ABSTRACT

THARP, ASHLEY MORGAN. Arcs and Shards. (Under the direction of Nathan Reading).

We study the relationship between lattice structures on finite Coxeter groups, which has implications for related lattice structures on analogous Artin groups.

In the first section, the complete results of a paper in progress (joint work with Barnard and Reading) centered around versions of noncrossing arc diagrams of types B and D are presented. The classical, type-A noncrossing arc diagrams are combinatorial objects in bijection with permutations and have been shown to provide insights into lattice congruences of the weak order. Two models of type-B noncrossing arc diagrams, one novel, are presented and used to characterize congruences of the weak order of signed permutations. Likewise, two original models of type-D noncrossing arc diagrams are presented and used to characterize congruences of the weak order of even-signed permutations.

In the second section, noncrossing arc diagrams of types A and B are used to realize the shard intersection orders of the same types. The shard intersection order on a Coxeter group arises from the hyperplane arrangement of the group; it is a weaker order than the weak order on the same group and contains the noncrossing partition lattice on the group as a sublattice. Two operations on noncrossing arc diagrams are presented in type A and shown to characterize the meet and join in the shard intersection order of type A. Next, the two models of type-B noncrossing arc diagrams presented in the first section combine to show that meet and join of the shard intersection order of type B can also be characterized using the type-A operations. Four surjective lattice homomorphisms from the weak order of type B to that of type A and the inverses of their restrictions to the lowest elements of their fibers are phrased in terms of noncrossing arc diagrams. Finally, the characterizations of meets and joins in the shard intersection orders of types A and B are used to prove whether each inverse embeds the type-A shard intersection order as a sublattice of the type-B shard intersection order.
Arches and Shards

by
Ashley Morgan Tharp

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Mathematics

Raleigh, North Carolina 2023

APPROVED BY:

Laura Colmenarejo Hernando Tye Lidman

Radmila Sazdanovic Donald Sheehy

Nathan Reading
Chair of Advisory Committee
DEDICATION

To Nana.
BIOGRAPHY

The author was born and raised in Houston, Texas. After exploring several majors, she earned her bachelor’s degree in Mathematics with a Spanish minor from the University of Houston in 2018. She moved to Raleigh to pursue a doctorate in Mathematics from North Carolina State University, which she completed in Summer 2023, focusing primarily on algebraic combinatorics. Outside of her own studies, she passionately supported both her students and peers, including as the Mathematics Department’s first Graduate Support Resource TA. Among other recognition of her teaching and service, she was the first recipient of the Graduate Student Excellence Award given by the College of Sciences. She received the first Graduate Student Excellence Award given by the College of Sciences, along with honors from various institutions within NCSU.

At the time of writing, the author is excited to join the community of outstanding educators at North Carolina School of Science and Mathematics and to share strategies for self- and community care, in addition to mathematics, with the brilliant students at NCSSM.
ACKNOWLEDGEMENTS

Thank you to my advisor, Nathan Reading, for the mathematical mentorship and editorial support without which this thesis would not exist. More pivotally, thank you for making combinatorics accessible and fun, taking my jokes and tears in stride, doing so much to make our department a more supportive environment for everyone, and for introducing me to Jeffrey Math and other fantastic collaborators. I do not know how I could have completed a PhD without the support you provided me as a researcher, mathematician, and person.

Thanks to my fellow graduate students, especially those who in the last five years have: spent long nights in SAS and long Friday lunches at Mitch’s with me, given thoughtful feedback on presentations, put work (often unpaid) into making our department better for other students, held space as I shared lessons from my experience, and reassured me that I could, in fact, do this.

I appreciate those who have shared mathematics with me throughout my life and career. Recently, collaborators and mentors including Emily Barnard, Elisabeth Brown, Jo-Ann Cohen, Laura Colmenarejo Hernando, Kimberly P. Hadaway, Tye Lidman, Thomas McConville, Kyle Petersen, Radmila Sazdanovic, and Don Sheehy. Special thanks go to Michael Vischak for betting on my ability long before I learned to bet on myself and to Thomas Weber for many nudges toward grad school.

Thank you to my family, both relatives and chosen, who have loved me during this all-consuming season of life, expressed and feigned interest as I talked about research, and loved me with no condition on whether the mathematical gods smiled on me at any given moment. Thanks to my mom for sitting in the front row cheering me on, figuratively throughout my life and literally at CombinaTexas. I would especially like to thank the BBz for filling my life outside of math with an amount of love and fun that made Raleigh impossible to leave. Thanks to the Roo Pals, who contributed examples used to create figures in type B.

One chosen family member who deserves over a paragraph of thanks is my partner, Matthew Michael. Matt, I have no illusion that I could have made it through the last five years without your love and support. Since making the cross-country leap with me, you have given me encouragement to keep going and uncountable reasons to come home. These include but are certainly not limited to: making delicious dinners (and forgiving long Friday lunches at Mitch’s), getting me outside for walks with Honey, dancing with me at concerts, listening to math rants and presentations, buying a house and making it a home, being my favorite yoga teacher, taking such good care of Honey and Tippy, holding me when I cried about math and celebrating me when things went my way. I am so excited to finally give you the time and attention you deserve. I’ll owe you forever.
TABLE OF CONTENTS

List of Tables .. vii
List of Figures .. viii

Chapter 1 Introduction .. 1
 1.1 Context & Motivation ... 1
 1.2 Selected Results, Examples, & Figures 6
 1.2.1 Noncrossing arc diagrams beyond type A 7
 1.2.2 Arcs and Shards ... 15

Chapter 2 Noncrossing arc diagrams beyond type A 31
 2.1 Introduction .. 31
 2.2 Preliminaries ... 33
 2.2.1 Lattices and congruences 33
 2.2.2 Coxeter groups and the weak order 35
 2.2.3 Shards, congruences, and forcing 36
 2.3 Noncrossing arc diagrams of type A 40
 2.4 Noncrossing arc diagrams of type B 45
 2.4.1 A centrally symmetric model 46
 2.4.2 An orbifold model 59
 2.5 Noncrossing arc diagrams of type D 66
 2.5.1 Shards, arcs, and join-irreducible elements in type D . 66
 2.5.2 Type-D noncrossing arc diagrams 71
 2.5.3 Shard arrows .. 80
 2.5.4 Subarcs and forcing 84
 2.5.5 Superarcs .. 98

Chapter 3 Arcs and Shards ... 100
 3.1 Introduction .. 100
 3.2 Preliminaries ... 101
 3.2.1 Lattices and congruences 102
 3.2.2 Coxeter groups and the weak order 102
 3.2.3 Shards, congruences, and forcing 103
 3.3 Type A .. 104
 3.3.1 Permutations and noncrossing arc diagrams 104
 3.3.2 Noncrossing arc diagrams and the weak order 108
 3.3.3 Cooperating and matting 117
 3.3.4 Shard intersection order 122
 3.4 Type B .. 135
 3.4.1 Signed permutations and noncrossing arc diagrams 135
 3.4.2 Shard intersection order of type B 144
 3.5 Embeddings of type A into type B 147
 3.5.1 Simion’s homomorphism 148
LIST OF TABLES

Table 2.1 The map from type-A noncrossing arc diagrams to permutations. . . . 42
LIST OF FIGURES

Figure 1.1 The right weak order on S_3. ... 2
Figure 1.2 Coxeter diagrams for A_n, B_n, and D_n. 3
Figure 1.3 24 noncrossing arc diagrams on 4 points. 5
Figure 1.4 The map δ applied to $\pi = (-4)352(-1)$. 7
Figure 1.5 Centrally symmetric noncrossing arc diagrams for B_2. 7
Figure 1.6 Examples of the type-B subarc relation. 8
Figure 1.7 A non-example of a subarc pair. ... 9
Figure 1.8 The map δ^0 applied to $(-4)352(-1)$. 10
Figure 1.9 Noncrossing arc diagrams for B_2. 10
Figure 1.10 Type-B noncrossing arc diagrams, B_3. 10
Figure 1.11 Subarcs for type-B noncrossing arc diagrams. 11
Figure 1.12 A non-example of the type-B subarc relation. 11
Figure 1.13 Type-D arcs. ... 12
Figure 1.14 The map δ^D applied to $3(-4)35(-1)2$. 13
Figure 1.15 Type-D noncrossing arc diagrams for D_3. 13
Figure 1.16 Postmodern versions of single arcs for D_3. 14
Figure 1.17 Partially doubled subarcs α_1 of a partially doubled arc α_2. 14
Figure 1.18 Ordinary subarcs α_1 of a partially doubled arc α_2. 15
Figure 1.19 Simple ways to go up from N in the weak order. 15
Figure 1.20 Compound ways to go up in the weak order. 16
Figure 1.21 Two examples of creating $cn(N_1, N_2)$. 17
Figure 1.22 Two examples of creating $mn(N_1, N_2)$. 17
Figure 1.23 The shard intersection order on A_2. 17
Figure 1.24 The shard intersection order on A_3. 18
Figure 1.25 Link moves and merge moves on $\delta(24178536)$. 18
Figure 1.26 Type-B cooperative noncrossing arc diagrams. 20
Figure 1.27 Type-B matted noncrossing arc diagram, bilateral woven block. 20
Figure 1.28 Type-B matted noncrossing arc diagrams, unilateral woven blocks. 20
Figure 1.29 The shard intersection order on B_2. 21
Figure 1.30 The shard intersection order on B_3. 22
Figure 1.31 Contracted arcs that generate the congruence defined by η_0. 23
Figure 1.32 ζ_0 on noncrossing arc diagrams. 24
Figure 1.33 The sublattice $\zeta_0(S_4)$ of $\Psi(B_3)$. 25
Figure 1.34 Contracted arcs that generate the congruence defined by η_{-1}. 25
Figure 1.35 ζ_{-1} on noncrossing arc diagrams. 26
Figure 1.36 Example showing that $\zeta_{-1}(A_3)$ is not a sublattice of $\Psi(B_3)$. 27
Figure 1.37 Contracted arcs that generate the congruence defined by η_8. 28
Figure 1.38 ζ_8 on noncrossing arc diagrams. 29
Figure 1.39 The sublattice $\zeta_8(S_4)$ of $\Psi(B_3)$. 29
Figure 1.40 Contracted arcs that generate the congruence defined by η_κ. 30
Figure 2.1 The map δ applied to 6437125. 41
Figure 2.2 The map δ applied to $\pi = (-4)352(-1)$.. 47
Figure 2.3 Centrally symmetric noncrossing arc diagrams for B_2 47
Figure 2.4 Subarcs and subarc pairs .. 50
Figure 2.5 A pair not satisfying the additional requirement of Definition 2.4.7 50
Figure 2.6 Arrows $A_1 \rightarrow A_2$ among symmetric arcs/pairs 53
Figure 2.7 Some illustrations of the proof of Theorem 2.4.9 .. 57
Figure 2.8 Noncrossing arc diagrams for B_2 .. 60
Figure 2.9 The map δ^0 applied to $(-4)352(-1)$.. 61
Figure 2.10 Subarcs ... 63
Figure 2.11 A failed construction of a subarc, per Definition 2.4.20 and Remark 2.4.21. 65
Figure 2.12 Type D arcs ... 69
Figure 2.13 Compatibility between type-D arcs ... 71
Figure 2.14 Compatibility between type-D arcs ... 72
Figure 2.15 Type-D noncrossing arc diagrams for D_3 .. 73
Figure 2.16 The map δ^D applied to $3(-4)5(-1)2$.. 74
Figure 2.17 Replaceable and irreplaceable type-B arcs, as in Proposition 2.5.11 77
Figure 2.18 Arcs α_1 that arrow an ordinary arc α_2 (Proposition 2.5.16) 81
Figure 2.19 Arcs α_1 that arrow a partially doubled arc α_2 (Proposition 2.5.17) 82
Figure 2.20 Arcs α_1 that arrow a branched arc α_2 (Proposition 2.5.18) 84
Figure 2.21 Partially doubled subarcs α_1 of a partially doubled arc α_2 (Definition 2.5.20). .. 86
Figure 2.22 Ordinary subarcs α_1 of a partially doubled arc α_2 (Definition 2.5.21). 87
Figure 2.23 A branched subarc α_1 of a branched arc α_2 (Definition 2.5.22) 87
Figure 2.24 The partially doubled subarcs α_L and α_R of a branched arc α_2 (Definition 2.5.23) ... 88
Figure 2.25 Ordinary subarcs α_1 of a branched arc α_2 with branch point 1 (Definition 2.5.23) ... 88
Figure 2.26 Subarc implies forcing, Definition 2.5.20(i) .. 89
Figure 2.27 Subarc implies forcing, Definition 2.5.20(ii) ... 90
Figure 2.28 Subarc implies forcing, Definition 2.5.21(i–ii) .. 90
Figure 2.29 Subarc implies forcing, Definition 2.5.21(iii) ... 91

Figure 3.1 Coxeter diagrams for A_n, B_n, and D_n ... 103
Figure 3.2 24 noncrossing arc diagrams on 4 points .. 105
Figure 3.3 δ applied to $\pi = 6437125$.. 106
Figure 3.4 The permutation pre-order and noncrossing arc diagram for $\pi = 541237869$ 107
Figure 3.5 Simple ways to go up from N in the weak order .. 109
Figure 3.6 Compound ways to go up in the weak order .. 110
Figure 3.7 Extending α ... 112
Figure 3.8 Breaking α ... 113
Figure 3.9 Extending α up, right and extending β down, left 114
Figure 3.10 Extending α and breaking β ... 115
Figure 3.11 Breaking α and breaking β, α left of β 116
Figure 3.12 Creating $cn(N_1, N_2)$ for $N_1 = \delta(3412)$ and $N_2 = \delta(3421)$ 118
Figure 3.13 Creating \(cn(N_1, N_2)\) for \(N_1 = \delta(4123)\) and \(N_2 = \delta(2431)\). 119
Figure 3.14 Creating \(mn(N_1, N_2)\) for \(N_1 = \delta(1342)\) and \(N_2 = \delta(2341)\). 121
Figure 3.15 Creating \(mn(N_1, N_2)\) for \(N_1 = \delta(1423)\) and \(N_2 = \delta(2341)\). 121
Figure 3.16 Creating \(mn(N_1, N_2)\) for \(N_1 = \delta(24153)\) and \(N_2 = \delta(15234)\). 122
Figure 3.17 Creating \(mn(N_1, N_2)\) for \(N_1 = \delta(51342)\) and \(N_2 = \delta(23451)\). 122
Figure 3.18 The shard intersection order on \(A_2\). 124
Figure 3.19 The shard intersection order on \(A_3\). 125
Figure 3.20 Link moves and merge moves on \(\delta(2417536)\). 126
Figure 3.21 Symmetric noncrossing arc diagrams, \(B_2\). 136
Figure 3.22 Type-B noncrossing arc diagrams, \(B_2\). 138
Figure 3.23 Type-B noncrossing arc diagrams, \(B_3\). 139
Figure 3.24 Type-B cooperative noncrossing arc diagrams. 140
Figure 3.25 Type-B matted noncrossing arc diagram, bilateral block. 143
Figure 3.26 Type-B matted noncrossing arc diagrams, unilateral blocks. 143
Figure 3.27 The shard intersection order on \(B_2\). 146
Figure 3.28 The shard intersection order on \(B_3\). 147
Figure 3.29 Contracted arcs that generate the congruence defined by \(\eta_0\). 149
Figure 3.30 \(\zeta_0\) on noncrossing arc diagrams. 150
Figure 3.31 The sublattice \(\zeta_0(S_4)\) of \(\Psi(B_3)\). 152
Figure 3.32 Contracted arcs that generate the congruence defined by \(\eta_{-1}\). 154
Figure 3.33 \(\zeta_{-1}\) on noncrossing arc diagrams. 156
Figure 3.34 The subposet \(\zeta_{-1}(S_4)\) of \(\Psi(B_3)\). 158
Figure 3.35 Example showing that \(\zeta_{-1}(A_3)\) is not a sublattice of \(\Psi(B_3)\). 159
Figure 3.36 Contracted arcs that generate the congruence defined by \(\eta_{-1}\). 160
Figure 3.37 \(\zeta_{\delta}\) on noncrossing arc diagrams. 162
Figure 3.38 The sublattice \(\zeta_{\delta}(S_4)\) of \(\Psi(B_3)\). 163
Figure 3.39 Contracted arcs that generate the congruence defined by \(\eta_{\delta}\). 166
Figure 3.40 \(\zeta_{c}\) on noncrossing arc diagrams. 167
Figure 3.41 The sublattice \(\zeta_{c}(S_4)\) of \(\Psi(B_3)\). 168
CHAPTER

1

INTRODUCTION

1.1 Context & Motivation

Permutations are perhaps the prototypical family of combinatorial objects, having a remarkably approachable introductory description, underlying structural depth, and connections to various fields of study. The family S_n of permutations of $[n] = \{1, \ldots, n\}$ can be considered from combinatorial, algebraic, and geometric perspectives and can be generalized in various ways.

From a combinatorial point of view, a permutation $\pi \in S_n$ is a sequence $\pi_1 \pi_2 \cdots \pi_n$ of distinct elements of $[n]$. Each permutation may have some inversions, pairs of entries in which the earlier entry is greater than the later entry. The inversion sets of permutations in S_n can be used to create a partial order on S_n, called the (right) weak order: π is below σ exactly when the inversion set of π is contained in that of σ. In particular, σ covers π if there is exactly one inversion added to π’s inversion set to create σ’s. This happens precisely when two adjacent entries written in ascending order in π are swapped to create a descent in σ (meaning an inversion between adjacent entries). The weak order on the Coxeter group S_3, with vertices labeled by permutations and alternatively by their inversion sets, is pictured in Fig. 1.1. The Hasse diagram by which we can visualize the weak order on S_n provides access to the geometric point of view: as an undirected graph, it coincides with the 1-skeleton of
the permutahedron, an \((n - 1)\)-dimensional simple polytope whose vertices are indexed by permutations. When realized in the “right” way, the permutahedron displays a great deal of symmetry which we discuss shortly.

The weak order on \(S_n\), denoted \((S_n, \leq)\), is a lattice (a particularly nice type of partially ordered set in which least upper bounds (joins) and greatest lower bounds (meets) exist for any subset of elements) [9, Theorem 8]. As a lattice, the weak order admits congruences, equivalence relations that respect meet and join operations in the usual algebraic sense. A congruence is said to contract an edge corresponding to the cover \(x < y\) when the congruence sets \(x\) and \(y\) equivalent (when this is true and \(y\) covers only \(x\), we sometimes say the congruence contracts \(y\)). In the corresponding lattice quotient, the result of modding out the original lattice by the congruence, we get a lattice structure on the set of congruence classes in the usual algebraic way. Many important combinatorial structures arise as lattice quotients of the weak order. For example, Cambrian lattices give a lot of insight into the combinatorics of cluster algebras: the Hasse diagram of the Cambrian lattice is the exchange graph of a finite cluster algebra of type A [32, 39]. Also, a certain simple lattice congruence gives a quotient whose elements are in bijection with certain rectangulations of a square (decompositions of the square into rectangles) [36, Example 10-7.25].

From a more algebraic point of view, \(S_n\) can be thought of as the Coxeter group of type \(A_{n-1}\). The group has simple reflections of the form \((i\ i+1)\) as generators. It is closely related to the braid group, which is the Artin group of type A. A Coxeter group is specified by its Coxeter diagram, a graph with vertices representing generators and edges (sometimes with a label \(\geq 4\)) signaling relationships between pairs of generators. Standard references on Coxeter groups include [10] (which has an explicitly combinatorial tilt), [12] (which works in an algebraic context), [21] (which approaches from a geometric angle). There is a complete classification of Coxeter groups of finite types, including three infinite families of irreducible (in the sense of direct product) finite Coxeter groups: type A, type B, and type D. The Coxeter diagrams for groups of types \(A_n\), \(B_n\), and \(D_n\) are pictured in Fig. 1.2. Coxeter groups

\[
\begin{array}{c}
321 \\
| \\
312 & 231 \\
| & |
\end{array}
\begin{array}{c}
\{(3, 2), (3, 1), (2, 1)\} \\
| \\
\{(3, 1), (3, 2)\} & \{(2, 1), (3, 1)\} \\
| & |
\end{array}
\begin{array}{c}
132 & 213 \\
| & |
\end{array}
\begin{array}{c}
\{(3, 2)\} & \{(2, 1)\} \\
| & |
\end{array}
\begin{array}{c}
123 \\
\end{array}
\end{array}
\]
of type B can be realized as groups of signed permutations, and those of type D can be realized as groups of even-signed permutations. There are weak orders of types B and D based on the containment of inversion sets, though the type-B and type-D analogues of inversions are slightly different than the original definition. As in type A, the Hasse diagrams of these weak orders coincide with the 1-skeletons of permutahedra of the appropriate type, which have a lot of symmetry baked in when they are realized in the “right” way.

As suggested by their Coxeter diagrams, there is an intimate and fairly straightforward relationship between Coxeter groups of types A_n and B_n. In particular, we can get the diagram for A_n by simply erasing the label 4 on the edge between s_1 and s_2 in the diagram for B_n. This is one instance (or infinitely many instances, depending on your mood) of a hierarchical relationship between Coxeter groups. A Coxeter group W is said to dominate another Coxeter group W' if we can get the diagram of W' by lowering or erasing labels on edges or by erasing edges in the diagram of W (and perhaps changing the indices on generators so that the labels on vertices agreed). The Coxeter groups of type D_n do not fit nicely into either side of the dominance relationship with groups of type A_n or B_n, because the vertex associated to s_2 has degree 3 and none of the generators adjacent to it are connected to one another by an edge.

The geometric point of view on S_n and its signed relatives can be built from an understanding of the appropriate permutahedron. The type-A permutahedron in \mathbb{R}^n has $n! (|S_n|)$ vertices, since its 1-skeleton is the weak order on S_n: elements of S_n correspond to vertices, and covers in the weak order correspond to edges of the permutahedron. Similarly, the type-B and type-D permutahedra also have the same number of vertices as the size of their associated groups. The standard realization of the type-A permutahedron is highly symmetric: it has reflective symmetry across $n(n-1)/2$ distinct hyperplanes, one for each inversion which may occur in a permutation $\pi \in S_n$. In [33], a newer order called the shard intersection order on S_n arises from this hyperplane arrangement. Informally, it is constructed as follows: After correctly identifying vertices with permutations, orient the permutahedron so that its center

![Coxeter diagrams for A_n, B_n, and D_n.](image)
is at the origin in \mathbb{R}^n and the identity permutation $1 2 \cdots n$ is directly below the origin, then establish a hierarchy among reflecting hyperplanes in which the steepest hyperplanes (which correspond to simple reflections) are the most special. Next, allow steeper hyperplanes to separate less steep into pieces called shards, and finally order permutations by the reverse containment order on the intersections of the shards which most immediately separate them from the identity permutation. This order, called the shard intersection order and denoted $\Psi(S_n)$ or (S_n, \preceq), is a finite lattice related to and weaker than the weak order (weaker in the sense that it has fewer order relations than the weak order). Analogous processes can be used to create shard intersection orders on signed permutations (type B) and even-signed permutations (type D).

The shard intersection order on S_n contains the noncrossing partition lattice $NC(S_n)$ on n elements as a sublattice. $NC(S_n)$ is also sometimes called the classical or type-A noncrossing partition lattice and was introduced by Kreweras in [25]. There is a noncrossing partition lattice $NC(W)$ for every finite Coxeter group W, and they have important connections to Artin groups and representation theory [3, 7, 8, 13, 14, 22, 24, 40]. The shard intersection order was introduced in [33] as a natural generalization of the noncrossing partition lattice and to give a new proof that noncrossing partitions form a lattice. More recently, the shard intersection order has emerged as an important object in its own right: Just as the noncrossing partition lattice is the lattice of wide subcategories for the corresponding quiver of type A, D, or E, the shard intersection order is the lattice of wide subcategories for the corresponding preprojective algebra [18, 20].

The fibers of the surjective lattice homomorphism from (S_n, \leq) to the Tamari lattice, introduced in [43], form a congruence on the weak order whose equivalence classes are intervals, and the set of bottom elements of the intervals is closed under the meet and join operations of $\Psi(S_n)$ [34]. $(NC(S_n)$ is related to the Tamari lattice in the same way that $\Psi(S_n)$ is related to the weak order on S_n: they have the same underlying set, and the former is a weaker order than the latter.) For every finite Coxeter group W, there is an analogous sublattice relationship: $NC(W)$ is a sublattice of $\Psi(W)$ [33, Proposition 8.7].

We are finally in a position to articulate the initial motivation of this thesis, phrased as a question.

Question 1.1.1. If a finite Coxeter group W dominates another finite Coxeter group W', is $NC(W')$ a sublattice of $NC(W)$?

Our work focuses on this question within the dominance relationship of B_n over A_n. Instead of answering the question directly, we approach it by considering a different but closely related question.
Question 1.1.2. If a finite Coxeter group \(W \) dominates another finite Coxeter group \(W' \), is \(\Psi(W') \) a sublattice of \(\Psi(W) \)?

One reason for posing and approaching this new question is that, since the noncrossing partition lattice of a Coxeter group is a sublattice of its shard intersection order (by [38, Theorem 8.3]), an affirmative answer to Question 1.1.2 will give the same answer to Question 1.1.1 “for free”. To provide a definite answer for the latter question, we need to consider surjective lattice homomorphisms \(\eta \) from \((B_n, \leq)\) to \((A_n, \leq)\). The set of lowest elements in fibers of \(\eta \) in \((B_n, \leq)\) must be closed under the join operation in \(\Psi(A_n) \) since in any shard intersection order, the join operation is simply intersection [35]. However, the set of lowest elements might fail to be closed under the meet operation in \(\Psi(A_n) \). Thus, we need to better understand the meet operation in \(\Psi(A_n) \), and we do this by presenting a new characterization of the meet. In order to make good sense of our characterization, it is beneficial to have a closely related and sensible characterization of the join operation in \(\Psi(A_n) \) as well as both operations in \(\Psi(B_n) \).

Another reason to deal primarily with Question 1.1.2 is that there are other combinatorial objects by which we can realize Coxeter groups of type A to better understand \(\Psi(S_n) \) without doing tedious bookkeeping of linear inequalities in \(\mathbb{R}^n \). Noncrossing arc diagrams on \(n \) points were introduced by Reading in [35] and shown to be in bijection with permutations of \([n]\). Each noncrossing arc diagram is a visual object consisting of points on a vertical line and some (or no) curves connecting points, with each curve following certain rules on its own and relative to the other curves present. Fig. 3.2 shows the noncrossing arc diagrams corresponding to the 24 permutations in \(S_4 \), and is included here as Fig. 1.3. Each allowed curve is called an arc, and arcs are shown to be in bijection with join-irreducible permutations (those with exactly one descent). Under this bijection, join-irreducible permutations correspond to shards. Moreover, in [4], Bancroft uses permutation pre-orders, which are in bijection with noncrossing arc diagrams (stated explicitly in Proposition 3.3.1), to find an EL-labeling of the shard intersection of \(S_n \). Since permutation pre-orders can be used to understand some of
the structure of the shard intersection order on S_n, it is reasonable to guess that noncrossing arc diagrams might also provide relevant information about $Ψ(S_n)$. Indeed, one of the main results of this thesis is the characterization of the meet and join operations in the shard intersection order of type A in terms of operations on noncrossing arc diagrams.

To characterize the operations underlying $Ψ(B_n)$ similarly, we first need to make sense of analogous versions noncrossing arc diagrams in type B. Chapter 2 is a version of a joint paper with Barnard and Reading, which will be submitted for publication in 2023. In it, we begin by summarizing existing results on the original, centrally symmetric construction of noncrossing arc diagrams in type B (first introduced in [6] and expanded upon in [27]). We then present a new construction which exploits the symmetry of the first construction. Using these constructions, we reach results analogous to those in [35], including results on how arcs can be used to convey the combinatorics of congruences on (B_n, \leq). We also introduce two novel constructions of type-D noncrossing arc diagrams and present analogous results in type D.

The constructions and results in type B, which are set forth in Chapter 2, give us the necessary foundation to approach Question 1.1.2 head-on in Chapter 3. In it, we first state results characterizing (A_n, \leq) using noncrossing arc diagrams, which is somewhat surprising but necessary since the shard intersection order is so closely related to the weak order. We then define two operations, each from the set of pairs of noncrossing arc diagrams to the set of noncrossing arc diagrams, and present two theorems, 3.3.15 and 3.3.19, stating that the operations characterize the meet and join in $Ψ(A_n)$. Then, combining the type-B noncrossing arc diagrams presented in Chapter 2 with work on type A in Section 3.3, we are able to define analogous operations in type B and state nearly immediate parallel theorems, 3.4.11 and 3.4.12, characterizing the meet and join in $Ψ(B_n)$. Finally, we consider four maps $η$ from (B_n, \leq) to (A_n, \leq) which are shown in [38] to be surjective lattice homomorphisms that effectively erase the label 4 on the Coxeter diagram for B_n. We reframe each map as an operation on type-B noncrossing arc diagrams and prove that, in all but one case, the inverse of the restriction of $η$ to the bottom elements of its fibers does in fact embed $Ψ(A_n)$ as a sublattice of $Ψ(B_n)$ (Theorems 3.5.8, 3.5.21 and 3.5.27).

1.2 Selected Results, Examples, & Figures

In this section we provide overviews of Chapters 2 and 3, including some major results as well as (sometimes abbreviated versions of) important definitions and results or figures that are worth at least a few paragraphs of prose. We follow the same general structure as the two chapters, but sometimes combine or skip sections when helpful.
1.2.1 Noncrossing arc diagrams beyond type A

Noncrossing arc diagrams, visual combinatorial objects in bijection with permutations, are presented and shown to be quite effective at characterizing congruences of the weak order of type A in [35]. The major results of Chapter 2, a version of a joint paper with Barnard and Reading which will be submitted in 2023, are type-B and type-D analogues of the major results of [35].

Type-B noncrossing arc diagrams, symmetric model

The first main result on the symmetric model of type-B noncrossing arc diagrams is Theorem 2.4.1, stated below as Theorem 1.2.1. In it, δ is the map from permutations of $[n]$ to noncrossing arc diagrams on n points, originally described for type A in [35] and described in Section 2.3. The central symmetry mentioned is half-turn rotational symmetry, which sends the point i to the point $-i$ (and vice versa) for each $i \in \{1, \ldots, n\}$.

Theorem 1.2.1. The map δ restricts to a bijection from B_n to the set of centrally symmetric noncrossing arc diagrams on $2n$ points.

An example of δ applied to a signed permutation of $\pm[5]$ is pictured in Fig. 2.2 and included here as Fig. 1.4. The 8 centrally symmetric noncrossing arc diagrams for B_2 are included in Fig. 2.3 and here as Fig. 1.5.
Because of the symmetry of these diagrams, arcs occur in one of three forms in this model: as symmetric arcs, nonoverlapping symmetric pairs of arcs, or overlapping symmetric pairs of arcs. In Fig. 1.5, symmetric arcs are pictured in the innermost pair of diagrams, a nonoverlapping pair of arcs is pictured in the diagram immediately left of the symmetric arcs, and overlapping pairs of arcs are pictured in the two diagrams immediately right of them. Each symmetric arc or pair corresponds to a type-B inversion and thus to a join-irreducible signed permutation. The bijection from symmetric arcs and symmetric pairs to shards in the type-B Coxeter arrangement is made explicit in Propositions 2.4.3 and 2.4.4.

As in type A, we can characterize the canonical join representation (the minimal set, both element-wise in the weak order and set-wise, of join irreducible elements whose meet is whatever element of the Coxeter group we are considering) of a signed permutation in terms of the arcs in its symmetric noncrossing arc diagram. This result is Theorem 2.4.2 and is stated below as Theorem 1.2.2.

Theorem 1.2.2. Given $\pi \in B_n$, the canonical join representation of π is the set of join-irreducible elements corresponding to the symmetric arcs and symmetric pairs of arcs in $\delta(\pi)$.

The concept of subarcs is introduced for type A in [35] as a partial pre-order on arcs in which the left/right data of a shorter arc matches the subset of the same data for a longer arc along their shared length. Definitions of subarcs/subarc pairs of subarcs/subarc pairs are stated in Definitions 2.4.19 and 2.4.20, but the idea is essentially the same in type B. Several examples of the symmetric subarc relation are pictured in Fig. 2.4 and included here as Fig. 1.6. There is one wrinkle as we translate from type A to type B, stated in Remark 2.4.8 and captured in the non-example of the subarc relation pictured in Fig. 2.5 and here as
Fig. 1.7. A non-example of a subarc pair.

See Remark 2.4.8

The last major result of Section 2.4.1 is the characterization of forcing of join-irreducible signed permutations (\(j_1\) forces \(j_2\) when every congruence on the weak order that contracts \(j_1\) must also contract \(j_2\)) in terms of subarcs/subarc pairs. It is stated in Theorem 2.4.9, also stated below as Theorem 1.2.3.

Theorem 1.2.3. Let \(j_1\) and \(j_2\) be join-irreducible signed permutations. Then \(j_1\) forces \(j_2\) if and only if the arc or pair of arcs corresponding to \(j_1\) is a subarc or subarc pair of the arc or pair of arcs corresponding to \(j_2\).

Type-B noncrossing arc diagrams, orbifold model

The first main result on the orbifold model of type-B noncrossing arc diagrams is Theorem 2.4.14, stated below as Theorem 1.2.4. An example of the application of \(\delta^\circ\) (the map in the statement) to a signed permutation of \(\pm[5]\) is pictured in Fig. 2.9 and included here as Fig. 1.8.

Theorem 1.2.4. The map \(\delta^\circ\) is a bijection from \(B_n\) to the set of type-B noncrossing arc diagrams on \(n\) points.

Because of the advantages of the orbifold model (including its compactness), we refer to these noncrossing arc diagrams simply as type-B noncrossing arc diagrams. All 8 type-B noncrossing arc diagrams for \(B_2\) are pictured in Fig. 3.22, included here as Fig. 1.9 (compare with Fig. 1.5), and all 48 diagrams for \(B_3\) are pictured in Fig. 3.23, included here as Fig. 1.10.

As in the symmetric model, type-B arcs in the orbifold model occur in one of three forms: ordinary arcs, orbifold arcs, and long arcs. In Fig. 1.10, there are only type-A arcs in the 6
Figure 1.8: The map δ^0 applied to $(-4)352(-1)$.

Figure 1.9: Noncrossing arc diagrams for B_2.

Figure 1.10: Type-B noncrossing arc diagrams, B_3.
diagrams on the left side of the bottom row. Type-A arcs are joined by symmetric arcs in the 6 diagrams on the right side of the bottom row and in all diagrams on the second row. In the top two rows of the figure, there is a single long arc in each diagram. As in the symmetric model, each type of arc corresponds to a type-B inversion and thus a join-irreducible signed permutation. The bijection from type-B arcs to shards in the type-B Coxeter arrangement is made explicit in Propositions 2.4.16 to 2.4.18.

Since we can think of each type-B noncrossing arc diagram as the result of taking symmetric noncrossing arc diagram and just “modding out” by its central symmetry, the rest of the main results in Section 2.4.2 are essentially direct translations of results in Section 2.4.1. This is certainly true of the following theorem, also stated as Theorem 2.4.15.

Theorem 1.2.5. Given \(\pi \in B_n \), the canonical join representation of \(\pi \) is the set of join-irreducible elements corresponding to the arcs in \(\delta^0(\pi) \).

Since every symmetric arc and symmetric pair in the original symmetric construction corresponds to exactly one arc in the orbifold construction, the subarc idea in the orbifold model is somewhat simpler and feels more similar to the original definition of subarcs in type A. Definitions of subarcs in type-B are stated in Definitions 2.4.19 and 2.4.20, with several examples of the type-B subarc relation pictured in Fig. 2.10 and included here as Fig. 1.11. The orbifold version of the wrinkle in the subarc idea from type A to type B is stated in Remark 2.4.21 and captured in Fig. 2.11 and here as Fig. 1.12. In this construction, the nuance in type-B is more easily stated and seen: a subarc of a long arc must not cross itself –
if the subarc not ordinary, it must be a valid long arc. (Compare Fig. 1.12 with Fig. 1.7.)

The last major result of Section 2.4.2, the characterization of forcing of join-irreducible signed permutations in terms of type-B subarcs, is Theorem 2.4.22, stated below as Theorem 1.2.6.

Theorem 1.2.6. Let j_1 and j_2 be join-irreducible signed permutations. Then j_1 forces j_2 if and only if the type-B arc corresponding to j_1 is a subarc of the type-B arc corresponding to j_2.

Type-D noncrossing arc diagrams

Because type D is much less relevant to Chapter 3 than type B, in this section we state only the most essential results and include pictures instead of definitions whenever possible.

