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ABSTRACT

HELMS, RONALD WILLIAM. A Procedure for the Selection of Terms
and Estimation of Coefficients in a Response Surface Model with
Integration—Orthogonal Terms. (Under the direction of ROBERT

JOHN HADER and ALLISON RAY MANSON.)

General linear approximation theory and general linear estima-
tion theory are combined to produce a generalization of the Minimum
Bias Estimator (Karson, et al., 1969) in which a linear model is
transformed to an equivalent representation in terms of integration-
orthogonal functions. The integrated mean square error of an esti-
mator H for a response function N is shown to have the form

v v 2 v

IMSE(n) = X E(Bj—Bj) , where Bj is the estimator of the coefficient
Bj. One can thus consider the deletion or inclusion of terms in an
estimation model one at a time. A term can be "deleted" from a model
by setting the corresponding coefficient estimator to zero (Ej=0);
various procedurés are considered for using the least squares esti-
mator §3=Ej for certain sets of Ej-values and zero (deletion of the
ter@é Ej = () for other sets of gj-values. The expected value, bias,

and mean square error are derived for each estimator. Techniques

v
are given for the selection of the region on which Bj = 0 when prior

information is available about Bj in the form of a prior distribution.
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1. INTRODUCTION

In many experimental situations it is convenient to suppose that

a functional relationship,
n= g(xl,xz,...,xm; 61,...,9p) = g(x,9), (1.1)

exists between a response N and m continuous wvariables KyseeesX o
When the form of the function (1.1) is known, the object of the experi-
ment may be to estimate the parameter vector, 0. In many cases, how—
ever, the form of the function is unknown, or, if known, may not be
linear in the parameters. In such cases the objective may be to esti-
mate an approximation of the function g(x,0) over some given region R
of the m-dimensional space of the x~variables.
If the response function is linear in the parameters,
m
no= gx0 = I 0.f (% (1.2)

i=1
where the fi are known functions (polynomials, for example), then,
under certain assumptions about the nature of the experimental. errors,
it is possible to apply traditional general linear model (least
squares) estimation theory to obtain Best (minimum variance) Linear
Unbiased Estimators for the parameters © and the function n. However,
if the assumed model (1.2) is. inadequate, in the sense that the true
model is of the form

ﬁﬁq

n = g(x;0) = 131 6,£, () (1.3)



then the estimators for the parameters § and for the function are
biased. 1In the presence of bias the use of the minimum variance cri-
terion for the selection of an estimation procedure is subject to
question.

Since bias attributable to an inadequate model is usually not
constant over the region of interest, R, the mean square error of an

A

estimator, N, integrated over the region R, viz.,

IMSE(n) = IE{' In(x) - 3@12}@ (1.4)
R

would appear to be a good criterion for use in the selection of an
estimator. In this thesis the IMSE is used as a criterion for the
comparison of estimators in.inadequate model situations.

It is useful to notice that the IMSE can be decomposed into bias

and variance components:

A A A 2 ~ . .
IMSE(n) = 'f{ Elnx)] - n(x }  dx + f Var[n(x)ldx (1.5)
R R g

Box and Draper (1959) showed that in considering the selection of a
design, the bias contribution to integrated mean square error general-
ly far outweighed the variance contribution. Motivated by .this re-
sult, Karson et al.(1969) derived a Minimum Bias Estimator for mn by
the technique of first considering a class of estimators which min-
imize the bias contribution in (1.5) and then selecting the estimator.
from that class which has minimum variance. From (1.5) one can see
that E{;(§)} is an approximating function for 7n. Thus, the minimum

bias estimator is the minimum variance estimator of the minimum bias
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approximating function. Linear apprdximation with respect to the in-
tegrated squared error criterion is considered in Section 3 of this
thesis. Some underlying connections are established between least
squares estimation based on integration-orthogonal functions and the
minimum bias estimator.

An important problem in minimum bias estimation and in many
other regression problems is the selection of the approximating func-
tion, i.e., selection of the independent variables or terms to be in-
cluded in the analysis. For the case in which one is using minimum
bias estimation based on integration-orthogonal functions ('"indepen-
dent variables"), a particularly simple term-by-term procedure can be
used. This procedure and its properties are derived and discussed
in Section 4. Techniques for selection of the parameters of the esti-

mation procedure are discussed in Section 5.



2. REVIEW OF LITERATURE

Box and Draper (1959) motivated the study of minimum bias estima-
tion. They investigated the problem of finding optimal designs for
least squares estimation in the following setting. It is desired to

fit a response function n(x), assumed to be a polynomial of degree d2
over the region of interest R, by a polynomial y(x) of degree dl < d2°
The polynomial y(x) is a least squares estimator. Since y(x) is of

lower degree than n(x), E(y(x)) # n(x) and both variance error (due to
sampling error) and bias error must be considered.in the selection of

an estimation procedure and the construction of designs. Define the

Integrated Mean Square Error of y as

A

IMSE(y) r E{;@ - @} ax

J
R

F

= Var[;(g)] dx + j {E[;(X) - n(_:g)}z dx
R

= V + B.

(The V and B above differ from Box and Draper's V, B by a normalizing

scale factor.) In their paper Box and Draper considered designs for

A

the situation in which n(x) is a second degree polynomial and y(x) is
a first degree polynomial. . In a later paper, Box and Draper (1963),

they extended their results to fitting a quadratic polynomial, y(x),

to a cubic response, N(x). In both studies they found that the
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contribution to IMSE due to bias. (B, above) far outweighed the contri-
bution due to variance (V, .above), in the sense that (Box and Draper,
1959, p. 622) "the optimal design in typical situations in which both
variance and bias occur is very nearly the same as would be obtained

if variance were ignored completely and. the experiment designed so as

to minimize bias alone.! .(The emphasis.is theirs.)

Karson, et al. (1967), questioned the use of minimum variance as
a criterion for choice of a. biased estimator. In the Box and Draper
setting the least squares estimators are certainly biased, although one
can construct designs to minimize.the bias contribution to IMSE.
Karson, et al. (1969), took. the. approach of considering design and
estimation as two phases of. the. problem of producing estimators with
small IMSE. Recognizing from.the work of Box and Draper (1959, 1963)
that the bias contribution to IMSE exerts much more influence .on the
choice of design than does the variance contribution, Karson et al.
(1969) derived a class of estimators which minimize the bias contribu-
tion to IMSE, and from that class selected the estimator with smallest
v#riance. The resulting estimator is called the Minimum Bias Estimator
(MBE) for n. Since the MBE minimizes the. bias contribution to IMSE for
any design, one is free to choose. designs.which minimize the variance
contribution to IMSE. Karson, et al. (1969) illustrated this technique
by demonstrating optimum designs. for fitting a linear polynomial (in
one variable) to a quadratic. over.a. .three point design, to a quadratic
over a four point design, and to a cubic model over a four point

design.
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Karson, et al. (1969), assumed throughout their study the point
of view of choosing in advance the terms to be included in the fitted
model, ;Qg); Specifically, they assumed that all terms of degree less
than or equal to dl (which is specified in advance) will be included in
the fitted model. No consideration was given to the problem of choosing
the terms in the fitted model as a .result of tests based on the data.

However, considerable work has been performed on the problem. of
selection of terms in the model in the general linear model setup
(least squares estimation) and with.problems involving an ordering of
the terms in the model (as in a.polynomial, for example).

Draper and Smith (1967, Chapter 6) discuss the following six
techniques "in current use' for the.selection of the "best fit'':
(1) comparison of the R2 (coefficient of determination) for all pos-
sible regressions, (2) backward. elimination, (3) forward selection,
(4) stepwise regression, (5) two variations on the four methods above,
and (6) stagewise regression. The expected values and mean square
errors of the coefficient estimators and function estimators (;) pro-
duced by these techniques apparently have not been investigated except
in special cases,

Bancroft (1944) produced an expression for the bias of the esti-

*
mator b for Bl under the assumption that the full (true) model is
y = lel + 62x2 + e,

%
where b 1is obtained by the following procedure:

A ~

(1) Obtain the usual least squares estimators (61,62) for

(61,62);



(2) Use an F~test to test the hypothesils H: 62 = 0; vs. the
alternative K: 62 # 0.
(3) If the F-test is significant at the predetermined o-level,
b* = Bl; otherwise fit the model Y = lel + e to the data
and b* is the resulting least squares estimator for Bl.
Bancroft did not consider estimators based on one-tail tests, bias of
the resulting estimator for 62, mean square errors or variances, or
integrated mean square errors.

Larson and Bancroft (1936b) considered an extension of the above

model, viz.,

y = §1_B_1 + §2§2 + e

with essentially the same procedure as above, with Bi replaced by the

vector B,; i =1, 2. In this situation one performs an F-test of the

=i
compound hypothesis H: §2 = 0. They assumed that the elements of the

la) * A
least squares vector estimator, f, were uncorrelated. Thus, §1 is §1,
'7'€ A
_§2 is either ﬁz or 0, depending on the outcome of the test. The par-
ticular elements of % and x, are specified in advance. They derived

expressions for the bias and mean square error of

* * %
y = El_B_l + Ezﬁz

under the assumption that the errors, e, are normally and independent-
ly distributed with zero mean and variance 02. The derivation in-
cludes a derivation of the bias and mean square error of the elements
In a compan{on paper (Larson and Bancroft, 1963a) they con-
sidered successive tests of the hypotheses Hj: Bj =0, =1, 2, ..0,

stopping at the first hypothesis rejected.



Gorman and Toman (1966), Hocking and Leslie (1967), and
Schatzoff, et al., (1968) have presented several efficient methods for
calculating and comparing subsets .of all possible regressions. All
these techniques are based on.choosing a small subset of the indepen-
dent variables which produces a great reduction in the residual sum
of squares. Since the actual selection procedure is somewhat impre-
cise in each case, the properties of the resultant estimators are
difficult to investigate. |

Toro and Wallace (1968) considered the comparison of the usual
least squares estimator, EJ for B in the general linear model
(Graybill, 1961) with §%, the least squares estimator subject to the
linear constraints H ﬁ% = h. They suggested as a final estimator
whichever one of é, B produces the smallest mean square error, i.e.,
if E{(éiﬁ).(gﬁQS'} T,E{(B*ﬁﬁ),{g*iﬁ)'} is positive definite, use ﬁ%
as the estimator. They also derived the UMP test of the hypothesis
that the above condition holds. However, they did not derive the
properties of the resulting estimator.

A number of procedures have been proposed for problems in which
there is a natural ordering of the coefficients, as in polynomials of
a single variable, for example. Graybill (1961) discussed a procedure
for finding the degree of a polynomial which 'describes' a set of
data, and proposed the use of summation-orthogonal polynomials (which
yield uncorrelated coefficients) as a labor saving technique. He did
not discuss the properties of the resultant estimators. Hoel (1968)

proposed a sequential procedure .for determining the degree of a poly-

nomial, when the model is written in terms of summation-orthogonal
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polynomials. A feature of.Hoel's procedure (and other sequential de-
cision procedures) -is that. it allows qontrol of the probability of
both types of error in hypothesis.testing.

Sclove (1968) discussed.estimators which have uniformly smaller
mean square error than the usual least squares estimator when there
are more than three terms in. the model. He also discussed.a stepwise
érocedure for successively testing the hypotheses Hj: Bj = 0,
j=p, p-1, ..., (until one.hypothesis is rejected), for. the case in
which the terms are ordered, as in polynomial models in one variable.
Although he referred to proofs that.the proposed estimators have uni-
formly smaller mean square error than.least squares estimators, he did
not evaluate the mean.square errors, noting that (Sclove, 1968, .p. 599),
"Computation of .[the mean.square error] seems difficult."

Each of the above mentionedApxocedures for selection of terms
to be included in the mdoel uses.a point-wise criterion to guide the..
selection. The criteria.are. "point-wise' or "local" in the sense that
they are based solely on information.obtained at the experimental
points; no consideration. is.giwven: to. how well the resulting function .
estimator fits the true function over:.the.region of interest. In con-
trast, the IMSE criterion may be referred to as a '"global" criterion.
In addition, the properties. of .some-of the resultant estimators above
are difficult to evaluate;. some.of the estimafors are difficult to
evaluate in comparison. to: the.least.squares estimator.

Michaels (1969) conéidered the problems of estimation and design
for linear versus quadratic.estimation (for an assumed quadratic model).

for univariate polynomials over the scaled region of interest,
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R'= [~-1,1], using the integrated mean square error criterion. Con-
sidering the expectation of the IMSE function with respect to the prior
density of 62, the coefficient of x2, he found that for normal or uni-
form prior densities one would optimally choose between least-squares
linear estimation or least-squares quadratic (full model) estimation
by comparing E[Bg] (with respect to the prior) and Og, the variance of
%2. Minimum Bias Estimation. of. the linear model was considered,. but
for all 82 values the MBE was dominated by either the linear or quad-
ratic (full model) least.squares procedure. Michaels (1969) also in- -
vestigated the selection of.an optimum.design-estimation procedure with
respect to the IMSE criterion .and.various prior distributions for 82.

In Chapter 4 of this. paper.a procedure is presented which allows
one to select terms in the model with respect to the IMSE criterion.
All possible "regressions'" are considered; the calculations are
straightforward (only the least.squares estimator and estimated var-
iance need be caiculated),.andwtheubias, mean square error and IMSE of
the estimates are. derived and.computed.

Moreover, the resulting estimator for .the response function, n,
is, conditional upon the model chosen, -the.Minimum Bias Estimator for n.

Chapfer 3 of this paper presents a generalization of the Minimum
Bias Estimation scheme for quite general weighting functions, over a
general region of interest, and for any.finite set of continuous,

linearly independent functions in several variables.



3. MINIMUM BIAS ESTIMATION WITH INTEGRATION~ORTHOGONAL FUNCTIONS

The material in this chapter is mostly expository in nature; the
theory of linear approximation and the theory of linear estimation are
standard material in the fields. of numerical analysis and statistics,
respectively. A summary of some pertinent sections of the two bodies
of theory is presented here because the combination apparently does not
appear elsewhere and because the combined results lead- to an elegant
and useful description of minimum bias estimation.

In the first subsection some results are presented for vector
spaces with inner products. Examples are given for finite dimensional
Euclidean vector spaces, En, and for infinite dimensional vector spaces
of real, continuous, square~integrable functions. Orthogonal functions
are defined for each of these spaces, and are illustrated with orthog-
onal polynomials in several variables. Since the primary application
of this theory involves the use of integration-orthogonal polynomials,
some properties are derived for these functions, including algorithms
for their construction and for conversions from standard polynomial
models to and from orthogonal polynomial models.

In the second subsection, .a.model is defined for a response
function as a linear combination of orthogenal functions (polynomials,
for example). Standard least. squares estimation theory is applied. to.
find estimators for the.response function.and for‘"best” approximations .
to the response function. . The equivalence of minimum bias estimation

and least squares estimation of the best. approximating function is
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established, and some of the properties of minimum bias estimators

which follow from this equivalence are given.

3.1. Least-Squares Linear Approximation. with. Orthogonal Functions

In this section approximation of functions which are linear in the

’
parameters is considered. The sense in which the approximation is

"least-squares'" will be explained in the development of the theory.

