12 

vertical precision at a horizontal resolution most appropriate for its intended use without 13 

generalization or resampling techniques. 14 

Landscape attribute prediction exhibits a direct dependence on the qualities of 15 

the DEM used for surface representation and attribute derivation (Jenson, 1991; 16 

Thieken et al., 1999).  Thieken et al. (1999) and Thompson et al. (2001) indicated that 17 

DEM resolution contributes to differences in the distribution and representation of 18 

landscape attributes.  However, Gessler et al. (2000) found little difference among 19 

landscape models based on a landscape attribute derived from a series of DEM with 2- 20 

to 10-m resolutions.  Likewise, Chaplot et al. (2000) found that 10-m to 30-m DEM 21 

generally provided an unbiased prediction of landscape terrain but prediction was 22 
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influenced as DEM resolution decreased to 50 m.  Florinsky and Kuryakova (2000) 1 

emphasized that the importance of DEM resolution was highly dependent on the scale 2 

of the process modeled, concluding that high resolution (between 2.25- and 3.25-m) 3 

DEM were important for modeling processes at the microscale. In general, these 4 

studies indicated that attribute value ranges increased and predictive capabilities 5 

decreased as DEM grid size increased.  The amount of relief on a landscape 6 

contributes to the effects of DEM resolution on terrain attributes, with low relief 7 

landscapes being less sensitive to resolution impacts.  Consequently, large study areas 8 

that may incorporate a larger range of relief may require higher resolution DEM. 9 

Production of different horizontal resolution DEM with the same vertical precision 10 

from the same data source is important for predicting scale dependent environmental 11 

variables.  The use of LIDAR elevation data sets offers the flexibility needed to produce 12 

multiple horizontal resolutions of DEM from the same data source.  However, LIDAR 13 

data set size is often prohibitively large, resulting in extensive computational 14 

requirements for producing DEM.  Because of the copious number of LIDAR spot 15 

elevations returned on an areal basis, the effects of data density reduction on DEM of 16 

various horizontal resolutions is worthy of study, particularly for landscape-scale 17 

studies.  With a reduction in data, a more manageably and operationally sized elevation 18 

data set is possible.  Despite substantial data reduction, the resultant LIDAR data sets 19 

contain a far greater number of elevation reference points than USGS 20 

photogrammetrically derived raster DEM. 21 
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Depending on the DEM resolution of interest, LIDAR data set spot elevations 1 

may be excessively dense.  Low resolution (30-m) DEM may require fewer points for 2 

producing accurate raster centroid values than medium (10-m) and high resolution (≤10-3 

m) DEM.  We hypothesized that given the high density of points within a LIDAR data 4 

set, it would be possible to substantially reduce LIDAR data density yet maintain the 5 

accuracies of the DEM end products.  Furthermore, we hypothesized that resolution of 6 

the DEM would play a critical role in determining the level of data reduction that was 7 

feasible.  The objective of this study was to evaluate the effects of LIDAR data density 8 

on the production of DEM at different resolutions.  The impetus for reducing LIDAR data 9 

sets was to reduce time restraints associated with producing DEM from large LIDAR 10 

data sets.  The specific objects of this study were to (i) produce a series of DEM at 11 

different horizontal resolutions along a LIDAR point density gradient; (ii) compare each 12 

DEM produced with different LIDAR data density at a given horizontal resolution to a 13 

baseline DEM produced from the highest available LIDAR data density; and (iii) 14 

determine the optimum LIDAR point density suitable for producing a DEM at a given 15 

horizontal resolution. 16 

MATERIAL AND METHODS 17 

Study site 18 

A series of 61 LIDAR tiles (1000 ha) were collected from the North Carolina 19 

Flood Mapping Program (NCFMP) to cover the spatial extent of the Hofmann Forest.  20 

The Hofmann Forest consists of a 32,500 ha forest ecosystem located in Jones and 21 

Onslow Counties of eastern North Carolina, USA (Figure 1) on the low-relief landscape 22 
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of the Lower Coastal Plain.  Greater than 90% of Hofmann Forest is covered in pine 1 

plantation and natural pocosin vegetation, with minor inclusions of agricultural lands.  2 

Elevations range from 12 to 20 m above mean sea level (Daniels et al., 1977), with the 3 

landscape characterized by broad, flat interfluves.  In some areas, relief may be as low 4 

as 1.5 m elevation difference in 3 to 4 km (Daniels et al., 1999). 5 

Data acquisition and reduction 6 

Prior to public release of LIDAR data sets, the NCFMP processed raw LIDAR 7 

data using proprietary algorithms to remove artifacts of vegetation, water bodies, and 8 

manmade objects.  The resulting end products were irregularly spaced bare earth 9 

elevation data sets.  Processing by NCFMP resulted in a land cover dependent gradient 10 

in the density of bare earth LIDAR returns, with agriculture lands having much higher 11 

point densities than forestlands.  The statistics for the combined land cover and the 12 

trends for each specific land cover type were reviewed, and data that fell outside of a 13 

20-25 cm root mean square error (RMSE) criteria were removed from the data sets 14 

(http://www.ncfloodmaps.com).  Elevations were reported to have 0.1 m vertical 15 

precision (http://www.ncfloodmaps.com). 16 

LIDAR Data Reduction 17 

All 61 LIDAR tiles were merged to form a single spot elevation coverage 18 

consisting of over 9,000,000 LIDAR points.  The initial step was to sequentially reduce 19 

data density through random selection of a predetermined percentage of the original 20 

LIDAR data set.  Data set reduction was performed using the Geostatistical Analyst 21 

module of ArcGIS 8.1 (Environmental Systems Research Institute (ESRI) 2003). 22 
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Reduction resulted in data sets that represented 50%, 25%, 10%, 5%, and 1% of the 1 

original LIDAR tile.  The reduction process was iterated three times to produce multiple 2 

random data sets for each reduction percentage.  Triplicate data sets were produced to 3 

reduce any bias that may have occurred from using only one random data set for each 4 

reduction level. 5 
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DEM production 1 

Following completion of replicated data reduction, each density level was used to 2 

create a series of raster DEM.  Data sets were interpolated to raster DEM using 3 

ANUDEM vers. 4.6.3 (Hutchinson, 1995).  ANUDEM employs an iterative finite 4 

difference interpolation technique that allows for maintenance of a drainage network 5 

consistent with the original data and removal of spurious sinks (Hutchinson, 1995).  6 

Each density level was used to produce a series of raster DEM at multiple resolutions.  7 

Raster DEM of 5 m, 10 m, and 30 m horizontal resolution with 0.1 m vertical precision 8 

were created in triplicate for each density level.  In addition, a single raster DEM using 9 

100% of the LIDAR data was produced for each horizontal resolution.  The 5 m, 10 m, 10 

and 30 m horizontal resolutions were selected because they are typical resolutions 11 

found in a number of other sources of publicly available raster DEM. 12 

Within a given horizontal resolution, ARC/INFO vers. 8.3 (ESRI, 2003) was used 13 

to create a mean raster DEM for each DEM triplicate produced within a given density 14 

level.  This process resulted in the creation of mean raster DEM for each LIDAR data 15 

density level for 5 m, 10 m, and 30 m horizontal resolutions (Table 1).  The mean raster 16 

DEM were used to compare against raster DEM created from the total LIDAR data set.  17 

Each raster DEM was clipped to the spatial bounds of Hofmann Forest using ARC/INFO 18 

(ESRI, 2003). 19 

Statistical Analysis 20 

Coregistered DEM for each resolution allowed for a cell-by-cell comparison 21 

across the density sequence.  A subsampling routine in ArcGIS Geostatistical Analyst 22 
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was used to randomly select 10,000 raster cell values to facilitate comparison of mean 1 