We present two models of Type-D noncrossing arc diagrams. The first consists of equivalence classes of one or two collections of type-B arc that are mostly compatible in the type-B sense. We call this the equivalence class model. The second is the result of, in a way, collapsing pairs of certain long type-B arcs which are in the same equivalence class into a single arc with two endpoints, one endpoint in the type-B sense and one that somewhat challenges the “end” in endpoint. We informally call this model postmodern throughout this section. Because the two models are equivalent, we pass from one to the other in Section 2.5 and here when advantageous. As in type B, there are three types of type-D arcs: ordinary, partially doubled, and branched. All three types of arcs are defined in both the equivalence class and post modern constructions in Definition 2.5.1 and pictured in Fig. 2.12, included here as Fig. 1.13. We define a map δ^D from even-signed permutations to collections of type-D arcs in the equivalence class construction. An example of δ^D applied to an even-signed permutation of $\pm[5]$ is pictured in Fig. 2.16 and included here as Fig. 1.14.

The first main result on type-D noncrossing arc diagrams is Theorem 2.5.8, stated below as Theorem 1.2.7.

Theorem 1.2.7. The map δ^D is a bijection from D_n to the set of type-D noncrossing arc diagrams.
Figure 1.14: The map δ^D applied to $3(-4)35(-1)2$.

Figure 1.15: Type-D noncrossing arc diagrams for D_3.
All 24 type-D noncrossing arc diagrams for D_3 are included in Fig. 2.15 and here as Fig. 1.15. The bottom two rows in the figure contain the type-D noncrossing arc diagrams corresponding to join-irreducible even-signed permutations, each of which is an equivalence class of either one or two equivalent type-B arcs. The postmodern versions of these single type-D arcs are pictured in Fig. 1.16.

The following theorem, another major result in type D, is Theorem 2.5.7.

Theorem 1.2.8. For any even-signed permutation π, the set of join-irreducible elements associated to $D^\pi(\pi)$ is the canonical join-representation of π.

The type-D version of subarcs is much less straightforward than the type-B version of subarcs in either construction. In particular, the ordinary and partially doubled subarcs of a partially doubled or branched arc do not need to have all (or even most of) the same left/right as the original arc. Definitions of subarcs of all three kinds of type-D arcs are given in Definitions 2.5.19 to 2.5.23. We include here only example figures in which left/right information changes from an arc to its subarc, included here as Figs. 1.17 and 1.18 and included as Figs. 2.21 and 2.22, with more subcases.

The last major result of Section 2.5, the characterization of forcing of join-irreducible even-signed permutations, is Theorem 2.5.24. It is stated below as Theorem 1.2.9.

Theorem 1.2.9. Let j_1 and j_2 be join-irreducible even-signed permutations. Then j_1 forces j_2 if and only if the type-D arc corresponding to j_1 is a subarc of the type-D arc corresponding to j_2.
1.2.2 Arcs and Shards

Type A

Noncrossing arc diagrams and the weak order

The main result in Section 3.3.2 is Proposition 3.3.7, which characterizes going up in the weak order in terms of operations on noncrossing arc diagrams. All operations which send us up in the weak order are pictured in Figs. 3.5 and 3.6, which are also included here in Figs. 1.19 and 1.20.

Figure 1.18: Ordinary subarcs α_1 of a partially doubled arc α_2.

Figure 1.19: Simple ways to go up from N in the weak order.
Cooperating and matting
The most important statements in Section 3.3.3 are the definition of cooperative and matted noncrossing arc diagrams, Definitions 3.3.8 and 3.3.10. Each operation takes two noncrossing arc diagrams as its input and gives a single noncrossing arc diagram as an output. (Lemmas 3.3.9 and 3.3.11 make explicit the fact that the outputs are, in fact, noncrossing arc diagrams.)

The cooperative noncrossing arc diagram of two noncrossing arc diagrams N_1 and N_2 is denoted $\text{cn}(N_1, N_2)$. In it, arcs are drawn only when two components, which we call blocks, in the two diagrams have arcs that share the same upper endpoint, the same lower endpoint, and the arcs in the two components pass weakly to the same side of each point between the shared endpoints. This operation is quite brittle, in the sense that the requirements to draw an arc can fail in many ways. The matted noncrossing arc diagram of N_1 and N_2 is denoted $\text{mn}(N_1, N_2)$, and it is much more predisposed toward making arcs than the cooperative process. In the matted noncrossing arc diagram, we “mat” each connected component of the union of the two original diagrams to create new blocks, by making each endpoint of a component an endpoint of the new block, passing to the same side of a point between two endpoints as arcs if they agree and adding any points of disagreement as new endpoints.

The definition of each operation is stated formally and then immediately followed by a less formal description of how we can draw the resulting noncrossing arc diagram once we have drawn the original pair of diagrams on the same set of points. These less formal descriptions are accompanied by example figures, including Figs. 3.12 to 3.15, which are consolidated and included here as Figs. 1.21 and 1.22.

Shard intersection order
The shard intersection order on A_2, realized both as the set of permutations on [3] and as the set of noncrossing arc diagrams on 3 points, is pictured in Fig. 3.18 and here as Fig. 1.23. The shard intersection order on A_3, realized as the set of noncrossing arc diagrams on 4 points, is pictured in Fig. 3.19 and here as Fig. 1.24.
Figure 1.21: Two examples of creating $cn(N_1, N_2)$.

Figure 1.22: Two examples of creating $mn(N_1, N_2)$.

Figure 1.23: The shard intersection order on A_2.
We define two simple operations, link moves and merge moves on pairs of arcs in noncrossing arc diagrams, and examples of both operations are pictured in Fig. 3.20, also included as Fig. 1.25 here. A valid link move on a pair of blocks consists of adding an arc between them so that the result is a noncrossing arc diagram. A valid merge move consists of combining two blocks immediately next to one another to create a single block that has all endpoints of the two blocks and respects the left/right information of both blocks. In Proposition 3.3.14, also stated below as Proposition 1.2.10, we restate Proposition 3.3.13 in terms of noncrossing arc diagrams.

Proposition 1.2.10. Let N and N' be two noncrossing arc diagrams on n points. N' covers N in $\Psi(A_{n-1})$ precisely when N' is the result of doing a valid link move or a valid merge move on two blocks of N.

The two main results of Section 3.3.4 and indeed of Section 3.3 are Theorems 3.3.15
and 3.3.19, stated here as Theorems 1.2.11 and 1.2.12. In Section 3.3.4, we build up to Theorem 3.3.19 with a sequence of increasingly strong statements (Lemmas 3.3.16 and 3.3.18 and Proposition 3.3.17).

Theorem 1.2.11. Given two permutations σ and τ in S_n with noncrossing arc diagrams $N_1 = \delta(\sigma)$ and $N_2 = \delta(\tau)$, their meet in $\Psi(A_{n-1})$ is the permutation corresponding to $\text{cn}(N_1, N_2)$.

Theorem 1.2.12. Given two permutations σ and τ in S_n with noncrossing arc diagrams $N_1 = \delta(\sigma)$ and $N_2 = \delta(\tau)$, their join in $\Psi(A_{n-1})$ is the permutation corresponding to $\text{mn}(N_1, N_2)$.

Type B

Signed permutations and noncrossing arc diagrams

Symmetric noncrossing arc diagrams are type-B analogues of the original type-A noncrossing arc diagrams; their $2n$ points correspond to the entries of signed permutations, the type-B analogues of permutations. The only results worth noting in Section 3.4.1 on symmetric noncrossing arc diagrams are Lemmas 3.4.1 and 3.4.2, which state that when N_1 and N_2 are symmetric noncrossing arc diagrams, so are the cooperative and matted noncrossing arc diagrams of N_1 and N_2.

There are a few notable results in Section 3.4.1 on type-B noncrossing arc diagrams (in the orbifold construction). The first two such statements are Definitions 3.4.3 and 3.4.5, on type-B versions of the cooperative and matted noncrossing arc diagrams defined in Section 3.3.3. As in type A, the type-B cooperative noncrossing arc diagram cn_B has quite restrictive criteria that must be met to draw an arc, and the type-B matted noncrossing arc diagram mn_B “tangles” the connected components of the union of the two original diagrams. However, because of the subtleties inherent in type-B noncrossing arc diagrams, there criteria to draw arcs in both definition are broken out into separate conditions depending on the kinds of type-B blocks involved and how they relate to each other. Examples of arcs resulting from each condition of Definition 3.4.3 are included in Fig. 3.24 and here in Fig. 1.26. Similarly, examples of arcs resulting from each condition of Definition 3.4.5 are included in Figs. 3.25 and 3.26 and here in Figs. 1.27 and 1.28. The bilateral and unilateral woven blocks mentioned in the captions shorthand for whether a type-B block that does not only consist of type-A/ordinary arcs has two well-defined sides.

Shard intersection order of type B

The shard intersection order of type B_2, realized both as symmetric noncrossing arc diagrams on 4 points and as type-B noncrossing arc diagrams on 2 points, is pictured in Fig. 1.29. The
Figure 1.26: Type-B cooperative noncrossing arc diagrams.

Figure 1.27: Type-B matted noncrossing arc diagram, bilateral woven block.

Figure 1.28: Type-B matted noncrossing arc diagrams, unilateral woven blocks.
shard intersection order of type B_3, realized as type-B noncrossing arc diagrams on 3 points, is pictured in Fig. 3.28 and here as Fig. 1.30. In Fig. 1.29, the top and bottom element as well as the four center elements of the middle row look like type-A noncrossing arc diagrams on 3 points, except that the lowest point in the diagram is \times instead of the numbered point 1. In Fig. 1.30, this phenomenon continues, with 11 elements in each of the two middle rows looking almost exactly like type-A noncrossing arc diagrams on 4 points. This foreshadows the first main result in Section 3.5.

An application of a well-known lattice theoretic result is Proposition 3.4.7, which states that $\Psi(B_n)$ is a sublattice of $\Psi(A_n)$. An immediate consequence of the proposition, in light of Lemmas 3.4.4 and 3.4.6 (which state that the cooperative and matting operations commute with modding out by the symmetry of symmetric noncrossing arc diagrams) is that the characterization of the meet and join in $\Psi(A_n)$ (using cooperative and matted noncrossing arc diagrams) also naturally applies to $\Psi(B_n)$. The two halves of this consequence are stated in Theorems 3.4.8 and 3.4.9 and here as Theorems 1.2.13 and 1.2.14.

Theorem 1.2.13. Given two signed permutations σ and τ of $\pm[n]$ with centrally symmetric noncrossing arc diagrams $M_1 = \delta(\sigma)$ and $M_2 = \delta(\tau)$, their meet in $\Psi(B_n)$ is the signed permutation corresponding to $\text{cn}(M_1, M_2)$.

Theorem 1.2.14. Given two signed permutations σ and τ of $\pm[n]$ with centrally symmetric noncrossing arc diagrams $M_1 = \delta(\sigma)$ and $M_2 = \delta(\tau)$, their join in $\Psi(B_n)$ is the signed permutation corresponding to $\text{mn}(M_1, M_2)$.

Finally, the two previous theorems can be easily translated into the orbifold construction to give the final two major results in type B. These results are stated in Theorems 3.4.11 and 3.4.12 and here as Theorems 1.2.15 and 1.2.16.
Figure 1.30: The shard intersection order on B_3.

Theorem 1.2.15. Given two signed permutations σ and τ with type-B noncrossing arc diagrams $N_1 = \delta^\circ(\sigma)$ and $N_2 = \delta^\circ(\tau)$, their meet in $\Psi(B_n)$ is the signed permutation corresponding to $cn_B(N_1, N_2)$.

Theorem 1.2.16. Given two signed permutations σ and τ with type-B noncrossing arc diagrams $N_1 = \delta^\circ(\sigma)$ and $N_2 = \delta^\circ(\tau)$, their join in $\Psi(B_n)$ is the signed permutation corresponding to $mn_B(N_1, N_2)$.

Embeddings of type A into type B

Each of the four subsections of Section 3.5 contains the same progression of results for a single surjective lattice homomorphism η from B_n to A_n. In this overview, we include a subset of the following for each η: an example illustrating how η turns a signed permutation in B_5 into a permutation in $S_6 = A_5$, a characterization of the congruence defined by η in terms of contracted and uncontracted type-B noncrossing arc diagrams, the outputs of ζ (the natural inclusion from A_n to B_n corresponding to η) for the same four permutations in $A_6 = S_7$, the type-A noncrossing arc diagrams corresponding to the four permutations and the type-B noncrossing arc diagrams of ζ’s outputs, and a result that ζ either does (as in Theorems 3.5.8, 3.5.21 and 3.5.27) or does not (as in Example 3.5.15) embed $\Psi(A_n)$ as a sublattice of $\Psi(B_n)$.
Simion’s homomorphism

The first map we consider is η_0, which we call Simion’s homomorphism since it was originally presented by Simion in [41]. The following example illustrates how η_0 turns a signed permutation in B_n into a permutation in S_{n+1}. It is also stated as Example 3.5.2.

Example 1.2.17. $\eta_0(2(-5)1(-4)(-3)) = 456132$

The arcs corresponding to the contracted join-irreducible signed permutations that generate the congruence defined by η_0 are pictured in Fig. 3.29, also included here as Fig. 1.31.

The four examples below illustrate how ζ_0 turns a permutation in $A_n = S_{n+1}$ into a signed permutation in B_n. They are Examples 3.5.3 to 3.5.6.

Example 1.2.18. $\zeta_0(1452736) = 341625$

Example 1.2.19. $\zeta_0(4521736) = (-1)(-4)(-3)625$

Example 1.2.20. $\zeta_0(4251736) = (-4)(-1)(-3)625$

Example 1.2.21. $\zeta_0(4517326) = (-4)(-3)6215$
The following proposition is Proposition 3.5.7.

Proposition 1.2.22. The map \(\zeta_0 \) on permutations corresponds to the following operation on noncrossing arc diagrams: For any \(\pi \in A_n = S_{n+1} \), the type-B noncrossing arc diagram \(\delta^0(\zeta_0(\pi)) \) is identical to the type-A noncrossing arc diagram \(\delta(\pi) \), except that the numbered point 1 in \(\delta(\pi) \) is replaced by the orbifold point \(\times \) and the numbered points 2, \ldots, \(n+1 \) are renumbered as 1, \ldots, \(n \).

The operation on noncrossing arc diagrams corresponding to \(\zeta_0 \) for the set of examples above is pictured in Fig. 3.30 and here as Fig. 1.32.

The sublattice \(\zeta_0(\Psi(A_n)) \) of \(\Psi(B_n) \), is pictured in Fig. 3.31 and here as Fig. 1.33.

The following theorem is Theorem 3.5.8.

Theorem 1.2.23. \(\zeta_0 \) embeds the shard intersection order on the Coxeter group of type \(A_n \) as a sublattice of the shard intersection order on the Coxeter group of type \(B_n \).

A nonhomogeneous homomorphism

The following example illustrates how \(\eta_{-1} \), which is denoted \(\eta_{\nu} \) in [38], turns a signed permutation in \(B_n \) into a permutation in \(S_{n+1} \). It is also presented in Example 3.5.9.

Example 1.2.24. \(\eta_{-1}(2 (-5) 1 (-4) (-3)) = 451632 \)

\[\begin{align*}
3 & 4 & -1 & 5 & -2 & & 2 & -5 & 1 & -4 & -3 \\
3 & 4 & -1 & 5 & & 2 & & 1 \\
3 & 4 & 0 & 5 & & 2 & & 1 \\
4 & 5 & 1 & 6 & & 3 & & 2
\end{align*} \]

read sequence \(\geq -1 \)

\(-1 \) becomes 0

add one

The arcs corresponding to the contracted join-irreducible signed permutations that generate the congruence defined by \(\eta_{-1} \) are pictured in Fig. 3.32, also included here as Fig. 1.34.

The four examples below illustrate how \(\zeta_{-1} \) turns a permutation in \(A_n = S_{n+1} \) into a signed permutation in \(B_n \). They are Examples 3.5.10 to 3.5.13.
Example 1.2.25. $\zeta_{-1}(1452736) = 341625$

\[
\begin{array}{cccccc}
1 & 4 & 5 & 2 & 7 & 3 & 6 \\
-1 & 3 & 4 & 1 & 6 & 2 & 5 \\
3 & 4 & 1 & 6 & 2 & 5
\end{array}
\]

\[j = 1, i = 4\]

Example 1.2.26. $\zeta_{-1}(4521736) = (-1)(-4)(-3)625$

\[
\begin{array}{cccccc}
4 & 5 & 2 & 1 & 7 & 3 & 6 \\
3 & 4 & 1 & -1 & 6 & 2 & 5 \\
-1 & -4 & -3 & 6 & 2 & 5
\end{array}
\]

\[j = 4, i = 3\]

Figure 1.33: The sublattice $\zeta_0(S_4)$ of $\Psi(B_3)$.

Figure 1.34: Contracted arcs that generate the congruence defined by η_{-1}.
Example 1.2.27. $\zeta_{-1}(4251736) = 4(-1)(-3)625$

\[
\begin{array}{cccccc}
4 & 2 & 5 & 1 & 7 & 3 & 6 \\
3 & 1 & 4 & -1 & 6 & 2 & 5 \\
4 & -1 & -3 & 6 & 2 & 5 \\
\end{array}
\]

$j = 4, i = 2$

Example 1.2.28. $\zeta_{-1}(4517326) = 621(-4)(-3)5$

\[
\begin{array}{cccccc}
4 & 5 & 1 & 7 & 3 & 2 & 6 \\
3 & 4 & -1 & 6 & 2 & 1 & 5 \\
6 & 2 & 1 & -4 & -3 & 5 \\
\end{array}
\]

$j = 3, i = 6$

The following proposition is Proposition 3.5.14.

Proposition 1.2.29. The map ζ_{-1} on permutations corresponds to the following operation on noncrossing arc diagrams: For any $\pi \in A_n = S_{n+1}$, the type-B noncrossing arc diagram $\delta^o(\zeta_{-1}(\pi))$ is identical to the type-A noncrossing arc diagram $\delta(\pi)$, except that the numbered point 1 is replaced by the orbifold point \times, the numbered points $2, \ldots, n+1$ are renumbered as 1, \ldots, n, and if $\delta(\pi)$ contains an arc α which passes left [resp. right] of 2 and has 1 as its lower endpoint, then this arc is replaced by a long arc whose left [resp. right] side agrees with α shifted down by one and whose right [resp. left] endpoint is 1.

The operation on noncrossing arc diagrams corresponding to ζ_{-1} for the set of examples above is pictured in Fig. 3.33 and here as Fig. 1.35.

The example below is Example 3.5.15, which demonstrates the fact that ζ_{-1} does not embed $\Psi(A_n)$ as a sublattice of $\Psi(B_n)$. The figure included here and mentioned in the theorem is also included as Fig. 3.35.

Example 1.2.30. Consider the permutations $\sigma = 3142$ and $\tau = 3241$. By Theorem 1.2.11, $\sigma \land \tau$ in $\Psi(A_3)$ is the permutation corresponding to the noncrossing arc diagram $\text{cn}(\delta(\sigma), \delta(\tau))$.

26
Figure 1.36: Example showing that $\zeta^{-1}(A_3)$ is not a sublattice of $\Psi(B_3)$.

As shown in the top of Fig. 1.36, the meet of σ and τ is the permutation $1\ 2\ 3\ 4$, the identity in A_3. The signed permutation $\zeta^{-1}(\sigma \wedge \tau)$ is the identity in B_3, the signed permutation $1\ 2\ 3$.

The images of σ and τ under ζ^{-1} are the signed permutations $\zeta^{-1}(\sigma) = 3\ 1\ (-2)$ and $\tau = 3\ (-1)\ (-2)$. By Theorem 1.2.15, $\zeta^{-1}(\sigma) \wedge \zeta^{-1}(\tau)$ in $\Psi(B_3)$ is the signed permutation corresponding to $\text{cn}_B(\delta^o(\zeta^{-1}(\sigma)), \delta^o(\zeta^{-1}(\tau)))$. As shown in the bottom of Fig. 1.36, the meet of $\zeta^{-1}(\sigma)$ and $\zeta^{-1}(\tau)$ is the signed permutation $1\ 3\ (-2)$, which is strictly above the identity in $\Psi(B_n)$. The signed permutation $1\ 3\ (-2)$ is not in the image of ζ^{-1}, since both endpoints of the long arc in $\delta^o(1\ 3\ (-2))$ are above 1.

Two more homogeneous homomorphisms

The two remaining homomorphisms denoted η_δ and η_ϵ are hybrids of η_0 and η_{-1}. The difference between the two maps is that η_δ behaves as η_0 in exactly the cases where η_ϵ behaves as η_{-1} and vice versa. This relationship is illustrated succinctly by the symmetry between Figs. 1.37 and 1.40, so we exclude several results for η_ϵ and ζ_ϵ since the symmetry of the two figures can be safely extrapolated.

A hybrid map, η_δ

The arcs corresponding to the contracted join-irreducible signed permutations that generate the congruence defined by ζ_δ are pictured in Fig. 3.38, also included here as Fig. 1.39.

The four examples below illustrate how ζ_δ turns a permutation in $A_n = S_{n+1}$ into a signed permutation in B_n. They are Examples 3.5.16 to 3.5.19.
Figure 1.37: Contracted arcs that generate the congruence defined by η_δ.

Example 1.2.31. $\zeta_\delta(1452736) = 3 4 1 6 2 5$

```
1 4 5 2 7 3 6
0 3 4 1 6 2 5
```

Example 1.2.32. $\zeta_\delta(4521736) = (-1)(-4)(-3)625$

```
4 5 2 1 7 3 6
3 4 1 -1 6 2 5
-1 -4 -3 6 2 5
```

Example 1.2.33. $\zeta_\delta(4251736) = 4(-1)(-3)625$

```
4 2 5 1 7 3 6
3 1 4 -1 6 2 5
4 -1 -3 6 2 5
```

Example 1.2.34. $\zeta_\delta(4517326) = (-4)(-3)6215$

```
4 5 1 7 3 2 6
3 4 0 6 2 1 5
-4 -3 6 2 1 5
```

The following proposition is Proposition 3.5.20.

Proposition 1.2.35. The map ζ_δ on permutations corresponds to the following operation on noncrossing arc diagrams: For any $\pi \in A_n = S_{n+1}$, the type-B noncrossing arc diagram $\delta^\circ(\zeta_\delta(\pi))$ is identical to the type-A noncrossing arc diagram $\delta(\pi)$, except that the numbered point 1 is replaced by the orbifold point \times, the numbered points 2, \ldots, $n+1$ are renumbered as 1, \ldots, n, and if $\delta(\pi)$ has an arc α which passes right of 2 and has 1 as its lower endpoint, then this arc is replaced by a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1.
Figure 1.38: ζ_δ on noncrossing arc diagrams.

Figure 1.39: The sublattice $\zeta_\delta(S_4)$ of $\Psi(B_3)$.
Figure 1.40: Contracted arcs that generate the congruence defined by η_ϵ.

The operation on noncrossing arc diagrams corresponding to ζ_δ for the set of examples above is pictured in Fig. 3.37 and here as Fig. 1.38.

The sublattice $\zeta_\delta(\Psi(A_n))$ of $\Psi(B_n)$, is pictured in Fig. 3.38 and here as Fig. 1.39.

The following theorem is Theorem 3.5.21.

Theorem 1.2.36. ζ_δ embeds the shard intersection order on the Coxeter group of type A_n as a sublattice of the shard intersection order on the Coxeter group of type B_n.

A second hybrid map, η_ϵ.

The arcs corresponding to the contracted join-irreducible signed permutations that generate the congruence defined by ζ_ϵ are pictured in Fig. 3.39, also included here as Fig. 1.40.

The following theorem is Theorem 3.5.27.

Theorem 1.2.37. ζ_ϵ embeds the shard intersection order on the Coxeter group of type A_n as a sublattice of the shard intersection order on the Coxeter group of type B_n.
2.1 Introduction

Noncrossing arc diagrams, introduced in [35], are combinatorial objects in bijection with permutations that bring to light lattice-theoretic information about the weak order on permutations (such as canonical join representations and lattice congruences) and related discrete-geometric information (such as shards and shard intersections). The results of [35] include:

- An explicit bijection from permutations to noncrossing arc diagrams and an explicit inverse;
- a bijection from arcs to join-irreducible elements of the weak order;
- a bijection from arcs to shards;
- a characterization of compatibility of join-irreducible elements (in the sense of canonical join complexes);
• a construction of the canonical join complex of the weak order in a way that proves that this complex is flag; and

• a characterization of lattice congruences on the weak order and their quotients.

In this chapter, we construct models analogous to noncrossing arc diagrams for Coxeter groups of type B (signed permutations) and type D (even-signed permutations) and prove the analogous results. (The theorem on flagness of the canonical join complex was already vastly generalized by Barnard in [5], so we don’t state it again here for Coxeter groups of types B and D.)

The first challenge in constructing models in types B and D is to choose the correct combinatorial object. After that, bijections to elements of the Coxeter groups, bijections to join-irreducible elements and to shards, and characterization of canonical join complexes are all relatively straightforward. Significantly more challenging is the combinatorial characterization of lattice congruences and quotients, particularly in type D.

The resulting characterization of congruences in type B is a great improvement over the earlier state of the art [31, Theorem 7.3], which is usable (e.g. in [32, 38]) but clunky. The improvement is in two directions. First, we give a direct one-step characterization of forcing relations among join-irreducible congruences, rather than only characterizing the arrows whose transitive closure is the forcing relation. Second, the description of the entire forcing relation is much simpler even than the earlier description of single arrows.

The characterization of congruences in type D is the first of its kind. Although the proof of the type-D characterization is quite complicated, the payoff is that much of the complication can be left behind in the proof, so that the resulting tool is again a one-step characterization, and so is not prohibitively complicated.

The type-B model comes in two equivalent versions, analogous to the description of signed permutations as sequences $\pi_{-n} \pi_{-n+1} \cdots \pi_{-1} \pi_1 \pi_2 \cdots \pi_n$ or as sequences $\pi_1 \pi_2 \cdots \pi_n$. In the first version, signed permutations of $\{\pm 1, \ldots, \pm n\}$ are in bijection with centrally symmetric noncrossing arc diagrams on $2n$ points. (See Fig. 2.3.) This version has the advantage that the comparison with type-A noncrossing arc diagrams is transparent. Parts of this model have appeared in [6, 27]. Notably, the latter paper includes the characterization of lattice congruences and a construction of quotientopes (polytopes realizing lattice quotients of the weak order in the same way the permutohedron realizes the weak order [29]). The second version of the type-B model passes to the quotient of centrally symmetric noncrossing diagrams, modulo the symmetry, to obtain an orbifold model. (See Fig. 2.8.) In addition to the obvious advantage of spatial compactness, the orbifold version brings to light some more subtle and surprising connections with type-A diagrams: In Chapter 3, we characterize
the meet and join operations in the shard intersection orders of types A and B in terms of the usual noncrossing arc diagrams and in terms of the orbifold model and uses these characterizations to show that the shard intersection order of type A_n (permutations in S_{n+1}) embeds as a sublattice of the shard intersection order of type B_n.

The type-D model also has two versions. In one version, type-D arcs are equivalence classes of arcs in the type-B orbifold model. Most classes are singletons, but some have two elements. In the other version, the type-D arcs look less like arcs of type A or B, and come in three types: ordinary (like type A), partially doubled, and branched. (See Fig. 2.12.) It would be interesting to make the connection between type-D arcs and the characterization of join-irreducible elements of the type-D weak order produced in a representation-theory context in [23, Section 6.2] and [2]. It also seems possible that the existence of a combinatorial model for lattice congruences of the weak order in type D will allow the construction of quotientopes [29, 27] to be extended to type D.

2.2 Preliminaries

In this section, we establish background on lattice theory, finite Coxeter groups, posets of regions, and shards. We assume the most basic notions, particularly for lattice theory and Coxeter groups. In Section 2.2.3, we prove a new characterization of shard arrows, which provides a convenient tool to study forcing among congruences in the case of lattices of regions of a simplicial arrangement.

2.2.1 Lattices and congruences

An element j of a finite lattice L is called join-irreducible if and only if it covers exactly one element. We write j_\ast for the unique element covered by j.

The canonical join representation (CJR) of an element x in a finite lattice L is the unique antichain X in L such that $x = \bigvee X$ and such that, if X' is any subset of L with $x = \bigvee X'$, the order ideal generated by X' contains the order ideal generated by X. In particular, X consists of join-irreducible elements called the canonical joinands of x. An element x may or may not have a canonical join representation.

The property that every element of a finite lattice L has a canonical join representation is equivalent to a property called join-semidistributivity [19, Theorem 2.24]. We will not need the usual definition of join-semidistributivity here, but for finite lattices, one can profitably take the existence of canonical join representations as the definition. If both join-semidistributivity and the dual condition hold, then L is called semidistributive.
A natural question, given a finite join-semidistributive lattice \(L \), is to characterize which subsets of \(L \) are canonical join representations of elements of \(L \). Thus the question is to characterize the collection \(\{ X \subseteq L : X \text{ is the CJR of } \bigvee X \} \). This collection is called the canonical join complex, because it is a simplicial complex (with vertex set the set of join-irreducible elements).

A simplicial complex is flag if each minimal non-face is a 2-element set. (Equivalently, a set \(X \) of vertices forms a face if and only if every 2-element subset of \(X \) is an edge.) The following theorem is part of [5, Theorem 2].

Theorem 2.2.1. Suppose \(L \) is a finite join-semidistributive lattice. The canonical join complex of \(L \) is flag if and only if \(L \) is semidistributive.

Theorem 2.2.1 is extremely important for understanding the combinatorics of finite semidistributive lattices. Given a finite semidistributive lattice \(L \), we say that two join-irreducible elements \(j \) and \(j' \) of \(L \) are compatible if and only if \(\{ j, j' \} \) is a face of the canonical join complex. (That is, if and only if there is an element whose canonical join representation is \(\{ j, j' \} \).) Equivalently, if and only if there is an element whose canonical join representation contains \(\{ j, j' \} \). Since, in particular, \(L \) is join-semidistributive (so that every element has a canonical join representation), the elements of \(L \) are in bijection with the faces of the canonical join complex. But then since \(L \) is semidistributive, Theorem 2.2.1 implies that the faces of the canonical join complex are precisely the pairwise compatible sets of join-irreducible elements of \(L \). In later sections, we will give a bijection between join-irreducible elements of the weak order and various kinds of “arcs”, define notions of compatibility of arcs that correspond to compatibility of join-irreducible elements, and thus show that elements of the Coxeter group are in bijection with pairwise compatible sets of arcs.

A congruence on a lattice \(L \) is an equivalence relation \(\Theta \) such that if \(x_1 \equiv x_2 \) and \(y_1 \equiv y_2 \) modulo \(\Theta \), then \((x_1 \land y_1) \equiv (x_2 \land y_2) \) and \((x_1 \lor y_1) \equiv (x_2 \lor y_2) \). The quotient \(L/\Theta \) of \(L \) modulo \(\Theta \) is the lattice whose elements are the \(\Theta \)-classes \([x]_\Theta \) and whose meet and join are given by \([x]_\Theta \land [y]_\Theta = [x \land y]_\Theta \) and \([x]_\Theta \lor [y]_\Theta = [x \lor y]_\Theta \).

Congruences and quotients have a nice order-theoretic description as well. An equivalence relation \(\Theta \) on a finite lattice \(L \) is a lattice congruence if and only if (1) each equivalence class is an interval, (2) the map sending an element to the bottom of its equivalence class is order-preserving, and (3) the map sending an element to the top of its equivalence class is order-preserving. The quotient \(L/\Theta \) is isomorphic to the subposet induced by the set of bottom elements of congruence classes. Said another way: An element \(x \in L \) is said to be contracted by \(\Theta \) if \(x \) is congruent to some element strictly less than \(x \). The quotient \(L/\Theta \) is isomorphic to the subposet of \(L \) induced by uncontracted elements.
A join-irreducible element j is contracted by Θ if and only if $j \equiv j_*$ modulo Θ. It is well known that a congruence is completely determined by the set of join-irreducible elements it contracts. (For a precise statement, see [37, Theorem 9-5.12].) Thus, to completely characterize congruences on a given lattice, it suffices to characterize which sets of join-irreducible elements can be contracted by congruences. In this chapter, we carry out this characterization in the case of the weak order on Coxeter groups of types B and D.

Canonical join representations behave well when passing to quotients.

Proposition 2.2.2. [37, Proposition 10-5.29] Suppose L is a finite join-semidistributive lattice and Θ is a congruence on L. Then an element $x \in L$ is contracted by Θ if and only if one or more of its canonical joinands is contracted by Θ. If x is not contracted by Θ, then its canonical join representation in the quotient L/Θ coincides with its canonical join representation in L.

In the proposition, the quotient L/Θ is realized, as before, as the subposet of L induced by the elements of L that are not contracted by Θ. The second assertion of the proposition implies, in particular, that the join-irreducible elements of the quotient are precisely the join-irreducible elements of L that are not contracted by Θ.

The following corollary is an immediate consequence of Proposition 2.2.2. (Recall that the vertices of the canonical join complex of L are the join-irreducible elements of L.)

Corollary 2.2.3. Suppose L is a finite join-semidistributive lattice and Θ is a congruence on L. Then the canonical join complex of L/Θ is the subcomplex of the canonical join complex of L induced by the join-irreducible elements of L not contracted by Θ.

Join-irreducible elements cannot be contracted independently. Instead, there is a partial (pre-)order that mediates which sets of join-irreducibles can be contracted by a congruence. We say that a join-irreducible element j_1 forces another join-irreducible element j_2 if every congruence that contracts j_1 also contracts j_2. In general, the forcing relation is a pre-order (a reflexive, transitive, but not necessarily antisymmetric relation) on the set of join-irreducible elements.

2.2.2 Coxeter groups and the weak order

Let (W, S) be a Coxeter system. We write $\ell(w)$ for the usual length function, the length of w in the alphabet S. A (left) inversion of an element $w \in W$ is a reflection t such that $\ell(tw) < \ell(w)$. Let $^{-1}(w)$ denote the set of inversions of w. We write “\leq” for the (right) weak order on W, which is the partial order on W with $u \leq w$ if and only if $\text{inv}(u) \subseteq \text{inv}(w)$. The
cover relations in the weak order are precisely the relations \(ws < w\) such that \(w \in W, s \in S\), and \(\ell(ws) < \ell(w)\).

Given an element \(w\) of a Coxeter group \(W\), a \textit{cover reflection} of \(w\) is a reflection \(t\) such that \(tw < w\). Cover reflections of \(w\) are in bijection with elements covered by \(w\): If \(ws < w\), then \(ws w^{-1}\) is a cover reflection. Let \(\text{cov}(w)\) denote the set of cover reflections of \(w\).

The weak order on a finite Coxeter group is a semidistributive lattice [26, Lemme 9].

Theorem 2.2.4. [36, Theorem 10-3.9] Suppose \(W\) is a finite Coxeter group and \(w \in W\). For each \(t \in \text{cov}(w)\), there is a unique minimal element \(j_t\) in \(\{v : v \leq w, t \in t^{-1}(v)\}\). The canonical join representation of \(w\) is \(w = \bigvee \{j_t : t \in \text{cov}(w)\}\).

The weak order on a finite Coxeter group has a property called congruence uniformity [15], which in particular implies that the forcing relation is a partial order. In later sections, we describe this forcing order on join-irreducible elements of the weak order of types A, B, and D in terms of “subarc” relationships on arcs.

2.2.3 Shards, congruences, and forcing

We now briefly recall some discrete-geometric notions that can be used to understand lattice congruences of the weak order, and prove a characterization of forcing that is useful in describing the forcing order on join-irreducible elements. In fact, we prove the characterization in the more general setting of lattices of regions of simplicial arrangements. For more details on the background material, see [37, 36].

A \textit{(real, central) hyperplane arrangement} is a finite collection \(\mathcal{A}\) of linear hyperplanes in \(\mathbb{R}^d\). (We us the adjective “real” because hyperplane arrangements in vector spaces over other fields are often of interest. The adjective “central” emphasizes that our hyperplanes are linear, as opposed to affine hyperplanes which might not contain the origin.) The \textit{regions} of \(\mathcal{A}\) are the closures of the connected components of \(\mathbb{R}^d \setminus \bigcup \mathcal{A}\). Choosing a \textit{base region} \(B\), we define the \textit{separating set} \(S(R)\) of a region \(R\) to be the set of hyperplanes in \(\mathcal{A}\) that separate the interior of \(R\) from the interior of \(B\). The \textit{poset of regions} \(\mathcal{P}(\mathcal{A}, B)\) is the set of regions, partially ordered by setting \(Q \leq R\) if and only if \(S(Q) \subseteq S(R)\).

A hyperplane arrangement is \textit{simplicial} if every region is a simplicial cone (the nonnegative linear span of a linearly independent set of vectors). Semidistributivity in the following theorem is [30, Theorem 3]. The lattice property was proven earlier in [11, Theorem 3.4].

Theorem 2.2.5. If \(\mathcal{A}\) is a simplicial hyperplane arrangement, then \(\mathcal{P}(\mathcal{A}, B)\) is a semidistributive lattice.
The set \(A_W \) of reflecting hyperplanes of a Coxeter group \(W \) (in the usual reflection representation) constitute the Coxeter arrangement associated to \(W \). Choosing \(B \) to be a region bounded by the reflecting hyperplanes for the simple reflections \(S \), the map \(w \mapsto wB \) is an isomorphism from the weak order on \(W \) to the poset of regions \(\mathcal{P}(A_W, B) \). It is well known that the Coxeter arrangements are simplicial. (See [36, Theorem 10.2.1] and the citation notes at the end of that chapter.) Thus Theorem 2.2.5 in particular implies the semidistributivity of the weak order, already mentioned in Section 2.2.2.