Orthogonal functions,. particularly orthogonal polynomials in one
variable, are basic tools in numerical analysis and in linear approxi-
mation theory in particular. Treatments of least-squares linear ap-
proximation of a function. of one variable are given in several intro-
ductory numerical analysis texts, such as Todd (1962), Hildebrand
(1956) and Handscomb (1966)...The present treatment will assume the
function being approximated may be-a funection of several variables.

In introductory texts the region, R, over which the function is
to be approximated is usually.assumed.to be the interval [-1,1] for
univariate approximations and the "unit cube'" (the same interval in
each variable) for multivariate. approximations. Our assumptions about

R are somewhat more general.

3.1.1. Some Basic Theory from Linear Algebra

Throughout this section general vectors (unspecified vector
space) will be denoted by lower case .lLatin letters, with or without
subscripts; most will be from the end of the alphabet (x, y, z).
Scalars will also be lower case Latin letters, with or without sub-
scripts, mostly from the first of the alphabet (a, b, c). Vectors

o . X n .
from finite dimensional vector spaces, such as E, will be
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underscored (x, z); the letters f, g, h, p and q with or without sub-
scripts, will denote vectors from infinite dimensional vector spaces
(i.e., functions), and will not be underscored. The letters i, j, k,
m and n will be used for sub- and super—scripts and for limits of sum-
mation.

Definition: Inner product. Let V denote a finite or infinite
dimensional real vector space. An inner product is a function, de-
noted ( , ), fromV x V to El, the real line, such that for all x, vy,
z in V and for all real constants a, the following four conditions
hold:

(1) (x,y) = (y,x)35°
(ii) (x,x) > 0, and = 0 only if x = 0 (the zero vector in V);
(1ii) (ax,y) = a(x,y);

(iv) (xty,z) = (x,2) + (y,2).

Corollary: Let Kys sees X5 Yy Vs Y, all be vectors in V,
and let aps PN a bl’ s bn be real comstants. Then
m n m n
(Z a,x,, I b,y,)= I L a,b,(x,,y,) . (3.1)
i=1 * Y g=1 I3 i=1 j=1 37173

Definition: Norxrm based on an inner product. With the setting

above, define the norm of the vector x, denoted ||x||, by :

|1x]] = V(&x,%), or IIXIl2 = (X,x) - (3.2)

It should be noted that there are norms which are not based on inner

products.
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Definition: Orthogonal, orthonormal vectors. Two vectors x, y

in V are said to.be. orthogonal. if (x, y) = 0, and are said to be ortho-.

normal if they are orthogonal.and (%, x) = l|xll = (y, y) = l|y|| = 1,
A set of vectors is said to be.an . orthogonal set if all pairs.of vec—
tors in the set are orthogonal; it is said to be an orthonormal set of
vectors if it is an orthogonal set and the norm. of each vector in the
set is one.

Consider two rather different vector spaces and inncer products.
Since both will be used in the following sections, the (x, y) notation
for these special inner products will be altered slightly.

Let V ; E" = n-dimensional Euclidean space over the reals. Let
H be a real, symmetric, n x n positive definite matrix. TFor all X, ¥

in V, .define and denote the inner product:

n

% x.h,.y.. (3.3)
1 og=1 37

[ e =]

Sp(x,y) = (x,y) = x'Hy =
o

The S refers to summation and the H denotes the matrix of the inner
product. A special case is for H = I, the n x n identity matrix. 1In

this case,
S (xy) =x'Iy = x'y

This is the "usual" inner product. (also referred to as the "dot pro-
duct") over E". Returning to the general case, x and y in E” are

orthogonal with respect to the inner product SH if

= 5! =
Sy &>y) = x'Hy = 0.
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The norm of a vector x in E" with respect to the inner product Sy is

‘/SH(EsZE) = Vx'Hy = l IE] IS(H) .

Notice the special notation for the norm with respect to SH'

For the second example, let R be some non empty subset of EP,
R does not denote the real line except as a special .case. Let x denote
a vector in En, and let«wcg).denote either a finite measure over the
Borel subsets (B) of R or a.distribution function of finite variation
defined over R. (See Halmos (1950) and Loeve (1955) for discussions
of finite measures, distribution functions of finite variationmn, . and
integration with respect to such measures and distribution functions.)
Let V be the space of continuous. functions which are square-integrable

with respect to W over R, i.e., £ is in V if f is continuous and

0< j F2(x) aW(x) < + . (3.4)
R

Denote V by V = LZ(R,B,W) =L Functions which are equal almost

21

everywhere with respect to W are considered to be identical, i.e.,

if £(x) = g(x) except on a set B, such.that W(B) = O, then f and. g
are considered to be the .same function. Under. these conditions, the

function Iw defined by:

6o - [ 1@ 5w @ (3.5)
R

for all f, g in L, is an inner product over L2 (Loeve, 1955). . Here, .

2

the I denotes integration (to distinguish from the summation inner

product) and W denotes the measure.
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There are two special cases of this inner product which are very
useful. First, let w(x) be the Radon-Nikodym derivative of w'(x) with

respect to Lebesgue measure; W(x) is a finite, non-negative, integrable

weight function over R.  Then (3.5) becomes

I (f.8) = J £(x) g(x) wx) dx, (3.6)
R

which is a multidimensional integral over the set R. This is the
most common case and the one which will be applied most often,

The second special case of interest arises when W is a discrete
measure which assigns the weight W, to the point X i=1, 2, ..., m.

In such a case,

m
I;(E,8) = iz f(zi) g(zsi) o

1

This is, .of course, just a spec&al case of (3.3).
In the general case of V = L, (R, B, W), the norm will be

denoted:

HEN Ly = VI ED.

3.1.2. The Approximation Theorem

Theorem 3.1, Let V be a real vector space with inner product

( 5 ) and associated norm || ||. Let>{xl, X ces Xn}'be a fixed,

29
finite set of orthonormal vectors from V. Then for any y in V, the
minimum of

n
lly - = b.x]| (3.7)
1=1 ii
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is attained if and only if

bi = a, = (y,xi). (3.8)

The number a, is called the Fourier coefficient of Xy and y with

respect to the inner product (., ).
Proof. The quantity (3.7) is minimized if and only if the fol~-

lowing is minimized:

n
Iy - .21 b 1% =y - Tbx,, v - Ibyx,) (3.9)
1=

2
(y,y) = 2Eb; (y,x,) + Iby (x;,%,)

2
(y,y) - ZZaibi + Zbi

IIYIIZ + Z(ai—bi)2 - Zaf (3.9a)

All summations are over the range i = 1, 2, ..., n. In (3.9a) only the
term Z(ai—bi)2 depends upon the,bi. Being a sum of real squares, it
takes on its minimum value of zero if and only if all bi = a,,
i=1, 2, ..., n.

Most of the theory of linear approximation and of linear estima-
tion can be derived from this theorem. The result is now extended to
include the case of orthogonal (not necessarily orthonormal) vectors.
These results are given in many linear algebra and numerical analysis

texts.

The approximation
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is called a "least-squares' approximation because it minimizes the
square of the norm (3.9). In most applications, since the x, are
orthogonal the square of the norm is either a "sum of squares" or the
integral of the squared error.. Throughout the remainder of this thesis,
the least squares approximator of a vector (or function) will be de-
noted by the use of a tilda (~) e.g. ¥ is the least squares approxima-
tor of y.

Corollary 1. The Approximation Theorem for Orthogonal Vectors.
Let {zl, Zoy ooy zn} be a finite set of non-zero orthogonal vectors
from the vector space V, with inner product ( , ) and associated

norm, || ||. Then for any y in V, the minimum of

n
lly - = cjzjll (3.10)

=]

is attained if and only if

(y’zj> (Y’Zj) 2 (3 )
c, = = > j=1, 2, ..., n. 11
K LN AT

Proof. The set of vectors Xys i=1, 2, ..., n, defined by

1 .
Xi=‘l—rz—i_l—|-zi, 1=\1, 2, ceoeg N
is clearly an orthonormal set. Set ¢, = ai/llzill, where a, = (y,xi)

is the Fourier coefficient of X, and y; then a;x, = c,z; and the

minimum of
Hy - Zaixill 2 ”Y - Zcizill

is attained. But
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a,
L

¢, = ﬂ—z—ﬂT = (Y,Xi)/l lzill

Y’zi l =(y:zi)
e 1T TTegIT =TI 117

as was to be shown.

The following corollary establishes a result which will be use-
ful in consideration of minimum bias estimation.

Corollary 2. The Truncation Approximation Theorem. Let
Q ='{xj, j=1,2, ..., m} be a fixed orthogonal set of nonzero vectors
from V and define

m
y= I

1o cjxj (3.12)

where the cj are also fixed. Of .course, y € V. Now approximate y by

a subset of the vectors in Q. Let n be such that o < n < m. The

quantity
ly - % bl = |12 I by,
y- I bx,||=1[]2Z ec,x, - I b.x, (3.13)
i=1 T 1 i=1 T h g 1H
is minimized if and only if
bj = cj, =1, 2, ..., n < m. (3.14)

Proof: By Corollary l, the bj which minimize (3.13) satisfy, for

J=1, 2, c0eey ns
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2
bjl'lel = (Y’Xj)
m m 9
= I c,x,,x,) = I ¢:(x,.%,) =c.||x,. s
(i=l 1% %) i=1c13(xl" 5 ;! JH
which implies'bj = cj, =1, 2, ..., n.
Example. As an example let .V = L2(R,B,W) as described above.
Let Q ='{fi, i=1, 2, ..., m} be an orthogonal set of nonzero func-—
tions from V, and let y = £(x) be in V. From the orthogonality,
R
0 if 1 # j
= 2 . (3.15)
PE.]]°> 04f 1 = 4
i
Also
Iy(ys£y) = Io(£,£,) = f EE (WG -

R

Suppose one decides to approximate y = f(x) with a linear combination
of a subset Q* of the vectors (functioms) in Q. Consider the following
notation which will be useful in a later example. Let K = {1,2,...,m}.
K is the set of subscripts of functions in Q. Let K* be the subset of
K which contains the subscripts of the functions to be used in approx-—
imating y, i.e., the subscripts of the functions in Q*. Then the best
linear approximation of y with respect to the set Q*, i.e., the set of
coefficients bi which minimizes

lly = iiK* bifill

or, equivalently, which minimizes
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2 2 :
lly - = *bifiH = | [f@ ~ I ,b.f, @]1%dW(x), (3.16)
iekK iek
R
is defined by
L. (y,£,)
_ W i _ 1
WriTd [If.ll
i R
%
for each ieK . Since these bi values minimize the integral of the
square of the "error" (3.16), the approximation is called a least
squares approximation.
Now suppose further that y has the following structure:
y=f(x) = X aifi(§) (3.17)

iekK
That is, y is a linear combination of the functions in Q. By Corol-
lary 2, the best (''least-squares') approximation of y with respect to
the set Q* is given by
; = E(gg) = I ,a,f&®. (3.18)
ieK
Consider the special case where x is a real variable (gsEl) and

R = [-1,1]. Also suppose the weight function is w(x) = 1 so that the

inner product of functions £, g over V is given by
1
I,(f,8) = J f(x)g(x)dx (3.19)
~1

If the set of orthogonal functions is the set of polynomials of degree
0, 1, 2, ..., m, which are orthogonal with respect to the inner product

(3.19), the functions we obtain are the Legendre Polynomials

(Abramowitz and Stegun, 1964, Chapter 25). The same region, R, with the
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. , 2.1
weighting function dW(x) = (1 - x”) ', generates the family of .
Tchebychev Polynomials. Note also that if R = [~m,7] and dW(x) = dx,
the family of functions {sin nx, cos nx, n =0, 1, 2, ...} forms a set

of orthogomal functions.

'3.1.3. Some Results for Integration-Orthogonal Polynomials

Although the approximation theorem can be extended to cover non-
or@hogonal sets of vectors, approximation with orthogonal sets of vec-
tors is easier aﬁd, in many cases, less subject to round-off error in
computational. processes (Davis, 1962). Before proceeding to the pre-
sentation of some useful results for integration orthogonal polyno-
mials, two techniques are presented for producing orthogonal (or ortho-
normal) vectors from sets of linearly independent vectors. While the
two methods are equivalent, one, the Gram-Schmidt orthonormalization
process, is standard material in linear algebra texts, and the other,
based on the square root decomposition.of positive definite symmetric
matrices, is a more useful algorithm in the present study.

Theorem 3.2. Gram-Schmidt Orthogonalization. Let V be a real
vector space with inner product ( , ) and associated norm, || ||. 1If

Z ='{zl, Zys wees zm}uis any linearly independent set in V, i.e.,
m
‘ . L a,z,=0¢€V (3.20)

is impossible for any set of real scalars'{ai}unless all a; = 0, then

there exists an orthonormal set X ='{xl, Koy ooy xm} such that

k .
X, = E a1 (3.21)

k.
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The proof consists of the Gram-Schmidt process, .which is reproduced

here for reference purposes. The procedure is recursive.

1 1

Let x, = TTEETT-zl. Clearly llxlll =1, a;, = TTEZTT—. (Notice
that ]Izill = 0 is impossible, for ||zi]| =0 —> z, = 0, and the zero vec-

tor cannot belong to any linearly independent set.) Suppose that

'{xl, coes Xr} has been found so that it .is an orthonormal set satis-

fying (3.21). Let

(3.22)
Clearly for j =1, 2, ..., T,

(Xj’ur+l) = (Xj’zr'l'l) - ifl (Xj ’Xi> (xiDZr_'_l)

= (Xj’zr+l> - (Xj’zr+l> = 0.

u

r+l |
Set X 11 w, (3.23)

the setA{xl, ceey X +1} is orthonormal and x satisfies (3.21), as

T r+l

was to be shown.

The primary application of the Gram-Schmidt process in this study
will involve transformations of sets of ''standard" polynomials to orthog-
onal polynomials. The actual calculations will be performed in a
slightly different format. In order to motivate the calculation pro-

cedure.which follows, consider a set of standard univariate polynomials,

F ='{f0, f . fm}. (3.23)

1°?
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where
.fj(z) = zJ, j=0,1, ..., m.

Consider the vector space V = LZ(R,B,W) where R = [~1,1], dW(z) = dz.
As noted. earlier, the application of the Gram—-Schmidt procedure to the
set F (3.23) produces.the Legendre Polynomiéls.v,Denote the set of

Legendre polynomials through degree m by P ='{po, Pps coes pm} . From

(3.21),
k k i .
pk(x) = Z aikfi(z) = 2 k2 (3.24)
i=0 i=0
, , . . (m+l) .
Form a 1 X (mt+l) row vector. (with. values in .E“’ of the functions
{pk} and {fi}:
f£= (fO’:il’ "tf'fm)
B = (Pgs Pys «»s P (3.25)

Then, equation (3.24) can be written in matrix notation using the matrix

p = fA; p(x) = £(x)A. (3.26)

Note that the (mtl) X (mt+l) matrix A is upper triangular; aij = O for

j < i. As noted above, the A matrix is non-singular; letting B = A_l,

f=pA~ =pB; f(x)=p(x)B. (3.27)

The B matrix is also upper triangular.