DEM with the DEM created from the original LIDAR data set.  The subsampling routine 2 

was implemented to reduced processing time.  Each set of 10,000 coregistered 3 

subsamples elevation values, with each having a vertical precision 0.1, were exported 4 

for statistical analysis. 5 

Comparisons were designed to evaluate the effects of LIDAR data density at 6 

each of the horizontal resolutions of produced DEM.  Analysis was devised to isolate 7 

the effects of LIDAR data density on elevation values of produced DEM within a given 8 

horizontal resolution.  No direct comparisons were made between DEM of different 9 

horizontal resolutions.  In order to make these comparisons, we assumed that DEM 10 

created from the complete LIDAR data set were the “best” DEM.  Comparisons of 11 

elevation values were always made between the DEM created using the total original 12 

data set and the mean DEM created at each selected level of data reduction.  The 13 

various DEM were compared using paired t-test to determine if the true mean of their 14 

differences were equal to zero. 15 

Mean differences between the two competing DEM were regressed against 16 

mean point densities within individual cells for each DEM resolution (Table 1).  Mean 17 

point density per cell refers to the number of LIDAR points that would fall within a cell. 18 

Specifically, points per grid cell is the mean number of LIDAR points that would be 19 

interior to any given grid cell at a set resolution and density if the DEM were overlain 20 

with the LIDAR data set.  This comparison was made to help elucidate the impacts of 21 

LIDAR point density to the calculated centroid value across multiple resolutions. 22 
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RESULTS AND DISCUSSION 1 

Data density reduction and DEM 2 
The effects of reduced LIDAR data density on resultant DEM differed among 3 

horizontal DEM resolutions (Table 2).  The 30-m DEM produced using 50%, 25% and 4 

10% of the original LIDAR data set were not significantly different from the baseline 5 

DEM30100% DEM (Table 2).  However, p-values indicated that the  DEM301% and 6 

DEM305%compared to DEM30100% were significantly different (Table 2).  Mean 7 

differences between 10-m DEM produced using reduced and complete LIDAR data sets 8 

were similar to those seen in the 30-m DEM suite.  However, only DEM1050% and 9 

DEM1025% were not statistically different from DEM10100% (Table 2).    The reduced 10 

DEM had 3 to 4 cm higher elevations than those predicted for the original DEM.  Similar 11 

results were seen when comparing the 5-m DEM.  However, in the case of the 5-m 12 

DEM, only DEM550% was not significantly different from the DEM5100% (Table 2).  The 13 

predicted elevations in the reduced DEM were 3 to 7 cm greater than the original DEM. 14 

We attribute the differences in the effects of LIDAR data reduction across 15 

horizontal resolutions to the number of points used to interpolate each centroid.   As a 16 

function of LIDAR data reduction and horizontal resolution, each DEM had a different 17 

number of LIDAR points per grid cell (Table 1).  The 30-m DEM consistently had a 18 

greater number of points per grid cell for interpolating grid cell centroids than other DEM 19 

resolutions. 20 

Mean differences between DEM 21 

 Compared to DEM produced from the complete LIDAR data set, mean 22 

differences between competing DEM indicated that all reduced density DEM 23 



 

 94

overestimated elevations for all horizontal resolutions (Table 2).  Within a given 1 

horizontal resolution, overestimation increased as data reduction increased.  This 2 

overestimation is attributed to the reduced number of LIDAR points used to interpolate 3 

each grid centroids, and a possible systematic error that may be a result of the 4 

ANUDEM algorithm used for interpolation. 5 

Given that low resolution DEM have more LIDAR points for interpolation of 6 

values on a cell-by-cell basis than high resolution DEM, the lowest mean differences 7 

were expected in the 30-m DEM.  Specifically, at each level of data density reduction, 8 

30-m DEM had a substantially greater number of LIDAR points per cell than did the 10-9 

m and 5-m DEM (Table 1).  As expected, the 5-m DEM had the widest range of mean 10 

differences, with the maximum difference occurring at the lowest possible density.  We 11 

anticipated that the 30-m DEM suite would have the narrowest range of mean 12 

differences, yet the narrowest range was found in the 10-m DEM suite.  No plausible 13 

explanation as to the root cause of this can be offered other than that the 30-m DEM 14 

may not have accounted for as much variability as the 10-m DEM did in the LIDAR 15 

points used to interpolate cell centroid values. 16 

  The general trend indicated that as mean points per grid cell increased, the mean 17 

difference decreased between DEM produced from the original LIDAR data density and 18 

DEM produced from each density level (Figure 3).  Within a given horizontal resolution, 19 

the greater the LIDAR density the greater the similarity to coincident grid cell values of 20 

the original DEM.  The rate of change in mean differences across the density sequence 21 

was similar for each horizontal resolution.  The range of LIDAR points interior to each 22 
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grid cell narrows as DEM resolution decreases.  We attribute these trends to large 1 

difference in the number of LIDAR points per grid cell between the different horizontal 2 

resolutions at each reduction increment.  As DEM resolution increases, each grid cell 3 

represents more of the micro-scale relief of the landscape.  The difference in point 4 

density ranges (on a per cell basis) between the different resolutions indicate the need 5 

for high-density LIDAR data sets when attempting to model micro-scale elevation 6 

differences. 7 

Data density requirements and DEM resolution 8 

To better understand the required LIDAR point density for producing 5-m, 10-m 9 

and 30-m DEM, a comparison of density was made across multiple resolutions.  To 10 

facilitate this, LIDAR points per cell in the 5-m, 10-m, and 30-m DEM at each density 11 

were normalized on an equal area (points ha-1) basis.  To determine the upper and 12 

lower bounds of required LIDAR density attention was focused on the densities for each 13 

resolution where subsequent LIDAR data reduction resulted in significantly different 14 

DEM.  Specifically, analysis centralized on the point density differences between the 15 

10% and 5% for 30-m DEM, 25% and 10% for 10-m DEM, and 50% and 25% for 5-m 16 

DEM.  These regions were the threshold values of points ha-1 required to produce the 17 

DEM of a given horizontal resolution that was not significantly different from the DEM 18 

produced from the complete LIDAR data set. 19 

Plotting the upper and lower bounds of the threshold region provided some 20 

indication as to the trends of LIDAR data density across multiple resolutions.  From this, 21 

an estimation of the minimum density of LIDAR points required for producing DEM at 22 
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any given resolution between 5 m and 30 m was estimated (Figure 2).  Caution should 1 

be taken in putting too much confidence in the upper bounds of the threshold values of 2 

unevaluated horizontal resolutions.  Our use of irregular intervals of density reduction 3 

could cause the upper bounds to misrepresent the actual points density needed for 4 

producing DEM of a given horizontal resolution.  Greater confidence may be put in 5 

estimates of the lower bounds of the threshold values because of finer incremental data 6 

reduction.  For our study area, we are confident that levels of density that are indicated 7 

to be insufficient will produce inferior DEM. 8 

The interpolation was done by a linear fit between adjacent points.  In reality the 9 

density function may follow a different trend between DEM of different horizontal 10 

resolution.  This may lead to some errors in interpolating between the DEM to determine 11 

minimum required LIDAR data density for producing a DEM of a given horizontal 12 

resolution other than those evaluated in this study.  However, we believe the general 13 

shape of the threshold data density region is representative of the trends expected in 14 

changes in point densities along a horizontal resolution gradient.  Further study of finer 15 

scaled density reduction and additional horizontal resolutions may help to further refine 16 

the shape of the threshold region. 17 

CONCLUSIONS 18 

Statistical comparisons indicated that DEM horizontal resolution influenced the 19 

level of reduction that LIDAR data sets could withstand.  Differences indicated that 20 

when producing 30-m DEM, LIDAR data sets could be reduced to 10% of their original 21 

data density without statistically altering the produced DEM.  However, differences in 22 
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10-m DEM indicated that data reduction was only feasible to 25% of the original data 1 

set.  Reduction below these levels resulted in DEM that were statistically different from 2 

DEM produced using the total LIDAR data set.  Data reduction was more restrictive on 3 

the 5-m DEM and indicated that LIDAR data sets could only be reduced to 50% of their 4 

original density without producing statistically different DEM. 5 

Our conclusions regarding data reduction also raise the question of scale 6 

dependency in interpolation of elevations and the potential for determining an optimum 7 

grid resolution for a given LIDAR data set density.  Evaluation of the effects of data 8 

reduction between 30-m, 10-m, and 5-m horizontal resolutions provided some indication 9 

as to the minimum required LIDAR data density to produce a DEM of a given horizontal 10 

resolution.  However, evaluation of additional horizontal resolutions is required to 11 

provide a clearer understanding of the effect of LIDAR data density.  Our analysis 12 

indicated that the rate of change in mean differences varied by horizontal resolution.  13 