A rank-two subarrangement of an arrangement \(A \) is a subset \(A' \) of \(A \), with \(|A'| > 1 \) that can be described as \(A' = \{ H \in A : H \supset U \} \) for some codimension-2 linear subspace \(U \). Any two distinct hyperplanes \(H_1, H_2 \in A \) are contained in a unique rank-two subarrangement, namely \(\{ H \in A : H \supset (H_1 \cap H_2) \} \).

Suppose that we have fixed a base region \(B \) as in the definition of \(\mathcal{P}(A, B) \). Then a rank-two subarrangement has two distinguished hyperplanes called its basic hyperplanes. The subarrangement cuts \(\mathbb{R}^d \) into regions, and \(B \) is contained in one of these regions, call it \(B' \). The basic hyperplanes of \(A' \) are the two hyperplanes that bound \(B' \).

A hyperplane \(H_1 \in A \) cuts a hyperplane \(H_2 \in A \) if \(H_1 \) is basic in the rank-two subarrangement \(A' \) containing \(H_1 \) and \(H_2 \), and \(H_2 \) is not basic in \(A' \). Given \(H \in A \), the shards in \(H \) are the closures of connected components of \(\{ H \setminus H' : H' \text{ cuts } H \} \). The set of shards of \(A \) is the set of all shards in all hyperplanes in \(A \). Thus to make the shards of \(A \), we “slice” each hyperplane along all of its intersections with hyperplanes that cut it. We emphasize that the construction of shards depends on the choice of base region \(B \).

Given a shard \(\Sigma \), we write \(H_\Sigma \) for the hyperplane containing \(\Sigma \). Suppose \(R \) is a region of \(A \) and \(\Sigma \) is a shard of \(A \). If \(R \cap \Sigma \) is a facet of \(R \) and \(H_\Sigma \in S(R) \), then \(R \) is an upper region of \(\Sigma \) and \(\Sigma \) is a lower shard of \(R \).

Proposition 2.2.6. [31, Propositions 3.2, 3.5] If \(A \) is a simplicial arrangement, then each shard \(\Sigma \) has a unique minimal upper region \(J_\Sigma \). The region \(J_\Sigma \) is join-irreducible in \(\mathcal{P}(A, B) \) and is the unique join-irreducible upper region of \(\Sigma \). The map \(\Sigma \mapsto J_\Sigma \) is a bijection from the set of shards of \(A \) to the set of join-irreducible elements of \(\mathcal{P}(A, B) \). The inverse map takes a join-irreducible region \(J \) to its unique lower shard.

Theorem 2.2.7. [33, Theorem 3.6] If \(A \) is a simplicial arrangement and \(R \) is a region, then the canonical join representation of \(R \) in \(\mathcal{P}(A, B) \) is \(\{ J_\Sigma : \Sigma \text{ is a lower shard of } R \} \).

Recall from Section 2.2.1 that two join-irreducible elements \(j_1, j_2 \) of a semidistributive lattice \(L \) are compatible if and only if there exists an element of \(L \) whose canonical join representation is \(\{ j_1, j_2 \} \) if and only if there exists an element of \(L \) (not necessarily the same
element) whose canonical join representation contains \(\{j_1, j_2\} \). We will say that two shards are \textit{compatible} if and only if the intersection of their relative interiors is nonempty.

Proposition 2.2.8. Suppose \(\mathcal{A} \) is a simplicial arrangement. Two shards are compatible if and only if the two corresponding join-irreducible regions in \(\mathcal{P}(\mathcal{A}, B) \) are compatible.

Proof. By Theorem 2.2.7, two join-irreducible regions \(J_1 \) and \(J_2 \) in a simplicial poset of regions are compatible if and only if \(\Sigma_{J_1} \) and \(\Sigma_{J_2} \) are the two lower shards of some region \(R \). In that case, the hyperplanes containing \(\Sigma_{J_1} \) and \(\Sigma_{J_2} \) are the two basic hyperplanes in the rank-two subarrangement containing them, so they don’t cut each other. Since their intersection has codimension 2 (because it contains the intersection of two facets of the simplicial region \(R \)), we see that the relative interiors of \(\Sigma_{J_1} \) and \(\Sigma_{J_2} \) have nonempty intersection. Conversely, if there are two shards \(\Sigma_1 \) and \(\Sigma_2 \) whose relative interiors have nonempty intersection, then there is a region \(Q \) having both as lower shards. (Such a region \(Q \) can be found by starting at a generic point in the intersection of the two relative interiors and moving a small distance in the direction away from the interior of \(B \).) Then Theorem 2.2.7 says that the corresponding join-irreducible regions are in the canonical join representation of \(Q \), and thus are compatible. \(\square \)

We have seen that shards and their incidences encode the canonical join representations of regions in \(\mathcal{P}(\mathcal{A}, B) \). We will also see that they encode the forcing (pre-)order on join-irreducible elements in \(\mathcal{P}(\mathcal{A}, B) \). Define the \textit{shard digraph} to be the directed graph whose vertices are the shards, with \(\Sigma_1 \rightarrow \Sigma_2 \) if and only if \(H_{\Sigma_1} \) cuts \(H_{\Sigma_2} \) and \(\Sigma_1 \cap \Sigma_2 \) has codimension 2.

Theorem 2.2.9. [37, Theorem 9-7.17] If \(\mathcal{A} \) is simplicial and \(\Sigma_1 \) and \(\Sigma_2 \) are shards, then \(J_{\Sigma_1} \) forces \(J_{\Sigma_2} \) if and only if there is a directed path in the shard digraph from \(\Sigma_1 \) to \(\Sigma_2 \).

Said another way, the map \(\Sigma \mapsto J_\Sigma \) is an isomorphism from the reflexive-transitive closure of the shard digraph to the forcing (pre-)order defined in Section 2.2.1. We emphasize that, even when the forcing pre-order is a partial order, shard arrows are not necessarily cover relations in the forcing order. Instead, there may be pairs of shards that are related by a shard arrow and also by a longer path in the shard digraph.

We now state and prove the main theorem of this section, a technical result that rephrases the definition of the shard digraph in a way that is useful (in later sections) for describing forcing in terms of “subarc” relationships between arcs.

Theorem 2.2.10. Suppose \(\mathcal{A} \) is a simplicial hyperplane arrangement and suppose \(\Sigma_1 \) and \(\Sigma_2 \) are shards. Then \(\Sigma_1 \rightarrow \Sigma_2 \) in the shard digraph if and only if there exists a shard \(\Sigma'_1 \) satisfying the following conditions:
(i) Σ_1 and Σ'_1 are compatible,

(ii) H_{Σ_2} is in the rank-two subarrangement containing H_{Σ_1} and $H_{\Sigma'_1}$ but is not basic in that subarrangement, and

(iii) $\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2$.

Note that the compatibility of Σ_1 and Σ'_1 in (i) implies that there is a region having both Σ_1 and Σ'_1 as lower shards. In particular, H_{Σ_1} and $H_{\Sigma'_1}$ are basic in the rank-two subarrangement containing them.

A shard intersection is an intersection of a set of shards. The shard intersection order is the reverse containment order on the set of all shard intersections. The proof of Theorem 2.2.10 uses the fact that the reverse containment order on the set of all intersections of shards is graded by codimension [33, Proposition 5.1].

Proof of Theorem 2.2.10. Suppose $\Sigma_1 \to \Sigma_2$. Write H_1 for H_{Σ_1} and H_2 for H_{Σ_2}. Then in particular H_1 is basic in the rank-two subarrangement \mathcal{A}' containing H_1 and H_2, but H_2 is not basic in \mathcal{A}'. Let H'_1 be the other basic hyperplane in \mathcal{A}'. Since $\Sigma_1 \cap \Sigma_2$ has codimension 2 and is contained in the intersection of the hyperplanes of \mathcal{A}', we can find a point $x \in \Sigma_1 \cap \Sigma_2$ that is not contained in any hyperplane in $\mathcal{A} \setminus \mathcal{A}'$. Thus, since H_2 does not cut H_1, the point x is in the relative interior of Σ_1. Since H_2 also does not cut H'_1, x is also in the relative interior of some shard Σ'_1 in H'_1. By definition, Σ_1 and Σ'_1 are compatible. Since x is in the relative interior of Σ'_1, there is some ball about x whose intersection with Σ'_1 is the same as its intersection with H'_1. Since H'_1 contains $\Sigma_1 \cap \Sigma_2$, we see that $\Sigma_1 \cap \Sigma'_1 \cap \Sigma_2$ also has codimension 2. Since H_1 and H'_1 are not the same hyperplane, $\Sigma_1 \cap \Sigma'_1$ has codimension 2 as well. Since the shard intersection order is graded by codimension and $\Sigma_1 \cap \Sigma'_1 \cap \Sigma_2 \subseteq \Sigma_1 \cap \Sigma'_1$, these two intersections must in fact be the same. Thus $\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2$.

Conversely, suppose there exists Σ'_1 such that the three conditions of the theorem hold. Then certainly H_{Σ_1} cuts H_{Σ_2}, so we must show that $\Sigma_1 \cap \Sigma_2$ has codimension 2. Since $H_{\Sigma_1} \neq H_{\Sigma_2}$, certainly the codimension of $\Sigma_1 \cap \Sigma_2$ is at least 2. But the fact that Σ_1 and Σ'_1 are compatible means that they intersect in their relative interiors, so $\Sigma_1 \cap \Sigma'_1$ has codimension 2. But since $\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2$, we have $\Sigma_1 \cap \Sigma'_1 = \Sigma_1 \cap \Sigma'_1 \cap \Sigma_2$. In particular, the codimension of $\Sigma_1 \cap \Sigma_2$ cannot be more than 2.

The third condition in Theorem 2.2.10 can be restated as the existence of a certain order relation in the shard intersection order (in the sense of [33]). In this paper, we will use the third condition directly, without explicitly working with the shard intersection order.
2.3 Noncrossing arc diagrams of type A

In this section, we review results of [35] on noncrossing arc diagrams for permutations in \(S_n \), and describe how Theorem 2.2.10 applies to the proof of one result from [35].

The Coxeter group of type \(A_{n-1} \) can be realized as the group of permutations of \(\{1, \ldots, n\} \). The one-line notation of \(\pi \in S_n \) is the sequence \(\pi_1 \pi_2 \cdots \pi_n \) where \(\pi_i = \pi(i) \). One can also realize \(S_n \) as a reflection group in \(\mathbb{R}^n \) in the usual way, with each simple reflection \(s_i = (i \ i+1) \) acting as a reflection orthogonal to \(e_{i+1} - e_i \). (The \(e_i \) are the standard basis vectors.) The reflections in \(S_n \) are the transpositions \((i \ j) \) for \(1 \leq i < j \leq n \).

The weak order on \(S_n \) has cover relations given by \(\pi \preceq \sigma \) if \(\sigma \) is obtained from \(\pi \) by exchanging the entries \(\pi_i \) and \(\pi_{i+1} \) for some \(i \in \{1, \ldots, n-1\} \) such that \(\pi_i > \pi_{i+1} \). The cover reflection of \(\sigma \) associated to this cover is \((\pi_i \ \pi_{i+1}) \), and multiplying \(\pi \) on the left by the reflection swaps the entries \(\pi_i \) and \(\pi_{i+1} \). A join-irreducible element of \(S_n \) is a permutation whose one-line notation has exactly one descent \(\pi_i > \pi_{i+1} \).

We now define noncrossing arc diagrams. We place \(n \) distinct points on a vertical line, identified with the numbers \(1, \ldots, n \) from bottom to top. An arc is a curve connecting a point \(q \in \{1, \ldots, n\} \) to a strictly lower point \(p \in \{1, \ldots, n\} \), moving monotone downwards from \(q \) to \(p \) without touching any other numbered point, but rather passing to the left of some points and to the right of others. A noncrossing arc diagram is a collection of arcs that don’t intersect, except possibly at their endpoints, such that no two arcs share the same upper endpoint or the same lower endpoint. The combinatorial data determining an arc consists of which pair of points it connects and which points in between are left or right of the arc. Two arcs are combinatorially equivalent if they have the same combinatorial data. We consider arcs and noncrossing arc diagrams up to combinatorial equivalence. When we need to distinguish these diagrams from the objects defined later (for Coxeter groups of types B and D), we will refer to them as type-A arcs and type-A noncrossing arc diagrams.

Noncrossing arc diagrams can also be understood in terms of a compatibility relation on arcs. We say two arcs are compatible if they don’t intersect except possibly at one common endpoint, and if they don’t share the same upper endpoint or the same lower endpoint. A noncrossing arc diagram is the same thing as a set of pairwise compatible arcs. (Certainly the arcs in a noncrossing arc diagram are pairwise compatible, and [35, Proposition 3.2] verifies that any collection of pairwise compatible arcs is combinatorially equivalent to some noncrossing arc diagram.)

We now describe the bijection \(\delta \) from \(S_n \) to the set of noncrossing arc diagrams on \(n \) points. Given \(\pi = \pi_1 \cdots \pi_n \in S_n \), write each entry \(\pi_i \) at the point \((i, \pi_i) \) in the plane. For every \(i \) such that \(\pi_i > \pi_{i+1} \), draw a straight line segment from \(\pi_i \) to \(\pi_{i+1} \). These line segments
become arcs: We move the numbers 1, . . . , n horizontally to put them into a single vertical line, allowing the line segments to curve, so that they avoid passing through any numbers and one another. We define \(\delta(\pi) \) to be the resulting noncrossing arc diagram.

We can alternatively describe \(\delta(\pi) \) by listing its arcs: For every descent \(\pi_i > \pi_{i+1} \), there is an arc with endpoints \(\pi_i \) and \(\pi_{i+1} \). This arc goes right of every entry \(\pi_j \) with \(\pi_{i+1} < \pi_j < \pi_i \) and \(j < i \) and left of every entry \(\pi_j \) with \(\pi_{i+1} < \pi_j < \pi_i \) and \(j > i \).

Theorem 2.3.1. [35, Theorem 3.1] The map \(\delta \) is a bijection from \(S_n \) to the set of noncrossing arc diagrams on \(n \) points.

The proof of [35, Theorem 3.1] includes an explicit description of the inverse map, which we quote here. (An example is shown in Table 2.1.) A noncrossing arc diagram has one or more **components** (the components of the diagram, viewed as an embedded graph). Each component is a single numbered point or a sequence of arcs sharing endpoints. Reading each component from top to bottom, we recover the maximal descending runs of the permutation. The noncrossing arc diagram has at least one **left component**, meaning a component “with nothing to its left”. More formally, no other arc or numbered point can be reached from that component by moving horizontally to the left. The left components can be totally ordered from lowest to highest. One can obtain \(\pi \) from \(\delta(\pi) \) recursively by taking the lowest left component, writing its numbered points in decreasing order and then deleting it from the noncrossing arc diagram. Recursively, we then remove the lowest left component of what remains and continue writing the one-line notation for \(\pi \) from left to right.

Since \(\delta \) maps a permutation in \(S_n \) with \(k \) descents to a noncrossing arc diagram with \(k \) arcs, in particular \(\delta \) restricts to a bijection from permutations that are join-irreducible in the weak order to single arcs. Suppose \(\alpha \) is an arc connecting point \(q \) and \(p \) with \(q > p \). Write \(L(\alpha) \) for the set of **left points of** \(\alpha \) (points in the interval \((p, q)\) that are to the left of \(\alpha \)) and write \(R(\alpha) \) for the set of **right points of** \(\alpha \) (points in the interval \((p, q)\) that are to the right of \(\alpha \)). Then the join-irreducible element corresponding to \(\alpha \) is the permutation that starts with \(1 \cdots (p-1) \), followed by the elements of \(L(\alpha) \) in increasing order, then \(q \), then \(p \), then \(\pi \).
Table 2.1: The map from type-A noncrossing arc diagrams to permutations.

<table>
<thead>
<tr>
<th>Step</th>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>386</td>
<td>386752</td>
<td>38675241</td>
</tr>
</tbody>
</table>

Diagram remaining

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

then the elements of $R(\alpha)$ in increasing order, and finally $(q + 1) \cdots n$.

Join-irreducible elements of the weak order are in bijection with shards, and thus shards are in bijection with arcs. Combining [36, Proposition 10-5.8] with the bijection described above between arcs and join-irreducible permutations, we can write the bijection between arcs and shards as follows.

Proposition 2.3.2. Suppose α is an arc with endpoints $q > p$. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_p = x_q \text{ and } x_p \leq x_i \forall i \in R(\alpha) \text{ and } x_p \geq x_i \forall i \in L(\alpha) \}.$$

Noncrossing arc diagrams record canonical join representations of permutations, as explained in [35, Section 3] and summarized in the following theorem.

Theorem 2.3.3. Given a permutation $\pi \in S_n$, the canonical join representation of π is the set of join-irreducible elements corresponding to the set of arcs in $\delta(\pi)$.

Recall that two join-irreducible elements in a semidistributive lattice are called compatible if and only if they can appear together in a canonical join representation. As a consequence of Theorem 2.3.3, two join-irreducible elements of S_n are compatible if and only if the corresponding arcs are compatible.

We now use Theorem 2.2.10 to recover a characterization of the forcing relation on join-irreducible elements in terms of subarcs, which we now define. As an aid to defining subarcs, we define a function h from the plane to \mathbb{R} that returns the vertical height of a point, calibrated so that each numbered point i has height i.

42
An arc α' with endpoints $q' > p'$ is a **subarc** of an arc α with endpoints $q > p$ if and only if $q \geq q' > p' \geq p$ and $R(\alpha') = R(\alpha) \cap (p', q')$.

Remark 2.3.4. It will be convenient in later generalizations to construct subarcs explicitly. Given an arc α, parametrized as a function from the interval $[0, 1]$ into the plane, we obtain a subarc α' of α as follows: Choose t_1 and t_2 with $0 \leq t_1 < t_2 \leq 1$ such that $h(\alpha(t_1)) \in \{1, \ldots, n\}$ and $h(\alpha(t_2)) \in \{1, \ldots, n\}$. Also choose $\epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $|h(\alpha(t_1 + \epsilon_1)) - h(\alpha(t_1))| < 1, |h(\alpha(t_2 - \epsilon_2)) - h(\alpha(t_2))| < 1$, and $t_1 + \epsilon_1 < t_2 - \epsilon_2$. Define α' to be the arc obtained by concatenating three curves: First, the straight line segment from the point numbered $h(\alpha(t_1))$ to the point $\alpha(t_1 + \epsilon_1)$; second, the restriction of α to the interval $[t_1 + \epsilon_1, t_2 - \epsilon_2]$; and third, the straight line segment from $\alpha(t_2 - \epsilon_2)$ to the point numbered $h(\alpha(t_2))$.

If α' is a subarc of α, then we say α is a **superarc** of α'. Thus, given α', a superarc α is obtained by pushing α' right or left of the top and/or bottom endpoint, independently, and then extending upward and/or downward to make a longer arc.

The following theorem is [35, Theorem 4.4], but we prove it again here because we will reuse the argument in type D and to give an introduction to how we use Theorem 2.2.10 in type B. We also prove some corollaries from [35].

Theorem 2.3.5. Let j_1 and j_2 be join-irreducible permutations, corresponding to arcs α_1 and α_2 respectively. Then j_1 forces j_2 if and only if α_1 is a subarc of α_2.

Before proving the theorem, we state two important corollaries. The first corollary (which is part of [35, Corollary 4.5]), is simply a rephrasing of Theorem 2.3.5.

Corollary 2.3.6. A set U of arcs corresponds to the set of uncontracted join-irreducible permutations of some congruence Θ on S_n if and only if U is closed under passing to subarcs.

Combining Theorems 2.3.1 and 2.3.3 with Corollary 2.2.3, we obtain the following result, which is also part of [35, Corollary 4.5].

Corollary 2.3.7. If Θ is a congruence on S_n and U is the set of arcs corresponding to join-irreducible permutations not contracted by Θ, then δ restricts to a bijection from the quotient S_n/Θ (the set of permutations not contracted by Θ) to the set of noncrossing arc diagrams consisting only of arcs in U.

We now turn to the proof of Theorem 2.3.5. Recall that the correspondence between join-irreducible elements and shards is an isomorphism from the forcing order to the reflexive-transitive closure of the shard digraph. Recall also that, while every shard arrow is a relation
in the forcing order, a shard arrow can fail to be a cover relation. Since arcs are also in
bijection with shards, we will characterize the shard digraph, and then the forcing order,
in terms of arcs. We write $\alpha_1 \rightarrow \alpha_2$ if the corresponding shards have $\Sigma_1 \rightarrow \Sigma_2$. The key to
Theorem 2.3.5 is the following proposition, which interprets Theorem 2.2.10 in terms of arcs.

Proposition 2.3.8. Two arcs α_1 and α_2 have $\alpha_1 \rightarrow \alpha_2$ if and only if α_1 is a subarc of α_2
and the two arcs have exactly one endpoint in common.

In other words, $\alpha_1 \rightarrow \alpha_2$ if and only if α_2 is a superarc of α_1 obtained by extending
α_1 up or down, but not both.

Proof. Let Σ_1 and Σ_2 be the shards corresponding to α_1 and α_2. We use Proposition 2.2.8
implicitly throughout the proof.

By Theorem 2.2.10, to have $\Sigma_1 \rightarrow \Sigma_2$, there must exist Σ'_1 satisfying certain conditions. Write α'_1 for the arc corresponding to the shard Σ'_1. Theorem 2.2.10 requires in particular
that α_1 and α'_1 are compatible and that the rank-two subarrangement containing H_{Σ_1} and $H_{\Sigma'_1}$
must contain more than two hyperplanes. If α_1 has endpoints p and q, then H_{Σ_1} is given
by $x_p = x_q$, and $H_{\Sigma'_1}$ is similarly described in terms of the endpoints of α'_1. We see that Σ_1, Σ'_1 and Σ_2 satisfy conditions (i) and (ii) of Theorem 2.2.10 if and only if (up to switching Σ_1 and Σ'_1), there exist $p < q < r$ such that α_1 has endpoints p and q, α'_1 has endpoints q and r, and α_2 has endpoints p and r.

Supposing there exist such p, q, and r, we claim that $\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2$ if and only if α_1 and α'_1 are both subarcs of α_2.

On the one hand, suppose α_1 and α'_1 are both subarcs of α_2. Then Proposition 2.3.2
implies that

$$\Sigma_1 \cap \Sigma'_1 = \{ x \in \mathbb{R}^n : x_p = x_q = x_r \text{ and } x_p \leq x_i \forall i \in R(\alpha_2) \text{ and } x_p \geq x_i \forall i \in L(\alpha_2) \} = \{ x \in \Sigma_2 : x_p = x_q \}.$$

On the other hand, suppose one of α_1 and α'_1 is not a subarc of α_2. Then there exists a
numbered point $i \in (p, q) \cup (q, r)$ such that i is left of α_1 or α'_1 and right of α_2 or vice versa.
In the case where i is right of α_2, by Proposition 2.3.2, the only constraint on x_i in $\Sigma_1 \cap \Sigma'_1$
is that $x_p \geq x_i$, while the only constraint on x_i in Σ_2 is that $x_p \leq x_i$. Thus $\Sigma_1 \cap \Sigma'_1$ contains
points not in Σ_2. In the case where i is left of α_2, the same argument works, with inequalities
reversed. We have proved the claim.

Now, if $\alpha_1 \rightarrow \alpha_2$, then there exist p, q, and r as above and, by Theorem 2.2.10 and
the claim, α_1 is a subarc of α_2, necessarily sharing an endpoint with α_2. Conversely, if α_1 is a
subarc of α_2, sharing an endpoint, let α'_1 be the subarc of α_2 obtained by, essentially, deleting α_1 from α_2. Then there exist p, q, and r as above, and the claim says that $\alpha_1 \rightarrow \alpha_2$. □

Proof of Theorem 2.3.5. One direction of the theorem follows from Proposition 2.3.8 because the subarc relation is transitive and forcing is the transitive closure of the \rightarrow relation. The other direction of the theorem follows from Proposition 2.3.8 by passing from α_1 to α_2 by a sequence of one or two arrows. One arrow (if necessary) lengthens α_1 by moving its lower endpoint down to agree with the lower endpoint of α_2, and the other arrow (if necessary) moves the upper endpoint of α_1 up to the upper endpoint of α_2. □

We conclude this section with a result that will be helpful in Section 2.4. A finite Coxeter group has an element w_0 that is longer than every other element (in the usual sense of length in terms of number of letters in a reduced word or number of inversions). The element w_0 is an involution.

In S_n, this element w_0 is $n(n-1)\cdots321$. Given $\pi = \pi_1\pi_2\cdots\pi_n \in S_n$, πw_0 is the permutation with one-line notation $\pi_n\pi_{n-1}\cdots\pi_1$ and $w_0\pi$ is the permutation with one-line notation $(n+1-\pi_1)(n+1-\pi_2)\cdots(n+1-\pi_n)$. The one-line notation of $w_0\pi w_0$ is $(n+1-\pi_n)(n+1-\pi_{n-1})\cdots(n+1-\pi_1)$.

Proposition 2.3.9. If $\pi \in S_n$, then the arc diagrams $\delta(\pi)$ and $\delta(w_0\pi w_0)$ are related by a half turn that sends the point labeled i to the point labeled $n+1-i$.

For this proposition to make sense, we must assume that the initial placement of points had this half-turn symmetry.

Proof. There is a descent $\pi_i > \pi_{i+1}$ in π if and only if there is a descent $(n+1-\pi_{i+1}) > (n+1-\pi_i)$ in $w_0\pi w_0$, and an entry a with $\pi_{i+1} < a < \pi_{i+1}$ occurs left of π_i in π if and only if $(n+1-a)$ is right of $(n+1-\pi_i)$ in $w_0\pi w_0$. Thus $\delta(w_0\pi w_0)$ is obtained from $\delta(\pi)$ by a reflection taking each point labeled i to the point labeled $n+1-i$, followed by a reflection in the vertical line containing the points. The composition of these two reflections is a half turn that sends each point labeled i to the point labeled $n+1-i$. □

2.4 Noncrossing arc diagrams of type B

In this section, we establish a notion of noncrossing arc diagrams for Coxeter groups of type B. In fact, we establish two notions that, while equivalent, look quite different: a centrally symmetric model and an orbifold model. Before we explain these models, we recall some background about Coxeter groups of type B_n and establish notation.
The Coxeter group of type B_n can be realized as the group of signed permutations of $\{\pm 1, \ldots, \pm n\}$. These are the permutations π of $\{\pm 1, \ldots, \pm n\}$ with the property that $\pi(-i) = -\pi(i)$ for $i = 1, \ldots, n$. The long one-line notation of $\pi \in B_n$ is the sequence $\pi_1 \pi_2 \cdots \pi_n$. But $\pi \in B_n$ is completely determined by its short one-line notation (or simply one-line notation) $\pi_1 \pi_2 \cdots \pi_n$.

We realize B_n as usual as a reflection group in \mathbb{R}^n, with s_0 acting as a reflection orthogonal to the standard basis vector e_1 and with each s_i acting as a reflection orthogonal to $e_{i+1} - e_i$ for $i = 1, \ldots, n-1$. For convenience, we write e_{-i} to mean $-e_i$ for each $i = 1, \ldots, n$. Given a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we write x_i to mean $-x_i$.

The reflections in B_n are the permutations with cycle notation $(i \rightarrow -i)$ for $i \in \{\pm 1, \ldots, \pm n\}$ or $(i j)(-i \rightarrow -j)$ for $i, j \in \{\pm 1, \ldots, \pm n\}$, and $|j| \neq |i|$.

The weak order on B_n has cover relations given by $\pi < \sigma$ if σ is obtained in one of two ways from π. One way is that $\pi_{-1} < \pi_1$ and σ is obtained by exchanging π_{-1} and π_1. The cover reflection of σ associated to this cover is the involution $(\pi_1 \pi_{-1})$. The other way is that $\pi_i < \pi_{i+1}$ for some $i \in \{1, \ldots, n-1\}$ (and equivalently $\pi_{i-1} < \pi_{-i}$) and σ is obtained from π by exchanging π_i and π_{i+1} and exchanging π_{i-1} and π_{-i}. The cover reflection of σ associated to this cover is $(\pi_i \pi_{i+1})(\pi_{-i} \pi_{-i-1})$.

A join-irreducible element of B_n is a signed permutation whose long one-line notation either has exactly one descent $\pi_{-1} > \pi_1$ or has exactly two descents that are symmetric to each other: $\pi_i > \pi_{i+1}$ and $\pi_{i-1} > \pi_{-i}$ for some $i \in \{1, \ldots, n-1\}$. Equivalently, either $\pi_1 < 0$ and the (short) one-line notation is increasing or $\pi_1 > 0$ and there is exactly one $i \in \{1, \ldots, n-1\}$ such that $\pi_i > \pi_{i+1}$.

2.4.1 A centrally symmetric model

In the centrally symmetric model, we begin with $2n$ distinct points on a vertical line, and the points identified with the numbers $-n, \ldots, -2, -1, 1, 2, \ldots, n$, in order, with $-n$ at the bottom. The points are placed so that the antipodal map $x \mapsto -x$ (a half turn about the origin) takes i to $-i$ for all $i \in \{\pm 1, \ldots, \pm n\}$. A centrally symmetric noncrossing arc diagram is a collection of arcs on these points, satisfying the same requirements as in type A, with the additional requirement that the entire diagram is symmetric with respect to the half-turn symmetry.

A centrally symmetric noncrossing arc diagram consists of symmetric arcs (arcs that are fixed by the central symmetry) and symmetric pairs of arcs (pairs of arcs that are compatible in the type-A sense of Section 2.3 and are mapped to each other by the central symmetry). Symmetric pairs of arcs come in two types: A non-overlapping symmetric...
Figure 2.2: The map δ applied to $\pi = (-4)352(-1)$

Figure 2.3: Centrally symmetric noncrossing arc diagrams for B_2.

pair is a symmetric pair $\{\alpha, -\alpha\}$ such that α connects positive points and $-\alpha$ connects negative points, so that neither arc is left or right of the other. An overlapping symmetric pair is a symmetric pair $\{\alpha, -\alpha\}$ in which each arc connects a positive point to a negative point. In an overlapping pair, since the two arcs are compatible, one is to the right of the other.

For the purposes of this section, we can harmlessly recast the results of Section 2.3 in terms of a group S_{2n} of permutations of $\{\pm 1, \ldots, \pm n\}$ and in terms of noncrossing arc diagrams on points labeled $-n, \ldots, -1, 1, \ldots, n$. As an immediate consequence of Theorem 2.3.1 and Proposition 2.3.9, we have the following theorem.

Theorem 2.4.1. The map δ restricts to a bijection from B_n to the set of centrally symmetric noncrossing arc diagrams on $2n$ points.

An example of δ applied to a signed permutation in B_5 is shown in Fig. 2.2. All centrally symmetric noncrossing arc diagrams for B_2 are included in Fig. 2.3.

A join-irreducible signed permutation is mapped by δ to an arc diagram with only one arc (a symmetric arc), or only two arcs (a symmetric pair), and this is a bijection from join-irreducible signed permutations to symmetrics arcs/pairs. We describe this bijection explicitly in the table below as a map from symmetric arcs/pairs to join-irreducible signed
permutations in (short) one-line notation. In this description, when we write a set as part of the one-line notation, we mean the elements of that set in increasing order. Also in this description, \(i \cdots j \) will always stand for the sequence of elements increasing by 1 from \(i \) to \(j \), or the empty sequence if \(j = i - 1 \).

Recall from Section 2.3 that the set \(L(\alpha) \) of \textit{left points} of an arc \(\alpha \) is the set of numbers that are left of \(\alpha \), and the set \(R(\alpha) \) of \textit{right points} of \(\alpha \) is the set of numbers that are right of \(\alpha \). (Applying this definition to arc diagrams on points \{\(\pm 1, \ldots, \pm n \} \), of course 0 is never a right point or a left point.) We write \(-L(\alpha)\) for \(\{ -i : i \in L(\alpha) \}\) and similarly \(-R(\alpha)\).

A join-irreducible signed permutation \(\pi \) with one descent \(\pi_{-1} \succ \pi_1 \) corresponds to a symmetric arc \(\alpha \). If \(\alpha \) has endpoints \(-p \prec p \), then \(\pi \) is

\[
(-p) R(\alpha) (p + 1) \cdots n.
\]

A join-irreducible signed permutation \(\pi \) that has two descents \(\pi_i > \pi_{i+1} \) and \(\pi_{-i-1} > \pi_{-i} \) corresponds to a symmetric pair \(\{ \alpha, -\alpha \} \) of arcs. Suppose \(\alpha \) has endpoints \(p < q \). If \(\{ \alpha, -\alpha \} \) is nonoverlapping, then we assume that \(\alpha \) is above \(-\alpha \), so that \(0 < p < q \). Then \(\pi \) is

\[
1 \cdots (p - 1) L(\alpha) q p R(\alpha) (q + 1) \cdots n.
\]

If \(\{ \alpha, -\alpha \} \) is overlapping, then we assume that \(\alpha \) is right of \(-\alpha \). If \(p < 0 < -p < q \), then \(\pi \) is

\[
\left[\begin{array}{c}
\{(0, -p) \cap L(\alpha) \cap -L(\alpha)\} \\
\{(0, q) \cap L(\alpha) \cap -L(\alpha)\}
\end{array} \right] \pi p R(\alpha) (q + 1) \cdots n
\]

If \(p < 0 < q < -p \), then \(\pi \) is

\[
\left[\begin{array}{c}
\{(0, q) \cap L(\alpha) \cap -L(\alpha)\} \\
\{(q, -p) \cap L(\alpha) \cap -L(\alpha)\}
\end{array} \right] (q - p + 1) \cdots n.
\]

Given a signed permutation \(\pi \in B_n \), each symmetric arc or symmetric pair of arcs in \(\delta(\pi) \) is associated to a cover reflection \(t \) of \(\pi \). Each symmetric arc or symmetric pair also specifies a join-irreducible element \(j \) as described above. By inspection of the three cases described above, we see that \(j \leq \pi \) and that \(j \) is minimal with respect to the property that \(t \in \pi^{-1} (j) \). Thus Theorem 2.2.4 implies the following theorem.

Theorem 2.4.2. Given \(\pi \in B_n \), the canonical join representation of \(\pi \) is the set of join-irreducible elements corresponding to the symmetric arcs and symmetric pairs of arcs in \(\delta(\pi) \).

Recall from Section 2.3 that two arcs are called compatible if and only if they don’t
intersect, except possibly at endpoints, and don’t share the same top endpoint or the same bottom endpoint. We now define one symmetric arc/pair A to be compatible with another symmetric arc pair A' if and only if every arc in A is compatible with every arc in A'. As a consequence of Theorem 2.4.2, two symmetric arcs/pairs are compatible if and only if the corresponding join-irreducible elements are compatible.

The following two propositions are obtained by combining the correspondence between arcs and join-irreducible signed permutations with simple observations in [31, Sections 3,5]. In those sections, join-irreducible elements are shown to be in bijection with certain “signed subsets”, and the signed subsets are used to write inequalities for shards.

Proposition 2.4.3. Suppose α is a symmetric arc having endpoints $-p$ and p, with $p > 0$. The shard associated to α is

$$\{x \in \mathbb{R}^n : x_p = 0 \text{ and } 0 \leq x_i \forall i \in R(\alpha)\}.$$

Proposition 2.4.4. Suppose $\{\alpha, -\alpha\}$ is a symmetric pair of arcs such that α has endpoints p and q with $p < q$ and $q > 0$. If $p < 0$ (that is, if the pair is overlapping), then assume that α is to the right of $-\alpha$. The shard associated to $\{\alpha, -\alpha\}$ is

$$\{x \in \mathbb{R}^n : x_p = x_q \text{ and } x_p \leq x_i \forall i \in R(\alpha) \text{ and } x_p \geq x_i \forall i \in L(\alpha)\}.$$

Remark 2.4.5. There is a global change in the direction of inequalities between Propositions 2.4.3 and 2.4.4 and [31], because in [31], hyperplanes were identified with their normal vectors pointing away from a “base region” B. A standard convention for root systems has the positive roots pointing towards a “fundamental chamber”. This convention was used in [36], from which we quoted Proposition 2.3.2, so to keep conventions consistent in this paper, we apply the antipodal map relative to [31].

We now use Theorem 2.2.10 to characterize forcing of join-irreducible signed permutations in terms of a centrally symmetric version of subarcs, which we now define. Since join-irreducible signed permutations correspond either to centrally symmetric arcs or to centrally symmetric pairs of arcs, we will use the terminology of a “subarc pair” of a symmetric arc or symmetric pair, or a “subarc” of a symmetric arc or symmetric pair. Fig. 2.4 shows subarcs and subarc pairs of a symmetric arc and an overlapping symmetric pair.