Now consider.a linear combination of the fj’ a polynomial:

m m .
g(z) = I c,f,.(z) = 3% c.z3. (3.28a)
j=0 373 j=0 3
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= f(z)¢
where the (mtl) X 1 vector ¢ = (Cn, Cqp «ves C )'.
- 0 1 m

Evaluate g in terms of the orthogonal functions:

g(z) = £(z)c = p(z)Bc

il

m
jEO djpj(Z)

where

which implies

c = (B)_lgr.Ai.
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(3.28b)

(3.29)

(3.30)

(3.31)

Using the relations (3.30) and (3.31) a polynomial function g(z) is

easily converted.from a standard polynomial representation (3.28a) to

an orthogonal. polynomial. representation (3.29). and vice versa.

It should be. evident. that the results. above hold.for conversions

from any linearly independent.set to.an.orthogonal set. In particular,

the functions may be polynomials in any number of variables.

The fol-

lowing theorem demomstrates a computational algorithm for finding the

A and B matrices in the general case.

Theorem 3.3. Assume the general setting of Theorem 3.2; let A

be -the m*m nonsingular, upper.triangular matrix defined by (3.21) and

let B.= Afl. Define the mXm symmetric matrix M with typical element

m, ., where
1]

mij =,(zi,zj), i=1l,2, oo, my j=1, 2, «v., m.

(3.32)



Then M = B'B = (A_l)'(A—l). Therefore M is positive definite.

Proof. As before, form the 1lXm row vectors

z = (zl, Zos eees zm)

x= (Xl’ Xzs ooy Xm).

26

Of course,.each element of each vector is a member.of . the. vector space

V.. From (3.21),

or, equivalently,

m i
z, = Y b .x = X b, .x
i k=1 ki“k k=1 ki“k

Consider-the. inner product.(the(i,j) - element of M),

m m
my = (zg2y) = kfl P ¥ 251 Pos*e
m m
= ¥ I b.b,. (x,,x,)-
k=1 f=1 ki“ L3 3°7L
But'{xk, k=1, 2, ..., m} is orthonormal:

(xk,xx) = |0 if_k # 2

lif k=4
Therefore. (3.35) becomes
m
Mg = (ga2g) = L PyPye

(3.33)

(3.34)

(3.35)

(3.36)
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But the summation in (3.36) defines the (i,j)-element of the matrix
B'B, as was to be shown.

The theorem provides a computational method for finding the A
and B matrices by straightforward matrix computations. Given the pos-—
itive definite symmetrix M, one can apply the 'square root algorithm"
for matrices (see Faddeeva, 1959, for example) to compute an upper tri-
angular matrix B such that .B'B = M. One can readily compute A = B-l,
since triangular matrices are easily inverted.

The following result will be useful in the next subsection.

Theorem 3.4. Assume the general setting of Theorem 3.2. Suppose

it is desired. to approximate

n
y= I gz (3.37)

where o0.<.n <.m. Partition the vectors of cyo Yi’ Zss and x, as

follows:
< Y
c= 1 s Y = 1 » 2 = (51,52); x = (%5%,))
£y AD)
where each of ¢, and Yy is mXl. Also partition.the A and B = At
matrices:
A LA n B . B n
A= 12 B=|.. 1t 12, .
mXm 0 : A22 (m-n) 0 : B22 (m—n)
n m-n n m-n
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&
If § = is the vector of coefficients of the x-vector,
%
B B Y B,y Y, +3B,, Y
i.e., § = BY = 11 712 1) _ 11 41 12 =2 (3.38)
0 ByflX Ba2 X

Then the vector of coefficients Ei.which gives the.best approximation,

¥, is given by
c

€ 7Yy Ay By Xy

- [nin DA By [ 1

20
m
Proof. Since y = I {,x, = x0, where § = (6,, ..., 6 )' is given by
1=1 il = - 1 m
(3.38), by the Approximation Theorem,
n
y= I Gixl =xd
i=1
d §
where d = 1= 1
4, ]
Then by (3.31),
& Mg A | S
E. == = A_ =
L 0 Ay |l

Sy = Ap8y = ARy + ByoYy]

]

Yy + 8y9By3Xys

o -_._,'I
since AllBll
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Although the above.result is.useful, it is not.nearly as general
as.it might appear...The approximation it produces depends.upon the
order in which.the.z=vectors are arranged.in.the..orthogonalization pro-
cess; . those.z-vectors. (functions) which. are to receive.zero. coefficients
must be the.lastm(men).vectorswinwthe.Gram—Schmidt»procedure for the
result.above to hold.

The.point .is-that’ the.order.in.which.the z-vectors are entered

.into.the.orthogonalization;proceduremdeterminesmthe“resultingAorthog—

~onal vectors;.different.orderings.produce.different_sets.of orthogonal

vectors...The.orthogonal vectors.are.linear. combinations.of the orig-
inal.vectors;.-different.orderings. produce.different.sets of linear
combinations. (different A matrices). ..

In many -problems,..especially those. involving.sets..of polynomials
in one .variable,.there is.a natural.ordering.. However,. for polynomials

in;severalmvariahles~theﬂorderingﬂisvsomewhat.arbitrary. For example,

,consider,wfor“twouindependentuvariables,wthenfollowing ordered set of

functions:

2

. 2
(1, Xis Xps Xy Xy, xlxz).

Another 'reasonable" ordering is:
2 2
(Ly xps g5 XyX)5 X7, ).
The .difference is real, but.mot. altogether easy to.grasp. .If y is a

linear combination of the functions above.and one. decides to use an

approximation y which is a linear combination.of.the functions

{1, xl, xz, xlxz}
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_then the .approximations.produced.using. the.two.different.orderings above

would be.identical... However,.Theorem 4 applies only.to the second

ordering.

Now. consider how.different.approximations: might:be. produced.

Suppose. the. orthogonal-functions produced. from. the:first.-ordering are:
(Pla' 'st PB-’ Pz‘_s PS’ Pe)

and the orthogonal.functions produced: from:.the.second.ordering are

denoted:
(ql’q2’ q39 q43q5’ q6)°

The‘resultsowillAbe.identicalszpiwauqi,wfor"i.= 1,.2,.and 3. For the

. other: functions we.have the '"correspondences'. (which.are not exact,

of course):

Now consider approximation of y by §1,.a linear combination of
Pys Pys pé, and.p,; and by §2,,a linear -combination-of q;, 9,5 dgs and

3 the approximations would, in general,.be different:

Iy = 5,11 # 1y - 5,11
The approximations:are.different even.though. both. are.linear combina-
tions of terms.which "correspond" to the same subset .of. original func-

tions.
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However, . once.the. ordering-has . been.chosen .and.the orthogonal
vectors (functions). have_been produced;.the.approximation theorem is
more.generalwthaanheoremwA,fandgorder;isTunimportantqinwthe following
sense. Iﬁ X =’{x1,dx2,4...,qxﬁ}vis,an,orthogonalmsetrof.vectors, and
if
m

yv= X d

X, s
i=1 i1

*
then -for.any -non-empty .subset X <X,
y= I d,x,
x,eX* - *
i
is. the "best! approximation of .y over.the subset X¥,. regardless of which

subset was chosen.

3.2, .Minimum.Bias Estimation: .Best Linear. Unbiased Estimation
of the.Begt. Approximating Function

3.2.1. Definitions and Notation

Some cousideration:is now.given to.the estimation of approximating
functions. .. The. following assumptions, definitions and.notation will be
useful through.-the remainder of the study.

It.is.assumed. that n =.n(x) is a.response. function which belongs ..
to. the function: vector space L2(R,QB,VW)Adescribed.in-section 3.1.1;

i.e.,.n is.a.continuous function;ofuthear.variablesng_sA(xl,xz,...,xr),

. and.is square integrable.with.respect.to.the finite measure (or dis-

tribution function) W over R,C:Er..“ItqiS’assumednthat n:-has the struc-

ture

io1 355 (3.50)
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whereuthema.uare;unknownuparameters;and;theufjmaremanWn functions

J

(usually polynomials).of. x. . It is also. assumed that each

fj € LZ(R’ B, W).

Arrangewthe.functionsfj in.a.lXm row vector

o fm).

£= (£, £), ..

The Gram-Schmidt processvis;applied;touproduce‘themerorthogonal (not

necessarily. orthonormal)..vector of functions

P = (Pys Pys +++» P)

with:themconversionAmatriéésﬁA&wB“;_Afl, such that

-as..explained.in-the .previous.section. .. Thus, on setting

]
= (ul,naz, e am)

f=]
I

™

= (Blyrszawﬂfws Bm)' =Ba,
from: (3.50) - (3.52):

m
n=fao=pB= 1

4 BijQE)

(3.51)

(3.52)

(3.53)

The function n is. not. directly observable.. Experiments are per-

matrix,' traditionally.denoted by X:

formed-at. N.> m points.-x;,.-1.=.1, 2,. ..., N.. Compute. the Nxm "design
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[ ¢ £, (%) £ (x| | £
1@ f) .. F £
X = fl(§2) fzggz) ces fmg§2) = ‘£(§2) . (3.54)
Gy e - Gl |
In terms: of the orthogonal.functions. the design matrix is
-,2Q§l)_
p(x,)
P=XA=| ... ; (3.53)
| RGey) |

Pyj =-pj(ggi); 1<j<m 1l<i<N.

It is assumed that X and P are of rank m, which implies that X'X and
P'P are.nonsingular.

At the“pointuzﬁ.thenexperimanter observes

vy = n(;gi-) +€,1=1,2, ..., N.

These. observations: are.arranged. into..an NX1 vector. with the following

structure
¥ = (yy5 ¥y ---,yN)' =Xo+€=PB+¢€ (3.56)

where the vector € = (81, s +evs EN)' is a continuous N-variate ran-

dom vector with:E(g) =.0, E(g g') = Uzl,."OneﬂmayIassume cg is known or

~unknown. .. When £ is assumed to.have. the multivariate normal distribu-

tion, this assumption will.be.explicitly stated.
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Under .these. assumptions.the application of classical.least
squares estimation. theory. (Graybill, 1961): yields the Best Linear Un-
biased Estimators. (BLUE) for o and f§:
a= @0 X'y
A 1py—d T, 1yt -1 Tyt
B = (P'P) T P'y = (A'X'XA) (A'XN)y
= ™ @t @l ax'y = B (3.57)
Also:
~ ~ ~ , 2 , -1
E@) = 03 E[(a- @) (a - @)'] = 0° ®X'®)7;
~ A Il . 2 . _1
E@B) =8 E[B-8@-8'] =0 (2'P) 7 (3.58)

and, moreover, O, is . the BLUE.ofhoni,nB1 is. the BLUE of Bi’
i=1, 2,..4., m.. (If one assumes. £ has the multivariate normal dis-
tribution;qthewestima;orsﬂaboveware all Minimum Variance. Unbiased Est~

imators.)

Also, -the.BLUE. for n. at the point x is

() = £@a = p8 (3.59)
where
F@ = (£,@), £,), s £ )
and
px) = (pl(i‘)" Ppx)s vvs P ().

Now conmsider the effect_of an.inadequate model... Suppose that

only n<m of the fj functions are used.to "fit" the model (3.56). For
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convenience, .assume.the functions used are. fl’ fz, sony fn and par-.

tition the design matrix and coefficient vectors so the.true model is

y=X o + X, a, + €. (3.60)

Nxn nx1 Nx (m-;n) (m-n)x1

If only the.first n. functions. (those.represented-in. Xl) are used in

the. estimation. process,.-the.estimator a for g is:

. ] -1 v
a, = (Xl Xl) Xl ¥y (3.61)
and
- 1 -1 '
E(g._l) = (Xl Xl) Xl .[Xl -Oil + X2 9‘-2 + E(g)]
- ' -1 ]
= _qc_l + (Xl Xl) Xl ng_z (3.62)
a, = 0.

=2

That is, a.  is biased by. an.amount .depending.on. the.design matrix and

O,. Denote bynnL the estimator for.n based on 2 viz,.,

where _f_l(E) =. (fl(_;é), f2‘(§-’)’ ooy fh,(§)) the expected value of nL(z)

is:
i\ = — ] -1 1
Eln, @] = £,®E@)) = £.00; + £ @ & 'X) X 'R0, (3.64)
Unless QZ' = 0, N is biased.. In the presence of bias, the variance

criterion would:seem.to be inappropriate.as a.criterion. for comparing

estimators.of. . The. following. criterion is more appropriate. Let
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n* be any estimator for n; the Integrated Mean Square Error of n#* is:

IMSE(n*) = I E{[n(z)r-rn*(§)]2}'dw(§) (3.65)
R

f

o E{[n(x) - E(*(x)) + E(n*(x)) - n*(z)lz} dw(x)

f
= [ E{[n(x) - E(n*cg))lz},dw(§) + j E{[n*(x) - E(n*(§))]2} dw(x)

R R

(3.66)

3.2.2. Best Linear Unbiased Estimation of. the Best Approximating

Function

The function actually being.estimated by,nL above (3.63), i.e.,

S O N T D A B e s
s

N

E(nL),,is.anuapproximatinghfunctionhforun.“ SinceﬂE(nL)ndepends upon

the design .matrix, .it.may.or may.not be.a ''good' approximating func-
tion.- Consideration.is now given to estimation of:the best approx-
imating function.in.a.somewhat more.general setting.

Suppose one.chooses .to approximate. . n as a -linear combination of
a subset 6f-themfunqtiong 2;=.(p1,“p2,~..3, pm)s. Let 4* be.the (non-
empty) set of subscripts of the. selected functions. By the Approxi-
mation Theorem the best linear approximating function for n with re-
spect to .the chosen. subset of. functions is obtained by simply ig-

noring terms.in.the. orthogonal-function. representation of n:

n= iEA*Bipi. (3-67)

Notice that 7 is not equivalent to
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which would be obtained by ignoring terms in. the representation.of n
as a linear combination.of the.original.nonorthogonal functions. By

classical least. squares..estimation-theory.(Graybill, 1961, Theorem 6.3),

‘the best..linear.estimator. for 1 .at the point x is:

A A

i@ = I Bp,{x. (3.68)

This representation can be converted back to: a representation in terms

of the.original £ functions as.follows. .Define.the mXl vector § by:

B, = |8, if 1ed*
' (3.69)
0. 4if isA*
Then,
d = AR (3.70)
and
~ m
n(x) .= ,Z &ifi(g). (3.71)
i=1

3.2.3.  Equivalence.of the Minimum Bias.Estimator and BLUE of the Best

Approximating Function

In general, in. the w?;k,above, Bi~=~0«does_not.imply»&i = 0; that
is, .in .general all m terms.will be used in. the.representation of % in
terms. of. the_ original nonorthogonal. functions. .

Consider,. however,.the.following. special case which occurs, for
example,wifmthe;fiﬂare.polynomialswin.onefvariable, arranged in order

of increasing degree,.and.if the. approximator. 7 is of-degree n-1 < m-l.