Increases in mean differences as a function of data density will be faster when 14 

producing high resolution DEM as compared to low resolution DEM.  This trend 15 

indicates that smaller increments of reduction may be needed to elucidate the true 16 

threshold LIDAR data density of high resolution DEM. 17 

Users of LIDAR who are seeking to reduce computation times through data 18 

reduction must consider several factors prior to reducing data sets.  Data sets may have 19 

different tolerances for reduction and some may simply allow for minimal data reduction.  20 

Users must have an understanding of acceptable errors for a given function of 21 

prediction variables.  Those looking for highly accurate micro-scale topographic 22 
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influences will need to retain a higher density of LIDAR spot elevations for interpolation 1 

purposes.  However, users looking to simply improve on USGS 30-m DEM may be able 2 

to substantially reduce LIDAR data sets and yet maintain DEM accuracy. 3 

  Given that the density of LIDAR elevations points is a function of both 4 

landscape morphology and landuse, we must stress that our results may only apply to 5 

similarly forested, low-relief landscapes.  Similar studies across multiple low, medium, 6 

and high relief landscapes under various landuses may elucidate various spatial 7 

tendencies not seen in our data set.  Further analysis is needed to provide replicated 8 

analysis of density reduction to clarify possible strategies for reducing LIDAR data sets 9 

sizes on other landuses and landscapes. 10 

REFERENCES 11 

Bell, J.C., D.F. Grigal, and P. Bates. 2000. A soil-terrain model for estimating spatial 12 

patterns of soil organic carbon. P. 295-310. In Wilson and Gallant (eds.) Terrain 13 

analysis: principles and applications. John Wiley and Sons, New York, NY. 14 

Chaplot, V., C. Walter, and P. Curmi. 2000. Improving soil hydromorphy prediction 15 

according to DEM resolution and available pedogical data. Geoderma 97:405-422. 16 

Daniels, R.B., E.E. Gamble, W.H. Wheeler, and C.S. Holzhey. 1977. The stratigraphy 17 

and geomorphology of the Hofmann Forest Pocosin, North Carolina. Soil Sci. Soc. 18 

Am. J. 41:1175-1180. 19 

Daniels, R.B., S.W. Buol, H.J. Kleiss, and C.A. Ditzler. 1999. Soil systems of North 20 

Carolina. Tech. Bull. 314. North Carolina State Univ., Raleigh. 21 



 

 99

Environmental Systems Research Institute (ESRI), 2003, ARC/INFO User’s Guide. 1 

Environmental Systems Research Institute, Redlands, CA, USA. 2 

FEMA (Federal Emergency Management Agency), 2003, FEMA’s Flood Hazard 3 

Mapping Program: Guidelines and specifications for flood hazard mapping partners. 4 

www.FEMA.gov/fhm/gs_main.shtm. 5 

Florinsky, I.V. and G.A. Kuryakova.  2000. Determination of grid size for digital terrain 6 

modeling in landscape investigations – exemplified by soil moisture distribution at a 7 

micro-scale. Int. J. of GIS. 14(8):815-832. 8 

Gessler, P.E., O.A. Chadwick, F. Chamran, L. Althouse, and K. Holmes. 2000. Modeling 9 

soil-landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. 10 

J. 64:2046-2056. 11 

http://www.ncfloodmaps.com.  Last updated February 2004. 12 

Hutchinson, M.F. 1995. Documentation for ANUDEM version 4.4. Centre for Resources 13 

and Environmental Studies, Australian National University, Canberra. 14 

Jenson, S.K. 1991. Application of hydrologic information automatically extracted from 15 

digital elevation modeling. p. 35-48. In K.J. Bevens and I.D. Moore (eds.) Terrain 16 

analysis and distributed modeling in hydrology. Wiley and Son, Chichester, NY. 17 

Lefsky, M.A., W.B. Cohen, G.G. Parker and D.J. Harding. 2002. LiDAR remote sensing 18 

for ecosystem studies. Bioscience 52(1):19-30. 19 

Lloyd, C.D. and P.M. Atkinson. 2002. Deriving DSMs from LiDAR data with kriging.  Int. 20 

J. Remote Sensing 23(12):2519-2524. 21 



 

 100

Lohr, U. 1998. Digital elevation models by laser scanning. Photogramm. Rec. 1 

16(91):105-109. 2 

McBratney, A.B., I.O.A. Odeh, T.F.A. Bishop, M.S. Dunbar, and T.M. Shatar. 2000. An 3 

overview of pedometric techniques for use in soil survey. Geoderma 97:293-327. 4 

McSweeney, K.M., P.E. Gessler, B. Slater, R.D. Hammer, J.C. Bell, and G.W. Petersen. 5 

1994. Towards a new framework for modeling the soil-landscape continuum. In 6 

Amundson, R.G. (eds.) Factors of soil formation: A fiftieth anniversary retrospective. 7 

SSSA Spec. Publ. 33. Soil Sci. Soc. Am., Madison, WI. 127-145. 8 

Thieken, A.H., A. Lücke, B. Diekkrüger, and O. Richter. 1999. Scaling input data by GIS 9 

for hydrological modeling.  Hydrol. Process. 13:611-630. 10 

Thompson, J.A., J.C. Bell, and C.A. Butler. 2001. Digital elevation model resolution: 11 

effects on terrain attribute calculation and quantitative soil-landscape modeling. 12 

Geoderma 100:67-89. 13 

United States Geological Survey (USGS), 1998, Standards for digital elevation models. 14 

National Mapping Program, Reston, VA. 15 

Webster, R. 1994. The development of pedometrics. Geoderma 62:2-15. 16 

Wehr, A. and U. Lohr. 1999. Airborne laser scanning- an introduction and overview. 17 

ISPRS J. Photogramm. Remote Sens. 54(2-3):68-82. 18 



 

 101

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Ten selected LIDAR tiles located on the Lower Coastal Plain of eastern North Carolina, USA.  Inset: Location of 
NC in continental USA. 
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Figure 2.   The effects of mean LIDAR point density per grid cell on the mean 
difference between coincident points of competing DEM subsamples for (a) 30-m 
DEM, (b) 10-m DEM, and (c) 5-DEM. 
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Figure 3.  LIDAR points per cell in the 5-m, 10-m, and 30-m DEM for each data 
density level standardized on an equal area (points ha-1) basis. The threshold 
region represents the densities for each resolution at which subsequent LIDAR 
data reduction resulted in significantly different DEM. 
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Table 1.  Designation of 30 m, 10 m, and 5 m DEM produced from each data density level.  Designation of mean 
indicates that DEM elevations were the mean elevation of three DEM produced from different randomly reduced LIDAR 
data at each data reduction level.  Points per grid cell is the mean number of LIDAR points that would be interior to any 
given grid cell at a set resolution and density.  
 
  30 m 10 m 5 m 

% original 
data set 

 
Designation 

Points per 
grid cell 

 
Designation 

Points per 
grid cell 

 
Designation 

Points per 
grid cell 

100 DEM30100% 26.16 DEM10100% 2.90 DEM5100% 0.72 

50 DEM3050% 13.08 DEM1050% 1.45 DEM550% 0.36 

25 DEM3025% 6.54 DEM1025% 0.73 DEM525% 0.18 

10 DEM3010% 2.62 DEM1010% 0.29 DEM510% 0.07 

5 DEM305% 1.31 DEM105% 0.15 DEM55% 0.04 

1 DEM301% 0.26 DEM101% 0.03 DEM51% 0.01 
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Table 2.  Differences in elevation values and paired t-test p-values for comparison between raster DEM at three 
resolutions (30m, 10m, and 5m) produced from the total 100% LIDAR data set and reduced density (50%, 25%, 10%, 5%, 
and 1%) data sets.  The DEM were evaluated as the difference between TOTAL100% DEM and MEAN DEM elevations for 
each density.  
 