Definition 2.4.6 (Subarcs/subarc pairs of a symmetric arc). Suppose α is a symmetric arc with endpoints $-p < p$. A subarc of α is a symmetric arc α' with endpoints $-p' < p'$ with $p' \leq p$ and $R(\alpha') = R(\alpha) \cap (-p', p')$. A subarc pair of α is a non-overlapping pair $\{\alpha', -\alpha'\}$ of arcs such that α' has endpoints p' and q' with $0 < p' < q' \leq p$ and $R(\alpha') = R(\alpha) \cap (p', q')$. 49
Definition 2.4.6 (Subarcs/subarc pairs of a symmetric pair of arcs). Suppose \(\{\alpha, -\alpha\}\) is a symmetric pair of arcs and \(\alpha\) has endpoints \(p < q\). A **subarc** of \(\{\alpha, -\alpha\}\) is a symmetric arc \(\alpha'\) with endpoints \(-p' < p' \leq q\) and \(R(\alpha') = R(\alpha) \cap (-p', p') = R(-\alpha') \cap (-p', p')\). This can only happen if \(\alpha\) and \(-\alpha\) are overlapping and agree (in the sense of going left/right of points) on the interval \((-p', p')\). Now, if \(\{\alpha, -\alpha\}\) is overlapping, suppose further that \(\alpha\) is right of \(-\alpha\). A **subarc pair** of \(\{\alpha, -\alpha\}\) is a symmetric pair \(\{\alpha', -\alpha'\}\) with endpoints \(p' < q' \leq q\) and \(R(\alpha') = R(\alpha) \cap (p', q')\), satisfying an additional requirement: If \(\{\alpha', -\alpha'\}\) is overlapping then \(\alpha'\) is also right of \(-\alpha'\). The left two pictures of Fig. 2.5 show a failure of this additional requirement.

Remark 2.4.8. To understand this additional requirement, it is useful to construct subarcs
of \{\alpha, -\alpha\} explicitly. Similarly to the type-A construction, we take \(h\) to be a function from the plane to \(\mathbb{R}\) that returns the vertical height of a point, calibrated so that each numbered point \(i \in \{\pm 1, \ldots, \pm n\}\) has height \(i\). Choose \(t_1\) and \(t_2\) with \(0 \leq t_1 < t_2 \leq 1\) such that \(h(\alpha(t_1)), h(\alpha(t_2)) \in \{\pm 1, \ldots, \pm n\}\) and choose \(\epsilon_1 > 0\) and \(\epsilon_2 > 0\) with \(|h(\alpha(t_1 + \epsilon_1)) - h(\alpha(t_1))| < 1, |h(\alpha(t_2 - \epsilon_2)) - h(\alpha(t_2))| < 1, \) and \(t_1 + \epsilon_1 < t_2 - \epsilon_2\). Then \(\alpha'\) is obtained by concatenating three curves: the segment from the point numbered \(h(\alpha(t_1))\) to the point \(\alpha(t_1 + \epsilon_1)\), the restriction of \(\alpha\) to \([t_1 + \epsilon_1, t_2 - \epsilon_2]\) and the segment from \(\alpha(t_2 - \epsilon_2)\) to the point numbered \(h(\alpha(t_2))\). The additional requirement on \(\{\alpha', -\alpha'\}\) is that (up to choosing another symmetric arc pair combinatorially equivalent to \(\{\alpha, -\alpha\}\)) the specific curves \(\alpha'\) and \(-\alpha'\) constructed here do not intersect each other. The right picture of Fig. 2.5 shows an example of \(\alpha'\) and \(-\alpha'\) crossing.

We will prove the following theorem.

Theorem 2.4.9. Let \(j_1\) and \(j_2\) be join-irreducible signed permutations. Then \(j_1\) forces \(j_2\) if and only if the arc or pair of arcs corresponding to \(j_1\) is a subarc or subarc pair of the arc or pair of arcs corresponding to \(j_2\).

Theorem 2.4.9 lets us prove the type-B analogues of Corollaries 2.3.6 and 2.3.7. The following result is a rephrasing of Theorem 2.4.9.

Corollary 2.4.10. A set \(U\) of symmetric arcs/symmetric pairs corresponds to the set of uncontracted join-irreducible signed permutations of some congruence \(\Theta\) on \(B_n\) if and only if \(U\) is closed under passing to subarcs/subarc pairs.

Combining Corollary 2.4.10 with Theorems 2.4.1 and 2.4.2 and Corollary 2.2.3, we obtain the following result.

Corollary 2.4.11. If \(\Theta\) is a congruence on \(B_n\) and \(U\) is the set of symmetric arcs/pairs corresponding to join-irreducible signed permutations not contracted by \(\Theta\), then \(\delta\) restricts to a bijection from the quotient \(B_n/\Theta\) (the set of signed permutations not contracted by \(\Theta\)) to the set of centrally symmetric noncrossing arc diagrams consisting only of arcs in \(U\).

It is convenient to understand the opposite of the subarc relation. We say that a symmetric arc/pair \(A_2\) is a **superarc** or **superarc pair** of a symmetric arc/pair \(A_1\) if and only if \(A_1\) is a subarc/subarc pair of \(A_2\). We now describe how to construct a superarc/superarc pair of a given symmetric arc/pair. The construction is a direct rephrasing of Definitions 2.4.6 and 2.4.7.

Superarcs/superarc pairs of a symmetric arc \(\alpha\). We construct a superarc by pushing \(\alpha\) right or left of its top endpoint, symmetrically pushing it left or right of its bottom endpoint,
and extending α symmetrically upwards and downwards. We construct a superarc pair by first replacing α with two arcs that are combinatorially equivalent to α, antipodal images of each other, and disjoint except at their endpoints. We then push one or both copies right or left of the top endpoint, independently but without making the curves cross each other, make the symmetric change at the bottom endpoint, and extend the curves upward and downward symmetrically.

Superarcs/superarc pairs of a non-overlapping symmetric pair of arcs $\{\alpha, -\alpha\}$. To construct a superarc or superarc pair, we first push α and $-\alpha$ left or right of their inner endpoints and/or outer endpoints in a way that preserves the symmetry. We construct a superarc by extending the curves inward and connecting them, and also possibly extending both outwards. We construct a superarc pair by extending the curves symmetrically to create a symmetric pair of compatible arcs, either overlapping or not.

Superarc pairs of an overlapping symmetric pair of arcs $\{\alpha, -\alpha\}$. (There are no superarcs of $\{\alpha, -\alpha\}$ and no non-overlapping superarc pairs, only overlapping superarc pairs.) We construct a superarc pair by pushing α right or left of one or both endpoints independently, making the symmetric change to $-\alpha$, and then extending the curves symmetrically to create a symmetric pair of compatible overlapping arcs. The additional requirement in Definition 2.4.7 is implied by this description of superarcs: If $\{\alpha_1, -\alpha_1\}$ fails to be a subarc pair of $\{\alpha_2, -\alpha_2\}$ because it fails the additional requirement, then the attempt to extend α_1 and $-\alpha_1$ to obtain α_2 and $-\alpha_2$ will result in a pair of arcs that cross each other. (See Fig. 2.5.)

A first step towards the proof of Theorem 2.4.9 is the following observation.

Proposition 2.4.12. The subarc/subarc pair relation on symmetric arcs/pairs is transitive.

The proposition is verified by checking the various cases (e.g. a nonoverlapping subarc pair of a symmetric subarc of an overlapping arc pair). There are many cases to check, but each individual case is easy.

As a next step towards proving Theorem 2.4.9, we use Theorem 2.2.10 to characterize arrows in the shard digraph in terms of arcs and arc pairs. Given symmetric arcs/pairs A_1 and A_2, we write $A_1 \to A_2$ if and only if the corresponding shards Σ_1 and Σ_2 have $\Sigma_1 \to \Sigma_2$ in the shard digraph.

Proposition 2.4.13. Suppose A_1 is a symmetric arc or pair and A_2 is another symmetric arc or pair, then $A_1 \to A_2$ if and only if A_1 is a subarc/subarc pair of A_2 and one of the following conditions holds.

(i) A_2 is a symmetric pair $\{\alpha_2, -\alpha_2\}$ such that α_2 has endpoints p and q with $p < q$ and A_1 is a symmetric pair $\{\alpha_1, -\alpha_1\}$ such that α_1 has endpoints p' and q with $p' \neq -p$ or α_1 has endpoints p and q' with $q' \neq -q$.
Proposition 2.4.13.(i)

(ii) A_1 and A_2 are both symmetric arcs with no endpoints in common.

(iii) A_2 is a symmetric arc α_2 with endpoints p and $-p$ and A_1 is a non-overlapping symmetric pair $\{\alpha_1, -\alpha_1\}$ such that α_1 has an endpoint p.

(iv) A_2 is a symmetric pair $\{\alpha_2, -\alpha_2\}$ such that α_2 has endpoints p and q with $-q < p < 0 < -p < q$, having the property that each point in $\{\pm 1, \ldots, \pm (p - 1)\}$ is left of α_2 if and only if it is left of $-\alpha_2$, and A_1 is a symmetric arc with endpoints p and $-p$.

(v) A_2 is a symmetric pair $\{\alpha_2, -\alpha_2\}$ such that α_2 has endpoints p and q with $-q < p < 0 < -p < q$, having the property that each point in $\{\pm 1, \ldots, \pm (p - 1)\}$ is left of α_2 if and only if it is left of $-\alpha_2$, and A_1 is a non-overlapping symmetric pair $\{\alpha_1, -\alpha_1\}$ such that α_1 has endpoints $-p$ and q.

Examples of arrows $A_1 \to A_2$ are shown in Fig. 2.6. We emphasize that the conditions for an arrow in Proposition 2.4.13 include the condition that A_1 is a subarc/subarc pair of A_2. This requirement includes the additional requirement in Definition 2.4.7, which is crucial for the arrows satisfying condition (i) in Proposition 2.4.13, as explained in Case 1 of the proof below.

Proof. Let Σ_1 and Σ_2 be the shards corresponding to A_1 and A_2. Theorem 2.2.10 says that $A_1 \to A_2$ if and only if there exists a symmetric arc/pair A_1' (corresponding to a shard Σ_1') satisfying certain properties. In particular, A_1 and A_1' must be compatible and there needs to exist a non-basic hyperplane in the rank-two subarrangement containing H_{Σ_1} and $H_{\Sigma_1'}$. In other words, that subarrangement must have more than two hyperplanes. Each rank-two subarrangement looks like a rank-two parabolic subgroup, so in type B it can have 2, 3, or 4 hyperplanes.
A symmetric arc with endpoints $\pm p$ determines a shard whose hyperplane is orthogonal to e_p. A symmetric pair such that one arc has endpoints p and q determines a shard whose hyperplane is orthogonal to $e_q - e_p$ (recalling the convention that e_{-i} means $-e_i$). If A_1 and A_1' have no endpoints in common, then H_{Σ_1} and $H_{\Sigma_1'}$ are orthogonal, and thus, since these hyperplanes are basic in the rank-two subarrangement they determine, that subarrangement has only two hyperplanes. Thus we need only consider cases where A_1 and A_1' have endpoints in common. We break into two cases, where A_1 and A_1' determine a rank-two subarrangement with 3 or 4 hyperplanes.

Case 1. H_{Σ_1} and $H_{\Sigma_1'}$ are the basic hyperplanes in a rank-two subarrangement with 3 hyperplanes. Then A_1 is a symmetric pair $\{\alpha_1, -\alpha_1\}$ such that α_1 has endpoints $p < q$ and A_1' is a symmetric pair $\{\alpha_1', -\alpha_1'\}$ such that α_1' has endpoints $q < r$ with $q \not\in \{-p, -r\}$. At most one of the pairs A_1 and A_1' is overlapping, and if one is, we can assume (up to renaming arcs and points) that α_1 or α_1' is to the right of its negative. The basic hyperplane H_{Σ_1} is orthogonal to $e_q - e_p$ and the other basic hyperplane $H_{\Sigma_1'}$ is orthogonal to $e_r - e_q$. The unique non-basic hyperplane in the subarrangement is orthogonal to $e_r - e_p$. Thus an arc/arc pair specifies a non-basic hyperplane in the subarrangement if and only if it is a symmetric arc pair $\{\alpha_2, -\alpha_2\}$ such that α_2 has endpoints p and r. Proposition 2.4.4 implies that

$$
\Sigma_1 \cap \Sigma_1' = \{x \in \mathbb{R}^n : x_p = x_q = x_r, x_p \leq x_i \forall i \in (R(\alpha_1) \cup R(\alpha_1')), x_p \geq x_i \forall i \in (L(\alpha_1) \cup L(\alpha_1'))\}.
$$

On the other hand,

$$
\Sigma_2 = \{x \in \mathbb{R}^n : x_p = x_r, x_p \leq x_i \forall i \in R(\alpha_2), x_p \geq x_i \forall i \in L(\alpha_2)\}.
$$

Since $\Sigma_1 \cap \Sigma_1'$ is in the subspace where $x_p = x_q$, it is contained in Σ_2 if and only if it is contained in $\{x \in \Sigma_2 : x_p = x_q\}$, which equals

$$
\{x \in \mathbb{R}^n : x_p = x_q = x_r, x_p \leq x_i \forall i \in R(\alpha_2) \setminus \{q\}, x_p \geq x_i \forall i \in L(\alpha_2) \setminus \{q\}\}.
$$

Thus $\Sigma_1 \cap \Sigma_1' \subseteq \Sigma_2$ if and only if $R(\alpha_2) \setminus \{q\} = R(\alpha_1) \cup R(\alpha_1')$ (equivalently, if and only if $L(\alpha_2) \setminus \{q\} = L(\alpha_1) \cup L(\alpha_1')$). This is in turn equivalent to the condition that α_2 is obtained by pushing the curve $\alpha_1 \cup \alpha_1'$ left or right of the shared endpoint q.

Now Theorem 2.2.10 implies that every arrow among shards that determine rank-two subarrangements with 3 hyperplanes are of the form $A_1 \to A_2$ or $A_1' \to A_2$ for A_1, A_1', and
A_2 as above such that α_2 is obtained by pushing the curve $\alpha_1 \cup \alpha'_1$ left or right of q. Given A_1 and A_2, the existence of A'_1 such that α_2 is obtained by pushing $\alpha_1 \cup \alpha'_1$ left or right of q is exactly the condition that A_1 is a subarc pair of A_2, except for the additional requirement on subarc pairs of symmetric arc pairs in Definition 2.4.7. Similarly, given A'_1 and A_2, the existence of an appropriate A_1 is exactly that A'_1 is a subarc pair, without the additional requirement.

Furthermore, Theorem 2.2.10 says that if α_2 is obtained by pushing $\alpha_1 \cup \alpha'_1$ left or right of q, then these arrows $A_1 \rightarrow A_2$ or $A'_1 \rightarrow A_2$ exist if and only if A_1 and A'_1 are compatible. We will show that, under the condition that α_2 is obtained by pushing $\alpha_1 \cup \alpha'_1$ left or right of q, the compatibility of A_1 and A'_1 is equivalent to the additional requirement.

Compatibility of A_1 and A'_1 means that all four arcs α_1, $-\alpha_1$, α'_1, and $-\alpha'_1$ can be in the same noncrossing arc diagram. Recall also that if one of the pairs $\{\alpha_1, -\alpha_1\}$ or $\{\alpha'_1, -\alpha'_1\}$ is overlapping, then α_1 or α'_1 is on the right. For each pair which is nonoverlapping, α_1 or α'_1 is above its opposite.

Suppose A_1 and A'_1 are compatible. Then the union $\alpha_1 \cup \alpha'_1$ is either above or right of its opposite (α_1) or (α'_1). Since α_2 is obtained by pushing $\alpha_1 \cup \alpha'_1$ left or right of q, then either $\{\alpha_2, -\alpha_2\}$ is nonoverlapping and α_2 is above $-\alpha_2$ or $\{\alpha_2, -\alpha_2\}$ is overlapping and α_2 is right of $-\alpha_2$.

Now, suppose A_1 and A'_1 are not compatible. The individual arcs α_1 and α'_1 are compatible in any case, so the failure of compatibility of A_1 and A'_1 implies that α_1 and $-\alpha'_1$ cross each other. Thus the embedding of α_2 obtained by pushing $\alpha_1 \cup \alpha'_1$ left or right of q also crosses its antipodal opposite. Since by supposition $\{\alpha_2, -\alpha_2\}$ is a symmetric arc pair, there is an embedding of α_2 that does not cross its opposite. This embedding must therefore have α_2 left of $-\alpha_2$, as in Fig. 2.5.

We have shown that arrows of the form $A_1 \rightarrow A_2$ and $A'_1 \rightarrow A_2$ arising from Case 1 are precisely the arrows described in condition (i).

Case 2. H_{Σ_1} and $H_{\Sigma'_1}$ are the basic hyperplanes in a rank-two subarrangement with 4 hyperplanes. Then (up to swapping A_1 and A'_1) A_1 is a symmetric arc α_1 with endpoints $\pm p$ for $p > 0$ and A'_1 is a non-overlapping arc pair $\{\alpha'_1, -\alpha'_1\}$ such that α'_1 has endpoints p and q with $p < q$. Any such A_1 and A'_1 are compatible, with no additional requirements needed.

The basic hyperplanes in the subarrangement are orthogonal to e_p and $e_q - e_p$. The two non-basic hyperplanes are e_q and $e_q + e_p$. Thus an arc/arc-pair A_2 specifies a non-basic hyperplane in the subarrangement if and only if it is a symmetric arc with endpoints $\pm q$ or an overlapping symmetric pair one of whose arcs has endpoints $-p$ and q. To determine all possible arrows arising from this compatible pair, it remains to determine necessary and sufficient conditions on A_2 so that the corresponding shard has $\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2$.

55
Propositions 2.4.3 and 2.4.4 combine to say that

\[\Sigma_1 \cap \Sigma'_1 = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in (R(\alpha_1) \cup R(\alpha'_1)), \, 0 \geq x_i \, \forall i \in L(\alpha'_1) \}. \]

Since \(x_{-i} = -x_i \), we can rewrite this as

\[\Sigma_1 \cap \Sigma'_1 = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in (R(\alpha_1) \cup R(\alpha'_1) \cup (-L(\alpha'_1))) \}. \] \hspace{1cm} (2.1)

Since \(\Sigma_1 \cap \Sigma'_1 \) is in the subspace where \(x_p = 0 \), it is contained in \(\Sigma_2 \) if and only if it is contained in \(\{ x \in \Sigma_2 : x_p = 0 \} \).

Case 2a. If \(A_2 \) is a symmetric arc \(\alpha_2 \) with endpoints \(\pm q \), then Proposition 2.4.3 says that

\[\{ x \in \Sigma_2 : x_p = 0 \} = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in R(\alpha_2) \}. \]

If \(A_1 \) is a subarc of \(A_2 \) as in condition (ii) and \(A'_1 \) is a subarc pair of \(A_2 \) as in condition (iii), then in particular \(R(\alpha_2) \setminus \{ \pm p \} = R(\alpha_1) \cup R(\alpha'_1) \cup (-L(\alpha'_1)) \), so \(\Sigma_1 \cap \Sigma'_1 = \{ x \in \Sigma_2 : x_p = 0 \} \).

Conversely, if \(\Sigma_1 \cap \Sigma'_1 \subseteq \Sigma_2 \), then for every \(i \in R(\alpha_2) \), the inequality \(0 \leq x_i \) holds in \(\Sigma_1 \cap \Sigma'_1 \). Thus \(R(\alpha_2) \setminus \{ \pm p \} = R(\alpha_1) \cup R(\alpha'_1) \cup (-L(\alpha'_1)) \), so \(A_1 \) is a subarc of \(A_2 \) and \(A'_1 \) is a subarc pair of \(A_2 \).

We have shown that arrows of the form \(A_1 \rightarrow A_2 \) and \(A'_1 \rightarrow A_2 \) in Subcase 2a are precisely the arrows described in conditions (ii) and (iii).

Case 2b. If \(A_2 \) is an overlapping symmetric pair \(\{ \alpha_2, -\alpha_2 \} \) such that \(\alpha_2 \) has endpoints \(-p \) and \(q \), then we consider Proposition 2.4.4 in two further cases, given by whether \(\alpha_2 \) is to the right or left of \(-\alpha_2 \). If \(\alpha_2 \) is to the right of \(-\alpha_2 \), then Proposition 2.4.4 implies that

\[\{ x \in \Sigma_2 : x_p = 0 \} = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in R(\alpha_2), \, 0 \geq x_i \, \forall i \in L(\alpha_2) \}. \]

If \(\alpha_2 \) is to the left of \(-\alpha_2 \), then since \(-L(\alpha_2) \) is the set of points to the right of \(-\alpha_2 \) and \(-R(\alpha_2) \) is the set of points to the left of \(-\alpha_2 \), Proposition 2.4.4 implies that

\[\{ x \in \Sigma_2 : x_p = 0 \} = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in -L(\alpha_2), \, 0 \geq x_i \, \forall i \in -R(\alpha_2) \}. \]

In either case,

\[\{ x \in \Sigma_2 : x_p = 0 \} = \{ x \in \mathbb{R}^n : x_p = x_q = 0, 0 \leq x_i \, \forall i \in (R(\alpha_2) \cup (-L(\alpha_2))) \} \] \hspace{1cm} (2.2)

If \(A_1 \) is a subarc of \(A_2 \) as in condition (iv) and \(A'_1 \) is a subarc pair of \(A_2 \) as in condition (v), then no points are between \(\alpha_2 \) and \(-\alpha_2 \), so \(R(\alpha_2) \cup (-L(\alpha_2)) \) contains no pairs \(\pm i \).
Furthermore, $R(\alpha_2) \cap (-p, p) = R(\alpha_1)$, and $R(\alpha_2) \cap (p, q) = R(\alpha'_1)$, and $L(\alpha_2) \cap (p, q) = L(\alpha'_1)$. So comparing (2.2) with (2.1), we see that $\Sigma_1 \cap \Sigma'_1 = \{ x \in \Sigma_2 : x_p = 0 \}$.

Conversely, if $\Sigma_1 \cap \Sigma'_1 \subseteq \{ x \in \Sigma_2 : x_p = 0 \}$, then by (2.1) and (2.2), we know that $(R(\alpha_2) \cup (-L(\alpha_2))) \subseteq (R(\alpha_1) \cup R(\alpha'_1) \cup (-L(\alpha'_1)))$. In this case, no point can be between α_2 and $-\alpha_2$, because $R(\alpha_1)$ contains no pairs $\pm i$. So, $R(\alpha_2)$ and $-L(\alpha_2)$ coincide along the interval $(-p, p)$. Therefore $R(\alpha_2) \setminus \{ p \} \subseteq R(\alpha_1) \cup R(\alpha'_1)$ and $L(\alpha_2) \setminus \{ p \} \subseteq (-R(\alpha_1)) \cup L(\alpha'_1) = L(\alpha_1) \cup L(\alpha'_1)$, so A_1 is a subarc of A_2 and A'_1 is a subarc pair of A_2.

We have shown that arrows of the form $A_1 \to A_2$ and $A'_1 \to A_2$ in Subcase 2b are precisely the arrows described in conditions (iv) and (v).

Proof of Theorem 2.4.9. Both directions of the theorem use Proposition 2.4.13. Let A_1 be the symmetric arc/pair corresponding to j_1 and A_2 be the symmetric arc/pair corresponding to j_2. We continue to use the notation $A_1 \to A_2$ to mean $j_1 \to j_2$.

If j_i forces j_2, then there is a sequence of arrows from j_1 to j_2. Thus Propositions 2.4.12 and 2.4.13 imply that A_1 is a subarc/subarc pair of A_2.

Conversely, suppose that A_1 is a subarc/subarc pair of A_2, with $A_1 \neq A_2$. We will show that, in every case, there is a sequence of one, two, or three arrows from j_1 to j_2. For the purposes of this proof, we will refer to the kinds of arrows described in Proposition 2.4.13 as “type (i)”, etc.

Case 1. A_2 is a symmetric arc.

Case 1a. A_1 is also a symmetric arc. In this case, $A_1 \to A_2$ by an arrow of type (ii)

Case 1b. A_1 is a non-overlapping symmetric pair. In this case, suppose that the endpoints of A_2 are $\pm p$ with $p > 0$ and the endpoints of one arc of A_1 are p' and q' with $0 < p' < q' \leq p$. Then there is an arrow of type (iii) from A_1 to a symmetric arc A' with endpoints $\pm q'$ that is a subarc of A_2, and (unless $A' = A_2$) an arrow of type (ii) from A' to A_2, as illustrated in the left picture of Fig. 2.7.
Case 2. A_2 is a nonoverlapping symmetric pair. In this case, A_1 is also a nonoverlapping symmetric pair. If the outer endpoints of A_1 and A_2 are not the same, then there is an arrow of type (i) from A_1 to an arc pair A' whose outer endpoints agree with those of A_2; otherwise, let $A' = A_1$. If the inner endpoints of A' and A_2 agree then $A' = A_2$. If not, then there is another arrow of type (i) from A' to A_2, as illustrated in the center picture of Fig. 2.7.

Case 3. $A_2 = \{\alpha_2, -\alpha_2\}$ is an overlapping symmetric pair. Write p and q with $p < q$ for the endpoints of α_2.

Case 3a. $A_1 = \{\alpha_1, -\alpha_1\}$ is also an overlapping symmetric pair. In this case, assume that α_2 is right of $-\alpha_2$, that α_1 is right of $-\alpha_1$, and that α_1 has endpoints p' and q' with $p \leq p' < 0 < q' \leq q$. If $p < p' < 0 < q' < q$, then we find a sequence of two arrows of type (i) from A_1 to A_2. If $q' = q$ and/or $p = p'$, then one or both of these arrows is replaced by equality. If $-q > p$, then also $-q' > p$, so there is a type (i) arrow from A_1 to a subarc pair $A' = \{\alpha', -\alpha'\}$ of A_2 such that α' has endpoints p and q' and an arrow of type (i) from A' to A_2, as illustrated in the right picture of Fig. 2.7. If $-p > q$, then also $-p' > q$, so there is a type (i) arrow from A_1 to a subarc pair $A' = \{\alpha', -\alpha'\}$ of A_2 such that α' has endpoints p' and q and an arrow of type (i) from A' to A_2. (Separating into two cases $-q < p$ and $-p < q$ is necessary. For example, when $-q > p$, it is possible that $p' = -q$, so that there is no subarc pair $A' = \{\alpha', -\alpha'\}$ of A_2 such that α' has endpoints p' and q. This is the case illustrated in the right picture of Fig. 2.7.)

Case 3b. $A_1 = \{\alpha_1, -\alpha_1\}$ is a non-overlapping symmetric pair. In this case, assume that α_1 is a subarc of α_2 (making no assumption about which of α_2 or $-\alpha_2$ is to the right). Write p' and q' for the endpoints of α_1, this time with $p < 0 < p' < q' \leq q$. If $p' \neq -p$, then there is a subarc pair A' of A_2 with endpoints p' and q and an arrow $A' \rightarrow A_2$ of type (i). If $p' = -p$, then there exists a subarc pair $A' = \{\alpha', -\alpha'\}$ of A_2 such that α' has endpoints 1 and q and an arrow from A' to A_2. The arrow is of type (i) if $p < -1$ or (v) if $p = -1$. Either way, A_1 is a subarc of A' and by Case 2, there is a (possibly empty) sequence of arrows from A_1 to A'.

Case 3c. A_1 is a symmetric arc α_1. Write p' and $-p'$ with $p \leq p' < 0 < -p' \leq q$ for the endpoints of α_1. If $p' = p$ or $-p' = q$, then there is an arrow of type (iv) from A_1 to A_2, so it remains to consider the case where $p < p' < 0 < -p' < q$. Without loss of generality (up to swapping $\pm \alpha_2$), we may as well assume that $p > -q$. Therefore also $p' > -q$, so there is a type (iv) arrow from A_1 to a subarc pair $A' = \{\alpha', -\alpha'\}$ of A_2 such that α' has endpoints p' and q and an arrow from A' to A_2 of type (i).

\[\square\]
2.4.2 An orbifold model

We now take the centrally symmetric model for Coxeter groups of type B_n and pass to a quotient modulo the central symmetry, obtaining what we call an orbifold model. Most simply—but not very “drawably”—the orbifold model lives in the quotient space where each point of the plane is identified with its antipodal opposite. The quotient map takes a point x in the plane to $\{\pm x\}$.

To make a more “drawable” model, we consider the same space as a different quotient of the plane: We cut the plane in half with a horizontal line through the origin. Points strictly above the horizontal line are not identified with any other points. Each point on or below the horizontal line is identified with all other points on or below the line at the same distance from the origin. Thus, each “point” in the quotient is either a point strictly above the horizontal line (a \textit{point in the upper halfplane}), the origin, or a semicircle below the line with endpoints on the line (or a degenerate semicircle consisting only of the origin, called a \textit{semicircle point}). We will refer to this quotient as the \textit{orbifold plane}.

We are not interested in the natural quotient map associated to the orbifold plane. Rather, we are interested in the map ϕ defined as follows: If x is not on the horizontal line, then $\phi(x)$ is the point in $\{\pm x\}$ that is above the horizontal line. If x is on the horizontal line, then $\phi(x)$ is the semicircle of points of length $|x|$ on or below the horizontal line (or $\phi(0)$ is the degenerate semicircle at the origin).

A symmetric arc α or pair $\{\alpha, -\alpha\}$ in the centrally symmetric model can be uniquely recovered from $\phi(\alpha)$. Thus also symmetric arc diagrams and the various results and constructions in Section 2.4.1 can be recovered from their images under ϕ. The goal now is to define arcs, arc diagrams, a bijection to B_n, etc. in the orbifold plane so that the results of Section 2.4.1 translate to results in the orbifold plane via the map ϕ. With the right definitions, these new results are simply “translations” into a new setting, and will not require new proofs. Collectively, we will refer to these constructions and results as the \textit{orbifold model} for B_n.

The orbifold model for B_n starts with n distinct points on a vertical line containing the origin, with each point strictly above the origin. The origin itself is called the \textit{orbifold point}, and is marked with an “\times”. (We will sometimes also refer, in prose, to the orbifold point as “\times”.) The n points above the origin are identified with the numbers $1, 2, \ldots, n,$ in order, with n at the top, and are called \textit{numbered points}.

A \textit{type-B arc} (or in context simply an \textit{arc}) is a curve in the orbifold plane with each endpoint at a numbered point or at \times (the origin), satisfying one of the following three descriptions:
An **ordinary arc** is an arc on the points 1, \ldots, n satisfying the same rules as an arc in type A (Section 2.3).

An **orbifold arc** is an arc with one endpoint at \(\times \) and the other at a numbered point \(p \), moving monotone downwards from \(p \) to \(\times \) without touching any other numbered point, passing to the left or right of any numbered points below \(p \).

A **long arc** is an arc \(\alpha \) containing exactly one semicircle point. The **left piece** of \(\alpha \) moves monotone downward from the **left endpoint** of \(\alpha \), passing left or right of numbered points between, and hits the semicircle point left of \(\times \). The **right piece** moves monotone downward from the **right endpoint**, passing left or right of numbered points, hitting the semicircle point right of \(\times \). The right and left pieces are disjoint, so in particular the left and right endpoints do not coincide.

An ordinary arc or orbifold arc \(\alpha \) is specified combinatorially by its endpoints and the set \(R(\alpha) \) of numbered points to its right, or equivalently by its endpoints and the set \(L(\alpha) \) of numbered points to its left. A long arc \(\alpha \) is specified combinatorially by its endpoints (right and left), the set \(R(\alpha) \) of points right of its right piece and the set \(L(\alpha) \) of points left of its left piece. We emphasize that for long arcs (in contrast to the situation for ordinary and orbifold arcs), the sets \(R(\alpha) \) and \(L(\alpha) \) do not completely determine each other, though they must be disjoint, and both sets are necessary to determine \(\alpha \) combinatorially. We also emphasize that to determine \(\alpha \), it is necessary to specify which endpoint is right and which is left. (For example, there are many long arcs \(\alpha \) with \(R(\alpha) = \emptyset \) and \(L(\alpha) = \emptyset \), one for each choice of a left endpoint and right endpoint.)

A (type-B) **noncrossing arc diagram (on \(n \) points)** is a collection of type-B arcs on points \(\times \) and 1, \ldots n that don’t intersect, except possibly at their endpoints, with no two arcs sharing an endpoint from which they both go down or both go up. Again, we consider arcs and noncrossing arc diagrams up to combinatorial equivalence.

All noncrossing arc diagrams for \(B_2 \) are included in Fig. 2.8.

The map \(\phi \) is a bijection from the set of centrally symmetric arcs and centrally symmetric pairs of arcs to the set of type-B arcs, and also induces a bijection on combinato-

![Figure 2.8: Noncrossing arc diagrams for \(B_2 \).](image)
rial equivalence classes. Nonoverlapping symmetric pairs, symmetric arcs, and overlapping symmetric pairs map respectively to ordinary, orbifold, and long arcs. Furthermore, \(\phi \) induces a bijection from centrally symmetric noncrossing arc diagrams to type-B noncrossing arc diagrams. We write \(\delta^o \) for the map \(\phi \circ \delta \), where \(\delta \) is understood as in Section 2.4.1 to map signed permutations to centrally symmetric noncrossing arc diagrams. The following theorem is a restatement of Theorem 2.4.1.

Theorem 2.4.14. The map \(\delta^o \) is a bijection from \(B_n \) to the set of type-B noncrossing arc diagrams on \(n \) points.

We now give a direct description of the bijection \(\delta^o \) from \(B_n \) to the set of type-B noncrossing arc diagrams on \(n \) points, as illustrated in Fig. 2.9. Given \(\pi \in B_n \) with one-line notation \(\pi_1 \cdots \pi_n \), write each entry \(\pi_i \) at the point \((i, \pi_i)\) in the plane, for \(i = 1, \ldots, n \). For every \(i \) such that \(\pi_i > \pi_{i+1} \), draw a straight line segment from \(\pi_i \) to \(\pi_{i+1} \). Additionally, if \(\pi_1 < 0 \), draw a line segment from the origin to \(\pi_1 \). These line segments become arcs: First, we move the numbers \(\pi_1, \ldots, \pi_n \) horizontally to put them into a single vertical line, allowing the line segments to curve, so that they don’t pass through any of the numbers or one another. Then, we rotate the negative numbers 180 degrees clockwise, allowing the (already curved) line segments connecting positive numbers to negative numbers to stretch around the origin. We remove the negative signs on the numbers. Since \(\{|\pi_1|, \ldots, |\pi_n|\} = \{1, \ldots, n\} \), the numbers are now \(1, \ldots, n \) from bottom to top. The resulting type-B noncrossing arc diagram is \(\delta^o(\pi) \).

We continue to translate the results of Section 2.4.1 into the language of the orbifold model. We next describe the bijection from arcs to join-irreducible elements of \(B_n \). We continue the conventions from Section 2.4.1 for describing join-irreducible signed permutations.

A join-irreducible signed permutation \(\pi \) with a single descent \(\pi_{-1} > \pi_1 \) corresponds to
an orbifold arc α. If α has upper endpoint p, then π is

$$(-p) (-L(\alpha)) R(\alpha) (p + 1) \cdots n.$$

A join-irreducible signed permutation π with two symmetric descents $\pi_i > \pi_{i+1}$ and $\pi_{-i-1} > \pi_{-i}$ such that π_i and π_{i+1} have the same sign corresponds to an ordinary arc α. (If π_i and π_{i+1} are both negative, there must be an additional inversion between π_i and the entry before it, either π_{i-1} or π_{-1}.) If α has endpoints p and q with $0 < p < q$, then π is

$$1 \cdots (p - 1) L(\alpha) q p R(\alpha) (q + 1) \cdots n.$$

A join-irreducible element π with two symmetric descents each involving a positive and a negative number corresponds to a long arc α. Suppose α has left endpoint p and right endpoint q (noting that as we translate this description from Section 2.4.1, the p here is the $-p$ there). Necessarily, $p \neq q$. Write $B(\alpha)$ (suggesting “between”) to denote the set of points that are left of the right piece of α and right of the left piece. Thus B is a subset of $(0, \min(p, q))$. If $p < q$, then π is

$$B(\alpha) [(p, q) \setminus R(\alpha)] q (-p) (-L(\alpha)) R(\alpha) (q + 1) \cdots n.$$

If $q < p$, then π is

$$B(\alpha) q (-p) (-L(\alpha)) R(\alpha) [(q, p) \setminus L(\alpha)] (p + 1) \cdots n.$$

The following is a restatement of Theorem 2.4.2 in the orbifold model.

Theorem 2.4.15. Given $\pi \in B_n$, the canonical join representation of π is the set of join-irreducible elements corresponding to the arcs in $\delta^o(\pi)$.

Two type-B arcs are **compatible** if and only if they do not intersect, except possibly at numbered endpoints, and don’t share the same top endpoint or the same bottom endpoint. In other words, they are compatible if and only if they can appear together in a type-B noncrossing arc diagram. As a consequence of Theorems 2.4.14 and 2.4.15, two join-irreducible elements of B_n are compatible (can appear together in a canonical join representation) if and only if the corresponding type-B arcs are compatible.