(The special case. being. discussed.arises.in. any.situation in which §
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is a linear function of the first.n elements.of the ordered set
£ = (fl?'fz’ . fm)d)..Here,wél*.= {1,.2, ..., n} and

- n

n= iil BiPy-
Partition.the coefficient vectors

§1'=§l 3ﬁ1= %l ,
8 2,

where (3} and §1,areneachgnxl.”vPartition.thelestimatorlvectors o, B,
the function.vectors.f, p.-and the. A.and B matrices.to correspond. By

Theorem 4 .of. the. previous section,

Ny =-Bpfy = £ 19+ A)yBp0]-

Thus the BLUE of ﬁl is

A N Al
~

[P 273 Pl 41 (“ +AprByay) = fl

= £, [TiA,B,,) | 0, = £, [TiA) 12] a. (3.72)
&y
where
a = [I} fA,,B 12] u, (3.73)

The setting described.above is equivalent to the. setting Karson et al.

(1969) used in.deriving:the Minimum Bias.Estimator.under the following.

-restrictions.. . W(x) represents the uniform weighting function over R,

d.e., dW(x) = dxldx2 .wdxfWMthe.integrationuused in. defining the
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inner product:is RiemannzintegranionawmThe.functionsmfi{g) are.stand-
ard polynomials in. the r-variables, arranged .in order of increasing

degree.in.the:following“sensew,WIf.i=nw(fimto,be used.-in-the approxima-

.tion) and n<js<m.(f,.not.to.be used.in the.approximation), then it was

J

assumed. that. the degree of.fi;inﬂkais“lesswthan.or,equal to the

degree of £,.in.x , k =1, 2,...e.y-¥.. For example .one might have:
3 Fy

~ o 2 .2
il = (13 xl's 'xz‘)’ £2 = (x'lxz’ xls xz)‘

With such functions: the M.matrix of inner products becomes the matrix

of "moments' of.the region R.
mij = J fi (x) fj (x)dx.
R

In the above.example, one.element of M is
m,, = x. (xox.)dxodx,, =. xzx dx.dx,. .
24 | I R M At R} : 172771772
R R

The MBE for. g, under:the above assumptions is

oS APV A SR | "
Oy = (1] Mp,T oy ) = [13My) Myp] 0 (3.74)
2

Where:o is. the BLUE. of .0..(using the full model) and

M= Mll M12

Mo1 Moy
is partitioned to-match the partition of .. (M11 is nxn.) To show
the equivalence of.the.estimators. (3.73) and. (3.74) it is only neces-

sary to show
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_ 1
AllBlz = M11 M12 (3.75)
; . -1
R - . (3
Recall thatuAll Bll"(3'75) becomes .
Bt -1 ' (3.76)

Bi1 Bip = Myp My
Since B'B.= M, we have

, .
Bl1 0 -1B;; B M M
B! B}

12 722 o 22 21 22

Hence

t
Big By =My

\
Bi1 Bip = My

and

-1

_1 "l 1
Myq ¥yo B

1
B,7 (Byy) " Byp Byp

= (B'. B ),'1,]3

1
11 *11 11 812

X § -
= B3 Bigp = Aqp Byoe

This demonstrates. the .equivalence of.the estimators-in the special case

derive the Minimum Bias.Estimator as the BLUE of: the:Best Approximating
Function, this is clearly. the. principle which guided their work. Thus,
in the present exposition.an.estimation procedure.has been developed

which.represents.a generalization of the Minimum Bias Estimator.



4. A PROCEDURE.FOR.SELECTION.OF.TERMS. IN. THE. MODEL.WITH MINIMUM BIAS
ESTIMATION.AND. THE.INTEGRATED.MEAN.SQUARE .ERROR CRITERION

Many procedures:have.been proposed for attack on the problem of
selecting- independent:.variables.in a regression.problem. References
to.papers.-describing.many..of -these.techniques._have been.given in the
Review.of Literature.section.of this paper. -All of the procedures
mentioned. there suffer_ one.common affliction, which derives from.the
fact that.the .procedures..are. based on.''local' criteria, such as the
R criterion.. . Let . the.true response. (or "model",.or "regression equa-
tion'") be demoted by

| m
nx) = jzl o, £, G,

where x is an.nxX1l column vector, x =.(x1? x2,;...,_xn)' and ijE) is
a polynomial. in the n variables.x,. For example, if.n = 4, one might

i

have
_ 2.3
flﬁg) = X X KX)o

Let R, the .''region of interest', be a subset.of.Euclidean n—space,AEn.
In essence,.procedures.for selecting. terms.in.a model. produce an esti-

mator for n, say ﬁ, of the form

&, £ (x) .

A\
nx) = L 4

nh~mB

3
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If the j-th term is.excluded.from.the model. (by whatever procedure .is.
being,applied),ithereffect”is to setQ&j =.0,“JSuppoée,=for example,
that applicationmofuthemprocedurenbeingmuseduresults in setting

&j =0, j = my +,1,.m1 +.2,.+44,.m, so.that.the estimator is

m
1 m
n@ = I GE @+ I 0f (.
s g= 33 J=m,+1 J

The point is that. the function. really being estimated by.ﬁL.(that.is,
E[ELJ)Mis.notm(except;inwspecialmcases)mthewbestmapproximating function
for.n.. That is, define

™

n = jzl ocjfj (x) (*)

the function being.estimated. by ﬁL"'ﬁL is.not (usually) the best ap-
proximating .function .of.n. of. the. form (*),. as. was. shown. in. the previous
chapter.. Thatﬂis,winngeneralmthe3estimatoruﬁL,.producedmby.themprOf‘.u.
cedﬁresJmentioneddabove,wismnotmawminimumwbiasmestimating function.
In.this. chapter a.procedure.is.developed which is 'global"”.in....
the sense. that the.criterion. takes into account .the properties.of the
estimation-approximation procedure over the.whole region of interest,
R.. Moreover,.as.will be.seen,.the.procedure is . applicable to. full
general . linear models. including polynomials. in.many variables. The

procedure.allows one to-test any term. in the model.{low-order poly-.

.nomials.as.well as.high order.polynomials).for.''significance', and.

the. one: 'best". regression equation of.all. possible.regression equa-

tions. (as.measured:by-the.criterion. defined.below). is.simply obtained..

The.properties.of.the coefficient. gstimators.are also derived.
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4.,1. Minimization of Integrated Mean Square Error with
Respect .to Choice of Terms in the Model,
-Parameters Known

Assume that. the true.response. function n is a polynomial function
of n variables, x = (xl,n.4.,th)7,.andmassume a ''region of interest',
R<E. Assume.also-a weight: function.or-finite measure W is defined .
over R and thatwn,a.L2n(R,mBT.W)che.vectoruspace.discussed in the

previous.chapter. That is

0 < j n2(§) dWw(x) < + (4.1)
R

Let ,Pkcg), k=1, ..., m -be integration-orthogonal polynomials in

L2,_itg.,

. J1ifdi=3
JP.-»(J_L)P.(E) dw(x) = (4:2)
2 i J - 0if 1 # j

Assume. . that. the degree of eachmPkQE).in each.of the variables

X .,Hxhqis,specified.. Assume. also. that. the .true response function,

10 e

N, . can_be written as

m .
n@.= I BP. & (4.3)
j=1 34

Note thatﬂBjns 0 for any j. & {1,:25.4e.,.m} is.explicitly allowed.

v
Let B

5° J = ly 2500 mee.estima;orsﬂof‘theij, and define

n) = I \éP,(gc_). C4.4)

v
Certain.of the estimators.f,.are. explicitly allowed-to.be zero with

3

non-zero.probability, i.e.,



v
E[(B

1?[%'j =0]>0-

Note that setting;Bj

the model (or.the "regression equation')...It.ls. assumed that
g

3

mable.

Define.the integrated mean square error (IMSE) for ﬁ to be

IMSECY). = IWE{[ﬂ(g)-ﬁ ¥ 12 anca) -

R

Theorem.4.l.. With the setting.described above

. v m
IMSE(n) = Z E[(B, - B )

value.-operator -can-be.interchanged in (4.5):

EJ I = ME@1? e

IMSE =
[ m v 2
=Ef RRCHER RENEI U
) ela=1

i

R,Lj=l' i=1

1
=] di=1 R
m v 2 m
=E| I (Bj -ij) = I E[(Bj
=1 | j=1

as was -to be shown.

_ Proof, . Since.all. terms.are finite,.the. integral and the expected

' m m v v
= EJ DX (B.‘—,B,i>(6j - Bj> P-i(zc_)Pj(z)] aw (x)

m m v v
E [Z I (B, - Bi)(Bj - Bj) I P, ). Pj(z) dW(E)]
J

X 2
-Bj)]

44

= 0.is.equivalent to deleting the.j-th term from .

),,2_] < + o for each.j = 1,.2, .o.; m, and that. each B g is esti-

(4.5)

(4.6)

4.7
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Some remarks on .equation. (4.7) are in order.. First notice that

evenAthough;thejgstimatorsugs may.-be .correlated, .no covariance terms .
appear -in this expression. of.the. IMSE....Also, notice.that. the summation

form of equation (4.7) allows.one to.consider the coefficient estima-

tion one.term at a time.

4.1.1.. Experimental Model

The following experimental model will be.used throughout the
paper.
It is assumed that.a 'true'".response function
m

nx).= I
j=1

P (x 4.8
ByP4 () (4.8)
is defined.over-the. region.of interest R.C Enﬂandrthat the'{Pj(E)} are
integration-orthonormal functions . (usually polynomials) of the n var-
iablesN§;=,(xl,v.,.,‘xn)',.i:g.,
S Sl dif i =3
J P (@) P (x) dW(x) = (4.9)
J o 0 if 4 # j
R .
where W(x)-.is.-either a .finite.measure.defined: over R.or.a. distribution

function'of;finite;variation;overLRmas,discusseduin.theuprevious'chap—

ter.
- It.is: further. assumed.that.N.observations are.taken at the points
X,:
L
'Yi,= nggi)“+.ei, i.=1, 2, ..., N. (4.10)
Also, € = (el,,...; aN)f"has the multivariate normal .distribution,
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N(Q,oé,l),.where Gz may: or may not.be known. Thus. the vector of obser-

vations may be expressed as

Y = PR + £ (4.11)

Nx1 Nxm mx1l  Nx1
where the matrix P = [pij]‘is defined by

Pij = Pj(§i)"j =1, 2, veey, my. i =1, 2, ..., N.. (4.12)

The matrix P is assumed. to have. full.rank so that the minimum variance

unbiased estimator of B is

A

8= iy (4.13)

“which has the multivariate.normal. distribution: N(B, cg(P'P)—l). The

minimum: variance:unbiased estimator of 08 is

A2= 1 o _Av '
o =5 Q'YL -8'P'Y) : (4.14)
(N—m)c2
and,———if——f:'has.the.central:xztdistributionywith,Nrm degrees of
(o]
€

freedom, .and.is .distributed.indepandently of 8.

4.1.2.. An Example

Suppose one.decides: in.advance.of an.experiment. that.certain ones
v

of.the,Bj = 0 (i.e.,.certain. terms.are.to be. deleted from the model),

-and. that. others. are-to.be. set equal.to. the.corresponding-least squares

estimators. (terms. to be included. in the model).
Under- these assumptions,.for.coefficients. corresponding to terms

"in the model',
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N

v :
Bj.= Bj,utheuleast;squaxeswestimator, and

% 2 A - 2 = A .
E[(B, - 8)%] = EL(B, - B,)"] = Vax(8,) (4.15)

v
For terms not.'in the model'', i.e., those.terms for which Bj = 0 (set

in advance. of the experiment),

ELGEy - 8% = 8L - 871 = 62 (4.16)

3

Then:

v \V4 2
IMSE(D)..= f E[(n@) - n@)%] dv(x)

R
= bX Var(Bj) + I - 82 . (4.17)
terms in terms not in 3
the model the model

As explained in Chapter.3, .the.procedure.described.above is just the
Minimum Bias.Estimation procedure.
- The. result . above suggests.an.intriguing. possibility for obtain-.

N

ing a smaller IMSE. _If it.were.known in advance. that B§~>mVar(Bj),,one :

v N
Would sethju=.Bj.(keep"thelj—th term.in the model) .and obtain.a

- smaller. IMSE.-than.would be.obtained .if.the.j-th term were. deleted from

the model....The.procedure.-would.be.applied. individually.to each term
in the model.

An additional bonus is_obtained: . no. matter which terms are de-
leted from. the.model (by setting éj = 0).the resulting estimator, %(3}

is the minimum bias.estimator for n(x) of the form chosen, and .

~ v
Nn(x) =_E{n(§)Jﬂiswthe~bestwapproximating.fungtion of n of the form

chosen.
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The. procedure above.can.be.summarized as follows:

. E if. Bz> varA(/B\j) <= ]BJ l > Vvar(Bj)

: J J
B =
O.cherwise,,i"g., Ile < Vvar(Bj)

for =1, 2, ..., m.
Of.course,mifmonguknew~the.Bj,values.inwadvance there would be

no.-need.for .experimentation.-and estimation.. However,.the above pro-

cedure.motivates.the.following.estimation.procedure. for each term

8B

) in the model:

J
(1) Test the hypothesis:

H: |B] < Véar(Bj)

(2) Define .the estimator:

.O.if,,Ho is accepted

v
Ba,= A A
I Bj if;Ho is rejected"(Bj,iswthe least.squares
esfimator.)
The test in step.(l) will,dependiénmwhethepmc? =vvar(Bj) is known and .

on the level (o). of. the.test...The.properties.of . the.estimator above
forithevtwomcasesufbgmknown, ngunknown)uareAderived in. the next two
sections. ..When .these.properties.are. developed (based.on UMP tests),

it is seen.that the.estimator.is.of the form:



49

Ej if |§j| > C v 8§
g = (4.18)

0 if ]Ejl <c v/ 3§

N

(if 02 is known, replace 0§ by O?), and one can discuss.the "cutoff

3
point,'. C,..rather.than.the.level, 0, of the.test.. A.discussion of the
choice of -the cutoff.points.follows.development of.the.properties of
the estimators.

The procedure..outlined.above .is.based.on a. two-tail.test. There

are occasions.when-a. one-tall procedure is appropriate. In such a

case, if it is. known that Bjnzfo,ﬁthe-estimator:is:

<

w0
]

j ~
0 1f B, < CV c§

(where Oj is“replaced.byﬂaﬁ, if-known)¢.yIf<Bj.E,Ouone,cqnsiders - Bj.
The. properties of.''one.tail estimators'. are.developed in.section 4.3.
Consider the following generalized procedure. Let A be a sub-
set of the. real line, and define:
B, = 0 if __Ei_ E A
/ool
Jd

"N

Bj otherwise

This type of procedure.is suggested by Bayesian techniques.for selection
v

of regions on.which ijﬁ,0.—mThe.propertiesvofwthis.generalized proce-

dure for-certain. simple. types.of.A-sets (intervals, complements of in-

tervals, and half lines).are..developed in section 4.4.