  30 m 10 m 5 m 
% original 
data set 

Mean difference 
TOTAL-MEAN (m) 

 
p-value 

Mean difference 
TOTAL-MEAN (m) 

 
p-value 

Mean difference 
TOTAL-MEAN (m) 

 
p-value 

50 -0.01 0.4379 -0.01 0.7680 -0.01 0.1824 

25 -0.02 0.1095 -0.02 0.0552 -0.03 0.0145 

10 -0.02 0.1830 -0.03 0.0117 -0.04 0.0007 

5 -0.03 0.0441 -0.04 0.0086 -0.06 0.0006 

1 -0.06 0.0013 -0.04 0.0047 -0.07 0.0001 
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CHAPTER 4  SPATIAL PREDICTION OF FOREST SOIL CARBON:  SPATIAL 

MODELING AND GEOSTATISTICAL APPROACHES 
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INTRODUCTION 

Soils constitute the major terrestrial carbon (C) reservoir, 1400-1600 Pg 

(1015 g) C globally (Falloon 1998; Sundquist, 1993), approximately three to five 

times the amount of C contained in terrestrial biomass (Brady and Weil, 2000; 

Houghton and Woodwell, 1989). Historically, most estimates of soil organic C 

(SOC) were based on means extrapolated from broad categories of soils and 

vegetation on a regional scale (Kern, 1990; Post et al. 1982). Better analysis and 

forecast of spatial patterns of SOC is important for sustainable land management 

(Florinsky et al., 2002) and for potentially formulating strategies for offsetting 

global C emissions. 

Spatial Modeling 

Although we are beginning to understand patterns of SOC storage at the 

site or hillslope scale (Gessler et al. 2000), we need better methods to scale our 

findings to larger landscapes.  Mental models developed by soil scientist based 

on landscape attributes, vegetation, hydrology, and other environmental 

variables have long been integrated in soil science for soil mapping purposes.  

However, these methods result in qualitative models that produce broad 

schemes that attempt to encompass the soil continuum and seek to provide 

simplistic classification regimes (Cook et al., 1996).  With the emergence of 

quantitative pedologic measurement and modeling techniques, or pedometrics, in 

the 1960’s (Webster, 1994) soil scientists have sought a more quantitative 

approach to modeling the spatial distribution of soil properties.  Pedometrics 
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resulted in the development of statistical based approaches that incorporate 

surrogate environmental and edaphic explanatory variables and provide 

estimations of selected soil properties (McBratney et al., 2000).  Several 

approaches have historically been applied to quantitatively predict soil properties 

on various scales. 

Geostatistical spatial models have been developed that integrate standard 

measures of variables within discrete land units.  These “measure and multiply” 

(Schimel and Potter, 1995) models provide a coarse estimation of selected soil 

properties but often lack the ability to predict soil properties on scales of 1:50,000 

to 1:100,000 needed for intensive land management (McKenzie and Ryan, 

1999).  Conversely, a spatial extrapolation approach referred to as “paint by 

numbers” (Schimel and Potter, 1995) integrates a series of independent soil and 

environmental variable classes with a known relationship to the dependent soil 

variable.  Thus, discrete classes with defined combinations of explanatory 

variables are formed for model parameterization. 

An approach to spatial extrapolation that has found recent use in soil 

science and geomorphology is soil-landscape modeling.  Soil-landscape 

modeling is an approach to analyzing soil variability in response to exogenous 

environmental variables related to topographic and hydrologic parameters 

(McSweeney et al., 1994; Paustian et al., 1997; Thompson et al., 2001).  

McSweeney et al. (1994) incorporated three stages for soil-landscape modeling: 

(i) physiographic representation through DEM and terrain attributes; (ii) 
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georeferenced training data with information about soil properties; and (iii) 

development and validation of explicit quantitative models.  The approach 

provided a hierarchal regime of dissimilarly scaled variables for soil-landscape 

modeling.  This is an important concept of landscape models because it allows 

for multi-resolution modeling of the soil properties.  Furthermore, soil-landscape 

models provide quantification of soil properties through proxy variables and are 

not intended to provide a process-level understanding of individual soil properties 

within these models. 

Soil-landscape models use discrete land units of  similar vegetation, soils 

or ecological zones to guide representative sampling strategies to help integrate 

process dynamics on the landscape.  Most models are founded in Jenny’s (1941) 

“Factors of Soil Formation” by S = f (cl, o, r, p, t) where S is a selected soil 

property as a function of climate (cl), organisms (o), relief (r), parent material (p), 

and time (t).  Soil-landscape models normally assume that at the county (10 km2) 

or regional (10 km3) scale, (Ryan et al., 2000) variability within cl, p and t are 

controlled across the study site (Paustian et al., 1997).  Sampling strategies are 

designed to control for those factors that vary across the area of interest.  Thus, 

the driver of soil-landscape modeling is that variation in topography and 

vegetation provide responsive proxy variables that can be utilized for prediction 

of soil properties. 

Topographic-based spatial models derived using GIS have been utilized 

for spatial predictions of soil properties (Gessler et al., 2000; Ryan et al. 2000; 
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Moore et al., 1993), including forest SOC pools (McKenzie and Austin, 1993).  A 

number of soil-landscape modeling techniques that use readily available 

geomorphic and pedologic based environmental explanatory variables to 

quantitatively predict spatial patterns of soil properties have been developed 

(McSweeney et al., 1994; Odeh et al. 1994, McKenzie and Ryan, 1999; Gessler 

et al., 2000; Florinsky et al., 2002).  Studies using soil-landscape spatial models 

have been able to predict and quantify specific soil properties such as A-horizon 

depth (Moore et al., 1993; McKenzie and Ryan, 1999; Gessler et al., 2000), 

organic matter content (Moore et al., 1993), and total SOC (Arrouays et al., 1998; 

McKenzie and Ryan, 1999; Gessler et al., 2000; Ryan et al., 2000).  These 

studies were able to explain 40 to 85% of the variability in the predicted soil 

properties. 

Scaling is a serious issue in the study of C cycling in terrestrial 

ecosystems (Schimel and Potter, 1995).  One underlying problem is that the 

factors that control soil variability occur across a range of scales.  Proximal 

factors (e.g. pH, soil moisture) that influence SOC contribute to the variability on 

a much smaller scale.  Distal factors (viz. Jenny’s (1941) factors) vary over a 

much larger scale.  Integration of multiple attributes at varying scales imposes a 

problem for developing models that predictably explain SOC variability across a 

landscape. Moreover, there is an inherent discord between the scale at which 

soil property dynamics occur (microscale), the scale at which they are measured 

(mesoscale) and the scale at which they are modeled (macroscale).  With each 



 

 111

increase in coarseness of scale, the variability, and therefore the uncertainty of 

the prediction increases (Kern, 1994; Gessler et al., 2000; Ryan et al., 2000). 

DEM Quality – Resolution, Accuracy and Precision 

Landscape attribute prediction exhibits a direct dependency on the 

qualities of the DEM used for surface representation and attribute derivation 

(Jenson, 1991; Thieken et al., 1999).  Thieken et al. (1999) and Thompson et al. 

(2001) indicated that DEM resolution contributes to differences in the distribution 

and representation of landscape attributes.  Gessler et al. (2000) found little 

difference among landscape models based on a landscape attribute derived from 

a series of DEM with 2- to 10-m resolutions.  Likewise, Chaplot et al. (2000) 

found that 10- to 30-m DEM generally provided an unbiased prediction of 

landscape terrain but prediction was influenced as DEM resolution increased to 

50-m.  Florinsky and Kuryakova (2000) emphasized that DEM resolution was 

highly dependent on the scale of the process modeled, concluding that high 

resolution (between 2.25 and 3.25 m) DEM were important for modeling 

processes at the microscale. In general, these studies indicated that attribute 

value ranges increased and predictive capabilities decreased as DEM grid size 

increased.  The amount of relief on a landscape contributes to the effects of DEM 

resolution on terrain attributes, with low relief landscapes being less sensitive to 

resolution impacts.  Consequently, large study areas that may incorporate a 

larger range of relief may require higher resolution DEM to capture break-lines 

and ridges that control water movements. 
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Thompson et al. (2001) found statistical differences in landscape attributes 

(specific catchment area, compound topographic index) when comparing DEM of 

1 m and 0.1 m vertical precisions.  Paired data revealed that lower precision (1 

m) DEM had higher slope gradients and lower values for specific catchment area 

and compound topographic index (Thompson et al., 2001).  Thieken et al. (1999) 

concluded that changes in vertical precision, particularly in low relief landscapes, 

affected individual cell values for terrain attributes such as slope, specific 

catchment area and compound topographic index, but did not affect the 

cumulative distribution of theses attributes.  When precision was held constant, 

Thompson et al. (2001) indicated that there was a dependency on horizontal 

resolution, with low resolution DEM creating smoother transitions between 

adjacent cells than did high resolution DEM.  However, Thieken et al. (1999) 

found that low vertical precision often results in a “stair stepped” appearance.  