The following three propositions are restatements of Propositions 2.4.3 and 2.4.4. (Propositions 2.4.17 and 2.4.18 break Proposition 2.4.4 into two cases.)
Proposition 2.4.16. Suppose α is an orbifold arc upper endpoint p. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_p = 0 \text{ and } 0 \leq x_i \forall i \in R(\alpha) \text{ and } 0 \geq x_i \forall i \in L(\alpha) \}. $$

Proposition 2.4.17. Suppose α is an ordinary arc with endpoints p and q. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_p = x_q \text{ and } x_p \leq x_i \forall i \in R(\alpha) \text{ and } x_p \geq x_i \forall i \in L(\alpha) \}. $$

Proposition 2.4.18. Suppose α is a long arc with left endpoint p and right endpoint q. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_q = -x_p \text{ and } x_q \leq x_i \forall i \in (R(\alpha) \cup (-L(\alpha))) \text{ and } x_q \geq x_i \forall i \in ((-p, q) \setminus (R(\alpha) \cup (-L(\alpha))) \}. $$

We now turn to translating the definitions of subarcs and superarcs, as well as Theorem 2.4.9, to the orbifold model, using the map ϕ. There is a case-free way to define subarcs of a type-B arc α: Informally, we can cut α shorter at one or both of its endpoints and reattach the shortened curve to a numbered point. If the result is a type-B arc (or can be easily modified to become an orbifold arc as made precise below), then it is a subarc of α. Together, Definitions 2.4.19 and 2.4.20, below, correspond to Definitions 2.4.6 and 2.4.7, but the split into two definitions is not the same here as in Section 2.4.1.

Definition 2.4.19 (Subarcs of ordinary and orbifold arcs). Suppose α is an ordinary or orbifold arc with endpoints $p < q$, with $\times = 0$ for the purposes of this definition. A subarc of α is an arc α' with endpoints p' and q' having $p \leq p' \leq q' \leq q$ and $R(\alpha') = R(\alpha) \cap (p', q')$. The arc α' is ordinary unless $p' = 0$, in which case α' is an orbifold arc.
Definition 2.4.20 (Subarcs of long arcs). Suppose α is a long arc with left endpoint p and right endpoint q. A subarc of α can be ordinary, orbifold, or long.

- An ordinary arc α' with endpoints $p' < q'$ is a subarc of α if and only if one of the following occurs: either $q' \leq p$ and $L(\alpha') = L(\alpha) \cap (p', q')$ or $q' \leq q$ and $R(\alpha') = R(\alpha) \cap (p', q')$.

- An orbifold arc α' with upper endpoint p' is a subarc of α if and only if $p' \leq \min(p, q)$, $L(\alpha') = L(\alpha) \cap (0, p')$, and $R(\alpha') = R(\alpha) \cap (0, p')$.

- A long arc α' with left endpoint p' and right endpoint q' is a subarc of α if and only if $p' \leq p$, $q' \leq q$, $L(\alpha') = L(\alpha) \cap (0, p')$, $R(\alpha') = R(\alpha) \cap (0, q')$, and the following additional conditions hold: $p' \not\in R(\alpha)$ and $q' \not\in L(\alpha)$.

Remark 2.4.21. To better understand long subarcs of long arcs in Definition 2.4.20, we discuss an explicit construction of these subarcs. Compare similar constructions in Remarks 2.3.4 and 2.4.8. Take h to be a height function on the orbifold plane with each numbered point i having height i and with every semicircle point in the closed lower halfplane having height 0.

Suppose α is a long type-B arc, parametrized as a function from the interval $[0, 1]$ into the orbifold plane. The construction of a long subarc α' begins as follows: Choose t_1 and t_2 with $0 \leq t_1 < t_2 \leq 1$ such that $h(\alpha(t_1))$ and $h(\alpha(t_2))$ are distinct elements of $\{1, \ldots, n\}$. Choose $\epsilon_1 > 0$ such that $|h(\alpha(t_1 + \epsilon_1)) - h(\alpha(t_1))| < 1$ and such that $h(\alpha(t)) > 0$ for all t in the interval $(t_1, t_1 + \epsilon_1)$. Similarly, choose $\epsilon_2 > 0$ such that $t_1 + \epsilon_1 < t_2 - \epsilon_2$, such that $|h(\alpha(t_2 - \epsilon_2)) - h(\alpha(t_2))| < 1$, and such that $h(\alpha(t)) > 0$ for all t in the interval $(t_2 - \epsilon_2, t_2)$. Define α' to be the curve obtained by concatenating three curves: First, the straight line segment from the point numbered $h(\alpha(t_1))$ to the point $\alpha(t_1 + \epsilon_1)$; second, the restriction of α to the interval $[t_1 + \epsilon_1, t_2 - \epsilon_2]$; and third, the straight line segment from $\alpha(t_2 - \epsilon_2)$ to the point numbered $h(\alpha(t_2))$.

If α' is a valid long arc, then it is a subarc of α. It fails to be a type-B arc if and only if it crosses itself, in which case, this choice of t_1 and t_2 does not produce a subarc of α. See Fig. 2.11.

The map ϕ translates the subarc relation on symmetric arcs/pairs exactly to the subarc relation on type-B arcs. The following results are direct translations of Theorem 2.4.9 and Corollaries 2.4.10 and 2.4.11.

Theorem 2.4.22. Let j_1 and j_2 be join-irreducible signed permutations. Then j_1 forces j_2 if and only if the type-B arc corresponding to j_1 is a subarc of the type-B arc corresponding to j_2.

64
Figure 2.11: A failed construction of a subarc, per Definition 2.4.20 and Remark 2.4.21.

Corollary 2.4.23. A set U of type-B arcs corresponds to the set of uncontracted join-irreducible signed permutations of some congruence Θ on B_n if and only if U is closed under passing to subarcs.

Corollary 2.4.24. If Θ is a congruence on B_n and U is the set of type-B arcs corresponding to join-irreducible permutations not contracted by Θ, then δ^r restricts to a bijection from the quotient B_n/Θ (the set of signed permutations not contracted by Θ) to the set of type-B noncrossing arc diagrams consisting only of arcs in U.

A type-B arc α' is a **superarc** of a type-B arc α if and only if α is a subarc of α'. We now describe how to construct superarcs.

Superarcs of an orbifold arc α. These can be orbifold arcs or long arcs. We construct an orbifold superarc by pushing α left or right of its top endpoint and extending it upwards to a new upper endpoint. We construct a long superarc by first replacing α with a curve that goes around \times, with both endpoints at the original endpoint of α, and with its left piece and its right piece having exactly the same right points as α. We then push one or both ends off of the endpoint (one left and one staying, one right and one staying, both left, one on each side, or both right, but not creating a self-intersection), and extend upwards without creating self-intersections, to make a long superarc.

Superarcs of an ordinary arc α. These can be of any of the three kinds. To construct a superarc, we push the top or bottom of α independently to the left or right. We then extend upwards and/or downwards. The downward extension can end before reaching \times (to make an ordinary superarc), can have an endpoint at \times (to make an orbifold superarc), or can go around \times before ending (to make a long superarc), provided that no self-intersections are created.

Superarcs of a long arc α. Every superarc of α is long. We construct a superarc by pushing one or both endpoints of α left or right and extending upwards, without creating self-intersections.
We close this section with a translation of Proposition 2.4.13, which will be useful in later sections. As before, we write arrows \to between type-B arcs to indicate arrows between the corresponding shards.

Proposition 2.4.25. Suppose α_1 and α_2 are type-B arcs. Then $\alpha_1 \to \alpha_2$ if and only if α_1 is a subarc of α_2 and one of the following conditions holds.

(i) Neither α_1 nor α_2 is an orbifold arc, and α_1 and α_2 have exactly one endpoint in common.

(ii) α_1 and α_2 are orbifold arcs with different upper endpoints.

(iii) α_2 is an orbifold arc and α_1 is ordinary, with the same upper endpoint.

(iv) α_2 is a long arc with endpoints $p < q$ and no numbered points between its left and right pieces, and α_1 is an orbifold arc with upper endpoint p.

(v) α_2 is a long arc with endpoints $p < q$ and no numbered points between its left and right pieces, and α_1 is an ordinary arc with endpoints p and q.

We emphasize that condition (i) disallows arrows from a long arc to an ordinary arc with the same endpoints, but condition (v) provides an exception when the long arc has no numbered points between its left and right pieces. Also, in (iv) and (v), it does not matter whether p or q is the left endpoint.

2.5 Noncrossing arc diagrams of type D

We now construct a model of noncrossing arc diagrams for finite Coxeter groups of type D. One early step in the construction, namely the treatment of shards in type D, draws on a similar treatment in [28], but with some differences of conventions.

2.5.1 Shards, arcs, and join-irreducible elements in type D

An **even-signed permutation** is a signed permutation π with one-line notation $\pi_1 \cdots \pi_n$ such that the set $\{i \in [n] : \pi_i < 0\}$ has an even number of elements. The Coxeter group of type D_n is the group of even-signed permutations of $\{\pm 1, \ldots, \pm n\}$. It has simple reflections $s_0 = (-21)(-12)$ and $s_i = (i \ i + 1)(-i - 1 \ -i)$ for $i = 1, \ldots, n - 1$. The reflections in D_n are the elements $(i \ j)(-j \ -i)$ for $i, j \in \pm [n]$ with $i \neq -j$.

The Coxeter arrangement $A(D_n)$ consists of hyperplanes in \mathbb{R}^n with normal vectors $\{e_i - e_j : i, j \in \pm [n], i > j \neq -i\}$, where again we use the shorthand e_{-i} for $-e_i$. Similarly,
we continue the shorthand x_{-i} for $-x_i$ when $\mathbf{x} = (x_1, \ldots, x_n)$ is a vector in \mathbb{R}^n. We will refer to the hyperplanes by their normal vectors, but each hyperplane can be named in two ways, as $e_i - e_j$ or as $e_{-j} - e_{-i}$. The base region B is the region containing the point $(1, 2, \ldots, n)$. This region is bounded by the reflecting hyperplanes $e_2 + e_1, e_2 - e_1, e_3 - e_2, \ldots, e_n - e_{n-1}$ associated to the simple reflections.

The inversions of a even-signed permutation π are the reflections $(i \ j)(-j \ -i)$ with $i > j \neq -i$ such that i precedes j in the long one-line notation for π. (This description mentions each inversion exactly twice.) Each even-signed permutation π is associated to the region whose separating set consists of the reflecting hyperplanes of all inversions of π. Concretely, for $i > j \neq -i$, the reflection $(i \ j)(-j \ -i)$ is an inversion of π if and only if points in the region for π have nonpositive dot product with $e_i - e_j$. Thus a vector \mathbf{x} in the region for π has $x_i \leq x_j$ if i precedes j in the long one-line notation for π and has $x_i \geq x_j$ if i follows j.

Given a even-signed permutation π, the **descents** of π are the pairs (π_i, π_j) with $\pi_i > \pi_j$ for $i \in \{-n, \ldots, -2\} \cup \{1, \ldots, n-1\}$ and $j = i+1$ or for $i \in \{-2, -1\}$ and $j = i+3$. Descents come in symmetric pairs $(\pi_i, \pi_j), (\pi_{-j}, \pi_{-i})$, and these pairs correspond to the cover reflections of π, with a descent pair $(\pi_i, \pi_j), (\pi_{-j}, \pi_{-i})$ specifying the cover reflection $(\pi_i \ \pi_j)(\pi_{-j} \ \pi_{-i})$.

The rank-two subarrangements of size > 2 have the form

$$\left\{e_i - e_j, e_i - e_k, e_j - e_k\right\} \text{ for } i > j > k \text{ with } j \neq -i, k \neq -i, k \neq -j,$$

where the underlined vectors correspond to the basic hyperplanes.

Thus, for $i > k$ and $k \neq -i$ the shards in the hyperplane orthogonal to $e_i - e_k$ are defined by inequalities of the form $x_i \leq x_j$ or $x_i \geq x_j$ for $i > j > k$ and $j \notin \{-i, -k\}$. (Since $x_i = x_k$ in that hyperplane, the inequalities $x_k \leq x_j$ or $x_k \geq x_j$ are redundant.) Moreover, for each j with $i > j > k$ and $j \notin \{-i, -k\}$, exactly one of the inequalities $x_i \leq x_j$ and $x_i \geq x_j$ must hold in the shard. A choice of one inequality from each pair defines a type-D shard if and only if it defines an $(n-1)$-dimensional subset of the hyperplane.

We now construct a type-D noncrossing arc diagram model. The model for D_n begins like the orbifold model in type B, with a point \times at the origin and n points in a vertical line above the origin, numbered $1, \ldots, n$ from bottom to top. We begin by defining type-D arcs and showing that they are in bijection with shards.

Definition 2.5.1. We will represent type-D arcs in two ways: as equivalence classes of certain type-B arcs, or as single “arcs” with more complicated rules. These two different representations are useful for different aspects of the model: The equivalence class representation is
convenient for compatibility and noncrossing arc diagrams, and the single-arc model is more convenient for forcing. Thus we will pass freely between the two representations.

The type-B arcs that we consider are the ordinary and long arcs (i.e. orbifold arcs are excluded), and we define an equivalence relation on long arcs. If α is a long type-B arc with endpoints $a < b$ that has no numbered points between its left piece and its right piece, then α is equivalent to an arc α' that is nearly identical to α in the following sense: the left piece of α' is combinatorially the same as the right piece of α and vice versa, except that the longer piece of α' passes to the opposite side of a as the longer piece of α. (An example of this equivalence appears below in Fig. 2.12.) Aside from these 2-element equivalence classes, all other equivalence classes are singletons.

The type-D arcs are of three types, as described here and pictured in Fig. 2.12.

- An ordinary arc is an arc on the points $1, \ldots, n$ satisfying the same rules as an arc in type A (Section 2.3). It can be represented as an ordinary type-B arc (a singleton equivalence class under the equivalence relation on type-B arcs). If α is an ordinary arc, then we write $R(\alpha)$ for the set of numbered points right of α and $L(\alpha)$ for the set of numbered points left of α.

- A partially doubled arc with and internal endpoint a external endpoint b (with $a < b$) is a curve connecting b to \times and also passing through a. Between \times and a and between a and b, the curve satisfies the same rules as an arc in type A. A partially doubled arc α can be represented as a 2-element equivalence class consisting of two long type-B arcs with endpoints a and b that both pass to the same side of each numbered point (except necessarily the point a). If α is a partially doubled arc with internal endpoint a and external endpoint b, then we write $R(\alpha)$ for the subset of $(0,a) \cup (a,b)$ consisting of points right of α and write $L(\alpha)$ for the subset of $(0,a)$ consisting of points left of α. This definition breaks the natural symmetry of a partially doubled arc, but proves useful later.

- A branched arc is a union of two curves, one connecting \times to a left endpoint b_L and the other connecting \times to a right endpoint $b_R \neq b_L$, satisfying the following requirements: each curve follows the rules for an arc in type A; there is a numbered point $a < \min(b_L,b_R)$ and a number $0 < \epsilon < 1$ such that the two curves coincide from height 0 to height $a - \epsilon$ and are disjoint above height $a - \epsilon$; and the curve to b_L passes left of a while the curve to b_R passes right of a. For precision, we have defined this arc as a union of two curves, but we think of it as a single “branched” arc, with branch point a and a left branch (to b_L) and a right branch (to b_R). A branched arc α can be represented as a long type-B arc that has at least one point between its left and
right pieces. The lowest point between the two pieces is \(a \). (This is a single-element equivalence class.) Given a branched arc \(\alpha \), we write \(R(\alpha) \) for the set of points right of its right branch and write \(L(\alpha) \) for the set of points left of its left branch.

As in types A and B, the combinatorial data of a type-D arc \(\alpha \) consists of its endpoints and the sets \(L(\alpha) \) and \(R(\alpha) \). There are many embeddings of \(\alpha \) with the same combinatorial data, and we consider arcs and noncrossing arc diagrams up to combinatorial equivalence.

The main reason for representing type-D arcs as equivalence classes of type-B arcs is to allow us to re-use results from type B. The first such re-use is the following proposition.

Proposition 2.5.2. Given a type-D arc, represented as an equivalence class of type-B arcs, the union, over the equivalence class, of the corresponding type-B shards is a type-D shard. This correspondence is a bijection between type-D arcs and type-D shards.

Proof. We first argue that each union, over equivalence classes of arcs, of type-B shards is a type-D shard. Let \(\alpha \) be a type-D arc.

First, suppose \(\alpha \) is an ordinary arc. In this case, the equivalence class has only one type-B arc, and Proposition 2.4.17 describes the type-B shard using inequalities that define a type-D shard.

Next, suppose \(\alpha \) is a branched arc with endpoints \(b_L \) and \(b_R \). Again, the equivalence class is a singleton. Proposition 2.4.18 describes the type-B arc using inequalities appropriate for a type-D arc, but with one extra inequality not appropriate for a type-D arc: If \(b_R < b_L \), then the extra inequality is \(x_{b_R} \geq -x_{b_L} \). If \(b_L < b_R \), then the extra inequality is \(x_{b_R} \geq x_{b_L} \), but since \(x_{b_R} = -x_{b_L} \), this says \(x_{b_L} \geq -x_{b_R} \). Thus, in either case, the extra inequality is \(x_{b_R} \geq 0 \). But this extra inequality is implied by the other inequalities: The point \(a \) is neither right of the right piece of the type-B arc nor left of the left piece. Thus, according to Proposition 2.4.18, two of the defining equations of the type-B shard are \(x_{b_R} \geq x_a \) and \(x_{b_R} \geq -x_a \), which implies that \(x_{b_R} \geq 0 \). We conclude that the type-B shard is also a type-D shard.
Finally, suppose \(\alpha \) is a partially doubled arc with internal endpoint \(a \) and external endpoint \(b \). Of the two equivalent type-B arcs, let \(\beta \) be the one with \(a \) as its left endpoint and \(b \) as its right endpoint. The type-B shard corresponding to \(\beta \) is described in Proposition 2.4.18 as

\[
\{ x \in \mathbb{R}^n : x_b = -x_a \text{ and } x_b \leq x_i \forall i \in (R(\beta) \cup (-L(\beta))) \\
\text{and } x_b \geq x_i \forall i \in ((-a, b) \setminus R(\beta) \cup (-L(\beta))) \}.
\]

Let \(\beta' \) be the other type-B arc in the class, having \(a \) as its right endpoint and \(b \) its left endpoint. Then \(L(\beta') = (0, b) \setminus (R(\beta) \cup \{a\}) \) and \(R(\beta') = (0, a) \setminus L(\beta) \). Therefore \(R(\beta') \cup (-L(\beta')) \) is \((-b, a) \setminus (L(\beta) \cup (-R(\beta)) \cup \{-a\})\). Thus the type-B shard corresponding to \(\beta' \) is described in Proposition 2.4.18 as

\[
\{ x \in \mathbb{R}^n : x_a = -x_b \text{ and } x_a \leq x_i \forall i \in ((-b, a) \setminus L(\beta) \cup (-R(\beta)) \cup \{-a\}) \\
\text{and } x_a \geq x_i \forall i \in (L(\beta) \cup (-R(\beta)) \cup \{-a\}) \}.
\]

Comparing these sets of inequalities in light of the equality \(x_b = -x_a \) that holds in both cases, we see that they differ only in that one set of inequalities requires \(-x_a \geq x_a\) (i.e. \(x_a \leq 0 \)) and the other requires \(x_a \geq -x_a\) (i.e. \(x_a \geq 0 \)). The union of these two type-B shards is obtained by eliminating the either requirement, \(x_a \geq 0 \) or \(x_a \leq 0 \). Thus this union is described by a collection of inequalities appropriate to describe a type-D shard.

Having shown that each union of type-B shards is a type-D shard, we show that all type-D shards are of this form. The type-B shards whose arcs (in the orbifold model) are not orbifold arcs are precisely the type-B shards in hyperplanes whose normal vectors are \(e_i - e_j \) for \(i, j \in \pm[n] \) \(i > j \), \(j \neq -i \), or in other words, the reflecting hyperplanes for \(D_n \). Each such hyperplane is a union of type-B shards, so the hyperplane is also a union of the type-D shards that are formed as unions over equivalence classes of type-B shards. Thus every type-D shard is such a union.

Since ordinary and branched type-D arcs can be represented by singleton equivalence classes of type-B arcs, Proposition 2.4.18 gives explicit inequalities for the corresponding shards. The proof of Proposition 2.5.2 shows that one inequality is redundant in the branched case and also shows how to write down inequalities in the partially doubled case. We summarize the association between type-D shards and the various kinds of type-D arcs in the following propositions.

Proposition 2.5.3. Suppose \(\alpha \) is an ordinary type-D arc with endpoints \(a \) and \(b \). The shard
Proposition 2.5.4. Suppose α is a partially doubled arc with internal endpoint a and external endpoint b. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_b = -x_a \text{ and } x_b \leq x_i \forall i \in (R(\alpha) \cup (-L(\alpha))) \text{ and } x_b \geq x_i \forall i \in ((-a, b) \setminus (R(\alpha) \cup (-L(\alpha)))) \}. $$

Proposition 2.5.5. Suppose α is a branched type-D arc with branch point a, left endpoint b_L, and right endpoint b_R. The shard associated to α is

$$\{ x \in \mathbb{R}^n : x_{b_R} = -x_{b_L} \text{ and } x_{b_R} \leq x_i \forall i \in (R(\alpha) \cup (-L(\alpha))) \text{ and } x_{b_R} \geq x_i \forall i \in ((-b_L, b_R) \setminus (R(\alpha) \cup (-L(\alpha))) \cup \{b_L, -b_R\}) \}. $$

2.5.2 Type-D noncrossing arc diagrams

In this section, we define type-D noncrossing arc diagrams and a bijection from D_n to type-D noncrossing arc diagrams.

To define type-D noncrossing arc diagrams, we need a notion of compatibility of type-D arcs. Figs. 2.13 and 2.14 illustrate compatibility of type-D arcs.

Definition 2.5.6. To define compatibility of type-D arcs in terms of equivalence classes of type-B arcs, we need a notion of type-D compatibility of ordinary and long type-B arcs (i.e. type-B arcs that are not orbifold arcs). Two such arcs are type-D compatible if either they

![Figure 2.13: Compatibility between type-D arcs.](image)

71
Figure 2.14: Compatibility between type-D arcs.

are compatible as type-B arcs in the sense of Section 2.4 or one is a long arc with endpoints \(a < b \) and no numbered points between its left piece and right piece, while the other is an ordinary arc with the same endpoints \(a < b \) and the two arcs agree between \(a \) and \(b \). We say that two type-D arcs are **compatible** if it is possible to choose an equivalence-class representative of each such that the two representatives are type-D compatible.

A **type-D noncrossing arc diagram** is a collection of pairwise compatible type-D arcs. Examples of type-D noncrossing arc diagrams, represented both in the single-arc model and as equivalence classes, are shown in Fig. 2.15.

We now define a map \(\delta^D \) from even-signed permutations to collections of type-D arcs, which eventually will be the bijection between \(D_n \) and type-D noncrossing arc diagrams (Theorem 2.5.8). The map is illustrated in Fig. 2.16. The map is like the map from \(B_n \) to type-B noncrossing arc diagrams, except that we draw line segments that reflect the natural type-D notion of descents (and at the end we pass to equivalence classes).

Given an even-signed permutation \(\pi \in D_n \), for \(i = -n, \ldots, -2, 2, \ldots, n \), write the entry \(\pi_i \) at the point \((i, \pi_i)\). Also write the entry \(\pi_{-1} \) at the point \((0, \pi_{-1})\) and the point \(\pi_1 \) at the point \((0, \pi_1)\). For \(i = 1, \ldots, n - 1 \), if \(\pi_i > \pi_{i+1} \), draw a line segment from \((i, \pi_i)\) to \((i + 1, \pi_{i+1})\) and from \((-i - 1, \pi_{-i-1})\) to \((-i, \pi_{-i})\). Also, if \(\pi_{-1} > \pi_2 \) draw a line segment from \((-1, \pi_{-1})\) to \((2, \pi_2)\) and from \((-2, \pi_{-2})\) to \((1, \pi_1)\). These line segments do not intersect, and no two of them share a top endpoint or a bottom endpoint, except that we may have drawn a parallelogram with vertices \((0, \pi_1)\), \((2, \pi_2)\), \((-2, \pi_{-2})\), and \((0, \pi_{-1})\). When we move all the points to a vertical line, the result is a collection of symmetric pairs of arcs in the centrally symmetric model, which determine a set of type-B arcs in the orbifold model. None of the arcs in the orbifold model are equivalent to each other, and the set of their equivalence classes
Figure 2.15: Type-D noncrossing arc diagrams for D_3.
is a set $\delta^D(\pi)$ of type-D arcs.

One might naturally wonder why we begin δ^D with a symmetric picture and then pass to the orbifold model at the end, instead of beginning with a map more like δ^o from the start. The reason to begin in the symmetric case is that we can think of even-signed permutations as signed permutations which are ambivalent about whether π_1 or π_{-1} is negative: if we know $\pi_2 \cdots \pi_n$, and specifically how many entries in the sequence are negative, we can determine the sign of π_1 based on that information. Thus, the type-B inversion from π_{-1} to π_1 does not really come into play in type D. Rather, we need to account for inversions of the form $\pi_{-1} > \pi_2$ and/or $\pi_1 > \pi_2$. Since we need more than just the short one-line notation, we may as well start by plotting a complete, symmetric set of points for π and then pass to the orbifold model from the symmetric model at the end.

Recall from Proposition 2.2.6 that there is a bijection between shards and join-irreducible elements of the weak order. In particular, Proposition 2.5.2 implies that type-D arcs are in bijection with join-irreducible even-signed permutations.

Theorem 2.5.7. For any even-signed permutation π, the set of join-irreducible elements associated to $\delta^D(\pi)$ is the canonical join-representation of π.

Proof. By Theorem 2.2.7, we need to show that the set of shards associated to the type-D arcs in $\delta^D(\pi)$ is the set of lower shards for the region associated to π. By construction, there is one arc in $\delta^D(\pi)$ for each symmetric pair of descents of π, and the corresponding shard Σ is in the hyperplane H that is crossed when those descents are reversed. We will check that Σ is the lower shard for π that lives in H by checking that, for any hyperplane H' that cuts H, the shard Σ and the region for π are on the same side of H'. Recall that for $i > j \neq -i$, the region for π satisfies $x_i \leq x_j$ if i precedes j in the long one-line notation for π and satisfies
$x_i \geq x_j$ if i follows j.

The hyperplane H is normal to $e_i - e_k$ for some $i > k \neq -i$, and H' is normal to either $e_i - e_j$ or $e_j - e_k$ for some j with $i > j > k$ with $j \not\in \{-i, -k\}$. Either the entry i immediately precedes k in the long one-line notation for π, or i and k are in positions -1 and 2 or -2 and 1. If j is left of i and k, then the region for π satisfies $x_i \geq x_j$ and $x_j \leq x_k$. In this case, inspection of Propositions 2.5.3, 2.5.4 and 2.5.5 shows that Σ satisfies the same conditions.

If j is right of k, then the region for π satisfies $x_i \leq x_j$ and $x_j \geq x_k$, and again Σ satisfies the same conditions.

Theorem 2.5.8. The map δ^D is a bijection from D_n to the set of type-D noncrossing arc diagrams.

Proof. It is immediate from the definition of δ^D that, for any $\pi \in D_n$, $\delta^D(\pi)$ is a type-D noncrossing arc diagram. Furthermore, the construction of $\delta^D(\pi)$ produces a representation of $\delta^D(\pi)$ by as type-D compatible type-B arcs and a specific embedding of these arcs in the plane such that no two arcs intersect except possibly at endpoints. Since an element is uniquely determined by its canonical join-representation, Theorem 2.5.7 implies that δ^D is one-to-one.

We now show that any set of pairwise compatible type-D arcs is $\delta^D(\pi)$ for some $\pi \in D_n$. As a start, we show that, for any two compatible type-D arcs α_1 and α_2, there exists π such that $\alpha_1, \alpha_2 \in \delta^D(\pi)$.

If α_1 and α_2 are compatible because there is an equivalence-class representative of each that make a type-B compatible pair, then by Theorem 2.4.1, there is a signed permutation π such that $\delta(\pi)$ contains the two representatives. Since neither of the representatives is an orbifold arc, they do not arise in $\delta(\pi)$ from the descent in positions ± 1. We can swap π_1 and π_{-1} if necessary to turn π into an even-signed permutation π', and $\delta^D(\pi')$ contains α_1 and α_2. (If the representative of α_1 or α_2 comes from the descent in positions $1, 2$ and $-2, -1$ in $\delta^D(\pi)$, then the same type-B arc will arise in $\delta^D(\pi')$ from positions $1, -2$ and $-1, 2$ and vice versa.)

If α_1 is a partially doubled arc with endpoints $0 < a < b$ and α_2 is an ordinary arc with the same endpoints, then we construct a type-D permutation π by placing $b, a, -a, -b$ in positions $-2, -1, 1, 2$ respectively and then place the remaining elements of $\{\pm 1, \ldots, \pm n\}$ in the long one-line notation for π, subject to sign-symmetry and placing every element of $R(\alpha_1)$ on the right of the long one-line notation, every element of $L(\alpha_1) \cup L(\alpha_2)$ on the left of the long one-line notation, and otherwise arbitrarily. If the result is not even-signed, then we swap $\pm a$.

75
We have shown that, for any two compatible type-D arcs, there is an even-signed permutation π such that $\delta^D(\pi)$ contains them. Thus by Theorem 2.5.7 (and the fact that the canonical join complex is a simplicial complex), any two compatible type-D arcs encode two join-irreducible elements that form a face of the canonical join complex. Since the canonical join complex of the weak order is flag (by Theorem 2.2.1, because the weak order is semidistributive), we conclude that any pairwise compatible set U of type-D arcs encodes a set of join-irreducible elements that forms a face in the canonical join complex. This face is the canonical join-representation of some element π, and Theorem 2.5.7 says that $U = \delta^D(\pi)$. \qed

The proof of Theorem 2.5.8 does not provide an explicit inverse to δ^D, but we describe the inverse map below in Theorem 2.5.13. For emphasis, we gather some important equivalences in the following theorem, which is an immediate consequence of Theorems 2.5.7 and 2.5.8 and Proposition 2.2.8.

Theorem 2.5.9. Two join-irreducible even-signed permutations are compatible (i.e. form a face in the canonical join complex) if and only if the corresponding type-D arcs are compatible if and only if the corresponding shards are compatible.

There are some potential subtleties in the notion of a type-D noncrossing arc diagram that we now clarify. Clarifying these subtleties allows definite answers to some questions that are crucial in working out examples, such as whether a given drawing actually represents a type-D noncrossing arc diagrams, whether a given drawing proves that some collection of type-D arcs is not a type-D noncrossing arc diagram, and how many ways the same type-D noncrossing arc diagram can be represented by type-B arcs. Clarifying these subtleties also clears the way for a description of the inverse to δ^D.

The first subtlety is that we can check the compatibility of a pair α_1, α_2 of type-D arcs by choosing one type-B arc representing α_1 and we can check the compatibility of a pair α_1, α_3 by choosing a different type-B arc representing α_1. Thus, it is conceivable that a set $\{\alpha_1, \ldots, \alpha_k\}$ of type-D arcs is pairwise compatible, but that there is no set $\{\alpha'_1, \ldots, \alpha'_k\}$ of pairwise type-D compatible type-B arcs such that each α'_i represents α_i. The following corollary shows such a set $\{\alpha'_1, \ldots, \alpha'_k\}$ always exists.

Corollary 2.5.10.

1. Every type-D noncrossing arc diagram can be represented as a collection of ordinary and/or long type-B arcs that are pairwise type-D compatible.

2. Every pairwise type-D compatible collection of ordinary and/or long type-B arcs represents a type-D noncrossing arc diagram.
Both representatives of α_1 are compatible with α_2.

α'_2 is not compatible with either representative of α_1.

Figure 2.17: Replaceable and irreplaceable type-B arcs, as in Proposition 2.5.11.

Proof. Assertion 1 follows from Theorem 2.5.8 and the definition of δ^D. Assertion 2 is part of the definition of a type-D noncrossing arc diagram, and is included here for emphasis.

Related to the first subtlety is the question of how many ways a given type-D noncrossing arc diagram can be represented by type-B arcs. The following proposition answers that question.

Proposition 2.5.11. A noncrossing arc diagram can be represented in at most two ways by a collection of type-B arcs that are pairwise type-D compatible. If there are two ways, they are related by replacing exactly one type-B arc in the collection by an equivalent type-B arc. (In this case, the one type-B arc that can be replaced represents the partially doubled arc with the highest internal endpoint.)

Proof. First consider two type-D compatible type-B arcs α_1 and α_2, both long and having nothing between them. Collectively, these two arcs have 4 distinct endpoints. Let p be the smallest of the 4 and suppose without loss of generality that α_2 has p as an endpoint. Then p is either left or right of both sides of α_1. Thus if α'_2 is the type-B arc that is equivalent (but not equal) to α_2, then α'_2 is not type-D compatible with α_1. See Fig. 2.17.

Now suppose a type-D noncrossing arc diagram has more than one partially doubled arc. Since these are pairwise compatible, one can choose a representative type-B arc for each partially doubled arc to obtain pairwise type-D compatible type-B arcs, all long and having nothing between them. The previous paragraph shows that at most one of these arcs can be exchanged for its equivalent partner without destroying compatibility with the other arcs.

The second subtlety is that we can check the type-D compatibility of a pair α_1, α_2 of type-B arcs by choosing one topological-equivalence representative of α_1, and we can check the type-D compatibility of a pair α_1, α_3 by choosing a different topological-equivalence representative of α_1. The following theorem says that we can see the pairwise type-D
compatibility of a collection of type-B arcs while choosing topological representatives of the arcs once and for all.

Theorem 2.5.12. Every pairwise type-D compatible collection of ordinary and/or long type-B arcs has a set of topological-equivalence representatives that are pairwise non-intersecting except perhaps at endpoints.

Proof. Suppose A is a pairwise type-D compatible collection of ordinary and/or long type-B arcs. This set represents a set D of pairwise compatible type-D arcs. Corollary 2.5.10.1 says that there is a set A' of pairwise type-D compatible type-B arcs that represents D. Furthermore, the map δ^D constructs a set of topological-equivalence representatives of A' that are pairwise non-intersecting except perhaps at endpoints. Proposition 2.5.11 says that either $A = A'$ or A and A' differ by swapping exactly one type-B arc α with its equivalent partner α'. Thus α and α' are both compatible with every arc in $A' \setminus \{\alpha'\}$. In particular, no arc in $A' \setminus \{\alpha'\}$ passes between the left piece and right piece of α'. Thus the set of pairwise non-intersecting topological equivalence representatives for A' can be turned into a set of pairwise non-intersecting topological equivalence representatives for A by simply replacing the representative of α' with a suitable representative of α.

Proposition 2.5.11 states that a type-D noncrossing arc diagram has one or two representations as a set of pairwise type-D compatible type-B arcs, and that any two representations are related by exchanging exactly one type-B arc for its equivalent partner. That fact is helpful in describing the inverse map to δ^D.

Theorem 2.5.13. Suppose N is a type-D noncrossing arc diagram. To construct the even-signed permutation $(\delta^D)^{-1}(N)$, first, construct a type-B noncrossing arc diagram as follows:

- If N has only one representation as a collection of pairwise type-D compatible type-B arcs, then these arcs constitute a type-B noncrossing arc diagram.

- If N has two representations and each is a type-B noncrossing arc diagram, then for the partially doubled arc in N with the highest internal endpoint, choose the representation with the internal endpoint on the left.

- If N has two representations and neither is a type-B noncrossing arc diagram, then each has a unique pair of type-D compatible arcs that is not type-B compatible (an ordinary arc and a partially doubled arc in N with the same pair of endpoints), then choose the representation for the partially doubled arc in that pair with the internal endpoint on the right side and delete the ordinary arc.
Apply \((\delta^o)^{-1}\) to that type-B noncrossing arc diagram to obtain a signed permutation. If the result is even-signed, then it is \((\delta^D)^{-1}(N)\). Otherwise, swap the entries in positions \(-1\) and \(1\) to obtain an even-signed permutation, which is \((\delta^D)^{-1}(N)\).

Proof. Let \(\pi\) be the signed permutation described in the theorem (obtained by applying \((\delta^o)^{-1}\) to the chosen type-B noncrossing arc diagram). The definition of \(\delta^D\) does not require its input to be even-signed, so \(\delta^D(\pi)\) is not changed by swapping the entries \(\pi_{-1}\) and \(\pi_1\). Thus, to prove the theorem, we need only prove that \(\delta^D(\pi) = N\).

First, suppose \(N\) has only one representation as a collection of pairwise type-D compatible type-B arcs. These type-B arcs are in fact compatible as type-B arcs. Otherwise, they include a pair of arcs with the same endpoints \(a < b\), one partially doubled and one ordinary. Either type-B arc in the equivalence class for this partially doubled arc is compatible with the other type-B arcs since the two inversions that lead to the sharing must be “innermost” in the symmetric plotting of \(\pi\) and thus all other long arcs must pass to both sides of \(a\) or have their internal endpoint below \(a\), so there are two representations of the type-D noncrossing arc diagram. Now it follows from the definitions that \(\delta^D(\pi) = N\).