50

4.1.3. . .Regults Useful for Evaluating Integrals

The: evaluation of expectations. and mean.square errors in suc-
ceeding sections.will require. the numerical. evaluation.of the cumula-
tive distribution.function and. partial. first and.second moments of the
standard. normal probability .density function...The.algorithms given
here are. intended. for.use. on.a.computer;. the.computer.used for com-
puting.charts. in.this study was .the..IBM. 360_-Model.?75. -Since.IBM.and
most.other. computer.manufacturers. supply. very.accurate-algorithms for

evaluating. the.error.-function, defined by:

X

2 2
erf(x).='/T I e dt,

o

this. function.is used.as a.basis for evaluating the functions below.
The cumulative normal.distribution function, denoted by &, can

be evaluated.in. terms. of.the.error.function (Abramowitz and Stegun,

1964, equation 7.1.22):

X 2
f L -=% [1+ exf (x/V2)] (4.19)

-0

O(x) = ——
vam

The..partial. first.moment (denoted PFM) of the standard normal

probability.density, defined by

b
PFM(a,b) = = £ ~c%/2 dt (4.20a)
)=o)t ‘ e

a

can be .evaluated. directly.-by.observing that

%E (~exp (~£2/2)) = t exp(—t2/2)°



Thus the PFM function may be evaluated by:

1
PRM(a,b) = > [exp(-a’/2) - exp(-b%/2)].
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(4.20Db)

The partial-second.momemt. (PSM)..of the standard. normal probabil-

ity density, defined by:
1P, )
PSM(a,b).= /2—'”—- J t ,-exp(-t /2) dt
a

can be evaluated.by.integration-by-parts. .The result is:

2 2
—i—-jitzexp(4t2/2)dt . Tt exp(zt7/2) | J exp(-t~/2) 4¢.
2m . /2 Jam

Therefore the: PSM.functlion may. be evaluated as:

. 1 2 2
PSM(a,b).= —— [a exp(-a~)-b.exp(-b")] + ®(b) - ®(a) .
i 2 2

(4.21a)

(4.21b)

(4.21c)

The ¢, PSM, .and.PFM.functions.were programmed.as.double precision

FORTRAN . subprograms. for. use.in.evaluating. results.discussed in the

following sections.

The. following.lemmas.will . also.be.-useful .in.the.-following sec-

tions.

Lemma 4.1..  Let (x,u) be jointly independently distributed ran-

.dom .variables .such.that.x has. the (marginal) normal distribution,

N(8,1), and vu has . the. (marginal) chi-sguare. distribution with Vv

degrees of. freedom,.-i.e.,. the joint density function of (x,vu) is:

exp [-G=0)2/2] . vu) Y2 Lexp (-u/2)

/T Y21 wy2)

f(stU; 8,v) =

= fl(x;e,l) fz(u;v) = fl(x) fz(u)
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over the region
{(x,u); o <x <+ o 0<u},

Let al, az,wa3, aﬁ,be,givenuconstants satisfying

and define the following.-subsets.of the.(x,u). - sample space:

A

1 A,w): uw > 0,,ai'¢z‘? xLa; Vu}

B,
i

Ax,u): uw.> 0, (x,u) ¢ Al, 1=1, 2,3

Bi is the complementwof,AiArelative“toﬁthe”sample.space, Let h(x,6)

-be.a continuous function.of. x.and.a parameter,.6. -In the applica-

tions, h(x,0) = X or h(x,0) =.(x—6)2. Let k be.a.real constant; in

the applications.-k’=.0.0r.k.= Ggm..Define"the functions

gi(x,u) =~h(x,6)~lBi”(x,u).+ k lAi (x,u)

8§(x,u) h(x,0) lA_ (x,u) + k 1, (x,u)

i i

and

I1(6; .a, b; ¢, d) =

b
2 2
[k-h(£49,0)] £ (£30,1) P[HERL < y2 ¢ ﬂ;—‘;eL] at.

c

o



Then,

Elg; x,u)] = E[h(x,0)] + 1(8; -, -85 a;, a,);
Elgf(x,u)] = k - I(0; =, -6; ars 8,)3
E[gz(x,u)] = E[h(x,0)] + I(9; -—», -0; a,, 0)

+ I(Q; -6, 3 ags 0);
Elgh(x,u)] = k = I(8; -=® -8;.a,, 0) = I(8; -6, =; a,, 0);
Elg,(x;u)] = E[h(x,0)] + I(6; -6, ; a5 33);

LR
E[g3(xgu)]" k.- I(es -0, 3 349 33)-

Proof. . First note that

Rl

JJ h(x,0) f(x,u) du.dx.+ k JJ £f(x,u) du dx

Bi Ai

E[gi(x,u)]

E[h(x,9)] + jf [k -~ h(x,0)] f(x,u) du dx,

A,
*
and
E[gg(x,u)]A= IJ h(x,0) f£(x,u) du dx + k j[ f(x,u) du dx
Ay By
=.k,—.jJ [k - h(x,0)] £(x,u) du dx
Ai

k + E[h(x,0)] - E[g; (x;u)].

The integrals over the.sets"Ainmust be evaluated separately. The

integral over Al is:

53
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. JJ [k-h(x,0)] £(x,u) du dx

A
' o » Xz/ag
= J [k-h(x,0)] fl(x;e,l) J fz(u,v) du dx -
-00 ~x2/ai

Change the variable.of integration for the outer integral to

t = x - 0. .The inner integral becomes

2 2
P v (t+6) < Xz < v(t+0) ,
a2 V a2
1 2

the limits.of integration change from (-, 0) to (~«, -0), and

k. - h(x,0) =k - h(t+6,6). . Thus,. the whole quantity is

a2 a
' 2

- 5 )
- j e - h(e0)] £y (es 0,1) B | MERL <52 I D [
1

=00
= I(8; -*, -0; al’ az);

adding E[h(x,0)] produces-the.result.stated.in the Lemma.
The. other derivations.are essentially.the same and use the same

change. of variable:

JJ [k.- h(x,0)] £(x,u) du dx
A

2
[s] [e e
= J [k.— h(x,6)] fl(x;e,l) J fz(u,v) du dx
= 222
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o 0

+.J [k - h(x,0)] fl(x;e,l)' f fz(u,v) du dx
) ' x2 a2
3

= I(0; —o, .-0; 2,5 0).+,I(6; -8, %, a_,, 0).

3’

Addition of E[h(x,9)] produces.the.desired result.

JJ [k. - h(x,0)] £(x,u) du dx
43 ® ﬁz/ag

J [k - h(x,0)] £, j £,(u,V) du dx
vleai

I(6; -6; a5 a3).

Addition of E[h(x,8)] produces the.desired result.

The .expectations: of.. the functionsng§(x,u)uarevfound from the
equations<above»foruE{gi(x,u)].and the relations between E[gi(x,u)]
and E[gg(x,u)].

The integrals.above. with the. chi-square.probability in. the
integrand must.be. evaluated by.numerical.approximation. In such .
methods it is. important to. evaluate. the .integrand very accurately;
Abramowitz.and. Stegun. (1964, Chapter. 26).give.equations. for the direct

evaluation..of. the.chi-square. distribution function...These formulas

. were incorporated.in.a.double.precision..FORTRAN. FUNCTION. subprogram,

QCHI,.which: was_used. for.calculations.in this.paper.
Lemna 4.2. Let.x be.a random variable.with the N(9,1) distribu-
t’:i.on,,,.w:i’.t:h‘fch.:ms:iit:y«.d,encn;ed.;E:[-.(’x;.e,l).ra mLethal, 32 bemgiven.constants

such that - s-a; < a L.+ and. define.  the following. subsets of the

2

samp 1¢f space:
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B = Ac = {x: x<a,or x> 32}'

1
Let h(x,0) be.a.given continuous. function.and.let k.be a given con-

. .stant. Define
g(x.)“ = h(x,0). lB<(X) + k lA (x)

_g*(g)us.h(x,e).lA(x) + k lB(x).

Then,
Elg(x)] = E[h(x,0)] + k[®(a,~0) - ®(a;~0)]
a2—6
- j; h(t+0,0) fl(t;o,l) dt
I. al—e
and

E[g*(x)] = k + E[h(x,0)] - E[g(x)].
Proof. First comnsider

Elg(x)] =.Ih(x,9) fl(x;e,l)dx +. k J fl(x;e,l)dx
B A
82
= E[h(x,0)] + j [k—h(x,G)J,fl(x;G,l) dx.
’ a

1

Let t = %x-0; then

= a2—9 ,
E[g(x)] = E[h(x,0)] + I [k-h(t+6,8)] £, (t;0,1) dt
al—e
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a2—6
= E[h(x,0)] + k.J £,(30,1) dt
a,-0

a2-6
- J h(t+8,0) fl(t;O,l) dt

al—e

which is equivalent. to the desired result. Now

E[g*(x)]

-J h(x,0) fl(x;G,l) dx + k J fl(x;e,l) dx
A B

e+ | GO -0 5o
A

k + E[h(x,0)] - Elg(x)].

as was to be shown.

4.2. Properties .of the Estimators Based .on Two-Tail.Tests

Throughout this section the experimental model is assumed to.be
as described in section.4.l.l. The distribution .function, expected

value, and mean square error of the estimator (4.18) will be derived.

4.2.1. . Properties with 02 Known

InvthisAsubsectionwit-is.asSUmedmthatvdé is known, and, there-

fore,.c§.=uVar(f%),“can,be computed.as.oﬁatimesuthenj—th diagonal

.element of (P'P)_l.

Since..the. integrated mean.square. error. is.the.criterion under
consideration,. by Theorem.4.1l .the.estimators.may.be-considered one at

a.time. Define:
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if [B | >¢ Véar(B )
v G .
0 else
The real question of .interest is whether.lﬁjl > Vvar(Bj), which is
equivalent to ] ]
Byl > 1. (4.23)
var ( )
Define
B,
—_

0 = s (4.24)
Vvar(Bj)

and its minimum.variance: unbiased estimator,

(The symbol.".'" means.''is distributed as".)

Now, inequality (4.23).is-.equivalent to
H: 6] 21 (4.25)

and the procedure (4.22). is motivated.by.the fact.that.the UMP level

: avtest.of.Hbr(a.ZS) is. (Lehman,.1959,.section 3.1):

1 if. |§j| >C Véar(g )

: h|
¢ (Bj) = (4.26)

0 else
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v ~ ~
where C depends on o, and Bj = Bj¢(3j).
The properties. of gg,are more. easily derived in terms of the
standardized variabies:
v v < ~
0. = B,/VYVar(B,)
| 3 3
. Jeif |of 3¢
= (4.27)
0 else
.
= 0 1; (8) (4.28)
where 1B is the indicator. function for the set B = (-», -CJu[C, +):
lifxe B
lB x) = . (4.29)
0if x ¢ B

v : v
The probability distribution of 6 is mixed. . Let F(0;0) denote the

distribution function for a particular value.of the parameter 0O; then:

_ )
(1 2 M
~fr~,J.nexp[=(t-9) /2] dt, for -~ < 0 < -C
vaw 4
v
F(-C36) for -C <6 <0
F(6;6) =( 1 c , (4.30)
F(+C;0) = o Ju exp[-(t - 6)2/2] dt, 06 <C
._oo. :
v
4]
1 2 v
— J exp[-(t ~ 0)7/2] dt for C < 6 < 4+ .,
(Zﬂ o

\'4
F(6:8) is continuous except atAg = 0;.1t has a continuous derivative,

v V.
. £(0;0), everywhere except for. the set of points, 6e{C, -C, 01.
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\'%
Now consider the mean square error of 0, which can be found by
application of Lemma.4.2.. In that lemma, set k = 62, x = 0
h(6,0) = (6-6)2 so h(t+6,0) = t2; -a; = a, = Cso A= [al,a2] = [-C,C]
~ v
and B = A® as above. By Lemma 4.2, since g(6) = (8 - 6)2,
\% 2 ~
MSE = E[(6-08)“|6,C] = E[g(6)]
c-6
= Var(é) + 62[¢(C—6) - ¢ (-C-8) - j tzfl(t;O,l) dt
-C-0
= 1 + 0%[6(C-8) - ®(-C-6)] - PSM(-C-6, C-0) (4.31)
c-0 9
2 2, -t°/2
b= o
=1+ C -—t)e de; (4.32)
-C-6 vam

where ® denotes the cumulative distribution function and PSM denotes
the partial.secondAmoment,fundtion for the normal distribution, as
discussed in section 4.1.3. Although (4.32) is a compact representa-
tion of MSE (0,C), equation (4.31) is suitable.for numerical computa-
tiomns.

A graph of the MSE. function for. various values of C and for

0 < 0 <4 is displayed in Figure 4.1. . It should be noted that.the .

function is symmetric about O in 6: MSE(6,C) = MSE(-6,C), so that
only positive values: of 0 need.be considered.

It should also be noted -that for C = 0, 5 = 8 identically
(i.e., Eg = éj); this is equivalent to always using the least squares

estimator4for,8j. Therefore

~

MSE(6,C = 0) = VAR(6) = 1, all 6.
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Figure 4.1 Mean Square Error of the two-tail estimator
b = é/s.d.(B) as a function of 6 and C;
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This straight line is also plotted.for reference in Figure 4.1. Dis-
cussion of Figure 4.1 is deferred until similar figures are developed
for'fhe case where 02 is unknown.

v
The mean square error of Bj.can.be computed from:

SE(B - use(d,8 g
M E(Bj’Bj) = MSE( s ) var( j)’

is the true value and Q = Bj/Vvar(Bj) .

where B

J

Vv
The expected value of © can be found by applying Lemma 4.2 with

k = 0; h(6,0) = 03 -a; = a, = C; A= [-C,C] = [al,az]; B = Ac, and

~ v
g(®) = 0; by Lemma 4.2,

E(6]0,C) = E[g(6)]
g9
= 0 + 0[0(C-8) - &(-C-8)] - f (e46) £, (£50,1) dt
-8
= 6 - B[8(C-6) - B(-C-8)] ~ PRM(-C-0, C-0).  (4.35)

where ¢ is the cumulative distribution function and.PFM is the partial
first moment function.for. the.standard normal distribution, as dis-

v
cussed in section 4.1.3. The bias of 0 is:

BIAS(6,C) = E(b - 0)

B[®(-Cc-8) - &(C~B)] - PFM(~-C-B,C-0). (4.36)

This function is plotted in Figure 4.2 for various C values and for

V A
0 <6< 4. Again it should be noted that if C = 0, 6 = 6, so the bias
is zero. Points are not plotted for © < O because of the symmetry

relationship,
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Figure 4.2 Absolute value of the bias of the two-tail
estimator O = é/s.d.(B) as a function of

6 and C; 0% assumed known.
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BIAS(-8,C) = -BIAS(6,C)

which can be inferred from (4.25).

To this point.the distribution function, expected value, and
mean square.error.of guhaveqheen-displayed as. functions of 6 and C.
The corresponding functions for the coefficient estimaﬁors, E}, may
be found. from the defining relation (4.24). 1In all of these deriva-
tions it.has beenvassumed,that,céwis.known (and, therefore, that

A

v
(var(Bj) is known),.and alsoc.that the estimator Bj is based on.a two-
tail test.. The next section contains.an. investigation.of estimator
based .on. the .two=tail test. when oé is estimated. .The theory for

estimators. based.on.one-tail tests and more. general estimators will

be developed. in later sections.

4,2.2,. .Propetrties. with 02 Unknown

In this section.it.is. assumed.that the experimental model is
as described,inwsectionf4;lal;»o§ is. assumed unknown.