Similarly, Thompson et al. (2001) found that decreased vertical precision created 

a greater segregation of slope values that included a large number of zero slope 

areas and steeply sloped areas.  A possible solution to this may be found in 

calculating attributes over greater distances rather than by using only adjacent 

cells (Thieken et al., 1999). 

The horizontal and vertical qualities of a DEM are directly linked to the 

source of data used for its production.  Traditionally, DEM have been derived 

from photogrammetric techniques (includes contour mapping) and ground 

elevation surveys, with more recent application of remotely sensed elevation data 
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acquired through interferometric synthetic aperture radar (IFSAR), light detecting 

and ranging (LiDAR) or similar technologies.  The most widely used DEM within 

the United States have historically been the 30-m DEM (level 1) produced by the 

U.S. Geological Survey (USGS).  A more recent approach has been the use of 

radar- or laser-based remotely sensed elevation data for model derivation.  

Application of remotely sensed data requires digital spot elevation data 

interpolation into raster-based DEM.  Landscape modeling studies have made 

use of a large variety of sources of elevation data for terrain representation.  The 

need for high-resolution, high accuracy elevation data for purposes of landscape-

scale modeling has resulted in the application of Light Detecting and Ranging 

(LiDAR) technology is a source of data used to produce high-resolution, high-

accuracy DEM. 

Modeling SOC 

Prediction of SOC and other soil properties is dependent upon the 

selection of pedologically important proxy landscape attributes and soil properties 

for use in explicit spatial models (Gessler et al.,  2000).  A study was conducted 

to develop spatial models to predict total SOC using selected pedologically 

important topographic variables.  Spatial models of SOC were developed and 

tested around two hypotheses: (i) that spatial autocorrelation of SOC exist in low-

relief landscapes; and (ii) that spatial patterns of SOC on a watershed scale are 

predictable by models based on pedological relationships displayed by 

topographic variation.  The specific objectives of this study were: (i) to quantify 
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spatial autocorrelation of SOC patterns predicted using geostatistical models; (ii) 

to utilize landscape attributes to develop and validate an explicit, quantitative, 

and spatially realistic model of SOC for a 32,500 ha forest ecosystem; (iii) to 

quantify total SOC storage in Hofmann Forest. 

MATERIALS AND METHODS 

Study Site 

Investigation into the spatial distribution of SOC occured on a 32,500 ha 

forest ecosystem located entirely within the bounds of Hofmann Forest.  

Hofmann Forest is located in Jones and Onslow Counties of eastern North 

Carolina, USA (Figure 1) and lies on the Lower Coastal Plain (LCP) Wicomico 

and Talbot morphostratigraphic units of the mid-Atlantic seaboard.  Located in 

the temperate climate zone, the study area is characterized by warm summers 

and mild winters with a mean summer temperature of 25°C and a mean winter 

temperature of 7°C.  Mean annual precipitation is 1400 mm with a large portion 

of the rainfall received in late summer.  Elevations range from 12 to 20 m above 

mean sea level (Daniels et al., 1977), with the landscape characterized by broad, 

flat interfluves.  In some areas, relief may be as low as 1.5 m elevation difference 

in 3 to 4 km (Daniels et al., 1999). 

Soils 

Soils of the Hofmann Forest were derived from surficial marine sediments 

of the Wicomico and Talbot morphostratigraphic units, alluvial deposits, and 

organic deposits on low-relief interfluves. The soils are predominately poorly to 
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somewhat-poorly drained Saprists, Aquults and Aquepts.  Organic soils dominate 

Hofmann Forest, representing nearly 24,000 ha (Daniels et al., 1977).  The 

Hofmann Forest landscape has poorly drained organic soils occurring on broad 

low-relief interfluves and better-drained soils in close proximity to drainages.  

Mineral soils fringe the broad interstream divides and are typified by deep water 

tables with light surface and subsurface horizons.  Daniels et al. (1977) provides 

a detailed description of the stratigraphy, geomorphology and pedological units 

with the Hofmann Forest.   

The unique hydrological conditions within Hofmann Forest appeared 

beneficial to the accumulation of C within interfluve areas.  Daniels et al. (1977) 

indicated an influence of distances to nearest major drainage on organic material 

accumulation within Hofmann Forest.  The wide spacing and low slope between 

natural drains inhibit lateral water movement, thus creating large partially 

saturated regions within the centers of the forest.  These areas, commonly 

referred to as pocosins, are often characterized by substantial accumulation of 

organic materials.   

Pocosin Vegetation and Forest Management 

The Hofmann Forest contains a large diversity of vegetation, both as a 

result of natural regeneration and intensive forest management.  Natural 

palustrine wetland plant communities dominate the pocosin area with the 

presence of pond pine (Pinus serotina), redbay (Persea borbonia), loblolly bay 

(Gordonia lasianthus), sweetbay (Magnolia virginiana), bamboo (Arundo donax), 
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gallberry (Ilex glabra), and many others.  A major portion of the land surrounding 

the pocosin includes managed pineland dominated by loblolly, slash and longleaf 

pine (Pinus palustris) plantations.  Other vegetation land use/land classification in 

Hofmann Forest includes bottomland hardwood, hardwood flats, headwater 

swamps, non-managed pine flats, swamp forests, agricultural fields and pine 

savannas (unpublished data). 

Moderate to intensively managed pinelands occupy nearly 15,000 ha of 

Hofmann Forest.  Drainage networks have been installed throughout most of the 

managed pine plantation lands with minor drainage networks on approximately 

100 m spacing between adjacent drains.  Pine plantations of loblolly pine (Pinus 

taeda) in Hofmann Forest range in age from 0 to 67 yrs, fairly distributed across 

the age groups of 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40 yrs.  

However, the 20-25 yrs age group was by far the largest, representing over 3000 

ha (20% of total plantations).   Harvesting is performed on a commercial contract 

basis.  Harvest regimes are site specific and may include whole-tree and sawlog-

only harvests.  Digital information regarding tree volume removals and other 

details of the harvest are acquired and incorporated into a GIS database for 

Hofmann Forest.  Other information including soils, vegetation, land use/land 

classification, and age class are digitally georeferenced and integrated into the 

database. 
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Sample Stratification Regime 

A stratified random sampling scheme for collection of SOC samples was 

used to minimize variability in physical and chemical differences between 

samples, while maintaining adequate coverage of the watershed.  Variation may 

be reduced when sampling on a stratification scheme based on a priori 

understanding of factors that potentially influence the prediction variable (Ryan  

et al., 2000; Turner and Lambert, 2000; Zinke and Stangenberger, 2000).  The 

stratified sampling regime was based on three criteria: (i) plantation pine versus 

natural pocosin plant communities, (ii) age groupings within pine plantations, and 

(iii) distance from major streams. 

Hofmann Forest was divided into two major vegetation classes (plantation 

and pocosin) for initial stratification.  In the LCP, vegetation and land use are 

often indicative of underlying soil conditions.  These two vegetation groups were 

selected based on their influence on C storage and their dominant areal extent 

within Hofmann Forest.  Pocosin areas were anticipated to represent areas of 

greatest SOC accumulation.  Plantation areas are suspected to occupy drier, 

less organic soils or have less SOC as a result of anthropogenic activities.  

Plantation and pocosin vegetation classes were subsequently stratified into 4 

groups representing distances of 0-2000m, 2000-3000m, 3000-4000m and 

4000+m to major natural drainages.  It was suspected that distance to natural 

drainage was influential in the genesis of soils within Hofmann Forest.  Previous 

research in Hofmann Forest by Daniels et al. (1977) indicated that morphological 
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differences occurred on the broad flat interfluves as result of distance from major 

streams and drains. 

A further stratification of pine plantations was based on plantation age.  