Next, suppose \(N\) has two representations as a collection of pairwise type-D compatible type-B arcs, both of which are type-B noncrossing arc diagrams. Then \(N\) does not contain a partially doubled arc and an ordinary arc with the same endpoints. Take \(\pi' = (\delta^D)^{-1}(N)\). Because we take the representative with the internal endpoint on the left side, \(|\pi'_1| > |\pi'_2|\) and \(\pi'_2\) is negative. So either \(\pi'_{-1} > \pi'_2\) (if the entries in positions \(-1\) and \(1\) were swapped) or \(\pi'_1 > \pi'_2\) (if they were not swapped), but not both. The equivalent type-B arcs \(\alpha\) and \(\alpha'\) that appear in a representation of \(N\) are associated to the inequality that holds. For this permutation, the construction of \(\delta^D(\pi')\) starts by constructing a set of type-D compatible (and in fact type-B compatible) type-B arcs, including whichever of \(\alpha\) or \(\alpha'\) has its left endpoint at \(|\pi'_2|\), lower than its right endpoint at \(|\pi'_1|\).

Finally, suppose \(N\) has two representations as a collection of pairwise type-D compatible type-B arcs and neither is a type-B noncrossing arc diagram. Then \(N\) contains a partially doubled arc and an ordinary arc with the same endpoints. Again, let \(\pi' = (\delta^D)^{-1}(N)\). Because we take the representative with the internal endpoint on the right side, \(|\pi'_1| < |\pi'_2|\) and \(\pi'_2\) is negative, so \(\pi'_{-2} > \pi'_1 > \pi'_2\) and equivalently \(\pi'_{-2} > \pi'_{-1} > \pi'_2\). Thus, in the process of applying \(\delta^D\) to \(\pi'\), we construct two type-B arcs with endpoints \(|\pi'_2|\) and \(|\pi'_1|\), one ordinary and one long. The long arc has right endpoint at \(|\pi'_1|\), lower than its left endpoint at \(|\pi'_2|\). Taking this representation of \(N\), but deleting the ordinary arc with endpoints \(|\pi_2|\) and \(|\pi_1|\) and applying \((\delta^o)^{-1}\), we obtain either \(\pi'\) or the permutation obtained from \(\pi'\) by swapping the entries \(\pi'_{-1}\) and \(\pi'_1\). \(\square\)
2.5.3 Shard arrows

As a first step towards characterizing lattice congruences of the weak order of type D, in this section we describe the shard arrows.

If \(\alpha_1 \) and \(\alpha_2 \) are type-D arcs, we write \(\alpha_1 \rightarrow \alpha_2 \) to indicate that the corresponding type-D shards have \(\Sigma_1 \rightarrow \Sigma_2 \). We begin by characterizing arrows in terms of equivalence classes.

Proposition 2.5.14. Suppose \(\alpha_1 \) and \(\alpha_2 \) are type-D arcs. Then \(\alpha_1 \rightarrow \alpha_2 \) in the type-D shard digraph if and only if there is a type-B arc \(\gamma_1 \) in the equivalence class representing \(\alpha_1 \) and a type-B arc \(\gamma_2 \) in the equivalence class representing \(\alpha_2 \) such that \(\gamma_1 \) is a subarc of \(\gamma_2 \) (in the type-B sense) and \(\gamma_1 \) and \(\gamma_2 \) share exactly one endpoint.

Proposition 2.5.14 follows immediately from Proposition 2.4.25 and the following lemma.

Lemma 2.5.15. Suppose \(\alpha_1 \) and \(\alpha_2 \) are type-D arcs. Then \(\alpha_1 \rightarrow \alpha_2 \) in the type-D shard digraph if and only if there is a type-B arc \(\gamma_1 \) in the equivalence class representing \(\alpha_1 \) and a type-B arc \(\gamma_2 \) in the equivalence class representing \(\alpha_2 \) such that \(\gamma_1 \rightarrow \gamma_2 \) in the type-B shard digraph and \(\gamma_1 \) and \(\gamma_2 \) have exactly one endpoint in common.

The requirement that \(\gamma_1 \) and \(\gamma_2 \) have exactly one endpoint in common rules out one of the two kinds of arrows between long/ordinary arcs in type B, namely the case where \(\gamma_1 \) and \(\gamma_2 \) have the same pair of endpoints and \(\gamma_2 \) is long while \(\gamma_1 \) is ordinary (the arrow of type (v) in Proposition 2.4.25). Thus all arrows \(\gamma_1 \rightarrow \gamma_2 \) in Proposition 2.5.14 and Lemma 2.5.15 are of type (i) in Proposition 2.4.25.

Proof of Lemma 2.5.15. Let \(\Sigma_1 \) and \(\Sigma_2 \) be the shards associated with \(\alpha_1 \) and \(\alpha_2 \). We use the definition of the shard digraph, which says that \(\Sigma_1 \rightarrow \Sigma_2 \) if and only if \(H_{\Sigma_1} \) cuts \(H_{\Sigma_2} \) and \(\Sigma_1 \cap \Sigma_2 \) has codimension 2.

Suppose \(\Sigma_1 \rightarrow \Sigma_2 \) in the type-D shard digraph. Since \(H_{\Sigma_1} \) cuts \(H_{\Sigma_2} \), the rank-two subarrangement \(\mathcal{A}' \) containing them contains three hyperplanes, and thus is a rank-two subarrangement in type B as well. Since the type-D base region contains the type-B base region, \(H_{\Sigma_1} \) cuts \(H_{\Sigma_2} \) in the type-B arrangement as well. The intersection \(\Sigma_1 \cap \Sigma_2 \) is the union of the intersections \(T_1 \cap T_2 \) over all type-B shards \(T_1 \) contained in \(\Sigma_1 \) and \(T_2 \) contained in \(\Sigma_2 \). If all intersections \(T_1 \cap T_2 \) have codimension greater than 2, then \(\Sigma_1 \cap \Sigma_2 \) has codimension greater than 2. Thus there is some \(T_1 \) and \(T_2 \) such that \(T_1 \cap T_2 \) has codimension 2, and we see that \(T_1 \rightarrow T_2 \) in the type-B shard digraph. The type-B arcs \(\gamma_1 \) and \(\gamma_2 \) corresponding to \(T_1 \) and \(T_2 \) have \(\gamma_1 \rightarrow \gamma_2 \). The rank-two subarrangement \(\mathcal{A}' \) has hyperplanes \(e_i - e_j, e_i - e_k \)
Figure 2.18: Arcs α_1 that arrow an ordinary arc α_2 (Proposition 2.5.16).

and $e_j - e_k$ for some $i > j > k$ with $j \neq -i$, $k \neq -i$, and $k \neq -j$. In particular, γ_1 and γ_2 do not have the same pair of endpoints.

Conversely, suppose γ_1 is in the equivalence class representing α_1, γ_2 is in the equivalence class representing α_2, suppose $\gamma_1 \rightarrow \gamma_2$, and suppose γ_1 and γ_2 do not have the same pair of endpoints. Let T_1 and T_2 be the corresponding type-B shards, so that $T_1 \subseteq \Sigma_1$ and $T_2 \subseteq \Sigma_2$. Then $T_1 \cap T_2$ has codimension 2, and thus $\Sigma_1 \cap \Sigma_2$ has codimension 2, since it contains $T_1 \cap T_2$. Since γ_1 and γ_2 do not have the same pair of endpoints, their hyperplanes H_{T_1} and H_{T_2} are in a rank-two subarrangement with three hyperplanes, and therefore these hyperplanes are also in the type-D arrangement. Since H_{T_1} cuts H_{T_2} in the type-B arrangement, it also cuts H_{T_2} in the type-D arrangement. But $H_{T_1} = H_{\Sigma_1}$ and $H_{T_2} = H_{\Sigma_2}$, and we conclude that $\Sigma_1 \rightarrow \Sigma_2$.

In order to describe forcing on type-D arcs with anything approaching conciseness, it will be necessary to pass from the equivalence-class description of type-D arcs to the single-arc description. We describe the arrows $\alpha_1 \rightarrow \alpha_2$ in pictures, breaking into cases according to what kind of arc α_2 is. In the pictures, we leave out as many numbered points as we can. First, the arrows to an ordinary arc α_2 are described in Proposition 2.5.16 and illustrated in Fig. 2.18. The proposition says that the arrows among ordinary type-D arcs are exactly the same as the arrows in type A. The proposition is an immediate consequence of Proposition 2.5.14.

Proposition 2.5.16. Suppose that α_2 is an ordinary arc with upper endpoint b and lower endpoint endpoint $a < b$. Then $\alpha_1 \rightarrow \alpha_2$ if and only if α_1 is an ordinary arc, shares exactly one endpoint with α_2, and has one new endpoint c fulfilling one of the following criteria:

1. α_1 has endpoints b and c with $b > c > a$ and $R(\alpha_1) = R(\alpha_2) \cap (c, b)$, or equivalently $L(\alpha_1) = L(\alpha_2) \cap (c, b)$.

2. α_1 has endpoints c and a with $b > c > a$ and $R(\alpha_1) = R(\alpha_2) \cap (a, c)$, or equivalently $L(\alpha_1) = L(\alpha_2) \cap (a, c)$.

Next, the arrows to a partially doubled arc α_2 are described in Proposition 2.5.17 and illustrated in Fig. 2.19. The arrows on the right pictures represent the relative sides of a
Figure 2.19: Arcs α_1 that arrow a partially doubled arc α_2 (Proposition 2.5.17).

and c; there are also arrows where the diagrams shown in the figure are reflected through a vertical line.

Proposition 2.5.17. Suppose that α_2 is a partially doubled arc with internal endpoint a and external endpoint $b > a$. Then $\alpha_1 \rightarrow \alpha_2$ if and only if α_1 shares exactly one endpoint of α_2, has one new endpoint $c < b$, and fulfills one of the following criteria:

1. α_1 is a partially doubled arc such that
 (a) α_1 has internal endpoint a and external endpoint c with $b > c > a$, $L(\alpha_1) = L(\alpha_2)$, and $R(\alpha_1) = R(\alpha_2) \cap (0, c)$.
 (b) α_1 has internal endpoint c and external endpoint b with $b > a > c$, $L(\alpha_1) = L(\alpha_2) \cap (0, c)$, and either $R(\alpha_1) = R(\alpha_2)$ if $c \in L(\alpha_2)$ or $R(\alpha_1) = R(\alpha_2) \cup \{a\} \setminus \{c\}$ if $c \in R(\alpha_2)$.
 (c) α_1 has internal endpoint c and external endpoint a with $b > a > c$, $L(\alpha_1) = L(\alpha_2) \cap (0, c)$, and $R(\alpha_1) = R(\alpha_2) \cap (0, a) \setminus \{c\}$.

2. α_1 is an ordinary arc such that
 (a) α_1 has upper endpoint b and lower endpoint c with $b > c > a$, and $R(\alpha_1) = R(\alpha_2) \cap (c, b)$.
 (b) α_1 has upper endpoint a and lower endpoint c with $b > a > c$, and $R(\alpha_1) = R(\alpha_2) \cap (c, a)$.
 (c) α_1 has upper endpoint b and lower endpoint c with $b > a > c$, and either $R(\alpha_1) = R(\alpha_2) \cap (c, b) \cup \{a\}$ if $c \in L(\alpha_2)$ or $R(\alpha_1) = R(\alpha_2) \cap (c, b)$ if $c \in R(\alpha_2)$.

Proof. The criteria record the possible cases of Proposition 2.5.14 when α_2 is partially doubled. Suppose first that γ_2 has a as its right endpoint and b as its left endpoint. Choosing a γ_1 corresponds to cutting γ_2 into two pieces at some point c in $(0, a)$ or (a, b) and choosing
one of the pieces. More specifically, we have the following choices. Choosing $c \in (a, b)$ the two pieces correspond to the criteria (1a) and (2a). Choosing $c \in (0, a)$ and cutting the right piece of γ_2 makes two pieces that correspond to the criteria (1b) and (2b). Since a is the right endpoint of γ_2, a cut can only be made at c if $c \in R(\gamma_2)$, and thus $c \in R(\alpha_2)$. For the same reason, if we cut at c and choose the resulting long arc to be γ_1, the partially doubled arc α_1 corresponding to γ_1 has $a \in R(\alpha_1)$. Choosing $c \in (0, a)$ and cutting the left piece of γ_2 makes two pieces that correspond to the criteria (1c) and (2c). In this case, a cut can only be made at c if $c \in L(\gamma_2)$ and thus $c \in L(\alpha_2)$, and if we cut at c and choose $\gamma_1 = \alpha_1$ to be the resulting ordinary arc, then $a \in R(\alpha_1)$.

Supposing next that γ_2 has a as its left endpoint and b as its right endpoint, we have the same range of choices, but the requirements are different for cuts at $c \in (0, a)$. In this case, criteria (1b) and (2b) arise from cutting the left piece of γ_2 at c. Such a cut can only be made if $c \in L(\gamma_2)$ and thus in $L(\alpha_2)$, and the resulting partially doubled arc α_1 has $c \in L(\alpha_1)$. Similarly, criteria (1c) and (2c) arise from cutting the right piece of γ_2. This can only be done if $c \in R(\gamma_2)$, and the resulting ordinary arc α_1 has $a \in L(\alpha_1)$.

Finally, the arrows to a branched arc α_2 are described in Proposition 2.5.18 and illustrated in Fig. 2.20. Again, besides the arrows pictured, there are also arrows where the diagrams shown in the figure are reflected through a vertical line. Also, in these pictures, there is no distinction between the case $b_L < b_R$ and $b_L > b_R$, although a choice must be made in the drawing and we have chosen $b_L > b_R$. The analogous arrows exist when $b_L < b_R$. A branched arc has only one representation as a type-B arc, and the proposition is a straightforward listing of the possibilities in Proposition 2.5.14 in this case.

Proposition 2.5.18. Suppose that α_2 is a branched arc with branch point a, left endpoint $b_L > a$ and right endpoint $b_R > a$ such that $b_L \neq b_R$. Then $\alpha_1 \rightarrow \alpha_2$ if and only if α_1 shares exactly one endpoint of α_2, has one new endpoint c, and fulfills one of the following criteria:

1. α_1 is a branched arc with branch point a such that

 (a) b_L is the left endpoint and $b_R > c > a$, so $c \neq b_L$ is the right endpoint of α_1, and $L(\alpha_1) = L(\alpha_2)$ and $R(\alpha_1) = R(\alpha_2) \cap (0, c)$, or

 (b) b_R is the right endpoint and $b_L > c > a$, so $c \neq b_R$ is the left endpoint of α_1, and $L(\alpha_1) = L(\alpha_2) \cap (0, c)$ and $R(\alpha_1) = R(\alpha_2)$.

2. α_1 is a partially doubled arc with internal endpoint $c \leq a$ and

 (a) external endpoint b_L with $c \in R(\alpha_2)$ and $L(\alpha_1) = L(\alpha_2) \cap (0, c)$ and $R(\alpha_1) = (0, b_L) \setminus (L(\alpha_2) \cup \{c\})$, or

83
(b) external endpoint b_R with $c \in L(\alpha_2)$ and $L(\alpha_1) = L(\alpha_2) \cap (0, c)$ and $R(\alpha_1) = R(\alpha_2)$.

3. α_1 is an ordinary arc with lower endpoint c and

(a) upper endpoint b_L with $c \neq b_R$, $c \not\in R(\alpha_2)$ and $L(\alpha_1) = L(\alpha_2) \cap (c, b_L)$, or

(b) upper endpoint b_R with $c \neq b_L$, $c \not\in L(\alpha_2)$ and $R(\alpha_1) = R(\alpha_2) \cap (c, b_R)$.

2.5.4 Subarcs and forcing

We now define the notion of a subarc of a type-D arc. The main result is Theorem 2.5.24, below, which asserts that the subarc relation on arcs corresponds to the forcing relation on join-irreducible elements.

Because branched arcs and partially doubled arcs are long arcs in the type-B orbifold model, Definition 2.4.20 applies to both. A branched arc can have subarcs that are branched, partially doubled, or ordinary. A partially doubled arc can have subarcs that are partially doubled or ordinary. An ordinary arc can only have ordinary subarcs, by Definition 2.4.19.

Definition 2.5.19 (Ordinary subarc of an ordinary arc). An ordinary type-D arc α_1 is a subarc of another ordinary type-D arc α_2 if and only if α_1 is a subarc of α_2 in the type-A sense defined in Section 2.3.

In the definition of subarcs α_1 of a partially doubled arc α_2 (and thus indirectly for subarcs of a branched arc), we choose a sequence of points. Details vary in different cases,
but the general idea is that these points alternate sides (left/right) of \(\alpha_2 \) and are on the opposite side of \(\alpha_1 \) as they are of \(\alpha_2 \). In different cases, it is convenient to describe this alternation/switching slightly differently (for example by requiring that they alternate sides of \(\alpha_1 \)).

Definition 2.5.20 (Partially doubled subarc of a partially doubled arc). Let \(\alpha_1 \) be a partially doubled arc with internal endpoint \(c \) and external endpoint \(d \). Let \(\alpha_2 \) be a partially doubled arc with internal endpoint \(a \) and external endpoint \(b \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) if and only if one of the following conditions holds.

(i) \(b \geq d > a \geq c \) and there exist \(c_0, \ldots, c_k \) with \(a = c_0 > c_1 > \cdots > c_k = c \) (allowing \(k = 0 \) so that \(a = c_0 = c \)) such that

- \(R(\alpha_1) \setminus \{c_0, \ldots, c_k\} = (R(\alpha_2) \setminus \{c_0, \ldots, c_k\}) \cap (0, d) \),
- \(c_i+1 \in R(\alpha_2) \) if and only if \(c_i \notin R(\alpha_2) \) for \(1 \leq i \leq k-1 \), and
- \(c_i-1 \in R(\alpha_1) \) if and only if \(c_i \in R(\alpha_2) \) for \(1 \leq i \leq k \).

(ii) \(b > a \geq d > c \) and there exist \(c_1, \ldots, c_k \) with \(d > c_1 > \cdots > c_k = c \) (necessarily with \(k > 0 \)) such that

- \(R(\alpha_1) \setminus \{c_1, \ldots, c_k\} = (R(\alpha_2) \setminus \{c_1, \ldots, c_k\}) \cap (0, d) \),
- \(c_i+1 \in R(\alpha_2) \) if and only if \(c_i \notin R(\alpha_2) \) for \(1 \leq i \leq k-1 \), and
- \(c_i-1 \in R(\alpha_1) \) if and only if \(c_i \in R(\alpha_2) \) for \(2 \leq i \leq k \).

These two conditions are illustrated in Fig. 2.21. As with the earlier pictures of arrows, the figures illustrate which sides the points are relative to each other, and similar subarc relations exist with all pictures reflected through a vertical line. Also, each picture reflects a specific choice of the parity of \(k \), and changing that parity would change the picture by changing whether \(c_1 \) and \(c_k \) are on the same or opposite sides of \(\alpha_2 \).

Definition 2.5.21 (Ordinary subarc of a partially doubled arc). Let \(\alpha_1 \) be an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \). Let \(\alpha_2 \) be a partially doubled arc with internal endpoint \(a \) and external endpoint \(b \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) if and only if one of the following conditions holds.

(i) \(b \geq d > c > a \) and \(R(\alpha_1) = R(\alpha_2) \cap (c, d) \).

(ii) \(b \geq d > c = a > 1 \) and \(R(\alpha_1) = R(\alpha_2) \cap (c, d) \).
\[\begin{align*}
\text{(iii)} & \quad b \geq d > a > c \text{ and there exist } c_0, \ldots, c_k \text{ with } a = c_0 > c_1 > \cdots > c_k > c \text{ (allowing } k = 0 \text{ so that } a = c_0 > c) \text{ such that} \\
& \quad \bullet \ R(\alpha_1) \setminus \{c_0, \ldots, c_k\} = (R(\alpha_2) \setminus \{c_0, \ldots, c_k\}) \cap (c, d), \\
& \quad \bullet \ c_{i-1} \in R(\alpha_1) \text{ if and only if } c_i \not\in R(\alpha_1) \text{ for } 1 \leq i \leq k, \\
& \quad \bullet \ c_i \in R(\alpha_1) \text{ if and only if } c_i \not\in R(\alpha_2) \text{ for } 1 \leq i \leq k, \text{ and} \\
& \quad \bullet \text{ if } c = 1, \text{ then } c_k \in R(\alpha_1) \text{ if and only if } c \not\in R(\alpha_2). \\
\text{(iv)} & \quad b > a \geq d > c \text{ and there exist } c_1, \ldots, c_k \text{ with } d > c_1 > \cdots > c_k > c \text{ (allowing } k = 0 \text{ so that there are no } c_i \text{'s) such that} \\
& \quad \bullet \ R(\alpha_1) \setminus \{c_1, \ldots, c_k\} = (R(\alpha_2) \setminus \{c_1, \ldots, c_k\}) \cap (c, d), \\
& \quad \bullet \ c_{i-1} \in R(\alpha_1) \text{ if and only if } c_i \not\in R(\alpha_1) \text{ for } 2 \leq i \leq k, \\
& \quad \bullet \ c_i \in R(\alpha_1) \text{ if and only if } c_i \not\in R(\alpha_2) \text{ for } 1 \leq i \leq k, \text{ and} \\
& \quad \text{If } c = 1 \text{ and } k > 0, \text{ then } c_k \in R(\alpha_1) \text{ if and only if } c \not\in R(\alpha_2). \\
\end{align*}\]

These four conditions are illustrated in Fig. 2.22. The same considerations regarding reflections in a vertical line and the parity of \(k\) hold in this figure as in Fig. 2.21. In addition, in Fig. 2.22, we illustrate the additional requirements when \(c = 1\) by showing subarc relationships that occur for any \(c\) and subarc relationships that only occur for \(c > 1\) (or for \(c > 1\) or \(k = 0\)).

Definition 2.5.22 (Branched subarc of a branched arc). Let \(\alpha_2\) be a branched arc with branch point \(a\), left endpoint \(b_L > a\) and right endpoint \(b_R > a\). Let \(\alpha_1\) be a branched arc with branch point \(c\), left endpoint \(d_L > c\) and right endpoint \(d_R > c\). Then \(\alpha_1\) is a subarc of \(\alpha_2\) if and only if \(a = c\), \(b_L \geq d_L\), \(b_R \geq d_R\), \(L(\alpha_1) = L(\alpha_2) \cap (0, d_L)\), and \(R(\alpha_1) = R(\alpha_2) \cap (0, d_R)\).

This definition is illustrated in Fig. 2.23, where again we have made an arbitrary decision about the relative heights of \(b_L, b_R, d_L,\) and \(d_R\). The only constraints are \(b_L \geq d_L > a\) and \(b_R \geq d_R > a\).
Figure 2.22: Ordinary subarcs α_1 of a partially doubled arc α_2 (Definition 2.5.21).

Figure 2.23: A branched subarc α_1 of a branched arc α_2 (Definition 2.5.22).
Figure 2.24: The partially doubled subarcs α_L and α_R of a branched arc α_2 (Definition 2.5.23).

Figure 2.25: Ordinary subarcs α_1 of a branched arc α_2 with branch point 1 (Definition 2.5.23).

Definition 2.5.23 (Ordinary or partially doubled subarc of a branched arc). Let α_2 be a branched arc with branch point a, left endpoint $b_L > a$ and right endpoint $b_R > a$. Let α_L be the partially doubled arc with $R(\alpha_L) = [R(\alpha_2) \cap (0, a)] \cup [(a, b_L) \setminus L(\alpha_2)]$ and $L(\alpha_L) = L(\alpha_2) \cap (0, a)$. Let α_R be the partially doubled arc with $R(\alpha_R) = R(\alpha_2)$ and $L(\alpha_R) = L(\alpha_2) \cap (0, a)$. The arcs α_L and α_R are illustrated in Fig. 2.24. If $a > 1$, then an ordinary or partially doubled arc α_1 is a subarc of α_2 if and only if α_1 is a subarc of α_L or of α_R (or of both). If $a = 1$, then the ordinary or partially doubled subarcs of α_2 consist of all subarcs of α_L, all subarcs of α_R, and all ordinary arcs α_1 with upper endpoint d and lower endpoint 1 having either $b_L \geq d$ and $L(\alpha_1) = L(\alpha_2) \cap (1, d)$ or $b_R \geq d$ and $R(\alpha_1) = R(\alpha_2) \cap (1, d)$. Ordinary subarcs in the case $a = 1$ are shown in Fig. 2.25.

The following theorem is the type-D analogue of Theorem 2.4.22.

Theorem 2.5.24. Let j_1 and j_2 be join-irreducible even-signed permutations. Then j_1 forces j_2 if and only if the type-D arc corresponding to j_1 is a subarc of the type-D arc corresponding to j_2.

As corollaries, we obtain type-D analogues of Corollaries 2.3.6 and 2.3.7. The following result is a rephrasing of Theorem 2.5.24.

Corollary 2.5.25. A set U of type-D arcs corresponds to the set of uncontracted join-irreducible even-signed permutations of some congruence Θ on D_n if and only if U is closed under passing to subarcs.

Combining Corollary 2.5.25 with Theorems 2.5.7 and 2.5.8 and Corollary 2.2.3, we obtain the following result.
Corollary 2.5.26. If \(\Theta \) is a congruence on \(D_n \) and \(U \) is the set of type-D arcs corresponding to join-irreducible even-signed permutations not contracted by \(\Theta \), then \(\delta^D \) restricts to a bijection from the quotient \(D_n/\Theta \) (the set of even-signed permutations not contracted by \(\Theta \)) to the set of type-D noncrossing arc diagrams consisting only of arcs in \(U \).

The case of Theorem 2.5.24 where \(\alpha_2 \) is an ordinary arc is proved using Proposition 2.5.16 just as Theorem 2.3.5 is proved using Proposition 2.3.8. For the remaining cases, we prove each direction separately. One direction of the theorem is to show that if \(\alpha_1 \) is a subarc of \(\alpha_2 \), then \(j_1 \) forces \(j_2 \). We now prove this in two propositions, one for \(\alpha_2 \) partially doubled and one for \(\alpha_2 \) branched. In each proof, we use without comment the fact that the forcing relation on join-irreducible elements corresponds to the transitive closure of the \(\rightarrow \) relation on arcs. For convenience, we also refer to forcing relations between arcs, meaning forcing relations between the corresponding join-irreducible elements.

Proposition 2.5.27. If \(\alpha_2 \) is a partially doubled arc and \(\alpha_1 \) is a subarc of \(\alpha_2 \), then \(\alpha_1 \) forces \(\alpha_2 \).

Proof. We need to check every case of Definitions 2.5.20 and 2.5.21, so we organize the proof according to those cases. In each case, we use the notation from the definition; in particular, \(\alpha_2 \) has endpoints \(b > a \) and \(\alpha_1 \) has endpoints \(d > c \).

Definition 2.5.20(i). In this case, \(\alpha_1 \) is partially doubled and \(b \geq d > a \geq c \). We show by induction on \(k \) that \(\alpha_1 \) forces \(\alpha_2 \). The sequence of arrows constructed by induction is illustrated in Fig. 2.26. If \(k = 0 \) then \(b \geq d > a = c \), so either \(\alpha_1 \rightarrow \alpha_2 \) if \(b > d \) (Criterion (1a) of Proposition 2.5.17) or \(\alpha_1 = \alpha_2 \) if \(b = d \), and we’re done. If \(k > 0 \), then \(b \geq d > a > c \). Let \(\alpha' \) be the partially doubled arc obtained from \(\alpha_1 \) by making \(c_{k-1} \) an internal endpoint and putting \(c \) on the side of \(\alpha' \) where \(c \) is in \(\alpha_2 \). Then \(\alpha' \) is a subarc of \(\alpha_2 \), so by induction, \(\alpha' \) forces \(\alpha_2 \). Also, \(\alpha_1 \rightarrow \alpha' \) by Criterion (1b) of Proposition 2.5.17, and thus \(\alpha_1 \) forces \(\alpha_2 \).
Definition 2.5.20(ii). In this case, α_1 is partially doubled and $b > a \geq d > c$. Let α'' be a partially doubled subarc of α_2 with endpoints b and c which has α_1 as a subarc. We have just shown that α'' forces α_2. Also, $\alpha_1 \rightarrow \alpha''$ by Criterion (1a) of Proposition 2.5.17, and thus α_1 forces α_2. Fig. 2.27 illustrates the sequence of arrows from α_1 to α_2 in this case.

Definition 2.5.21(i). In this case, α_1 is ordinary and $b \geq d > c > a$. Either $\alpha_1 \rightarrow \alpha_2$ (if $b = d$) by Proposition 2.5.17(2) or $\alpha_1 \rightarrow \alpha' \rightarrow \alpha_2$, where α' is the ordinary subarc of α_2 with endpoints c and b ($\alpha_1 \rightarrow \alpha'$ by Proposition 2.5.16(2) and $\alpha' \rightarrow \alpha_2$ by Proposition 2.5.17(2)). The latter case is shown on the left side of Fig. 2.28.

Definition 2.5.21(ii). In this case, α_1 is ordinary and $b \geq d > c = a > 1$. Let α'' be a partially doubled subarc of α_2 with external endpoint b and internal endpoint a' such that $a' < a = c$ as in Proposition 2.5.17(2). Then the previous paragraph shows that α_1 forces α''. Also, $\alpha'' \rightarrow \alpha_2$ as in the first case of this proof, so α_1 forces α_2. The sequence of arrows from α_1 to α_2 is shown on the right side of Fig. 2.28.

Definition 2.5.21(iii). In this case, α_1 is ordinary and $b \geq d > a > c$. There is a partially doubled arc α' with endpoints d and c_k and $R(\alpha') \cap (c, d) = R(\alpha_1) \setminus \{c_k\}$. Then α' is a subarc of α_2 by Definition 2.5.20(i), so α' forces α_2. We will show that α_1 forces α'. If c and c_k are on the same side of α_2, then there is an arrow $\alpha_1 \rightarrow \alpha'$. This case is illustrated in the top line of Fig. 2.29. If c and c_k are on the opposite side of α_2, then Definition 2.5.21 requires that $c > 1$, so there exists at least one point c' with $1 \leq c' < c$. If there exists $c' < c$ such that c'
Figure 2.29: Subarc implies forcing, Definition 2.5.21(iii).
and c_k are on the same side of α_2, then there is an ordinary arc α'' with endpoints c' and d such that $\alpha_1 \to \alpha'' \to \alpha'$. This case is illustrated in the middle line of Fig. 2.29. Otherwise, there exists $c' < c$ such that c' and c_k are on opposite sides in α_2, and there exists a partially doubled arc α'' with endpoints c' and d with $R(\alpha'') \cap (c, d) = R(\alpha_1)$. Again, $\alpha_1 \to \alpha'' \to \alpha'$. This case is illustrated in the bottom line of Fig. 2.29.

Definition 2.5.21(iv). In this case, α_1 is ordinary and $b > a \geq d > c$. Set $c_0 = a$ and let α' be an ordinary subarc of α_2 described in Definition 2.5.21(iii) with endpoints b and c defined by the sequence c_0, c_1, \ldots, c_k. (If $k = 0$ and $c > 1$, then there are two such subarcs, one with a to the left and one with a to the right. Otherwise, there is only one such subarc, with a to a side determined by whether $c_1 \in R(\alpha_2)$ when $k > 0$ or by whether $c \in R(\alpha_2)$ when $k = 0$ and $c = 1$. See Fig. 2.19.) Then α' forces α_2, and also $\alpha_1 \to \alpha'$ as in Proposition 2.5.16.

Proposition 2.5.28. If α_2 is a branched arc and α_1 is a subarc of α_2, then α_1 forces α_2.

Proof. Suppose α_2 is a branched arc with branch point a, left endpoint $b_L > a$ and right endpoint $b_R > a$.

If α_1 is a branched subarc of α_2 with branch point c and left endpoint $d_L > c$ and right endpoint $d_R > c$, then $a = c, b_L \geq d_L$, and $b_R \geq d_R$. There is a sequence of 0, 1 or 2 arrows from α_1 to α_2: If $b_L > d_L$, then there is an arrow from α_1 to a branched arc α' with branch point a, left endpoint b_L, and right endpoint d_R (Criterion (1a) of Proposition 2.5.18). If $b_R > d_R$, there is an arrow from α' to α_2 (Criterion (1b) of Proposition 2.5.18). If $d_L = b_L$, then the first arrow in the sequence $\alpha_1 \to \alpha' \to \alpha_2$ is replaced by equality, and if $d_R = b_R$, then the second arrow is replaced by equality. We see that every branched subarc of α_2 forces α_2.

Suppose α_1 is partially doubled or ordinary. Then in almost all cases, Definition 2.5.23 says that α_1 is a subarc of α_L or α_R or both. We have already shown that every subarc of α_L (or α_R) forces α_L (or α_R). By Criterion (2) of Proposition 2.5.18, $\alpha_L \to \alpha_2$ and $\alpha_R \to \alpha$, so α_1 forces α_2. Finally, suppose α_1 is not a subarc of α_L or α_R. Then $a = 1$, and α_1 is ordinary with endpoints 1 and d and either $b_L \geq d$ and $L(\alpha_1) = L(\alpha_2) \cap (1, d)$ or $b_R \geq d$ and $R(\alpha_1) = R(\alpha_2) \cap (1, d)$. In either case, there is an ordinary arc α' with endpoints 1 and b_L or b_R and an arrow from α' to α_2 (Criterion (3b) of Proposition 2.5.18) such that either $\alpha_1 = \alpha'$ or $\alpha_1 \to \alpha'$.

The other direction of the proof of Theorem 2.5.24 is to show that if α_1 forces α_2 then α_1 is a subarc of α_2. If α_1 forces α_2, then there is a sequence of arrows from α_1 to α_2. Thus we can finish the proof by showing that if α' is a subarc of α_2 and $\alpha_1 \to \alpha'$, then α_1 is also a subarc of α_2. We do this in two propositions, one for α_2 partially doubled and one for α_2 branched. (Recall that the case where α_2 is ordinary is already finished.)
Proposition 2.5.29. If α₂ is a partially doubled arc, α' is a subarc of α₂ and α₁ → α', then α₁ is also a subarc of α₂.

Proof. Suppose α₂ is a partially doubled arc with internal endpoint a and external endpoint b. The subarc α' may be either partially doubled or ordinary. Let c and d denote the endpoints of α', where c < d. There are six cases for α', described in Definitions 2.5.20 and 2.5.21. Within each case, the possibilities for α₁ are given by Proposition 2.5.16 or Proposition 2.5.17.

Case 1. α' is a partially doubled arc with \(b \geq d > a \geq c \). Let \(c₀, c₁, \ldots, cₖ \) be the sequence with \(a = c₀ > c₁ > \cdots > cₖ = c \) satisfying the conditions of Definition 2.5.20(i). We list the possibilities for α₁ in the order given in Proposition 2.5.17, shifting the letters in Proposition 2.5.17 so that the endpoints c and d of α' become the a and b in the proposition and α₁ has new endpoint e, corresponding to c in the proposition.

Subcase 1a. α₁ is partially doubled with internal endpoint c and external endpoint e such that \(d > e > c \), \(L(α₁) = L(α') \cap (0, c) \), and \(R(α₁) = R(α') \cap (0, c) \) as in Proposition 2.5.17(1a). Let \(ℓ = \{0, \ldots, k\} \) be the index such that \(c_{ℓ-1} ≥ e > cₖ \). If \(e > a \), so that \(ℓ = 0 \), then α₁ is a subarc of α₂ with \(b > e > a ≥ c \) and the sequence \(c₀, c₁, \ldots, cₖ \) satisfying the conditions of Definition 2.5.20(i). If \(e ≤ a \), so that \(ℓ > 0 \), then α₁ is a subarc of α₂ with \(b > a ≥ e ≥ c \) and the sequence \(cₖ, \ldots, c₁ \) satisfying the conditions of Definition 2.5.20(ii).

Subcase 1b. α₁ is partially doubled with internal endpoint e and external endpoint d such that \(d > c > e \), \(L(α₁) = L(α') \cap (0, e) \), and either \(R(α₁) = R(α') \cup \{e\} \setminus \{e\} \) if \(e \in R(α') \) or \(R(α₁) = R(α') \) if \(e \in L(α') \) as in Proposition 2.5.17(1b). If \(e \) and \(c \) are on the same side of α₂, then α₁ is a subarc of α₂ with \(b ≥ d > a > e \) and the sequence \(c₀, c₁, \ldots, c_{k-1}, e \) satisfying the conditions of Definition 2.5.20(i). (In this case, since \(a ≥ c > e \), the option of \(k = 0 \) is not possible.) If \(e \) and \(c \) are on opposite sides of α₂, then α₁ is a subarc of α₂ with \(b ≥ d > a > e \) and the sequence \(c₀, c₁, \ldots, c_k, c_{k+1} = e \) satisfying the conditions of Definition 2.5.20(i).

Subcase 1c. α₁ is partially doubled with internal endpoint e and external endpoint c such that \(d > c > e \), \(L(α₁) = L(α') \cap (0, e) \), and \(R(α₁) = R(α') \cap (0, c) \setminus \{e\} \) as in Proposition 2.5.17(1c). Then α₁ is a subarc of α₂ as in Definition 2.5.20(ii) with \(k = 1 \).