,Theuprocedure;isuessentially the. same.as.in.-the.previous sec-
tion. For each term.in the model

m
nx = I B

i1 ij ), (4.37)

14

. the hypothesis

H_: ]lecf Vvar(éj)a' (4.38)

4
is tested .and the estimator ijis defined by

v 0 if Ho is accepted
Bj = N ° (4-39)

Bj if Ho is rejected

N i W
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Consider the procedure:

5 if |§j1_3 c%&gr(éj)

B, = . (4.40)

J ~ S
. 0 if ]le <C var(BJ.)

B

<

Since the same procedure will be applied to each term in the model
(with possibly different. values for C), the notation can be simpli-

fied. Let:

(a) /B\mN(B,o‘z);. i.e., 02 denotes var(é);

(b) 6 = B/o; (4.41)
(c) & = B/ownN(B,1);
(c:'l),o‘2 be the estimator. of 02,,= var (B) based on v degrees of freedom;

N

(e) 2—%&/\)(\2) independently of B. = (Graybill, 1961).
o

Let

P B - @
~ ~ 2 s

(4.42)
02 02/0

which has. the noncentral. F. distribution with 1 and.v..degrees of free-

dom and noncentrali.ty”parame.ter.,e,z/ 2. Ho (4.38) is. equivalent to
H : le| < 1. (4.43)

Toro and:Wallace (1968). have shown. that. the UMP test of Ho (4.43) is
given by:
Accept Ho: if F <K

Reject HO: if F >K-
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where the .constant K depends.on the degrees of freedom and the level

of the test. .The acceptance criterion (4.44) is equivalent to:
®)% <k 0% «=> |8| < /o (4.45)

which is equivalent to the procedure (4.40).

In.the derivation .of.the. mean. sguare_esrror. and.expected value
v
of B it.is more-convenient. to.work with the standardized random

v
variables. f.and.0,. and.the standardized. parameter,. 8. In order to be

able. to apply lLemma 4.1, define:

(4.46)

(vu).is. a.chi-square random variable with Vv degrees of freedom, dis-

tributed independently. of .8, as previously mentioned.. From the rela-

- tions above,

EE|g, ¢, v) = E@6, C, v) Vvar(R)
B[ - B)2]8,.C, v] = EL(S - 02|08, C, vIvar(8). (4.47)

v
. The mean square.error.and.expected.value -of.0 will now be

developed.. .Consider. the. following two subsets, A and.B, of the two-

A

dimensionalwsamplewspace.ofﬂ(ﬁ; u = 02/02):

B ='{(5, u): 0.< u, ]Ae] o= ]AB] >C J/o* = Juo?

i

2

{(89 u): 0 i'us 5 _>_ Cz U} (4.48)

C ﬁoz/v}

i

.
1

—‘{(8, u): 0.<u, |%] o= fé] <c /o

A

{®, w): u>0, 8% < c® u/vl.
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Clearly A and B are disjoint and A +.B is the whole sample space.

Also,

A

v ~
=290 1B(6, u)

where lB.is.theuindicatorufunctionuof.thenset,B,»uForuthe mean square

v
error of O, at given values of 0, C, v:

MSE(8, C, v) = E[(§ -"8)%]6, C V]

apply Lemma 4.1 with the following correspondences:

x=0; u=u; -a, = ag = C;

2

h(0,8) = (8 - 8)%; h(t+0,0) = t%;

~ v
= 62;.g2(6,u) = (0 - 9)2.

~
]

Define the function

b
| 2 2
I,(85a,bsc,d) = j 02-¢2) £1(t50,1) P 255‘-229)—< X < ng)_] dt.
c d
a

(4.49)

Then, from Lemma 4.1,

MSE(8,C,V) = E[gz(g,U)]

Var(9) + IM(G;--w, -0; -C,0) + IM(G; -9, ©3 C,0)

L}

1+ IM(B;'-w, 403 C, 0). | (4.50)

v
To get the expectation of O, apply Lemma 4.1 with the correspondences:
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X = 0; u=u; —a, = a; = C;
h(6,0) = 0; h(t+6,08) = t+0;
~ \'4
k =0; g,(0,u) =0
and
b 2 2
. . I i v{(t+H) 2 _ v(t+d
IE(G,a,b,c,d),- I (t+0) fl(t,O,l) P ———:5—— < Xy < d2 dt.
a
(4.51)
From Lemma 4.1,
v A
E(6]6,C,v) = E[g,(8,u)]
=0 + IE(G; - 405 C,0).
Thus, .the bias inug'at the values 6, C, Vv is
v
BIAS(8, C, V) = E(6-8/6,C,v).= I (8; -=, @5 C, 0).. (4.52)

. The integrals (4.50) .and (4.52) must be approximated by numerical

t2/2

and. the. doubly~-infinite range,
these integrals would. appear.to.be good.candidates for Hermite quad-
rature (Hildebrand,.1956)...However,.for. large.degrees of freedom the
cumulative.chi-square.distribution function is almost.a.step function
at the mean.wvalue, V...The. sharpness.of.the curvature-.of. the integrand

near the values

2
Eg;'t-i';)_ = .\),‘ _og_o, t = —e + C (4-53)
C
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cause the Hermite quadrature algorithm to fail.

Since the integrands tend to zero very quickly as t becomes
large (due to the exp(—t2/2) and chi-square probability factors) the
integrals.can be . adequately.approximated over.-a relatively short
(finite): interval, asﬂfollowsm,”Let.wabe.anminteger such that

2 2y ¢ o = -10
P[xv/v > XO] e =10 .
The one .can use as upper and lower limits of integration:
t, + G 2 9
RO — = = -+ -
c Xo’ i.e., t, =% c Xo e, (4.54)
since the integrands are negligible outside the interval [-C XO - 0,
c Xo - 8]. Since the integrands have.greatest curvature in the
neighborhood. of . the .points. (4.53), the three.subintervals defined by
the points
-C XO -6, -C-86, C~-6,C Xo -0 (4.55)

were used. .A 32-point Gaussian quadrature.algorithm was applied to

the integrands in. (4.50).and (4.52).over each-of. the. subintervals

_defined. by the.points (4.55). The integrals. (4.50), (4.52) were ap-

proximated as the sume.of. the corresponding approximations over the
three.subintervals. All.arithmetic was.performed.in. double precision
(about._15.decimal places).on.the IBM 360/75. .Of.course, the final
results.are.not. accurate..to.l5 decimals.

A.check.on.the accuracy.of.the. approximation is available. As
v_becomes. large.the. integrands. become more.ill-conditioned and the

accuracy of the.approximations. decrease. .. However,. for.large Vv, the
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functions MSE(P, C, v) and. BIAS(O, C,wv),}cz unknown., tend.to MSE(®, C)

and BIAS(6, C), Gz.known,.respectively.,.Convergence of -the correspond-

ing families .of plotted.curves. convinces us.that.the.approximations are

adequate.

An additional check on. the accuracy. is available. The n-point
Guassian .quadrature.algorithm.is. equivalent. to. fitting.an-n - 1 degree
polynomial. to.the integrand.(the. polynomial equals the.integrand at n
selected points),.and then finding the.''exact" integral.of the poly-

nomial. If.the polynomial very closély approximates. the integrand,

_then the integral. of the. polynomial will be very close to the integral

of the integrand. For several of.the parameter.value.combinations con-

sidered, -the integrand and.corresponding. approximating.polynomial were

plotted...The. approximation was.very. close in each case; in addition
the .approximating. polynomial. oscillates. about. the.integrand, which.

implies. that.on.integration.the errors.of.approximation tend to cancel

. and . produce.a.very. accurate approximate integral.

The curves.computed. for. the mean. square error.of g, MSE(6,C,Vv),
are plotted.in. Figures.4.3=4.7 for various C-values and for
v =2, 5,10, 25, 50.
Thewcurvesrcomputedwfor.the.bias,of,g,,BIAS(G,.C,uv), are plotted
in Figures 4.8-4.12 for.various.C-~values and for v = 2, 5, 10, 25, 50.
The actual.values.plotted.are.|BIAS(8, C,Vv)|.

In each.case the. functions are plotted.only-for © > 0, since the

- MSE function~anduiBIASl»functionrarewsymmetric about.-zero. However,

BIAS(=0,..C,.V) = =BIAS(6, C, V).
The mean square.error.and expectation. of the original variable,

v
B,. can.be. computed.from. the relations (4.47).
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Figure 4.8 Absolute value of the bias of the two-tail
estimator § = é/s.d.(B) as a function of

9, C and v = 2, o2 estimated.
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0, C and v = 5, 0% estimated.
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Figure 4.10 Absolute value of the bias of the two-tail
estimator 6 = é/s.d.(B) as a function of

6, C and v = 10, 02 estimated.
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8, C and v = 25, 0% estimated.

79



BIAS
0.3 0.4 0.5

0.2

0.1

Ol 1'0 2.0 3'0 (4.0

Figure 4.12 Absolute value of the bias of the two-tail
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4.3. 'Estimators Based on One-Taill Tests

To this point estimators. based on.two-tail.tests-have been con-
sidered. . .Since an investigator.often knows the algebraic sign of
certain .of .the.coefficients,.procedures.which utilize .this information
will be investigated.. Throughout this chapter .the.experimental model
is assumed to be as. described in.section 4.1.1.

The,motiv;ting‘idea»continuesvto be. that setting-the.estimator

A

v ~ v
= 0 whenever ]6j|2 < Var(Bj), and to Bj = Bj,.the least squares

to B

3 :
estimator, when B? > Var(Bj)...Since the sign of the coefficient is
known, -.it can be. assumed without loss of -generality that Bj > 0, for
if Bj < 0, one.can consider —Bj.

The procedure.is.to.test. the hypothesis

o h| J
vSs. Ha: Bj > Vsar(gj) (4.59)

B..if H is rejected
o

v J

0 ifMHo.is accepted

For notational. simplicity.in the following derivations, let:

é denote Ej

02 denote Var(Bj)

so that:
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B LA N(B,0?),

8 = B/Gs

"N

8 = B/0 AN®,1),

A

02 is an.unbiased estimator of GzﬂbasedAon v degrees

of freedom,

V O
02

V\Xi, independently of B.

The hypothesis (4.59), in. terms.of the. above notation, becomes:

H: 6>1 A (4.60)

There are two.situations,.according to.whether 02 is known. When ©
A

is known, -the.test is based.on.the statistic 6. It.is well known that

‘the normal.probability density has monotone likelihood ratio (for
variation in. the.mean, 0);. application.of.lLehman's.Theorem 2 (Lehman, .
1959;.p..68).yields- the.UMP. test. (for a given o level).of.the hypoth-

esis (4.60):
@) = (1 if 8 > C

0 if 86 < C

where C. is. determined from o.

If.g2 is.unknown, .consider.the statistic:

A A

& - _Bo b

/[22 V[SZ/GZ ) v 02/02

t =
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which has the noncentral t distribution with noncentrality parameter O.
Lehman (1959, p. 233) shows that this: distribution. has the monotone
likelihood  ratio.property. (for.variation in 0), so another application
of Lehmann's Theorem 2. (Lehmann,.1959,.p..68).yields. the UMP test of

the hypothesis (4.60) as:
¢(t) = |1 if t>C
0 if £t <.C

where C is.determined from 0 and the noncentral t distribution. For

simplicity, rewrite the.test above in the form:

o(t) = | 14£ 6 > ¢ v o?/c?
Dif 6 < CV 02/02

Thus, . in eitherﬂcasew(oz known.or not),.the.estimator for 6

based on the UMP. .one-tail test .can be written:

5 = 8 if 8 >C 02/02
0 if 8 <CV 32/02
= 6 1,(8)
where
B =‘{§, 82'> 0: 6 > C/§§7;§j
= {6 >0, &% > o:-_'1—§2—>1§}
’ C o

A

and where 62 is replaced by 62, when known. This also yields the

estimator
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v ~ A
B =8 1,8
where

B ='{§,,82 > 0: E >¢c/a® }

with 02 replaced-byroz, if known.
The properties of the estimators may now be derived , depending

on.whether 02 is known.

4.3.1. Properties of .the.One-Tail.Estimators . When 02 is Known

For notational convenience the expected value and mean square
\V4 ”~
error of O will be evaluated. Let.£(0; 6) denote the N(6, 1) density
and consider:

A

- {o: 8 > ¢}

s}
I

, Y 2
MSE(8, C) = E[(8 - 08)“|8, C]

E{[6 1,(8) - 01%[e, C}

f ~ ~ A ~
= | 181, - 012 £(6; 0) db
o C
) N4 ~ 2 ~ 2 ~ A
= J (6 - 0)" £(b; 6)do+d J £(0; 0) do
C )

Application of the. change of variable t = 6 ~ 0 yields:

MSE(8, C) = PSM(C. - 8, +%) + 8% ®(C - 0) (4.61)

where ¢ denotes .the.cumulative distribution. function and PSM denotes

the partial second moment function, discussed.in section 4.1.3.
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Similarly,
0] (o]
E(ble, ] = j 8 1,(0) £(8; 6) a6 = f 8 £(6) 4o
- c
€ c-6
=0 - [ 0 £(0:6)d8 = B~ —=— J (t+0) exp(-t~/2)dt
- o0 A o P
=8 -0 0(C-0) - PRM(-, C ~ ) (4.62)

where PFM denotes the partial first moment function for the standard
v
normal . density, discussed in section 4.1.3. Thus the bias of 0 at 0,

C is
BIAS(O, C) = -PFM(~>~, C. ~-.06) - 6 &(C ~ 8). (4.63)

The MSE.and BIAS functions are plotted for various C-values in Figures

4.13 'and 4.14 respectively. Discussion of these Figures is deferred
until corresponding results aré developed for the unknown variance
case.

4.3.2. Propertiesaof.OnerTailuEstimatorsmWhenwVariance is Unknown

v
The mean. square.error. of ©.can be. found by-applying Lemma 4.1

with the following.correspondences:

el
x =03 u=u a, = -®; a, = C;

1(6,8) = (6.~ )% h(t + 6,0) = t2;
~ \'é
k = 6% and g,(8,0) = (8 - 0)°.
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Figure 4.13 Mean Square Error of the one-tail estimator

9 = é/s.d.(B) as a function of 6 and C;

02 assumed known.
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6 and C; 02> assumed known.
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Let IM(G; a,b;c,d) be defined. as. in the derivation of the MSE of the

two-tail estimator .(equation 4.49).. Then,. by Lemma 4.1,
. v 2 ~
MSE(8,C,v) = E[(6 - 8)7[8,C,v] = E[g,(6,u)]
=1 +AIM(9;,—w, -03 =», 0) + IM(G;,—G, ©; C,0).

The .chi~square.probability in the expressionle(e;.—m, -6; -, 0)

is identically.1.0;-thus. the.term has value

02[8(=6) - B(-)] ~PSM(~, -B).

Hence,
MSE(9,C,V) = 1 + 0% ©(=0) -PSM(-w,~B)
+ 1,05 -6, =3 C, 0). (4.63)

v
The. expected value.of O can.also be found.by application of

Lemma. 4.1, with.the.following. correspondences:
x = 0; u= u; a, = ~0s 33 = C3

h(6,6) .= 6;.h(t+6,0) = t+6; k = 03
gz(e,u) = 0.