Numerous studies indicate high variability of SOC pools within different aged 

pine stands (Huntington, 1995; Richter et al., 1995; Van Lear et al., 1995; Trettin 

et al., 1999; Paul et al., 2002). Age groupings included 0-5, 5-15, 15-25, 25-35 

and 35+ yr.  This strategy was to ensure proper stratification based on stand 

establishment (0-5yr), initial stand closure, thinning, and fertilization (5-15yr), late 

rotation thins or other silvicultural activities (15-25yr), stands scheduled for 

harvest (25-35yr) and mature older plantations (35+yr). 

2.5 Soil Sampling and SOC Analysis 

Soil samples were collected at 190 georeferenced locations throughout 

the study site for chemical analysis and determination of soil bulk density. Four 

sub-samples were taken at roughly 7.5 m at approximate cardinal directions from 

each prescribed geo-referenced sampling location.  Sub-samples on bedded 

plantation sites were oriented to provide 2 inter-bed and 2 intra-bed samples.  

Soils were collected in 3 cm butyrate plastic liners with a stainless steel soil 

recovery probe with slide hammer attachment (JMC Soils-ESP soil sampler).   

Intact volumetric soil samples were collected to a depth of approximately 1 

m from the surface, including the organic horizon.  Samples were stored indoors 

at 16 to 20˚C in the plastic butyrate liners during the sample collection period.  

Subsequently, soil samples were extruded from the plastic butyrate liners and 
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dried in a forced-air oven at approximately 40˚C for 72h.  Bulk density were 

measured on oven-dried samples by standard technique using the cylindrical 

volume and soil mass within a given depth increment.  Bulk density represented 

an average of the 4 sub-samples or the total number of uninterrupted cores from 

a given location.  Soil samples were composited with the other sub-samples from 

each sampling location.  Total C of whole soil samples was determined by dry 

combustion in a Perkin-Elmer Series II 2400 CNH analyzer (Nelson and 

Sommers, 1996; Bremner, 1996).  

Total SOC was calculated as kg m-2 for each sample collected.  Summary 

statistics including mean, maximum, minimum, and standard deviation were 

calculated by land use and as a total for all cores collected using S-Plus® 6.0. 

Geostatistics and Spatial Autocorrelation 

Core samples collected from 75% of the georeferenced sampling locations 

were used to develop a geostatistical model of SOC across the Hofmann Forest 

landscape.  Ordinary kriging (OK) was selected purely as a way to preliminarily 

assess the possibility of spatial modeling of SOC using landscape and land use 

attributes.  Model evaluation, data analysis, model parameterization and SOC 

prediction was performed in the Geostatistical Analyst module of ArcGIS 8.1 

(ESRI, 2003).  Semivariogram nugget, range, and sill parameters for the OK 

model were calculated.  Development data for the OK model was constrained to 

isotropic neighborhoods of 1000 m and 100 > n > 15 nearest neighbors were 
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used to predict SOC.  The search radius was flexible in that it always allowed for 

a neighborhood of at least 15 SOC cores. 

Spatial autocorrelation was employed to evaluate systematic spatial 

variation in estimates of SOC. Methods for investigating spatial autocorrelation 

include the statistical coefficients Moran’s I and Geary’s c which provided an 

indication of the type and degree of spatial autocorrelation present in the SOC 

data set.  Both indices allow using a single value to describe the spatial 

distribution of features. They can be used to determine the degree of adjustment 

necessary when modeling the phenomena. Moran’s I is produced by 

standardizing the spatial auto covariance by the variance of the data using a 

measure of the connectivity of the data. Geary’s c uses the sum of squared 

differences between pairs of data values as its measure of covariation.  These 

measures were used to evaluate whether there was a spatial trend in the SOC 

data for Hofmann Forest. 

DEM and Terrain Attributes 

A series of 61 LIDAR tiles (1000 ha) were collected from the North 

Carolina Flood Mapping Program (NCFMP) to cover the spatial extent of the 

Hofmann Forest.  Prior to public release of LIDAR data sets, the NCFMP 

processed raw LIDAR data using proprietary algorithms to remove artifacts of 

vegetation, water bodies, and manmade objects.  The resulting end products 

were irregularly spaced bare earth elevation data sets.  Processing by NCFMP 

resulted in a land cover dependent gradient in the density of bare earth LIDAR 
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returns, with agriculture lands having much higher point densities than 

forestlands.  The statistics for the combined land cover and the trends for each 

specific land cover type were reviewed, and data that fell outside of a 20-25 cm 

root mean square error (RMSE) criteria were removed from the data sets 

(http://www.ncfloodmaps.com).  Elevations were reported to have 0.1 m vertical 

precision (http://www.ncfloodmaps.com). 

All 61 LIDAR tiles were merged to form a single spot elevation coverage 

consisting of over 9,000,000 LIDAR points.  Data sets were interpolated to raster 

DEM using ANUDEM 4.6.3 (Hutchinson, 1995).  ANUDEM employs an iterative 

finite difference interpolation technique that allows for maintenance of a drainage 

network consistent with the original data and removal of spurious sinks 

(Hutchinson, 1995).  Raster DEM of 10 m, 30 m, and 100 m horizontal resolution 

with 0.1 m vertical precision were created. 

Selected terrain attributes were calculated (Table 1), with parameters 

developed using each of the three resolutions; 10 m, 30 m, and 100m.  This 

method was used to address the effects of scale across the various landscape 

attributes.  Terrain attributes were designed to provide quantitative parameters 

indicative of landform shape, connectivity, and adjacency that control external 

landscape geomorphology and represent hydrologic tendencies (Gessler et al., 

2000).  Primary attributes such as elevation and slope gradient were derived 

directly from DEM, whereas secondary attributes are derived from combinations 

of primary attributes (Moore et al., 1991).  Secondary attributes serve as 
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surrogates for complex hydrological, geomorphological and pedological 

processes (Moore et al., 1991).  

2.8 Statistical Analysis – Landscape Modeling 

Seventy-five percent (n = 143, randomly selected) of the geo-referenced 

sampling locations were used as model training data while the remaining 25% (n 

= 47, randomly selected) of the sites served as a validation dataset for a 

prediction error analysis.  Correlation analysis was performed to evaluate 

prediction variables and to address attributes with strong interdependent 

correlation with multiple variables.  Stepwise multiple regression methods related 

the target variable (SOC) to explanatory prediction variables.  Regression 

modeling was completed using S-Plus® 6.0 stepwise regression procedures 

(Neter et al., 1989).  Forward stepwise regression successively added variables 

to the prediction model that exceed the established partial F-test statistic 

threshold, yet only added variables that improve the overall predictive capabilities 

of the model (Neter et al., 1989; SAS Institute, 2000).  Models were evaluated by 

comparison of R2 and residual standard error (RSE). 

Two separate spatial models were developed to predict SOC in Hofmann 

Forest.  One model was developed using the entire suite of available topographic 

and land use data, while the second model was developed using only 

topographic attributes.  This process was to allow for a better understand of the 

spatial and anthropogenic influence on SOC in Hofmann Forest. Both spatial 

models were implemented into the GIS and displayed on a raster basis.  Map 
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algebra using the topographic and land use coverages was employed to provide 

quantification with raster units.   

Predictive models were evaluated against the remaining 25% data set 

established for model testing.  Mean predicative error (ME), root mean square 

error (RMSE) were calculated based on the difference between each model and 

the validation data set.  The end result were a predictive map of areal quantities 

of SOC with known error estimates and predictive capabilities. 

RESULTS AND DISCUSSION 

SOC Analysis 

Samples collected in Hofmann Forest were characterized by land use as 

well as by combined land use classes (Table 2).  Data represented all SOC cores 

collected during field sampling.  Several studies have indicated that a reasonable 

estimate for total SOC in southeastern forest ecosystems should range from 6-20 

kg C m-2 for mineral soils and around 80 kg C m-2 for organic soils to a depth of 1 

m (Johnson and Kern, 2003; Birdsey and Lewis, 2003; Garten et al., 1999).  Our 

SOC measures from soil cores were substantially greater than previously 

reported values.  This was attributed to the overall depth and extent of organic 

soils within Hofmann Forest.  Additionally, the SOC values had a large range in 

maximum and minimum values and standard deviation and indicate a large 

amount of variability in the 190 SOC cores.  The variability of SOC was influential 

in the amount of variability explained by the explicit spatial models. 
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Geostatistical Modeling of SOC 

Prediction of SOC using a strictly geostatistical approach provided a 

method of evaluating the spatial distribution of SOC within Hofmann Forest.  