Subcase 1d. α₁ is ordinary with upper endpoint d and lower endpoint e such that \(d > e > c \) and \(R(α₁) = R(α') \cap (e, d) \) as in Proposition 2.5.17(2a). Let \(ℓ \in \{0, \ldots, k\} \) be the index such that \(c_{ℓ-1} > e ≥ cₖ \). If \(ℓ > 0 \) (i.e. if \(e < a \)) then the sequence \(c₀, \ldots, c_{ℓ-1} \) satisfies the conditions of Definition 2.5.21(iii) and thus α₁ is a subarc of α₂. (Note that since \(e > c \), also \(e > 1 \).) If \(ℓ = 0 \), (i.e. if \(e ≥ a \)) then α₁ is a subarc of α₂ as in Definition 2.5.21(i) or (ii). (Definition 2.5.21(ii) applies when \(e = a \). In this case, it must be true that \(a > 1 \), because if \(a = 1 \), it would force \(e = c = 1 \) so that there would be no arrow \(α₁ → α' \) according to Proposition 2.5.17.)
Subcase 1e. \(\alpha_1 \) is ordinary with upper endpoint \(c \) and lower endpoint \(e \) such that \(d > c > e \) and \(R(\alpha_1) = R(\alpha') \cap (e, c) \) as in Proposition 2.5.17(2b). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(iv) with \(k = 0 \) since \(e < c \leq a \).

Subcase 1f. \(\alpha_1 \) is ordinary with upper endpoint \(d \) and lower endpoint \(e \) such that \(d > c > e \) and \(R(\alpha_1) = R(\alpha') \cap (e, d) \cup \{c \} \) if \(e \in L(\alpha') \) or \(R(\alpha_1) = R(\alpha') \cap (e, d) \) if \(e \in R(\alpha') \) as in Proposition 2.5.17(2c). We consider separately whether \(e \) and \(c \) are on the same or opposite side of \(\alpha_2 \). If \(e \) and \(c \) are on the same side of \(\alpha_2 \), then the sequence \(a = c_0, c_1, \ldots, c_k = c \) satisfies the conditions of Definition 2.5.21(iii) for \(\alpha_1 \) to be a subarc of \(\alpha_2 \). (The extra condition in the case \(e = 1 \) is precisely the fact that \(c \) and \(e \) are assumed to be on the same side of \(\alpha_2 \).) If \(e \) and \(c \) are on opposite sides of \(\alpha_2 \), then the sequence \(a = c_0, c_1, \ldots, c_{k-1} \) satisfies the conditions of Definition 2.5.21(iii) for \(\alpha_1 \) to be a subarc of \(\alpha_2 \). (In this case, since \(a \geq c > e \), the option of \(k = 0 \) is not possible.) We again need to check that if \(e = 1 \), then \(e \in R(\alpha') \) and \(e, c \) are on opposite sides of \(\alpha_2 \). (The extra condition in the case \(e = 1 \) is precisely the fact that \(c \) and \(e \) are assumed to be on the same side of \(\alpha_2 \).)

Case 2. \(\alpha' \) is a partially doubled arc with \(b > a \geq d > c \). Let \(c_1, \ldots, c_k \) be the sequence with \(d > c_1 > \cdots > c_k = c \) satisfying the conditions of Definition 2.5.20(ii). We emphasize that \(k \geq 0 \) in this case. We again list the possibilities for \(\alpha_1 \) in the order given in Proposition 2.5.17.

Subcase 2a. \(\alpha_1 \) is partially doubled with internal endpoint \(c \) and external endpoint \(e \) such that \(d > e > c \), \(L(\alpha_1) = L(\alpha') \), and \(R(\alpha_1) = R(\alpha') \cap (0, c) \) as in Proposition 2.5.17(1a). Let \(\ell \in \{1, \ldots, k\} \) be the index such that \(c_{\ell-1} \geq e > c_\ell \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with \(b > a > e > c \) and the sequence \(c_\ell, \ldots, c_k \) (which is nonempty since \(c_k = c \)) satisfying the conditions of Definition 2.5.20(ii).

Subcase 2b. \(\alpha_1 \) is partially doubled with internal endpoint \(e \) and external endpoint \(d \) such that \(d > c > e \), \(L(\alpha_1) = L(\alpha') \cap (0, e) \), and either \(R(\alpha_1) = R(\alpha') \cup \{e \} \setminus \{e \} \) if \(e \in R(\alpha') \) or \(R(\alpha_1) = R(\alpha') \) if \(e \in L(\alpha') \) as in Proposition 2.5.17(1b). If \(e \) and \(c \) are on the same side of \(\alpha_2 \), then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with \(b \geq d > a > e \) and the sequence \(c_1, \ldots, c_{k-1}, e \) (which may be just the one-term sequence \(e \)) satisfying the conditions of Definition 2.5.20(ii). If \(e \) and \(c \) are on opposite sides of \(\alpha_2 \), then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with \(b \geq d > a > e \) and the sequence \(c_1, \ldots, c_k = c, c_{k+1} = e \) satisfying the conditions of Definition 2.5.20(ii).

Subcase 2c. \(\alpha_1 \) is partially doubled with internal endpoint \(e \) and external endpoint \(c \) such that \(d > c > e \), \(L(\alpha_1) = L(\alpha') \cap (0, e) \), and \(R(\alpha_1) = R(\alpha') \cap (0, c) \setminus \{e \} \) as in Proposition 2.5.17(1c). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.20(ii) with \(k = 0 \).

Subcase 2d. \(\alpha_1 \) is ordinary with upper endpoint \(d \) and lower endpoint \(e \) such that \(d > e > c \) and \(R(\alpha_1) = R(\alpha') \cap (e, d) \) as in Proposition 2.5.17(2a). Let \(\ell \in \{1, \ldots, k\} \) be the index such
that \(c_{\ell - 1} > e \geq c_{\ell} \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with \(b > a \geq d > e \) and the sequence \(c_1, \ldots, c_{\ell - 1} \) (which may be empty) satisfying the conditions of Definition 2.5.21(iv). (Since \(e > c \geq 1 \), the last bullet point of Definition 2.5.21(iv) does not apply.)

Subcase 2e. \(\alpha_1 \) is ordinary with upper endpoint \(c \) and lower endpoint \(e \) such that \(d > c > e \) and \(R(\alpha_1) = R(\alpha') \cap (e, c) \) as in Proposition 2.5.17(2b). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(iv) with \(k = 0 \) since \(a > c > e \).

Subcase 2f. \(\alpha_1 \) is ordinary with upper endpoint \(d \) and lower endpoint \(e \) such that \(d > c > e \) and \(R(\alpha_1) = R(\alpha') \cap (e, d) \cup \{c\} \) if \(e \in L(\alpha') \) or \(R(\alpha_1) = R(\alpha') \cap (e, d) \) if \(e \in R(\alpha') \) as in Proposition 2.5.17(2c). We again consider separately whether \(e \) and \(c \) are on the same or opposite side of \(\alpha_2 \). If \(e \) and \(c \) are on the same side of \(\alpha_2 \), then the sequence \(c_1, \ldots, c_k = c \) satisfies the conditions of Definition 2.5.21(iv) for \(\alpha_1 \) to be a subarc of \(\alpha_2 \). (The extra condition in the case \(e = 1 \) and \(k > 0 \) is precisely the fact that \(c \) and \(e \) are assumed to be on the same side of \(\alpha_2 \).) If \(e \) and \(c \) are on opposite sides of \(\alpha_2 \), then the sequence \(c_1, \ldots, c_{k-1} \) satisfies the conditions of Definition 2.5.21(iv) for \(\alpha_1 \) to be a subarc of \(\alpha_2 \). (If \(k = 1 \), then this sequence is empty.) The extra condition when \(e = 1 \) and \(k - 1 > 0 \) is that \(e \in R(\alpha_2) \) if and only if \(c_{k-1} \in R(\alpha_2) \). This is true regardless of whether \(e = 1 \) because \(c \) and \(c_{k-1} \) are on opposite sides of \(\alpha_2 \) and \(c \) and \(e \) are on opposite sides of \(\alpha_2 \).

Case 3. \(\alpha' \) is an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \) such that \(b \geq d > c > a \) and \(R(\alpha') = R(\alpha_2) \cap (c, d) \) as in Definition 2.5.21(i). There are two cases for \(\alpha_1 \) as in Proposition 2.5.16. In either case, \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(i).

Case 4. \(\alpha' \) is an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \) such that \(b \geq d > c > a \) and \(R(\alpha') = R(\alpha_2) \cap (c, d) \) as in Definition 2.5.21(ii). There are again two cases for \(\alpha_1 \) as in Proposition 2.5.16. In the first case, where \(\alpha_1 \) shares its upper endpoint with \(\alpha' \), \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(i). In the second case, where \(\alpha_1 \) shares its lower endpoint with \(\alpha' \), \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(ii).

Case 5. \(\alpha' \) is an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \) such that \(b \geq d > a > c \). Let \(c_0, \ldots, c_k \) be the sequence with \(a = c_0 > c_1 > \cdots > c_k > c \) satisfying the conditions of Definition 2.5.21(iii).

Subcase 5a. \(\alpha_1 \) has upper endpoint \(d \) and lower endpoint \(e \) such that \(d > e > c \) and \(R(\alpha_1) = R(\alpha') \cap (e, d) \) as in Proposition 2.5.16(1). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(i) if \(e > a \) or as in Definition 2.5.21(ii) if \(e = a \). (The condition \(a > 1 \) in Definition 2.5.21(ii) is satisfied because \(a > c \).) If \(a > e \), let \(\ell \in \{0, \ldots, k\} \) be the index such that \(c_{\ell} > e \geq c_{\ell+1} \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with the sequence \(a = c_0, \ldots, c_{\ell} \) satisfying the conditions of Definition 2.5.21(iii), so \(\alpha_1 \) is a subarc of \(\alpha_2 \). (The case \(e = 1 \) is impossible because \(e > c \).)
Subcase 5b. \(\alpha_1 \) has upper endpoint \(e \) and lower endpoint \(c \) such that \(d > e > c \) and \(R(\alpha_1) = R(\alpha') \cap (c, e) \) as in Proposition 2.5.16(2). If \(e > a \), then \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.21(iii), with the same sequence \(a = c_0, \ldots, c_k \). If \(a \geq e \), let \(\ell \in \{0, \ldots, k\} \) be the index such that \(c_\ell \geq e > c_{\ell+1} \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with the sequence \(c_\ell, \ldots, c_k \) (empty if \(\ell = k \)) satisfying the conditions of Definition 2.5.21(iv).

Case 6. \(\alpha' \) is an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \) such that \(b > a \geq d > c \). Let \(c_1, \ldots, c_k \) be the sequence with \(d > c_1 > \cdots > c_k > c \) satisfying the conditions of Definition 2.5.21(iv) and for convenience, write \(c_0 = d \) and \(c_{k+1} = c \).

Subcase 6a. \(\alpha_1 \) has upper endpoint \(d \) and lower endpoint \(c \) such that \(d > e > c \) and \(R(\alpha_1) = R(\alpha') \cap (e, d) \) as in Proposition 2.5.16(1). Let \(\ell \in \{0, \ldots, k\} \) be the index such that \(c_\ell > e \geq c_{\ell+1} \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with the sequence \(c_1, \ldots, c_\ell \) (empty if \(\ell = 0 \)) satisfying the conditions of Definition 2.5.21(iv). (The case \(e = 1 \) is impossible because \(e > c \).)

Subcase 6b. \(\alpha_1 \) has upper endpoint \(e \) and lower endpoint \(c \) such that \(d > e > c \) and \(R(\alpha_1) = R(\alpha') \cap (c, e) \) as in Proposition 2.5.16(2). Let \(\ell \in \{1, \ldots, k+1\} \) be index the such that \(c_{\ell-1} \geq e > c_\ell \). Then \(\alpha_1 \) is a subarc of \(\alpha_2 \) with the sequence \(c_\ell, \ldots, c_k \) (empty if \(\ell = k+1 \)) satisfying the conditions of Definition 2.5.21(iv).

Proposition 2.5.30. If \(\alpha_2 \) is a branched arc, \(\alpha' \) is a subarc of \(\alpha_2 \) and \(\alpha_1 \to \alpha' \), then \(\alpha_1 \) is also a subarc of \(\alpha_2 \).

Proof. Let \(a \) be the branch point of \(\alpha_2 \), let \(b_L > a \) be the left endpoint and let \(b_R \) be the right endpoint. Let \(\alpha_L \) and \(\alpha_R \) be as in Definition 2.5.23. Suppose \(\alpha' \) is a subarc of \(\alpha_2 \). There are two possibilities for \(\alpha' \), given by Definitions 2.5.22 and 2.5.23.

Case 1. \(\alpha' \) is a branched arc with branch point \(a \). In this case, Definition 2.5.22 says that the left endpoint of \(\alpha' \) is \(d_L \) with \(b_L \geq d_L > a \), the right endpoint of \(\alpha' \) is \(d_R \) with \(b_R \geq d_R > a \), and \(L(\alpha') = L(\alpha_2) \cap (0, d_L) \) and \(R(\alpha') = R(\alpha_2) \cap (0, d_R) \). Given \(\alpha_1 \to \alpha' \), there are three subcases, described in Proposition 2.5.18.

Subcase 1a. \(\alpha_1 \) is a branched arc. In this case, it is immediate from Proposition 2.5.18 that \(\alpha_1 \) is a subarc of \(\alpha_2 \) as in Definition 2.5.22.

Subcase 1b. \(\alpha_1 \) is a partially doubled arc with internal endpoint \(c \leq a \) and external endpoint \(d_L \) or \(d_R \). If \(c = a \), then \(\alpha_1 \) arrows \(\alpha_L \) or \(\alpha_R \) (depending on whether its external endpoint is \(d_L \) or \(d_R \)), so \(\alpha_1 \) is a subarc of \(\alpha_2 \). Now assume \(c < a \).

Suppose first that \(\alpha_1 \) has endpoints \(c \) and \(d_L \). By Proposition 2.5.18(2a), \(c \in R(\alpha') \) and \(L(\alpha_1) = L(\alpha') \cap (0, c) \) and \(R(\alpha_1) = (0, d_L) \setminus (L(\alpha') \cup \{c\}) \). To satisfy Definition 2.5.23,
we need to show that \(\alpha_1 \) is a subarc of \(\alpha_L \). Since \(c \in R(\alpha') \), also \(c \in R(\alpha_2) \), and since also \(c < a \), we see that \(c \in R(\alpha_L) \). Also, since \(a \notin L(\alpha') \) and \(R(\alpha_1) = (0, d_L) \setminus (L(\alpha') \cup \{c\}) \), we have \(a \in R(\alpha_1) \). Thus \(\alpha_1 \) is a subarc of \(\alpha_L \) satisfying the conditions of Definition 2.5.20(i) with \(k = 1 \).

Suppose next that \(\alpha_1 \) has endpoints \(c \) and \(d_R \). By Proposition 2.5.18(2b), \(c \in L(\alpha') \) and \(L(\alpha_1) = L(\alpha') \cap (0, c) \) and \(R(\alpha_1) = R(\alpha') \). This time, we need to check that \(\alpha_1 \) is a subarc of \(\alpha_R \). We know \(c \in L(\alpha_2) \) so \(c \in L(\alpha_R) \). Also, \(a \notin R(\alpha') = R(\alpha_1) \). Thus \(\alpha_1 \) is a subarc of \(\alpha_R \) satisfying the conditions of Definition 2.5.20(i) with \(k = 1 \).

Subcase 1c. \(\alpha_1 \) is an ordinary arc with lower endpoint \(c \) and upper endpoint \(d_L \) or \(d_R \). If \(c = a = 1 \), then \(\alpha_1 \) is a subarc of \(\alpha_2 \) by Definition 2.5.23. Now assume that \(a \) and \(c \) are not both 1. We must show that \(\alpha_1 \) is a subarc of \(\alpha_R \) or \(\alpha_L \). If \(c = a > 1 \), then \(\alpha_1 \) is a subarc of \(\alpha_R \) or \(\alpha_L \) by Definition 2.5.21(i). If \(c > a \), then \(\alpha_1 \) is a subarc of \(\alpha_R \) or \(\alpha_L \) by Definition 2.5.21(i). If \(c < a \), then there are two cases, either \(c \in L(\alpha_2) \) or \(c \in R(\alpha_2) \). If \(c \in L(\alpha_2) \), then \(c \in L(\alpha_L) \) and \(a \in R(\alpha_1) \). Then \(R(\alpha_1) \setminus \{a\} = (R(\alpha_L) \setminus \{a\}) \cap (c, d_L) \) and so \(\alpha_1 \) is a subarc of \(\alpha_L \) by Definition 2.5.21(iii) with \(k = 0 \). (The extra condition if \(c = 1 \) is satisfied because \(a \in R(\alpha_1) \) and \(c \notin R(\alpha_L) \).) If \(c \in R(\alpha_2) \), then \(c \in R(\alpha_R) \) and \(a \in L(\alpha_1) \). Then \(R(\alpha_1) \setminus \{a\} = (R(\alpha_R) \setminus \{a\}) \cap (c, d_R) \) and so \(\alpha_1 \) is a subarc of \(\alpha_R \) by Definition 2.5.21(iii) with \(k = 0 \). (The condition for \(c = 1 \) is satisfied because \(a \notin R(\alpha_1) \) and \(c \in R(\alpha_R) \).)

Case 2. \(\alpha' \) is a partially doubled arc. Then \(\alpha' \) is a subarc of \(\alpha_L \) or \(\alpha_R \) (or of both). If \(\alpha_1 \to \alpha' \), then Proposition 2.5.29 says that \(\alpha_1 \) is a subarc of \(\alpha_L \) or \(\alpha_R \) (or of both). Thus \(\alpha_1 \) is a subarc of \(\alpha_2 \) by Definition 2.5.23.

Case 3. \(\alpha' \) is an ordinary arc. If \(\alpha' \) is a subarc of \(\alpha_L \) or \(\alpha_R \) (or of both), then \(\alpha_1 \) is a subarc of \(\alpha_2 \) by Proposition 2.5.29 as in Case 2. Otherwise \(a = 1 \), and \(\alpha' \) is ordinary with upper endpoint \(d \) and lower endpoint 1 and either \(b_L \geq d \) and \(L(\alpha_1) = L(\alpha_2) \cap (1, d) \) or \(b_R \geq d \) and \(R(\alpha_1) = R(\alpha_2) \cap (1, d) \). If \(\alpha_1 \to \alpha' \) then \(\alpha_1 \) is ordinary and there are two cases. In the first case, \(\alpha_1 \) has upper endpoint \(c \) and lower endpoint 1 with \(d > c > 1 \), so \(\alpha_1 \) is a subarc of \(\alpha_2 \) by Definition 2.5.23. In the second case, \(\alpha_1 \) has upper endpoint \(d \) and lower endpoint \(c \) with \(d > c > 1 = a \), so \(\alpha_1 \) is a subarc of \(\alpha_L \) or \(\alpha_R \) by Definition 2.5.21(i) and thus a subarc of \(\alpha_2 \) by Definition 2.5.23.

We have completed the proof of Theorem 2.5.24. We emphasize a consequence of the theorem, which is immediate in light of the congruence uniformity of the weak order. (See Section 2.2.2.)

Corollary 2.5.31. The subarc relation is a partial order on type-D arcs.
2.5.5 Superarcs

In using Theorem 2.5.24 and Corollaries 2.5.25 and 2.5.26, it is often necessary to find the superarcs of a given arc \(\alpha \) (meaning that arcs that have \(\alpha \) as a subarc). In this section, we describe superarcs by reversing Definitions 2.5.19 to 2.5.23.

Superarcs of an ordinary arc. Suppose \(\alpha \) is an ordinary arc with upper endpoint \(d \) and lower endpoint \(c \). A superarc of \(\alpha \) may be ordinary, partially doubled, or branched.

To construct an ordinary superarc of \(\alpha \), we push the top and/or bottom of the arc right or left of \(d \) and/or \(c \), independently, and then extend upward and/or downward to make a longer ordinary arc.

We construct a partially doubled superarc of \(\alpha \) as follows: Choose \(a \) and \(b \) with \(b > a \) and \(b \geq d \), and \(a \geq c \) to be the endpoints of the superarc. If \(b > d \), then push the arc to the left or right of the point \(d \) and extend it up to \(b \). If \(c \geq a \), then push \(\alpha \) to the left or right of \(c \), extend the arc down to \(\times \), push it onto \(a \), the new internal endpoint, and we’re done. If \(a > c \), choose a sequence of points \(a = c_0, c_1, \ldots, c_k \) with \(k \geq 0 \) and \(\min(a, d) > c_1 > \cdots > c_k > c \). The sequence \(c_0, \ldots, c_k \) must alternate sides of \(\alpha \), except that if \(a \geq d \), there is no requirement on \(c_0 = a \), which is on neither side of \(\alpha \). We then push the arc left or right of \(c \), as follows: If \(c > 1 \), we push the arc to either side of \(c \). If \(c = 1 \), we must push the arc to the left or right of the point \(c \), so that the arc is on the opposite side of \(c \) as of \(c_k \), except that if \(k = 0 \) and \(d \leq a = c_0 \), then we can push \(c \) to either side. Once we have pushed the arc to one side of \(c \), we extend it down to \(\times \). For each \(i \in \{1 \ldots, k\} \), we push the arc through \(c_i \) (so that the superarc and \(\alpha \) are on opposite sides of each \(c_i \)). Finally, push the arc onto \(a \), the new internal endpoint.

In every case, we can construct a branched superarc of \(\alpha \) by first constructing a partially doubled superarc \(\beta_X \) with internal endpoint \(a \) and external endpoint \(b \) as above. Then push \(\beta_X \) to the left or right of \(a \) and extend \(\beta_X \) to a branched arc \(\beta \) with branch point \(a \) such that \(\beta_X \) is either \(\beta_L \) or \(\beta_R \) in the sense of Definition 2.5.23. If \(c = 1 \) there is also a direct way to construct a branched superarc of \(\alpha \) without going through a partially doubled superarc: Push the bottom of \(\alpha \) left (or right) of \(1 \) and extend it down to \(\times \), then add a right (or left) branch to make a branched superarc with branch point 1.

Superarcs of a partially doubled arc. Suppose \(\alpha \) is a partially doubled arc with internal endpoint \(c \) and external endpoint \(d \). A superarc of \(\alpha \) is either partially doubled or branched.

We construct a partially doubled superarc of \(\alpha \) as follows: Choose \(a \) and \(b \) with \(b > a \), \(b \geq d \), and \(a \geq c \) to be the endpoints of the superarc. If \(b > d \), then push the arc to the left or right of the point \(d \) and extend it up to \(b \). If \(a = c \), then we’re done. If \(a > c \), choose a sequence of points \(a = c_0, c_1, \ldots, c_{k-1} \) with \(k \geq 1 \) and \(\min(a, d) > c_1 > \cdots > c_{k-1} > c \). The
sequence c_0, \ldots, c_{k-1} must alternate sides of α, except that if $a \geq d$, there is no requirement on $c_0 = a$, which is on neither side of α. Push the arc to the left or right of the point c, so that the arc is on the same side of c as of c_{k-1} (unless $k = 1$ and $a \geq d$, in which case the arc can be pushed to either side of c) and extend the arc down to \times. For each $i \in \{1 \ldots, k-1\}$, push the arc through c_i (so that the superarc and α are on opposite sides of each c_i). Finally, push the arc onto the point a, the new internal endpoint.

To construct a branched superarc of α, first construct a partially doubled superarc β_X with internal endpoint a and external endpoint b as above. Then push β_X to the left or right of a and extend β_X to a branched arc β with branch point a such that β_X is either β_L or β_R in the sense of Definition 2.5.23.

Superarcs of a branched arc. We construct a superarc of a branched arc α by independently pushing one or both branches left or right of their endpoints and extending the branches upwards to form a branched arc.
3.1 Introduction

The primary goal of this section is to determine whether the shard intersection order on type A_n is a sublattice of the shard intersection order on type B_n. This is one instance of Question 1.1.2.

We first establish a foundation in Coxeter groups of type A. Existing results relating permutations of $[n]$ and noncrossing arc diagrams on n points are restated, and a bijection between noncrossing arc diagrams and permutation pre-orders is established. Permutation pre-orders were introduced and used to create an EL-labeling of $\Psi(A_n)$ in [4]. In Section 3.2.2, we present a characterization of the type-A weak order in terms of noncrossing arc diagrams that expands upon [1, Corollary 38]. We define two operations which have pairs of noncrossing arc diagrams as inputs in Definitions 3.3.8 and 3.3.10, and additional results show that the objects returned by both operations are themselves noncrossing arc diagrams. In Section 3.3.4, we restate existing results on $\Psi(A_n)$ in terms of noncrossing arc diagrams, including how the lattice $\Psi(A_n)$ is graded and how to go up by a cover in it. (Previous characterizations are stated in [4, 28].) These results build to the two main theorems in type A: that the operations we define on noncrossing arc diagrams characterize the meet and join in $\Psi(A_n)$ (Theorems 3.3.15 and 3.3.19).
In Section 3.4, we present type-B analogues of many objects and results from Section 3.3. We briefly consider the centrally symmetric model of noncrossing arc diagrams (which appears in [6, 1]), mainly to point out that the type-A operations defined in Section 3.3.3 preserve symmetry. A more thorough exploration of the orbifold model includes Definitions 3.4.3 and 3.4.5, type-B analogues of the type-A operations defined in Section 3.3.3. In Section 3.4.2, the results from the two models combine so that we are able to cut quickly to the chase: The analogous type-B operations also characterize the meet and join in $\Psi(B_n)$ (Theorems 3.3.15 and 3.3.19).

In Section 3.5, we are finally able to address Question 1.1.2 in the case where B_n dominates A_n. Background for this section includes the characterizations of congruences on the weak order in terms of a partial pre-order on arcs (for type A in [35] and type B in Section 2.4), as well as results on surjective lattice homomorphisms from (B_n, \leq) to (A_n, \leq) presented in [38, Section 6]. Each of the four subsections contains the same progression of results for a single surjective lattice homomorphism η from B_n to A_n. First, we characterize the congruence defined by η in terms of contracted and uncontracted type-B noncrossing arc diagrams. Next, we describe the natural inclusion ζ from A_n to B_n that is the inverse of the restriction of η to the bottom elements of (B_n, \leq) in the congruence it defines. We also provide the outputs of ζ for the same four permutations in $A_6 = S_7$ (in Examples 3.5.3 to 3.5.6, 3.5.10 to 3.5.13, 3.5.16 to 3.5.19 and 3.5.22 to 3.5.25). In Propositions 3.5.7, 3.5.14, 3.5.20 and 3.5.26, ζ is described in terms of type-A noncrossing arc diagram inputs and resulting type-B noncrossing arc diagram outputs. Finally, we state and prove that ζ either does (as in Theorems 3.5.8 and 3.5.21 and Proposition 3.5.26) or does not (as in Example 3.5.15) embed $\Psi(A_n)$ as a sublattice of $\Psi(A_n)$.

3.2 Preliminaries

In this section, we establish relevant background on finite Coxeter groups and lattice theory. We assume minimal foundational knowledge of algebra and combinatorics concepts. Standard references which provide an introduction to Coxeter groups, finite and otherwise, include Björner and Brenti [10] and Humphreys [21].

We follow the structure of Section 2.2, adding complementary background on lattice theory, finite Coxeter groups, posets of regions, and shards that will be relevant to the main results of this chapter.
3.2.1 Lattices and congruences

Throughout this section, we consider only finite lattices. A subset U of a lattice L is a sublattice if for all $x, y \in U$, $x \land_L y$ and $x \lor_L y$ are also in U. In other words, if U is a sublattice of L, then it is a lattice using the restriction of \land_L and \lor_L to U.

Recall that lattice congruences on L (equivalence relations that respect \land_L and \lor_L) contract its edges, and that we say that a congruence Θ contracts a join-irreducible element $j \in L$ if it contracts the edge between j and the only element it covers. The lattice quotient L/Θ is isomorphic to the subposet of L consisting of the bottom (uncontracted) elements of the congruence classes of Θ (which are intervals in L), and L/Θ is also a lattice.

Consider two lattices L and M and a surjective lattice homomorphism $\eta : L \to M$. The set of fibers of η is a congruence Θ on L, and M is isomorphic to the lattice quotient L/Θ. As an induced subposet of L, the set of bottom elements of fibers of η is isomorphic to M. The set of bottom elements of fibers is also a join-subsemilattice of L (a subposet in which the join operation holds), but it is not necessarily a sublattice [37, Theorem 9-5.8].

The map $\zeta : M \to L$ is said to embed M as a sublattice of L if ζ is one-to-one and $\zeta(x \land_M y) = \zeta(x) \land_L \zeta(y)$ and $\zeta(x \lor_M y) = \zeta(x) \lor_L \zeta(y)$ for all $x, y \in M$. In this case, $\zeta(M)$ is a sublattice of L and the restriction of ζ to its image is an isomorphism.

3.2.2 Coxeter groups and the weak order

In this section, we begin by providing an introduction to Coxeter groups. A Coxeter group W with generating set $S = \{s_1, \ldots, s_n\}$, also called the Coxeter system (W, S), has the group presentation

$$\langle s_1, \ldots, s_n \mid (s_is_j)^{m_{ij}} = 1 \text{ for all } i, j \in [n]\rangle$$

such that each $m_{ii} = 1$ for each i and $m_{ij} = m_{ji}$ for each pair $\{i, j\}$. In particular, since $m_{ii} = 1$, each generator s_i is an involution. To be a finite Coxeter group, (W, S) has additional requirements on the m_{ij} for distinct pairs of generators.

The information of an irreducible finite Coxeter group (informally, a group that is not just a product of other smaller groups) is conveyed by its Coxeter diagram, a tree with vertices representing generators and labeled or unlabeled edges between generators s_i and s_j that have order m_{ij} at least three. There are finitely many families of irreducible finite Coxeter groups, and three of these families are infinite: type A, type B, and type D. The family of type-A Coxeter groups is, in fact, the family of symmetric groups: a Coxeter group of type A_n is the group S_{n+1} of permutations of $[n+1] = \{1, \ldots, n+1\}$ where the generators are transpositions of the form $s_i = (i \ i+1)$. Similarly, the Coxeter groups of type B_n and D_n are the groups of signed permutations of $\pm[n]$ and even-signed permutations of $\pm[n]$, respectively.
respectively, with similar sets of generators. The Coxeter diagrams for A_n, B_n, and D_n are pictured in Fig. 3.1.

Next, we state existing lattice theoretic results that are specific to Coxeter groups. In a Coxeter system (W, S), the parabolic subgroup $W_{S'}$ is the set of elements in W generated by a subset S' of S. If $S' = \{s_i, s_j\}$, then the weak order restricted to $W_{S'}$ is the interval from the identity to the alternating product of s_i and s_j with length m_{ij}.

A lattice congruence Θ of the weak order on W is said to be generated by the minimal set, element-wise (with respect to the weak order) and set-wise (with respect to containment), of join-irreducible elements contracted by Θ. The support of an element w in a Coxeter group W, is the smallest set of generators $S' \subset S$ such that w is in the parabolic subgroup $W_{S'}$. The degree of a join-irreducible element j in W is the size of its support. A congruence Θ generated by the set of join-irreducible elements $J = \{j_1, \ldots, j_k\}$ is said to be homogeneous of degree d if each $j_i \in J$ has degree d.

3.2.3 Shards, congruences, and forcing

In this section, we add a few definitions and state results that will be of use in Sections 3.3 and 3.4.

For a Coxeter group W, the poset of regions of the Coxeter arrangement $\mathcal{A}(W)$ is isomorphic, as a lattice, to the right weak order on W. (See [11, 16, 17, 37].) A region R covers another region Q if there is exactly one hyperplane H that separates R from the base region B but doesn’t separate Q from B. If R corresponds to $w \in W$ and Q corresponds to $v \in W$, then H is the hyperplane corresponding to the cover reflection of w associated to the cover $v \preceq w$.) In this instance, H is a facet-defining hyperplane of R and of Q, since both $R \cap H$ and $Q \cap H$ have codimension 1. H defines the common facet of the two regions. If a hyperplane H is a facet-defining hyperplane of R and a member of R’s separating set, it is a lower hyperplane of R. The set of lower hyperplanes for R is denoted $\mathcal{L}(R)$.

![Coxeter diagrams for A_n, B_n, and D_n.](image)
Recall that the shard intersection order of \(W \) was constructed by imposing the cutting relation between hyperplanes, taking closures of disconnected components to create shards, identifying elements of \(W \) with their lower shards, then ordering them by reverse containment of the intersections of lower shards. In [42, Theorem 2.10.5], Stump, Thomas, and Williams state a pair of conditions which, together, give an alternative characterization of the shard intersection order. The result is restated in [37, Theorem 9-7.24] in a manner that is particularly useful for the proofs of the main theorems, though it is stated for simplicial hyperplane arrangements and has an unfortunate typo where the order of a containment is reversed. Recall that Coxeter arrangements are simplicial, and for a Coxeter group \(W \), the ordering on the poset of regions of its arrangement \(\mathcal{A} \) is the right weak order. The following theorem is [37, Theorem 9-7.24] in the language of Coxeter groups, with the typo corrected. In it, \(\preceq \) denotes the shard intersection order on \(W \) and \(\leq \) denotes the weak order on \(W \).

Theorem 3.2.1. Suppose \(\mathcal{A} \) is the arrangement of a Coxeter group \(W \) and consider two regions regions \(Q \) and \(R \). Then \(Q \preceq R \) if and only if \(Q \leq R \) and \(\bigcap_{H \in \mathcal{L}(Q)} H \supseteq \bigcap_{H \in \mathcal{L}(R)} H \).

3.3 Type A

The Coxeter group of type \(A_{n-1} \) can be realized as the group \(S_n \) of permutations of \([n] = \{1, \ldots, n\} \). Each simple reflection \(s_i \) is a transposition of the form \((i \ i+1)\). The right weak order on \(A_{n-1} \) is the partial order whose cover relations are given by swapping adjacent entries to put them out of order; it is also characterized in terms of inversion sets. An inversion of a permutation \(\pi = \pi_1 \cdots \pi_n \) is an ordered pair \((\pi_i, \pi_j)\) such that \(i < j \) and \(\pi_i > \pi_j \). The set of all inversions of \(\pi \), called its inversion set is denoted \(\text{inv}(\pi) \). A permutation \(\sigma \) is below another permutation \(\tau \) in the weak order if and only if \(\text{inv}(\sigma) \) is a subset of \(\text{inv}(\tau) \). To go up by a cover in the weak order from a permutation \(\sigma \), swap a pair of adjacent entries which are in increasing order in \(\sigma \) to create exactly one new inversion.

A descent of \(\pi \) is a pair \((\pi_i, \pi_{i+1})\) such that \(\pi_i > \pi_{i+1} \). (In other settings, the term "descent" denotes the position \(i \) where the descent occurs.) A descending run of \(\pi \) is a maximal sequence \(\pi_j \pi_{j+1} \cdots \pi_k \) such that \((\pi_i, \pi_{i+1})\) is a descent for all \(i = j, \ldots, k - 1 \).

3.3.1 Permutations and noncrossing arc diagrams

We define noncrossing arc diagrams on \(n \) points, for a positive integer \(n \), following [35]. Begin by placing \(n \) distinct points on a vertical line and identifying the points with \([n] = \{1, \ldots, n\} \) in order, with 1 at the bottom and \(n \) at the top. A noncrossing arc diagram consists of some (or no) curves called arcs, each of which satisfies the requirement that it connects
a point \(r \in [n] \) to a lower point \(p \), moving monotone downward from \(r \) to \(p \) and passing either left or right of each point between \(r \) and \(p \). Moreover, a collection of arcs constitutes a noncrossing arc diagram precisely when it satisfies two pairwise compatibility conditions. First, no pair of arcs may intersect except at their endpoints. Second, any endpoint shared by two arcs must be the upper endpoint of one arc and the lower endpoint of the other. Two arcs are combinatorially equivalent if they have the same upper and lower endpoints and pass left and right of the same points. Noncrossing arc diagrams are considered up to combinatorial equivalence. Fig. 3.2 shows all noncrossing arc diagrams on 4 points.

![Figure 3.2: 24 noncrossing arc diagrams on 4 points.](image)

Noncrossing arc diagrams on \(n \) points are shown in [35] to be in bijection with permutations of \([n]\). The bijection \(\delta \) from a permutation \(\pi \in S_n \) to its corresponding noncrossing arc diagram can be described as follows: Plot each entry \(\pi_i \) at the point \((i, \pi_i)\) in the plane, then draw a line segment from \((i, \pi_i)\) to \((i + 1, \pi_{i+1})\) for each descent \((\pi_i, \pi_{i+1})\). After drawing all necessary line segments, slide the points left or right into a vertical line, so that the line segments bend to avoid hitting vertices, as shown in Fig. 3.3.

In [4, Section 2.3], Bancroft introduces permutation pre-orders, which are in bijection with permutations, and uses them to find an EL-labeling on the shard intersection order of type A. Inspired by Bancroft’s work, we define a block in a noncrossing arc diagram as a connected component of the diagram considered as a graph.