Let IE(e;a,b;c,d),be»definedﬁas at equation (4.51) in the derivation

of the expected value.of.the.two-tail estimator;- then by Lemma 4.1,

5§le,c,v) = Elg,(8,u)]

B+ IE(Q; -, =@ —o, 0) + IE(G; -8, %3 C,0).
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Because the chi-square probability is idemtically.l.0.in the second

term,
IL(0; ==, -8; —=, 0) = -8 3(-8) - PFM(-w, -6).
Thus,
E(5|6,C,v) = 6.-.6.0(-8) - PFM(-, —0)
+ I (85 -8, =3 C, 0). (4.64)

The last. terms in. (4.63) .and.(4.64) must be approximated. numerically.
Since the. integrands.of these terms.are identical.to.the.corresponding
integrands. in the.two-tail case.similar techniques.were .used for eval-
uation and.similar.remarks.on.the accuracy.of the. approximation apply.
Specifically, -the.integrals.were. approximated over the interval

[-6, C.Xo .— 0}, where.Xo.is. an. integer satisfying.

P[x,\z)/v >Xo]l <e= 10710,

As before, for large v the.integrands.have greatest curvature in the

neighborhood of:

2
\)(Q%'—t-) =v, f.e., t = £ C - 0.

The integrals were approximated.by a 32-point .Gaussian quadrature
technique. (double.precision arithmetic) owver each.of the two inter-
vals. [-8, €. - 8], .[C.= 0,.C Xo.~.0];.-the sum.of .the.integrals over
the subintervals.was taken.as. the. approximation.for the integral over

the whole interval [-0, + «].
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The remarks.on. the.accuracy.of. the approximation in the two-

tail case apply here also.
Graphs of the MSE.and.|BIAS|.functions for. various C-values, for

v =2,5,.10,.25, 50.and for -1.0.< 6 £.4.0 are given in Figures 4.15-

4.19 and 4.20-4.24 respectively.

4.4. Generalized Estimators

In some . situations. it may be desirable. to.use.the generalized

estimator,
%
.0 if B, € A~
J
\4
B, =
J 2 * *c
B, if Bj £ B = A

where A*.is a.subset of the sample space and B* is the complement of
A* relative to.the sample space.. The properties of this estimator
Willnbemdeve;opedwformthewcasesuinqwhicth%,iswawfinite.interval, the
complement of. a. finite. interval,.or.a half=line.. If the variance is
assumed. unknown, . the. endpoints. of A# will be random.

The properties. of. the.estimator.will be developed in terms of

the standardized variables

5 = gj/V6ar(Bj)

and

g - Bj/véar(e) .

The properties.of this. 6.will be developed.along the same lines as

derivations. in.previous sections.



91

i o
ll N
l' 7p]
[ 4
0r et
o
'I o
o
: Ll
| w
o
<9
' D e
[«
w
' () -
<C
wi
= mn
o
. 1 1 [ 1
o T -1 T !

-100 0. 1:0 2-0 3.0 '-l.U
8
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Figure 4.16 Mean Square Error of the one-tail estimator

9 = B/s.d.(B) as a function of 6, C and v = 5,

0% estimated.
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Figure 4.18 Mean Square Error of the one-tail estimator
6 = B/s.d.(B) as a function of 6, C and v = 25,

g% estimated.
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Figure 4.20 Absolute value of the bias of the one-tail
estimator 6 = B/s.d.(B) as a function of

6, C and v = 2, 02 estimated.
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9, Cand v = 5, g% estimated.
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Consider the case in which the variance is known. Let the

constants C;, C,(C; < C,) be given, with €= = and/or C, = +o
allowed. Define A = [Cl’CZ] B = A%, Let
g = (01£8 6 1_(8
1 if 06 A] = 1B(6)
6, =foir0eB)= 61,00

D@ >
=
th
D
m
p=

The expected value, bias, and MSE of each of these estimators are
found by simple applications of Lemma 4.2. For expected values,

"~ ~N v A v */\
define (in Lemma 4.2) k = 0, h(6,0) = 0, 61 = g(0), and 62 = g (0).

-l G AR aE S S m B
D >
[ o
Hh
D >
m
[v~]

Then, by Lemma 4.2,

E(Elle,A)
) c,-6
= E(8) + 0[8(C)=8) ~ #(c,-0)] - f (t+6) £(£30,1) dt
¢,

e[1. - @(CZ—G) + @(Cl—e)]— PFM(Cl—e, 02—9),

and
v v
E(GZIG,B) =0+ 8 - E(elle,A)
= 2(C,=0) - ©(C;-6) + PFM(C -6, C,~6).
Thus,
4 .
BIAS (0,A) = E(6; - 8]6,A)
= ®(C,-8) - 8(C,-6) - PFM(C -6, C,-8),
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and

BIAS(0,B) = E(\6/2 - 6]0,A)
= -6 + 8(C,-0) - @(C;-8) + PPM(C,~8, C,=6).

For the MSE functions, define k = 92; h(8,8) = (6 - 6)2, g(8) =

v 2 x N v 2 2
(61 - 07, g (6) = (62 - 0)7, and note that h(t+0,0) = [(t+0) - 6] =
2

t”. By Lemma 4.2,

MSE(8,4) = E[(§,-0)%[6,A] = E[g(®)]
c.,-0
2 2 2
1+ 6 [@(CZ—G) - @(Cl—e)] - [ t fl(t;O,l) dt

cl-e

1+ 62[@(02-6) - ©(¢;-6)] - PSM(C, -8, C,-0);

MSE(8,8)= E[(5,-0)]0,4] = B[ ()] = 62 + 1 - MSE(6,A)

= 0%[1 - 8(C,~8) + 8(C ~6)1 + PSM(C,~6,C,=0).

A

Consider the case in which Var(Bj) is unknown. Let constants

C C3, and C, be given such that

12 C° 4

Define the three subsets of the sample space:

A = {(&,uw): u>0, ¢ Vu<@0<cC . /ul,i=1,2,3,

i+l
and the complements  (relative to the sample space),

B, = {®,u): u>0, (8,u) ¢ A}, 1=1,2,3,
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~2 9
where u = 0'%02 as in previous sections. Define the estimators:

v A A A
Si =|0 if (B,u) € Ai_ =0 lBi(G,u), i=1, 2, 3;

if (O,u) ¢ B

D >

i

v A A
6 . =0 if (6,u) ¢ B, =6 1, (B,u), 1 =1, 2, 3.
ci i Ai

D >

if (B,u) € Ai

The expected values and BIAS functions for these estimators are found
~ N A v

from Lemma 4.1 by setting k = 0 and h(6,6) = 6, so that gi(e,u) = ei,

% 2 v

gi(e,u) = eci' Temporarily define

b

2 2
IE(e;a,b;C,d) = - J (£+9) fl(t;o,l) P [\)(t';e)_ < X\Z) <V(t+22__]dt-
c d
a

Then by Lemma 4.1,
\'% i e . .
E(6,]6,A)) =6 + I (8,-2,-03C;,C,);

E(§ |6
(“cl ’Al)

il

—IE(G;—w:~e;Cl’C2);

v
E(6,0,4,) = 0 + I,(85-2,-03Cy,0)+ I (8;-0,%;C5,0);

]

’ v
E(B_,]8,4,) = -1(8;-,-8;C,,0) = I(8;-6,3C,,0);
v

E(SSIG,AB) = e + I(e’—e,m’CA’CB)’

‘g .
E(8e310,4)

—I(G;-G,W;C4,C3).

The BIAS functions for the various estimators are easily written from

the equations above,
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The MSE functions can be found by applying Lemma 4.1 with

2

k = 6%, h(0,8) = (6 - 0%, so that h(t+0,0) = 7, g, (6,u) = (§,-8)°

* 7 !
and gi(e,u) = (gci—e)z. Temporarily define the function

b .
| 2 2
I (83a,bse,d) = | (0%-t%) £, (t;0,1) p | L0 (2 (D 4,
M 1 2 2
a

Then, by Lemma 4.1,

MSE(gile,Al)

[}

1+ IM(e;-w,—e;Cl,Cz>;

y 2
MSE(ecl]G,Al) = 67 - I,(8;-2,-65C;,C,);

v
MSE(GZIG,AZ) 1+ I,(8;-°,-85C,,0) + I, (65-6,2;C4,0);

2
8~ - IM(Q,—w,—e;Cz,O) - IM(e;_e9°°;C330)§

use(¥_,|6,4,)

v
MSE(GBIG,AB) 1+ I,(0;5+6,25C,,Cq);

= 82 _ 000
usE(S_,|6,4,) = 6% - 1,(0,-0; 5C,Cy) -

It is easily seen that these results include the results of the pre=-
vious sections as special cases. The symmetric two-tail estimator is

v
obtained by setting C, = -C_, and using 0 The one~tail estimator is

2 3 2°
° o v
obtained by setting 02 = -» and using 62.
The functions above are evaluated numerically in the same manner
as the corresponding functions for estimators discussed in previous
sections. The computer subroutines used for the previous estimators

were altered to compute the properties of these general estimators.

Previous comments on accuracy apply here, also.
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It is important to note that the MSE and BIAS functions in this

case are not symmetric. The figures on the foilowing pages illustrate
MSE and BIAS curves for various (Cl’CZ) values for the known variance

case.
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5. SOME TECHNIQUES FOR THE SELECTION OF CUTOFF POINTS

In order to apply the procedures discussed in the previous
sections one must select the cutoff points (C, or C1 and CZ)' Pre-
sumably, if there is prior information about a particular parameter,
one would like to use this information in the selection of cutoff
points in an attempt to decrease the mean square errors. 6f an esti-

%
mator, Bj. For example, if one were absolutely certain that

]le < Vvat(gj),one would always delete the j-th term from the esti-
mation equation (Ej = 0); i.e., in effect one would use a symmetric

two-tail procedure with C = +°, On the other hand, if one were abso-

lutely certain that |6j1:> Vvar(sj) one would use the symmetric two-

,» always include the j-th term in the

A

tail procedure with C = 03 i.e.
v

estimation equation, setting Bj = Bj. These two extremes help explain
the relationship between 6-values and optimum C~values. In general,
if prior information indicates that B? < Var(Bj), one would tend to

use large C-values with either the one-tail or symmetric two-tail

procedures. If prior information indicates that B? > var(Bj), one

v

would tend to use small C-values (use g = Bj larger proportion

<

w0

of the time, or increase the probability that = Bj).

J
In this section two techniques are discussed and illustrated
for the selection of cutoff points when prior information is available

in the form of a "prior distribution" for a particular parameter, 0.
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It is assumed throughout this discussion that the variance is
known. Although the techniques can also be applied to the unknown
variance situation, the MSE curves for the known and unknown #ariance
situations are so similar that it is expected that the selected cutoff
points for the two situations would not be very different.

The following notation will be useful. Let:

g(0) denote the prior density of ©;

A

f(ele) denote the conditional density of 6 given 0,

i.e., the N(6,1) density;

£(0,0) = g(B)£(0]6) denote the joint density of 6, 0;
£(0) = J:f(@,e)de denote the marginal density of O;
h(ele) = £(6,0)/£(9) denote the conditional density of 0 given 0,

i.e., the posterior density of 6.

It is assumed that all of the functions above exist and are wvalid
probability denmsity functions. In Bayesian terminology, the '"decision
function" is

~

d(®) = 3 =0 1A(8) + 8 13(8),

v
where the set A is the set on which © = 0, and B is the set on which

8 = 0. The loss function is:

A Y 2 _ 2. 4 - 2. -~
L(8,d(8)) = (6 - 8)° = 67 1,(8) + (8 - )7 1,(6);
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the risk (expected loss) is:

V 2 A ~N
R(6,d) = f (6 - 0)° £(8]6)do = MSE(8,C,,C,).

5.1. The Bayes Decision Procedure

One strategy for the selection of the cutoff points (equivalent
to the selection of the decision function, d(g)) is to use the Bayes
decision procedure (Lindgren, 1962; Michaels, 1969), which consists of
choosing d (i.e., C, and C2) to minimize the expected risk with respect

to the prior of 0, i.e., choose Cl and C2 to minimize
Eg[MSE(G,Cl,Cz)] = I g(6) MSE (e,Cl,Cz)dG.

Lindgren (1962, p. 285) shows this strategy is equivalent to minimiza-

tion of the expected posterior loss, i.e., after 6 is observed, com~
pute h(6]|6) and choose the sets A and B to minimize:
~ 2 N ~ AL
E,[L(6,d(8))] = J (6%, (8) + (8-0)% 1.(8)] h(8|d)as
20 . A
= Eh(G Y if 0 e A
E (8-0)2 = 0% - 20 E_(8) + E, (0%) 16 0 ¢ B
h h h ‘
~ %
Thus, the set A should be chosen so that 6 € A (6 = 0) if

2 n2 A 2
E (67) < 8% - 206 E (8) + E, (67)

<> e[th(e) - 0] < 0.
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[ 4

The Bayes decision procedure (for selecting A and B or Cl and CZ)

can be summarized as follows:
(1) Compute the posterior density of 6 for the observed value

A A
)

of 0 = Bj Var(Bj

(2) Compute the mean of the posterior demsity, Eh(e). Then com-
pute q(6) = BI2E, (8) - 6].

N \4 v v ~
(3) If q(0) < 0, set 6 = 0; otherwise § = 0.

The procedure does not yield the sets A and B directly; one method for
finding the "effective" cutoff points for the above procedure is to
"search'" for the cutoff points by repeating the procedure above for
various 8 values. For the normal prior distribution it is possible
to find Eh(e) and the sets A, B explicitly in terms of the parameters
of the prior and 6 (see section 5.3).

The Bayes decision procedure is optimal in the sense that the
sets A and B are chosen so as to minimize the expected value of

MSE(8,C ) with respect to the prior distribution. However, in some

1°%2
cases the procedure is very sensitive to small changes in the param-

eters of the prior distributionm.

5.2. The Posterior C=l1 Procedure

»  If the parameter 0O (or Bj) were known exactly, the appropriate
cutoff points would be -1 and 1, which motivates the following pro-

cedure:

(1) Compute the mean, Eh(e]e), of the posterior distribution;
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(2) Apply the rule:

v N
6 =10 if ]Eh(ele)] <1

8 otherwise
While this rule is not optimum in the sense that the Bayes decision
procedure is optimum, it does have intuitive appeal. The mean of
the posterior distribution in a sense summarizes the prior informa-
tion and the information from the sample regarding the value of 8;
the same procedure is applied to the posterior mean that would be
applied to the parameter itself, if it were known.

Aside from any intuitive appeal, the cutoff points produced by
the "Posterior C=1 Procedure'" for a normal prior are not as sensitive
to small changes in the prior parameters as the Bayes procedure, and
may be more appealing in other ways fhan the cutoff points produced
by the Bayes decision procedure.

The Posterior C=l1 Procedure does not produce explicit algebraic

formulas for cutoff points. For the normal N(u,tz) prior, the cutoff

points can be found explicitly in terms of U and t2 (see section

5.3); for other priors a search procedure may be necessary.