Prediction of SOC by OK was completed on 30 m resolution grid for Hofmann 

Forest (Figure 2a). 

Spatial trends in SOC predicted by OK indicated that spatial modeling 

might be possible for Hofmann Forest.  To better understand the spatial trends 

and the level of spatial autocorrelation in the SOC data, two methods of spatial 

autocorrelation analysis were employed.  A Moran’s I coefficient of 0.984 for the 

OK models indicated that there was a spatial trend in the SOC data.  

Furthermore, a Geary’s c of 0.001 provided additional evidence of spatial 

autocorrelation of the SOC data.  Based on the spatial autocorrelation of the 

SOC data (Moran’s I = 0.984, Geary’s c = 0.001), its was believed that by using 

landscape and land use attributes that an explicit spatial model of SOC was 

possible for Hofmann Forest. 

Landscape Models 

Correlation coefficients were calculated for the suite of terrain and land 

use attributes for Hofmann Forest (Table 3).  Several attributes were identified as 

possible explanatory variables.  Of initial interest were Lbinary, SI, Z10m, Z30m, 

Z100m, Kc(10m), Kc(30m), and Kp(30m).  Review of interdependent correlations revealed 

minimal interference between most of the attributes that had the greatest 

potential for inclusion in the explicit spatial models.  However, the correlation 
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coefficient between Lbinary and SI (r = -0.41) indicated a possible interfence 

between these two variables. 

Multiple regression performed on the landscape and land use attributes 

resulted in the selection of variables for inclusion in the spatial model (Table 4).  

A model (model = LandTopo) was developed to include both landscape and land 

use attributes.  A separate model (model = Topo) was developed that included 

only landscape attributes.  These models included two landscape variables in 

common (Kc, and Kp() but were at different resolutions.  LandTopo included Lbinary 

and SI variables that were of concern because of the interdependent 

relationships determined by r.  This interaction may have had some influence on 

the predictive capability of the model. 

Despite low R2 for the best models for LandTopo and Topo, statistical 

analysis provided an explicit spatial model of SOC for Hofmann Forest (Table 5; 

Figure 2b,c).  The best variables included in both LandTopo and Topo models of 

SOC provided limited ability to explain the variability of SOC in Hofmann Forest.  

Even with possible interaction effects between Lbinary and SI, these variables 

were not eliminated from the LandTopo model.  It was understood that by 

including these variables some additional statistical limitations in predicting SOC 

were likely included.  However, based on the amount of unexplained variability in 

SOC by the LandTopo model, these limitations were acceptable. 

It was anticipated that landscape variables at multiple resolution would 

have provided additional ability to model SOC variability.  Each model contains 
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variables of different spatial resolution that did in fact increase the ability of the 

models to predict SOC.  This was anticipated because of the multiple scales at 

which soil forming process interact.  It was believed that by not including 

landscape variables at multiple resolutions we would have further limited the 

success of the explicit spatial models to predict SOC in Hofmann Forest 

Based on preliminary examination of soil survey information, a 

topographic influence on spatial patterns of SOC was expected to be model with 

greater efficiency.  Daniels et al. (1977) indicated an influence of distances to 

nearest major drainage on organic material accumulation within Hofmann Forest.  

Landscape attributes that were anticipated to help explain SOC variability proved 

to be ineffective in predicting SOC across Hofmann Forest.  Of greatest interest 

was the exclusion of Lds from both models.  Prior to development of explicit 

spatial models, it was anticipated that Lds would help to explain a major portion of 

the SOC variability.  Possibly, other methods of evaluating or describing the 

affect of distance from major drainages in Hofmann Forest may have provided a 

better estimation of SOC. 

The low relief landscape that encompasses Hofmann Forest greatly 

contributed to our inability to successfully model SOC.  The unique hydrological 

conditions of pocosins pose a serious challenge to model development using 

landscape and land use attributes alone.  Landscape attributes such as S, Kp, Kc, 

and Kt that have been successfully included other explicit spatial models (Gessler 

et al., 2000; Thompson et al., 2001) failed to adequately explain the variability of 
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SOC in Hofmann Forest.  Possible inclusion of other yet undeveloped landscape 

variables more adept at addressing low relief edaphic characteristics may have 

improved the models ability to explain SOC variability. 

Validation and Comparison of SOC models 

LandTopo, Topo and OK spatial models were implemented in the 

Hofmann Forest GIS to provide an estimation of the spatial distribution of SOC.  

Estimated SOC was compared to the validation data set (n= 47) to exhibit the 

inability of the explicit spatial models to explain SOC variability in Hofmann 

Forest.  Additionally, validation provided a means of comparing the explicit 

spatial models to SOC estimates from the OK geostatistical approach. 

Coincident grid cells for each SOC model were compared to the validation 

data set (Table 6).  The RMSE between each model and the validation data set 

indicated that estimates of SOC by OK were three-fold better than estimates by 

either LandTopo or Topo.  The OK model tended to slightly overestimate SOC, 

while LandTopo and Topo both slightly underestimated SOC compared to the 

empirical data.  Given the low R2 of both LandTopo and Topo, the large RMSE 

from validation was not unrealistic from what was anticipated. 

The estimates of SOC produced using the geostatistical OK model were 

much more clustered and presented a more homogeneous distribution of SOC 

within Hofmann Forests (Figure 2a).  Estimates formed concentric bands of SOC 

that decreased in SOC along the fringes of Hofmann Forest.  This was similar to 
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the trends explained by Daniels et al. (1977) and more closely resembled our 

initial ideas of the spatial trends of SOC within Hofmann Forest. 

LandTopo and Topo were more discretized in their estimates of SOC 

across Hofmann Forest (Figure 2b,c).  Rather than producing homogenous 

blocks of SOC similar to the OK model, estimates were much more 

heterogeneous across Hofmann Forest.  LandTopo had a greater range of SOC 

values (0 – 350 kg m-2 C) than the estimates produced by Topo (0 – 300 kg m-2 

C).  LandTopo provided some separation between pocosin and plantation land 

uses as was expected due to the inclusion of both Lbinary and SI land use 

attributes.  Additionally, LandTopo indicated low SOC along the outer rim of 

Hofmann Forest, similar to the conditions described by Daniels et al. (1977).  

Spatial patterns of SOC in the Topo model were along an east-west gradient 

across Hofmann Forest.  The Topo model failed to exhibit any decreased levels 

of SOC along the fringes of the Forest.  Rather, SOC were concentrated along 

the eastern edge. 

Given the visual and statistical differences between the geostatistical OK 

SOC models and LandTopo and Topo models, we anticipated there would be a 

large difference in the total SOC for Hofmann Forest.  However, SOC estimates 

on an areal basis for the resulted in similar values for all models.  The OK model 

predicted a total SOC store of 40.2 Gt C in the top 1 m.  LandTopo and Topo had 

similar predictions of 37.2 Gt C for LandTopo and 37.4 Gt C for Topo.  All three 

models estimated SOC stores at a much higher inventory than was anticipated.  
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The SOC storage values were a result of high SOC values in the original training 

data used for developing each model. 

CONCLUSIONS 

Spatial trends in SOC exist in Hofmann Forest.  Geostatistical approaches 

and spatial autocorrelation coefficients (Moran’s I and Geary’s c) provided 

evidence of these spatial trends in SOC.  However, we failed to adequately 

explain the variability in SOC using explicit spatial models.  Certainly, we can 

attribute our lack of ability to model SOC to the highly variable nature of the SOC 

collected in the Hofmann Forest. 

We had anticipated that our use of high-resolution, high-accuracy LiDAR-

based DEM would improve our ability to model SOC on the low relief landscape 

of Hofmann Forest.  Despite the use LiDAR-based DEM, multi-scaled landscape 

attributes and the inclusion of land uses variables in our models, we were 

unsuccessful in our attempts to model SOC.  We believe that a multi-scaled 

approach provided some help in explaining the variability of SOC but to what 

extent remains unknown because of our overall poor modeling results.  Our 

models produced landscape scaled SOC stores above what we had expected, 

yet only additional sampling and fine tuning of our explicit spatial models will 

provide insight into the extent of error in our SOC estimations. 

Low relief landscapes pose a serious problem for producing explicit spatial 

models of SOC.  These models may be inhibited by including only landscape and 

land use attributes, however we believe that these are likely the most influential 
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parameters affecting the development of soils in low relief landscapes.  One 

possible explanation is that we may be missing a yet undetermined landscape or 

land use attribute that vastly improve our ability to capture the variability of SOC 

in these low relief landscapes.  Future exploration of additional landscape and 

land use variables that correlate to edaphic properties on low relief landscapes 

should be a continued focus for spatial modelers if we hope to provide spatial 

estimates of landscape scaled SOC stores.  Pedologist will need to continue to 

seek innovative approaches to modeling soil process on low-relief landscapes. 
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Figure 1.  Ten selected LIDAR tiles located on the Lower Coastal Plain of eastern North Carolina, USA.  Inset: Location of 
NC in continental USA 
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Figure 2.  Spatial distribution of SOC in the Hofmann Forest calculated from (a) OK geostatistical model, (b) LandTopo 
explicit spatial model; and (c) Topo explicit spatial model.
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Table 1.  Developed primary and secondary terrain attributes and land use 1 
parameters of Hofmann Forest used for soil landscape modeling. 2 

 3 

Attribute or Parameter Description 

  
*Elevation (Ζ), m Elevation above mean sea level 

*Slope gradient (S), % Gradient between adjacent grid cells 

*Profile Curvature (Kp), m-1 Slope profile curvature 

*Contour Curvature (Kc), m-1 Contour  or plan curvature 

*Tangential Curvature (Kt), m-1 Transitional curvature along a tangent 
not orthogonal to other curvature 
measures 

*Linear Distance to Stream (Lds), m Distance from cell location to nearest 
stream 

Site Index (SI) Collective influence of soil factors 
contributing to the growth of 
vegetation 

Land use (Lbinary) 
 

A binary descriptor given for land use 
of either pocosin (1) or plantation 
forestry (0) 

  
*Terrain attributes developed at multiple resolution of 10m, 30m and 100m 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
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Table 2. Summary statistics for SOC cores to a depth of 1m collected in 1 
Hofmann Forest. 2 
 3 

Land use Mean Maximum Minimum Std. Deviation 
 C (kg m-2) 

Pocosin 151.4 390.0 13.5 72.5 

Plantation 91.7 754.3 11.2 89.6 

Total 123.2 754.3 11.2 86.2 

 4 
 5 
 6 
 7 
 8 
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Table 3. Correlation coefficients (r) of selected landscape and land use attributes used in development of explicit spatial 
models of SOC in Hofmann Forest. 
  

 Terrain Attributes  Dependent 
Variables SOC Lbinary SI Z10 Z30 Kc(10) Kc(30) Kp(30) Kp(100) 

SOC 1.00 0.33 -0.32 0.28 0.25 0.10 0.12 -0.12 0.10 

Lbinary 0.33 1.00 -0.42 0.39 0.39 -0.10 0.08 0.06 0.02 

SI -0.32 -0.42 1.00 -0.38 -0.56 -0.08 -0.15 0.10 -0.09 

Z10 0.28 0.39 -0.38 1.00 0.59 0.14 0.02 0.00 0.02 

Z30 0.25 0.39 -0.56 0.59 1.00 0.15 0.15 -0.09 -0.03 

Kc(10) 0.10 -0.10 -0.08 0.14 0.15 1.00 -0.02 0.02 0.02 

Kc(30) 0.12 0.09 -0.15 0.02 0.15 -0.02 1.00 -0.66 -0.18 

Kp(30) -0.12 0.06 0.10 0.00 -0.09 0.02 -0.66 1.00 0.13 

Kp(100) 0.10 0.02 -0.09 0.02 -0.03 0.02 -0.18 0.13 1.00 

 
 

14
0 
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Table 4. Multiple linear regression model components developed using backward 1 

stepwise regression procedures in S-plus. 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 

Coefficients Value SE t-value Pr(>|t|) 

 
LandTopo 

Intercept 146.2 26.6 5.5 0.000 

Lbinary 50.0 15.9 3.1 0.002 

SI -0.5 0.2 -2.2 0.034 

Kp (30m) -792.5 517.6 -1.5 0.128 

Kc (10m) 114.8 76.7 1.5 0.137 

 Topo 
Intercept -150.6 81.9 -1.8 0.068 

Z (10m) 17.6 5.3 3.3 0.001 

Kc (30m) 996.7 592.9 1.7 0.095 

Kp (100m) 6582.1 4516.7 1.5 0.147 
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Table 5.  Best-fit multiple linear regression models for the prediction of soil C in 1 
Hofmann Forest.  2 
 3 

 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 

Name Model R2 RSE 

LandTopo 
 
 

C = 50(Lbinary) – 0.5(SI) – 792.5(Kp(30m)) +  
       114.8(Kc(10m)) + 146.2 

0.18 
 
 

84.3 
 
 

Topo 
 
 

C = 17.6(Z(10m)) + 996.7(Kc(30m)) +  
       6582.2(Kp(100m)) – 150.6 

0.10 
 
 

87.7 
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Table 6.  Validation parameters from comparison of geostatistical and explicit 1 
spatial models to georeferenced testing locations with known soil C. 2 

 3 
 4 
 5 
 6 
 7 
 8 

Model  RMSE ME Std. Deviation 

OK 127.6  4.2 25.7 

LandTopo 439.1 -4.0 63.3 

Topo 480.0 -3.5 69.2 
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 1 

CHAPTER 5. FINAL CONCLUSIONS OF SOIL CARBON, LIGHT DETECTING 2 

AND RANGING (LIDAR) AND SPATIAL MODELING AND GEOSTATISTICS 3 

 4 
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The results of these studies have brought to lght a number of issues that 1 

of particular concern for pedologist and our ability to model soil properties, 2 

specifically SOC.  In order to produce highly precise, highly accurate DEM we 3 

need to continue to resolve computing and statistical constraints that currently 4 

prevent the use of LiDAR data as a source of digital elevation data.  Currently, 5 

LiDAR based DEM are readily available as raster data sets but the methods by 6 

which the original bare earth data were interpolated are not disclosed.  7 

Interpolation of the bare earth data is vexingly demanding on both time and 8 

computer resources.  Further work on methods developed in this research may 9 

prove fruitful if the data reduction strategies can be replicated on landscapes of 10 

various relief.  The low relief landscapes of eastern North Carolina served as a 11 

reasonable starting point for developing statistically valid data reduction 12 

strategies.  Further work is need in fine-tuning the level of data reduction possible 13 

across a range of DEM of different resolutions.  Smaller incremental analysis in 14 

both the level of data reduction and the resolution of the DEM produced needs to 15 

be completed before firm conclusion can be drawn with regards to the 16 

appropriate level of data density required for producing a DEM of any given 17 

resolution.   18 

 Production of explicit spatial models of SOC will continue to be of great 19 

interest as more and more scientist focus on balancing the global C budget.  20 

Focus will no doubt continue to reside on terrestrial stores, with an emphasis of 21 

SOC in temperate forests in the US.  Spatial models developed in this study 22 
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provide some indication as to the complexity of biogeochemical interactions that 1 

drive SOC stores.  A number of study have successfully model SOC on smaller 2 

landscapes and hillslopes, however, modeling of SOC on flat landscapes will 3 

continue to pose serious problems to models based on topographic attributes 4 

alone.  Innovative think with regard to developing new landscape descriptors is 5 

needed if pedoligist hope to produce valid models of SOC on these low-relief 6 

landscapes.  Future research efforts should make a concerted effort to address 7 

landscape attributes that deal with the unique hydrological variables the drive flux 8 

of SOC in low relief landscapes.  Additionally, more attention may be need to 9 

devise sampling schemes that help control the variability of SOC samples taken 10 

in the field.  Better strategies that address other methods of sample stratification 11 

should be addressed.  Our models were limited in their abilities to adequately 12 

explain SOC variability in Hofmann Forest.  Possibly, more scrutiny in the 13 

stratifying sampling locations may have enhanced our ability to model SOC.  14 

Concern about sampling locations is raised primarily because our models 15 

produced similar total SOC estimates to those estimated by geostatistical 16 

approaches despite the low R2 values of our models. 17 

 18 