5.3. Cutoff Point Selection with a Normal Prior

Hogg and Craig (1965, p. 165) show that for the N(u,tz) prior

for 6, and N(6,1) density for 0, the posterior distribution of 6§ given

N
p is the normal distribution with mean

2 . 2,
% + 1 t
W= HED L g 0lo) = (2 u+ e,
1+t 1+t 1+t



and variance

Note that the posterior mean is a weighted average of the prior mean
and the observed 8.

From the results of section 5.1, the Bayes decision procedure
depends on the sign of the function

a(8) = 8128, (6) - 6] = b[2u” = 8]

which simplifies to:

A A 2 A
N 2u
a(®) = 02 [£ ) + e[ 2 ) ,

t+1 tT+1

N

with roots at 6 = 0 and © -2u/(t2—l) if t2 # 1, or just 6 = 0 if

t2 = 1. Typical graphs of q(0) for various combinations of U,tz

values are presented in Figure 5.1. Remember that g = (0 wherever
q(a) <0, and 6 = 8 wherever q(g)<i 0.

The application of the Posterior C=1 Procedure is as follows:
wrot?

t 2+l

0 if Iu*|= <1

[

A

0 otherwise

which is equivalent to:

04if C; <0 <C,

v
e=-- ~ L)
6 otherwise
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t2<1 t2=1 t2>1

q(8)=ub

)
~—

!

q(8)=o

q(8)=y6 \

Figure 5.1 Configurations of q(6) for various combinations
of prior distribution parameters.

- OGN S "N o e 8
u>0
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where:
2
- _1 L+t | _ L+
=S~ =721
t t t
1+t2 1-
c, = -5 +[F5|= 5+
t t } t

Various properties of the two procedures may be compared, the
most important being the expected value of the MSE function with
respect to the prior distribution. The Bayes procedure is, by defini-
tion, optimum for this criterion. A comparison of the expected MSE
functions is given in Table 5.1 for several (u,tz) -values in the
ranges likely to be encountered in practice. In examining the table
one should note that if 5 = 8 the expected MSE is 1.0; if g = 0 the
expected MSE is Eg(@z) = uz + t2. The expected MSE for the optimal
(Bayes) procedure must lie between 0.0 and 1.0.

The Bayes procedure is sharply superior for small t2(<l) and
p =1 values. Note that in some cases the expected MSE is greater
than 1.0 for the Posterior C=1 Procedure; in such cases the use of
0 = 8 would be a better procedure.

There are other properties of the procedures which can be
compared. The Bayes procedure is "sensitive' to certain prior
parameter values; at certain points slight changes in parameter values
can make striking changes in the cutoff region A(over which g Z 0)
and its complement, B. The procedure is sensitive at U = 0 and any

value of t2, at t2 = 1 and any value of J, and is particularly sensi-

tive at 4 = 0 and t2 = 1. For example, if y = -0.01, t2 = 0.99, then
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(0,=2) + (0,4%), B = [~2,0]. But if u = +0.01, t° = 1.01, then

A

A

[-2,0] and B = (=»,-2) + (0,4®). A change of only 0.02 in each

of the parameters completely reverses the procedure! Table 5.1 reveals
why the Bayes procedure is so sensitive; in the neighborhood of U = 0,
t2 = 1 it makes little difference whether one sets g = g or ; = 0;

the expected MSE's are nearly identical, and approximately equal to

1.0. A slight departure from the point U = 0, t2 = 1 produces a very

slight change in the expected MSE, which makes one of g = g or g =0
slightly superior to the other; slight changes in opposite directions
would produce opposite cutoff regions but nearly the same expected
MSE. Thé Posterior C=1 Procedure is insensitive to small parameter
value changes.

All the results discussed in this section hold for the normal

prior distribution; other prior distributions may produce quite dif-

ferent results.

3.4. Cutoff Point Selection with a Uniform Prior

This section is included as an example of the application of the
Bayes decision and Posterior C=1 procedures for a non-normal prior.
The posterior distribution is messy; no detailed analyses or com-

parisons of the two procedures will be attempted. Let

1
g(6sa,b) =|x=—a <0 <D

0 elsewhere
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be the prior of 0, and let f(@l@) denote the N(0,1) density. Then

the joint, marginal, and posterior densities are found as follows:

.0y - el(G-022} , ww<0<4w
(b-a) V2w a<b<b
A~ b A ~ ~
£(0) = j £(6,0)d0 = =i [2(b-8) - @(a-B)], — < 6 < ~
a
A WIPAINY
h(6]0) = expi-(0-0)"/2} ,a<6<b .

/3T [0 (b=0)-0(a-8)]

The posterior is essentially the N(9,1) distribution truncated at

a and b. The expected value of the posterior is:
b.

j eh(elé) e

Ehfelgj o B x
[¢(b~B) - ®(a-B)]
s
JA (t+0) exp{-t2/2} dt
a-0

VIT [8(b-8)~0(a0)]

- o 4+ PFM(a-0,b-0) -
[2(b-6)-0(a~0)]

This function is easily evaluated on a computer for a particular
(a,a,b) value. Application of the Posterior C=1 Procedure is trivial
once Eh(G) is available. The Bayes decision procedure is also trivial:
g = 0 if 8[2u* - 8] < 0. It appears to be difficult to find explicit
formulas for the C-values for these procedures. For particular (a,b)
values the effective C-values may be found by a search procedure on a

computer. .
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Estimator of n is simply the BLUE of the best linear approximating
function of n.

In Section 4 a procedure was introduced for using one set of data
both for determination of terms to be included in an estimation model
and for estimation of the parameters in the resulting model. Due to
the fact that when non-zero terms are deleted from an estimation model
the resulting estimator is biased, the variance criterion was replaced
by the Integrated Mean Square Error (IMSE) criterion for the comparison
of estimators. It was shown in Section 4 that the IMSE of an estimator,
X, for n (both expressed in terms of integration-orthonormal functions)
can be written as the termwise sum of the mean square errors of each of
the coefficients. Because there are no covariance terms in this expres-
sion for the IMSE one can select terms to be included in the estimation
model on a term-by-term basis. The procedure consists of examining
each term in the model and setting the estimator of the corresponding
coefficient equal to either zero (to delete the term from the model)
or to fhe least squares estimate of the coefficient.

Three estimation procedures were considered. The first is
called a "two~tail" estimator and is based on the UMP test of the
hypothesis H : IBj] z_s.d.(gj) versus H_: IBjI < s.d.(gj). The esti-

mator is defined as:

gj if ]le > C s.d.(Bj)

w™<

0 if ]Bj] Lc s,d.(Bj),



6. SUMMARY

Techniques have been presented for attack on one of the very
difficult problems facing applied statisticians, that of using one set
of data both for determining which terms to include in a general linear
model and for estimating the parameters of the resulting model.

The major result of Section 3 was the extension of the concept
of Minimum Bias Estimation to a very general setting. First, some
linear approximation theory was presented leading to the definition of
the best linear approximating function of a given function n with re-
spect to a given region of interest, R, weight measure W, and set of
linearly independent functions, F. The best linear approximating func-
tion was given in terms of integration-orthogonal functions; algorithms
were given for computing the set of integration-orthogonal functions
from the set F of linearly independent functions, and for transforma-
tions of representations of n in terms of the linearly independent
functions in F to representations in terms of the set of integration-
orthogonal functions, and vice versa. It was shown that the best
lineaf approximating function of n is easily computed; one simply
deletes unwanted terms from the representation in terms of integration-
orthogonal functions. Similarly, one computes the Best Linear Unbiased
Estimator (BLUE) of the best linear approximating function by simply
deleting terms from the BLUE of the integration-orthogonal-function

representation of n. Finally, it was shown that the Minimum Bias
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where the constant C is determined from other considerations (see
A
Section 5) and where s.d.(Bj) denotes ‘the known or estimated standard

A

deviation of Bj.

The distribution, expected value (and bias) and mean square

v
error of the estimator B were derived and the bias and MSE plotted for

various C-values and various values of v, the degrees of freedom for
A

the estimate of the variance of f. This estimator was called the
"two-tail" estimator because the resulting estimator can take posi-
tive or negative (or zero) values.

For the case in which the sign of a particular coefficient, B,

is known from prior consideration, a "one-tail" estimation procedure
N

was presented. Again, the BLUE, Bj, of B, is compared with the

J
(known or estimated) standard deviation of Bj; the resulting esti-

v
mator, B., is defined as:
J

"~

Bj if Bji> C s.d.(Bj)

L

1

0 1f B, < C s.d.(B,).

(The above procedure is for Bj assumed positive; if Bj is assumed
negative, éj = Ej if ‘éj >C s.d.(éj).) The distribution, expected
value (and bias) and mean square error of the estimator Eg were
derived, and the bias and mean square error were plotted for various

C-values and various values of v, the degrees of freedom for the esti-

mate of the variance of Bj.

Finally, a generalized estimator of the form
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, i
BJ fBJeB
£, = - 8. 1.(8.)
N ~ J B ]
OifBjeA

was considered, where A is a subset of the sample space and B is the
complement of A relative to the sample space. The expected value
(and bias) and mean square error of é were derived for A-sets which
are finite intervals, complements of finite intervals, or half-lines.
For the unknown variance casé, the endpoints of A and B depend on
the estimate of the variance.

Two techniques were presented in Section 5 for selection of the
A and B sets for the generalized estimator. By specifying a prior
distribution for a particular coefficient, one can select those sets
which give the smallest expected value (with respect to the prior) of
the mean square error of the estimator. A formula was given for compu-
tation of the estimator as a function of the mean of the posterior
distribution. For the normal prior the boundaries of A and B were ex-—
pressed in terms of the mean and variance of the prior. A second tech-
nique was presented and compared with the optimum technique for the
case in which the prior is normal.

All of the results above hold for the response function expressed
in terms of integration-orthonormal functions; it was shown in Section
4 that the IMSE of the -estimator resulting from the above procedures$ is
simply the sum of the mean square errors of the individual coefficients.
Thus, the procedures can be appiied tery-by-term to each term in the
"full model" (each term of "potential significance"). Since each term

may or may not enter the final estimation model, the procedures, in
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effect, allow consideration of "all possible regressions' subject to
the restriction that terms are deleted by setting corresponding co-
efficients to zero. The procedure is remarkably easy to apply (com-—
pared with stepwise regression, for example): one simply compares
each coefficient estimate with its standard deviation times a con-
stant (C, or Cl and CZ>' Moreover, the properties of the final esti-
mation model are known. (The properties of the final estimation
model in stepwise regression are not known.)

In summary, a procedure has been presented which allows one

.to determine an estimation model and estimate the resulting model

with the same data. The procedure is applied to an expression of a
response function in terms of integration-orthogonal functions.
(Transformations between representation in terms of integration—
orthogonal functions and representation in terms of "standard"
(linearly independentj functions consist of multiplication of a
vector by an upper triangular matrix.) The procedure is easy to
apply, is applied on a term-by-term basis to each potential term
in the model, has known properties, and is closely related to
Minimum Bias Estimation.

There are at least three areas in which further study is to
be recommended:

(1) A comparison of the estimators above with those produced
by least squares estimation of the reduced model. The properties
of the least squares estimator are design-dependent; comparisons

would have to be made for various standard design.
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(2) A study should be made to determine efficient designs for
the estimator X in various situations; the designs would depend on the
region of interest and the weight function.

(3) The procedures .given here should be extended to multivariate

general linear model settings.



LIST OF REFERENCES

Abramowitz, M. and I. A. Stegun. 1964. Handbook of Mathematical
Functions. National Bureau of Standards Applied Mathematics
Series, No. 55. U. S. Government Printing Office, Washington,
D. C.

Bancroft, T. A. 1944. On Biases in Estimation Due to the Use of
Preliminary Tests of Significance. Annals of Mathematical
Statistics. 15: 190-204.

Box, G. E. P. and N. R. Draper. 1959. A Basis for the Selection of
a Response Surface Design. Jour. Amer. Stat. Assoc. 54: 622-
654.

Box, G. E. P. and N. R, Draper. 1963. The Choice of a Second Order
Rotatable Design. Biometrika 50: 335-352. :

Davis, Phillip J. 1962. Orthonormalizing Codes in Numerical Analysis,
pp. 347-379. 1In John Todd (ed.), Survey of Numerical Analysis.
McGraw-Hill Book Company, Inc., New York.

Draper, N. R. and H. Smith. 1967. Applied Regression Analysis. John
Wiley and Sons, Inc., New York.

Faddeeva, V. N. 1959. Computational Methods of Linear Algebra.
Translated from the Russian by Curtis D. Benster, Dover Publica-
tions, Inc., New York.

Gorman, J. W. and R. J. Toman. 1966. Selection of Variables for
Fitting Equations to Data. Technometrics. 8: 27-51.

Graybill, F. A. 1961. An Introduction to Linear Statistical Models.
Volume 1. McGraw-Hill Book Company, Inc., New York.

Halmos, Paul R. .1950. Measure Theory. D. Van Nostrand Company, Inc.,
New York. :

Handscomb, D. C. 1965.. Methods of Numerical Approximation. Pergamon
Press, New York.

Hildebrand, F. B. 1956. .Introduction to Numerical Analysis. McGraw-
Hill Book Company, Inc., New York.



131

Hocking, R. R. and N. N. Leslie. 1967. Selection of the Best Subset
in Regression Analysis. Technometrics 9: 531-540,

Hogg, Robert V. and Allen T. Craig. 1965. Introduction to Mathemati-
cal Statistics. The MacMillan Company. New York.

Karson, M. J., A. R. Manson, and R. J. Hader, 1969. Minimum Bias
Estimation and Experimental Design for Response Surfaces.
(To appear in Technometrics, September, 1969.)

Larson, Harold J. and T. A. Bancroft. 1963a. Sequential Model Build- .
ing for Prediction in Regression Analysis, I. The Annals of
Mathematical Statistics. 34: 462-479.

Larson, Harold J..and T..A. Bancroft. .1963b. Biases in Prediction
by Regression for Certain.Incompletely Specified Models.
Biometrika 50: 391-402.

Lehmann, E. L. 1959. Testing Statistical Hypotheses. John Wiley &
Sons, Inc., New York.

Lindgren, B. W. 1962. Statistical Theory. The MacMillan Company.
New York.

Lindley, D. V. 1968.. The Choice.of Variables in Multiple Regression.
Journal of the Royal Statistical Society B. 30: 31-66.

Loeve, Michel. 1963. .Probability Theory. D. Van Nostrand Company,
Inc., New York.

Michaels, Scott.E.. 1969.. Optimum Design and Test/Estimation Pro-
cedures for Regression Models. .Unpublished Ph. D. thesis,
Department of Experimental Statistics, North Carolina State
University, Raleigh, North Carolina.

Schatzoff, R. Tsao.and S. Feinberg. 1968. Efficient Calculation of
all Possible Regressions. Technometrics. 10: 769-779.

Sclove, S. L. 1968. Improved Estimators for Coefficients in Linear
Regression. Jour. Amer. Stat. Assoc. 63: 596-606.

Todd, John. 1962.. Survey of.Numerical Analysis. McGraw-Hill Book
Company, Inc., New York.

Toro, Carlos and T. D..Wallace. .1969. A Test.of the Mean Square
Error Criterion.for.Restrictions in.Linear Regression. Jour.
Amer. Stat. Assoc. 63: 558-572.