A block \(B \) may consist of a single point, having no arcs. If \(B \) has at least one arc, then \(B \) has endpoints \(p = q_0 < q_1 < \cdots < q_s = r \) such that \(q_{i-1} \) and \(q_i \) are connected by an arc for all \(i \in \{1, \ldots, s\} \). Thus exactly one arc is attached to each of \(r \) and \(p \) and exactly two arcs have each \(q_i \) with \(i \in \{1, \ldots, s-1\} \) as a shared endpoint. Such a block corresponds to the descending run \(q_s \cdots q_0 \) in a permutation. Each point in the set \(\{q_1, \ldots, q_s = r\} \) is the upper endpoint of some arc in \(B \); we may refer to any of these points as an upper endpoint.
of B. Similarly, each point in the set $\{p = q_0, \ldots, q_{s-1}\}$ is the lower endpoint of some arc in B, and we may refer to any of these points as a lower endpoint of B. Notably, B may have more than one upper endpoint; we distinguish the unique highest point r of B by calling it the top endpoint of B. Likewise, we call p the bottom endpoint of B. If a block B consists of a single point q, then q is both the top and bottom endpoint of B.

Let B and B' be two blocks in the same noncrossing arc diagram N with top and bottom endpoints r, p and r', p' respectively. Suppose that B and B' overlap; that is, $[p, r] \cap [p', r'] \neq \emptyset$. Since the two blocks are disjoint topologically and overlapping, without loss of generality, B must be left of B'. We say B is immediately left of B' if there are no points or arcs in N which are right of B and left of B'. In this case B' is immediately right of B. A block B_k is transitively left of a block B if there exists a sequence of blocks $B = B_0, B_1, \ldots, B_{k-1}, B_k$ such that B_i is immediately left of B_{i-1} for each $i \in \{1, \ldots, k\}$. In this case B is transitively right of B_k. We allow the case where $k = 0$, so that any block B is both transitively left and transitively right of itself.

The transitively left/right relations can be carried from blocks in a noncrossing arc diagram to the underlying numbered points. We say that a point q is transitively left of a block B if and only if the block containing q is transitively left of B. Moreover, a point q is transitively left of a point r if and only if the block containing q is transitively left of the block containing r.

The language of blocks in the context of noncrossing arc diagrams was inspired by Bancroft’s permutation pre-orders in [4], and with the language of transitively left and right, we can make an explicit link between noncrossing arc diagrams and permutation pre-orders. In [4, Section 2.3], a block is defined as an equivalence class of a pre-order P on $[n]$, in which $i \sim j$ if and only if $i \leq j \leq i$. P can be thought of both as a pre-order on $[n]$ and as a partial
Figure 3.4: The permutation pre-order and noncrossing arc diagram for $\pi = 541237869$.

Bancroft defines a map μ that takes a permutation $\pi \in S_n$ to a pre-order P. Each descending run in π is a block in P. For two blocks B and B' that overlap (if the highest and lowest number in one block create an interval that contains the highest or lowest number in the other block), $B \preceq B'$ if and only if the descending run corresponding to B occurs before the descending run corresponding to B' in the one-line notation of π. The partial order on blocks in P is the transitive closure of such relations.

A pre-order P on $[n]$ is a permutation pre-order if it satisfies two conditions: any pair of overlapping blocks must be comparable in P, and all covering relations in P must be between overlapping blocks.

Proposition 3.3.1. [4, Proposition 2.7] μ is a bijection from permutations in S_n to the set of permutation pre-orders on $[n]$.

The inverse of the map δ from permutations to noncrossing arc diagrams, denoted ρ, is described in [35, Section 3]. Given a noncrossing arc diagram N, ρ recovers the permutation π for which $\delta(\pi) = N$ as follows: Among blocks of N which have nothing transitively left of them, remove the block which has the lowest bottom endpoint and write the endpoints of the block in descending order. Continue recursively on the remaining blocks, writing the permutation from left to right.

The following proposition is immediate, as the two composed maps are bijections. The permutation pre-order and noncrossing arc diagram corresponding to an example permutation in S_9 is pictured in Fig. 3.4.

Proposition 3.3.2. The composition $\mu \circ \rho$ is a bijection from noncrossing arc diagrams on n points to permutation pre-orders on $[n]$.

Given a noncrossing arc diagram, the blocks in N are precisely the blocks in $\mu(\rho(N))$. Moreover, if two blocks B and B' overlap, then B is transitively left of B' in N precisely when $B \preceq B'$ in $\mu(\rho(N))$. Thus, the following proposition is immediate.
Proposition 3.3.3. The pre-order on \(n \) points in a noncrossing arc diagram \(N \) given by being transitively left is the permutation pre-order \(\mu(\rho(N)) \).

Before stating results relating noncrossing arc diagrams and the weak order in the next section, we discuss a map on permutations which can be expressed as an operation on noncrossing arc diagrams. The longest element, denoted \(w_0 \), in a Coxeter group of type \(A_{n-1} = S_n \) is the permutation \(n \, (n-1) \cdots 2 \, 1 \). It is an involution. Given a permutation \(\pi = \pi_1 \pi_2 \cdots \pi_n \), the \(i \)th entry of the permutation \(w_0 \pi \) is \((n + 1) - \pi_i \). Thus \(w_0 \pi \) is the result of inverting the entries of \(\pi \). The \(i \)th entry of \(\pi w_0 \) has \(i \)th entry is \(\pi_{n+1-i} \). Thus \(\pi w_0 \) is the entry-wise reverse of \(\pi \). Conjugating \(\pi \) by \(w_0 \) inverts both the values and the order on \(\pi \), replacing the \(i \)th term \(\pi_i \) with \((n + 1) - \pi_{n+1-i} \). Moreover, conjugating by \(w_0 \) is an automorphism of the weak order. (See [10, Proposition 3.1.5].)

The following proposition is an immediate consequence of this description of conjugation by \(w_0 \) and the definition of the map \(\delta \) from \(S_n \) to noncrossing arc diagrams on \(n \) points.

Proposition 3.3.4. If \(N = \delta(\pi) \), the noncrossing arc diagram \(\delta(w_0 \pi w_0) \) is the image of \(N \) under the 180-degree rotation of the plane that sends each point \(i \) to \(n + 1 - i \).

3.3.2 Noncrossing arc diagrams and the weak order

The following lemma characterizes the inversions of a permutation \(\pi \) in terms of the transitively right relation in \(\delta(\pi) \). It is a generalization of [1, Lemma 37].

Lemma 3.3.5. Given \(q, r \in [n] \) with \(q < r \), the pair \((r, q) \) is an inversion of \(\pi \) if and only if \(r \) is transitively left of \(q \) in \(\delta(\pi) \).

Proof. By definition, \(r \) is transitively left of \(q \) in \(\delta(\pi) \) in one of two cases: either the two points are in the same block, or the points are in disjoint blocks and the block containing \(r \) is transitively left of the block containing \(q \). In each case, \(r \) precedes \(q \) in \(\pi \), so \((r, q) \) is an inversion of \(\pi \).

On the other hand, \(r \) is not transitively left of \(q \) in \(\delta(\pi) \) in one of two cases, both with \(r \) and \(q \) in disjoint blocks: either the block containing \(q \) is transitively left of the block containing \(r \), or the two blocks are not comparable under the transitively left relation. In each case, \(q \) comes before before \(r \) in \(\pi \), so \((r, q) \) is not an inversion of \(\pi \).

The following remark is a restatement of the previous proposition via the half-turn rotation described in Proposition 3.3.4, since “transitively left” in \(\delta(\pi) \) becomes “transitively right” in \(\delta(w_0 \pi w_0) \).
Remark 3.3.6. Given \(q, r \in [n] \) with \(n + 1 - q > n + 1 - r \), the pair \((n + 1 - q, n + 1 - r)\) is an inversion of \(\pi \) if and only if \(n + 1 - r \) is transitively right of \(n + 1 - q \).

Recall that in the right weak order on \(S_n \), \(\sigma \leq \tau \) if and only if the inversion set of \(\sigma \) is a subset of the inversion set of \(\tau \). Thus, Lemma 3.3.5 can be used to characterize the weak order in terms of noncrossing arc diagrams.

Proposition 3.3.7. Let \(\pi \) and \(\pi' \) be permutations in \(S_n \). Then \(\pi \leq \pi' \) in the weak order if and only if \(\delta(\pi') \) is obtained from \(\delta(\pi) \) by a sequence of moves of the following forms, with each move resulting in a valid noncrossing arc diagram:

1. adding a new arc,
2. extending an arc upward so that it passes right of the previous upper endpoint,
3. extending an arc downward so that it passes left of the previous lower endpoint,
4. breaking a single arc into a pair of arcs with a shared endpoint, or
5. carrying out a pair of moves of types (2) and (3), (2) and (4), (3) and (4), or (4) twice, on two distinct arcs, such that two of the resulting arcs are combinatorially equivalent, then keeping one of the two equivalent arcs.

The moves described in Proposition 3.3.7 are not necessarily cover relations. Describing cover relations appears to be more tedious. The set of moves is invariant under the rotation described in Proposition 3.3.4: a move of type (1) or (4) is a rotation of a move of the same type; a move of type (2) becomes a move of type (3) and vice versa. Fig. 3.5 shows moves (1)–(4), and Fig. 3.6 shows each type of move in (5).

Proof. We first show that every cover in the weak order is one of the moves listed above.

Consider a permutation \(\pi = \cdots ij \cdots \), where \(ij \) is an ascent; that is, \(i < j \). Thus, the permutation \(\pi' = \cdots ji \cdots \) covers \(\pi \) in the weak order. Let \(N = \delta(\pi) \) and \(N' = \delta(\pi') \). We
consider the noncrossing arc diagrams resulting from several cases. Some cases are symmetric to one another via conjugation by w_0, the half-turn rotation as described in Proposition 3.3.4.

Case 1. If $\pi = ijk \cdots$, we consider three subcases.

(a) $k < i < j$: In this case, jk is a descent in π. In π', ji and ik are descents. N' is obtained by breaking the arc from j to k in N at the point i.

(b) $i < k < j$: In this case, jk is a descent in π. In π', ji is a descent and ik is an ascent. N' is obtained by extending the arc from j to k in N down to i so that the arc passes to the left of k and left of all points between k and i.

(c) $i < j < k$: In this case, jk is an ascent in π. In π', ji is a descent and ik is an ascent. N' is obtained by adding an arc from j to i that passes to the left of all points between j and i.

Case 2. If $\pi = \cdots hijk \cdots$, we consider nine cases. The cases are ordered first by the comparison of h with i and j, then by the comparison of k with i and j.

(a) $h < i < j$, $k < i < j$: In this case, hi is an ascent and jk is a descent in π. In π', ji and ik are descents and hj is an ascent. N' is obtained by breaking the arc from j to k in N at the point i.

(b) $h < i < k < j$: In this case, hi is an ascent and jk is a descent in π. In π', hj and ik are ascents and ji is a descent. N' is obtained by extending the arc from j to k in N down to i, passing left of k and passing right of exactly those points between j and i which precede h in π.

(c) $h < i < j < k$: In this case, hi and jk are ascents in π. In π', hj and ik are ascents and ji is a descent. N' is obtained by adding an arc from j to i that passes right of exactly those points between j and i which precede h in π.

Figure 3.6: Compound ways to go up in the weak order.
(d) $k < i < h < j$: In this case, hi and jk are descents in π. In π', hj is an ascent; ji and ik are descents. N' is obtained by breaking the arc from j to k in N at i, extending the arc from h to i up to j so that it passes right of h and right of exactly those points between h and j that precede h in π, and keeping one of the resulting two copies of the arc from j to i.

(e) $i < h < j$, $i < k < j$: In this case, hi and jk are descents in π. In π', hj and ik are ascents and ji is a descent. N' is obtained by extending the arc from h to i up to j so that it passes right of h and right of exactly those points between h and j that precede h in π, extending the arc from j to k down to i so that it passes left of k, and keeping one of the resulting two copies of the arc from j to i.

(f) $i < h < j < k$: This case is symmetric to Subcase (b).

(g) $k < i < j < h$: In this case, hi and jk are descents in π. In π', hj, ji, and ik are all descents. N' is obtained by breaking the arcs from h to i and from j to k in N at j and i respectively, then keeping one of the two resulting copies of the arc from j to i.

(h) $i < k < j < h$: This case is symmetric to Subcase (d).

(i) $i < j < h$, $i < j < k$: This case is symmetric to Subcase (a).

Case 3. The case where $\pi = \cdots hi j$ is symmetric to Case 1.

Conversely, suppose that N and N' are noncrossing arc diagrams related by one of the moves in the statement of the proposition, and $\pi = \rho(N)$ and $\pi' = \rho(N')$. We wish to show that $\pi \leq \pi'$ in the weak order.

In [35], noncrossing arc diagrams are shown to encode the canonical join representations of permutations. Namely, a permutation π with noncrossing arc diagram N has canonical join representation $\bigvee_{\alpha \in N} \rho(\alpha)$.

Let $M = N \setminus (N \cap N')$ and $M' = N' \setminus (N \cap N')$. Thus π and π' have canonical join representations

$$\pi = \left(\bigvee_{\alpha \in N \cap N'} \rho(\alpha) \right) \lor \left(\bigvee_{\alpha \in M} \rho(\alpha) \right) \quad \text{and} \quad \pi' = \left(\bigvee_{\alpha \in N \cap N'} \rho(\alpha) \right) \lor \left(\bigvee_{\alpha \in M'} \rho(\alpha) \right).$$

The first joins in the two equations above are equal, so $\pi \leq \pi'$ if and only if $\rho(M) \leq \rho(M')$. Thus, moving forward, we may as well assume that N and N' have no arcs in common. We consider each operation in the statement of the proposition.
Case 1: adding a new arc. In this case, \(N \) has no arcs and \(N' \) has a single arc. Since \(\pi \) is the identity, \(\pi' \) is above \(\pi \) in the weak order.

Case 2: extending an arc up, right of the previous upper endpoint. See the left side of Fig. 3.7. In this case, \(N \) has one arc, \(\alpha \), which has upper endpoint \(j \), lower endpoint \(i \), and sets \(L \) and \(R \) of points left and right of \(\alpha \); \(N' \) has one arc, \(\alpha' \), which is the result of extending \(\alpha \) to a new upper endpoint \(j' \) so that it passes right of \(j \). The one-line notation of \(\pi \) is

\[
\pi = 1 \cdots i-1 \ L \ j \ i \ R \ j+1 \cdots n .
\]

Here and in all cases that follow, when we write a set in the one-line notation of a permutation, the elements of the set are understood to be in ascending order. So, all inversions of \(\pi \) arise from the relative positions of \(L, j, i, \) and \(R \).

Let \(L' \) and \(R' \) denote the set of points left and right of \(\alpha' \), respectively. Since \(\alpha' \) is the result of extending \(\alpha \) from \(j \) up to \(j' \), \(R' \) can be written as the disjoint union \(R \cup [R' \cap (j, j')] \). Similarly, \(L' \) can be written as the disjoint union \(L \cup \{j\} \cup [L' \cap (j, j')] \). (The previous upper endpoint \(j \) is in \(L' \) because \(\alpha' \) passes right of \(j \).) The one-line notation of \(\pi' \) is

\[
\pi' = 1 \cdots i-1 \ L \ j \ [L' \cap (j, j')] \ j' \ i \ R \ [R' \cap (j, j')] \ j'+1 \cdots n .
\]

The permutation \(\pi' \) has all the inversions of \(\pi \), since \(L, j, i, \) and \(R \) are all in the same relative positions in \(\pi' \) as in \(\pi \). Moreover, since \(j' \) and \(L \cap (j, j') \) have moved to the left of things smaller than them, \(\pi' \) is above \(\pi \) in the weak order.

Case 3: extending an arc down, left of the previous lower endpoint. See the right side of Fig. 3.7. In this case, \(N \) has one arc, \(\alpha \), which has upper endpoint \(j \) and lower endpoint \(i \); \(N' \) has one arc, \(\alpha' \), which is the result of extending \(\alpha \) to a new lower endpoint \(i' \) so that it passes left of \(i \). This case is symmetric to Case 2 under conjugation by \(w_0 \), half-turn rotation.
of \(N \) and \(N' \), in the same way that Lemma 3.3.5 and Remark 3.3.6 are symmetric.

Case 4: breaking an arc. See Fig. 3.8. In this case, \(N \) has one arc, \(\alpha \), which has upper endpoint \(j \), lower endpoint \(i \); \(N' \) has two arcs, \(\alpha' \) and \(\alpha'' \), which are the result of breaking \(\alpha \) at a point \(k \) between \(i \) and \(j \) such that \(\alpha' \) is above \(\alpha'' \). That is, \(k \) is the lower endpoint of \(\alpha' \) and the upper endpoint of \(\alpha'' \).

Let \(L \) and \(R \) denote the set of all points left and right of \(\alpha \), respectively. Either of these sets may be empty, but one of them must be nonempty since there must be a point between \(i \) and \(j \) at which \(\alpha \) can be broken. There are two subcases: \(k \) may be either left or right of \(\alpha \). Let \(L' \) and \(R' \) denote the set of points left and right of \(\alpha' \), and let \(L'' \) and \(R'' \) denote the set of points left and right of \(\alpha'' \).

If \(k \) is left of \(\alpha \), then \(L \) can be written as the disjoint union \(L'' \cup \{k\} \cup L' \) and \(R \) can be written as the disjoint union \(R'' \cup R' \). In this case, the one-line notation of \(\pi \) is

\[
\pi = 1 \cdots i-1 L'' \ k \ L' \ j \ i \ R'' \ R' \ j+1 \cdots n .
\]

In the other case, when \(k \) is right of \(\alpha \), the one-line notation of \(\pi \) is

\[
\pi = 1 \cdots i-1 L'' \ L' \ j \ i \ R'' \ k \ R' \ j+1 \cdots n .
\]

In either case, breaking \(\alpha \) at \(k \) results in the same one-line notation for \(\pi' \):

\[
\pi' = 1 \cdots i-1 L'' \ L' \ j \ k \ i \ R'' \ R' \ j+1 \cdots n .
\]

The relative positions of \(L'' \), \(L' \), \(j \), \(i \), \(R'' \) and \(R' \) are the same in \(\pi' \) as in \(\pi \). The only change from \(\pi \) to \(\pi' \) is that \(k \) has moved to the right of things larger than it (if \(k \) is left of \(\alpha \)) or to the left of things smaller than it (if \(k \) is right of \(\alpha \)). In either case, \(\pi' \) is above \(\pi \) in the weak order.

Figure 3.8: Breaking \(\alpha \).
Case 5: carrying out a pair of moves. N has two distinct arcs, α and β. Without loss of generality, let α denote the arc with the lower top endpoint. Let L_α and L_β denote the set of points left of α and β, respectively, and similarly for R_α and R_β. We consider each combination of operations in previous cases.

Because α and β together bound the resulting arc(s), we make the simplifying assumption moving forward that the lowest endpoint between the two arcs is $i = 1$ and the highest endpoint between the two arcs is $j = n$. This eliminates the terms $1 \cdots i - 1$ and $j + 1 \cdots n$ at the beginning and end of the one-line notation of both π and π'.

Case 5a: extending α up, right and extending β down, left. See Fig. 3.9. In this case, N' consists of one arc, α', which is the result of extending α up, passing to the right of the upper endpoint of α and is also the result of extending β down, passing to the left of the lower endpoint of β. We write L' and R' for the set of points left and right of α', respectively. Let s and i denote the upper and lower endpoints of α, and let j and t denote the upper and lower endpoints of β.

There are only two configurations of α and β which allow for α' to be as described: either the two arcs do not overlap or α is immediately left of β.

If α and β do not overlap, then $i < s < t < j$. In this case, L' can be written as the disjoint union $L_\alpha \cup \{s\} \cup [L' \cap (s,t)] \cup L_\beta$ and R' can be written as the disjoint union $R_\alpha \cup [R' \cap (s,t)] \cup \{t\} \cup R_\beta$. In this case the one-line notation of π is

$$
\pi = L_\alpha \ s \ i \ R_\alpha \ s + 1 \cdots t - 1 \ L_\beta \ j \ t \ R_\beta.
$$

The one-line notation of π' is

$$
\pi' = L_\alpha \ s \ [L' \cap (s,t)] \ L_\beta \ j \ i \ R_\alpha \ [R' \cap (s,t)] \ t \ R_\beta.
$$

Since L_α, s, i, and R_α have the same relative order in π' as in π and likewise for L_β, j, t,
and R_β, all inversions of π are also inversions of π'. From π to π', the entries s and j and all entries in $L' \cap (s, t)$ and L_β move to the left of things smaller than them, so π' is above π in the weak order.

If α is immediately left of β, then $i < t < s < j$ and $R_\alpha \cap L_\beta \cap (t, s) = \emptyset$. In particular, this implies that $L_\alpha \cap (t, s) = L_\beta \cap (t, s)$ and likewise $R_\alpha \cap (t, s) = R_\beta \cap (t, s)$. As a result, L' can be written as the disjoint union $L_\alpha \cup \{s\} \cup [L_\beta \cap (s, j)]$ and R' can be written as the disjoint union $[R_\alpha \cap (i, t)] \cup \{t\} \cup R_\beta$. In this case, the one-line notation of π is

$$\pi = L_\alpha \ s \ i \ [R_\alpha \cap (i, t)] \ [L_\beta \cap (s, j)] \ j \ t \ R_\beta.$$

The one-line notation of π' is

$$\pi' = L_\alpha \ s \ [L_\beta \cap (s, j)] \ j \ i \ [R_\alpha \cap (i, t)] \ t \ R_\beta.$$

L_α, s, i, and $[R_\alpha \cap (i, t)]$ have the same relative order in π' as in π and likewise for $[L_\beta \cap (s, j)]$, j, t, and R_β. From π to π', the entry j and all entries in $L_\beta \cap (s, j)$ move to the left of entries smaller than them, so π' is above π in the weak order.

In either case, π' is above π in the weak order.

Case 5b: extending α up, right and breaking β. See the left side of Fig. 3.10. In this case, N' consists of two arcs, α' and α''. The result of extending α to a new upper endpoint j so that it passes right of the upper endpoint of α is called α', and it is also the higher arc which occurs as a result of breaking β at the lower endpoint of α. The lower arc which occurs as a result of breaking β at the lower endpoint of α is called α''.

Let t and s denote the upper and lower endpoints of α and let j and i denote the upper and lower endpoints of β. In order for the two moves to result in arcs combinatorially

![Figure 3.10: Extending α and breaking β.](image)
Figure 3.11: Breaking α and breaking β, α left of β.

equivalent to α', the endpoints must fulfill the string of inequalities $i < s < t < j$ and α must be immediately left of β. In particular, this implies that $L_\alpha = L_\beta \cap (s, t)$ and $R_\alpha = R_\beta \cap (s, t)$.

As a result, L' can be written as the disjoint union $L_\alpha \cup \{t\} \cup [L_\beta \cap (t, j)]$ and L'' can be written as $L_\beta \cap (i, s)$. Similarly, R' can be written as the disjoint union $R_\alpha \cup [R_\beta \cap (t, j)]$ and R'' can be written as $R_\beta \cap (i, s)$. The one-line notation of π is

$$\pi = L'' L_\alpha t s [L_\beta \cap (t, j)] j i R'' R_\alpha [R_\beta \cap (t, j)] .$$

The one-line permutation of π' is

$$\pi = L'' L_\alpha t [L_\beta \cap (t, j)] j s i R'' R_\alpha [R_\beta \cap (t, j)] .$$

L_α, t, s, and R_α have the same relative order in π' as in π, so all inversions coming from α are also inversions of π'. In fact, the only change in the one-line notation is the movement of s to the right, past entries greater than s. Thus π' is above π in the weak order.

Case 5c: extending α down, left and breaking β. See the right side of Fig. 3.10. In this case, N' consists of two arcs, α' and α''. The higher arc which occurs as a result of breaking β at the upper endpoint of α is called α'. The result of extending α to a new lower endpoint i so that it passes left of the lower endpoint of α is called α'', and it is also the lower arc which occurs as a result of breaking β at the upper endpoint of α. This case is dual to Case 5b under conjugation by w_0, half-turn rotation of N and N', as Case 3 is symmetric to Case 2.

Case 5d: breaking α and β. See Fig. 3.11. In this case, N' consists of three arcs α', α'', and α''' such that α' and α'' are the result of breaking α, and α'' and α''' are the result of breaking β. Let t and i denote the upper and lower endpoints of α and let j and s denote the upper and lower endpoints of β. In order for the two moves to result in an equivalent arc α'', α must be broken at s and β must be broken at t.

Moreover, the endpoints must fulfill the string of inequalities $i < s < t < j$ (so α'
is below α'', which is below α''') and α must be immediately left or immediately right of β. Within the interval (s, t), L_α and L_β must agree and R_α and R_β must agree; that is, $R_\alpha \cap L_\beta \cap (s, t) = \emptyset$ and $L_\alpha \cap R_\beta \cap (s, t) = \emptyset$. As a result, the set $L' \cup L'' \cup L'''$ can be written as the disjoint union $[L_\alpha \cap (i, s)] \cup [L_\alpha \cap (s, t)] \cup [L_\beta \cap (t, j)]$. Likewise, $R' \cup R'' \cup R'''$ can be written as the disjoint union $[R_\alpha \cap (i, s)] \cup [R_\beta \cap (s, t)] \cup [R_\beta \cap (t, j)]$.

In the first case, suppose that α is immediately left of β. The one-line notation of π is

$$\pi = L_\alpha \ t \ i \ [R_\alpha \cap (i, s)] \ [L_\beta \cap (t, j)] \ j \ s \ R_\beta .$$

The one-line notation of π' is

$$\pi' = L_\alpha \ [L_\beta \cap (t, j)] \ j \ t \ i \ [R_\alpha \cap (i, s)] \ R_\beta .$$

Since L_α, t, i, and $R_\beta \cap (i, s)$ have the same relative order in π' as in π and likewise for $L_\beta \cap (t, j)$, j, s, and R_β, the inversions of π arising from α and β are also inversions of π'. From π to π', the entries in $L_\beta \cap (t, j)$, j and s move to the left past entries smaller than them.

In the other case, suppose that α is immediately right of β. The one-line notation of π is

$$\pi = [L_\alpha \cap (i, s)] \ L_\beta \ j \ s \ t \ i \ R_\alpha \ [R_\beta \cap (t, j)] .$$

The one-line notation of π' is

$$\pi' = [L_\alpha \cap (i, s)] \ L_\beta \ j \ t \ s \ i \ R_\alpha \ [R_\beta \cap (t, j)] .$$

From π and π', t moves to the left of s, which is smaller than it.

In either case, π' is above π in the weak order.

\[\square\]

3.3.3 Cooperating and matting

We now present two new constructions, each of which takes in two noncrossing arc diagrams and outputs a single noncrossing arc diagram. In Section 3.3.4, we prove that these constructions correspond to the meet and join in the shard intersection order on type-A Coxeter groups.

Recall that, for a block B with at least one arc, the upper endpoint of any arc in B is an upper endpoint of B and the lower endpoint of any arc in B is a lower endpoint of B.

Definition 3.3.8. Given two noncrossing arc diagrams N_1 and N_2 on n points, the **cooperative noncrossing arc diagram** of N_1 and N_2, denoted $cn(N_1, N_2)$, consists of all arcs α
constructed as follows. An arc α in $\text{cn}(N_1, N_2)$ exists only when:

1. there is a pair of points $\{p, r\}$ in $[n]$ such that $p < r$, and there exists a block B of N_1 and a block C of N_2 such that r is an upper endpoint of both B and C and p is a lower endpoint of both B and C, and there is no point t between p and r that is an endpoint of both blocks, and

2. for every $q \in (p, r)$, B and C pass weakly to the same side of q. That is, either there exist arcs β in B and γ in C both passing left [resp. right] of q, or there exists an arc β in B passing left [resp. right] of q and arcs γ_1 and γ_2 in C sharing q as an endpoint, or there exists an arc γ in C passing left [resp. right] of q and arcs β_1 and β_2 in B sharing q as an endpoint.

If both requirements above are satisfied, α is the arc from r to p which passes to the same side of each $q \in (p, r)$ as B and C.

Less formally, we describe the process for drawing each arc α in $\text{cn}(N_1, N_2)$, as pictured in Figs. 3.12 and 3.13. First, identify two points r and p that are upper and lower endpoints, respectively, of the same pair of blocks B and C and that have no endpoint of both B and C between them. Begin to draw an arc from r down to p that agrees with all arcs along the way. That is, at each point q between r and p about which B and C weakly agree, draw α so that it agrees with both blocks as it passes q, as in Fig. 3.12. If there exists a point between r and p that B and C pass to opposite sides of, as in Fig. 3.13, give up on drawing the arc from r to p.

![Figure 3.12: Creating cn(N_1, N_2) for N_1 = \delta(3412) and N_2 = \delta(3421).](image)

Lemma 3.3.9. For any noncrossing arc diagrams N_1 and N_2 on n points, $\text{cn}(N_1, N_2)$ is a noncrossing arc diagram.
weak agreement
left of 3
disagreement
at 2
no arc from
4 to 1

Figure 3.13: Creating $\text{cn}(N_1, N_2)$ for $N_1 = \delta(4123)$ and $N_2 = \delta(2431)$.

Proof. It is clear from Definition 3.3.8 that each curve in $\text{cn}(N_1, N_2)$ is an arc. We wish to show that any pair of arcs in $\text{cn}(N_1, N_2)$ is compatible.

Suppose B is a block of N_1 and C is a block of N_2 and suppose that B and C share an endpoint r which is the upper endpoint of an arc $\beta \in B$ and $\gamma \in C$. Since N_1 is a noncrossing arc diagram, β is the only arc in N_1 that has r as its upper endpoint. Likewise, γ is the only arc in N_2 that has r as its upper endpoint. We conclude that for any $r \in [n]$, there is at most one arc in $\text{cn}(N_1, N_2)$ that has r as its upper endpoint. The proof that for any $p \in [n]$, there is at most one arc in $\text{cn}(N_1, N_2)$ which has p as its lower endpoint runs symmetrically. Hence, no two arcs in $\text{cn}(N_1, N_2)$ share an upper endpoint or a lower endpoint.

Suppose now, for proof by contradiction, that two arcs α_1 and α_2 in $\text{cn}(N_1, N_2)$ intersect along their interiors. Then there must be some i and j with $1 \leq i < j \leq n$ such that α_1 is weakly left of i and weakly right of j and α_2 is weakly right of i and weakly left of j. That is, α_1 must be left of α_2 at i and α_1 must be right of α_2 at j. If there are many pairs of points which satisfy the conditions above, consider any pair i and j among them.

Let B_1 and C_1 denote the blocks of N_1 and N_2, respectively, that result in α_1. Similarly, let B_2 and C_2 denote the blocks of N_1 and N_2, respectively, that result in α_2. Each pair of blocks B in N_1 and C in N_2 gives rise to at most one arc in $\text{cn}(N_1, N_2)$ along the interval (i, j). Since α_1 and α_2 are distinct arcs along (i, j), the pair (B_1, C_1) must be distinct from (B_2, C_2). We consider two cases.

In the first case, $B_1 \neq B_2$ and $C_1 \neq C_2$. Because B_1 and B_2 are distinct blocks, one block must be strictly left of the other at the height of i and strictly right at the height of j, regardless of whether either block has i or j as an endpoint; likewise for C_1 and C_2. Since α_1 is left of α_2 at i, B_1 must be left of B_2 at i and C_1 must be left of C_2 at i. Since α_1 is right of α_2 at j, B_1 must be right of B_2 at j and C_1 must be right of C_2 at j. Thus B_1 must cross B_2 and C_1 must cross C_2. This is a contradiction to the fact that N_1 and N_2 are noncrossing arc diagrams: for instance, in order for B_1 to cross B_2, the two blocks must either share an endpoint (as both an upper and lower endpoint of both blocks) or have arcs which cross in
their interiors.

In the second case, without loss of generality, $B_1 = B_2$ and $C_1 \neq C_2$. Since α_1 is left of α_2 at i, C_1 must be left of C_2 at i. Since α_1 is right of α_2 at j, C_1 must be right of C_2 at j. Again, this is a contradiction to the fact that N_2 is a noncrossing arc diagram, since C_1 and C_2 cannot cross. \hfill \Box

The requirements for an arc to exist in a cooperative noncrossing arc diagram are stringent. By contrast, in the following operation on noncrossing arc diagrams, the requirements for an arc to exist are less restrictive.

Definition 3.3.10. Given two noncrossing arc diagrams N_1 and N_2 on n points, the *matted noncrossing arc diagram* of N_1 and N_2, denoted $\text{mn}(N_1, N_2)$, is constructed as follows:

1. Consider the union of N_1 and N_2 on the same set of n points. Call each connected component of the resulting graph a **woven block**. If two blocks $B \in N_1$ and $C \in N_2$ intersect at an endpoint or the interior of arcs in each block, they are in the same woven block.

2. For each woven block W with highest and lowest endpoints r and p, there is a corresponding block $\text{mat}(W)$, the result of “matting” W, described as follows:

 - Each endpoint of W is an endpoint of $\text{mat}(W)$.
 - If all arcs in W pass to one side of a point $q \in (p, r)$, an arc in $\text{mat}(W)$ passes to that side of q.
 - If two arcs in W pass to opposite sides of a point $q \in (p, r)$, then q is an endpoint of $\text{mat}(W)$.

3. If steps (1) and (2) yield a valid noncrossing arc diagram, stop. If not, then form woven blocks from the arcs created and repeat step (2).

Less formally, we describe the process for “matting” W, as pictured in Figs. 3.14 and 3.15. Draw a block of arcs from each endpoint r' in W to the next-highest endpoint p' by agreeing with all arcs along the way. That is, for each point between p' and r' such that all arcs in W pass to the same side, the block agrees with all arcs; for each point about which two arcs in W “disagree” (passing to opposite sides) the block has that point as an added endpoint and continues down from the point. In both figures, there is a single woven block in the union of N_1 and N_2, so the result of matting the block necessarily is a valid noncrossing arc diagram.
Figure 3.14: Creating \(mn(N_1, N_2) \) for \(N_1 = \delta(1342) \) and \(N_2 = \delta(2341) \).

Figure 3.15: Creating \(mn(N_1, N_2) \) for \(N_1 = \delta(1423) \) and \(N_2 = \delta(2341) \).

However, if \(N_1 \) and \(N_2 \), drawn together, have more than one woven block, it is possible for the resulting set of “matted blocks” not to constitute a valid noncrossing arc diagram. In Figs. 3.16 and 3.17, the set of arcs resulting from matting the two original woven blocks are not a valid diagram; rather, the arcs constitute a single new woven block which is matted again to give a valid noncrossing arc diagram. In both figures, the resulting noncrossing arc diagram corresponds to the permutation 54321, which is the longest element \(w_0 \) of the Coxeter group \(A_4 \). This occurs because these are, in some sense, the smallest examples whose matted blocks together do not give a valid noncrossing arc diagram. In general, having to mat twice does not necessarily force the resulting matted noncrossing arc diagram to correspond to \(w_0 \).

In both figures, one of the original woven blocks consists of two arcs, one in each of the original noncrossing arc diagrams, which share an upper endpoint and disagree about some points between them. When this original woven block is matted, it gets “tangled” on a point the two arcs disagree about, which is an upper endpoint of the other matted block. This shared upper endpoint is what precludes the set of matted blocks from constituting a valid noncrossing arc diagram.

Lemma 3.3.11. For any noncrossing arc diagrams \(N_1 \) and \(N_2 \) on \(n \) points, \(mn(N_1, N_2) \) is a noncrossing arc diagram.

Proof. By definition, the process described in Definition 3.3.10 must eventually yield a matted
noncrossing arc diagram. Since, each time a matting step fails to produce a valid noncrossing arc diagram, the process of taking a union and matting decreases the number of blocks, the matting process terminates in a finite number of repetitions.

3.3.4 Shard intersection order

Recall that a Coxeter group of type A_n can be realized as the symmetric group S_{n+1}. We first discuss the geometric realization of the type A_n Coxeter group.

The hyperplane corresponding to the generator $s_i = (i \ i+1)$ is $H_i = \{ \vec{x} \in \mathbb{R}^{n+1} : x_i = x_{i+1} \}$. As a generalization, the transposition $(i \ j)$ with $i < j$ corresponds to the hyperplane $H_{ij} = \{ \vec{x} \in \mathbb{R}^{n+1} : x_i = x_j \}$. The natural choice for the base region B in the Coxeter arrangement $A(A_n)$ is the region containing $[1, 2, \ldots, n+1]$.

The action of reflection across H_{ij} on any vector $\vec{x} \in \mathbb{R}^{n+1}$ outside of the hyperplane swaps the entries x_i and x_j. Given a permutation $\pi \in S_{n+1}$, acting on the left by $(i \ j)$ swaps the values i and j, and acting on the right by $(i \ j)$ swaps the entries π_i and π_j. Thus, to have the poset of regions for $A(A_n, B)$ agree with the right weak order on A_n, the region R in the hyperplane arrangement which corresponds to a permutation $\pi = \pi_1 \cdots \pi_{n+1}$ is the region containing the vector $[(\pi^{-1})_1, \ldots, (\pi^{-1})_{n+1}]$. This is the region $\{ \vec{x} \in \mathbb{R}^{n+1} : x_{\pi_1} \leq x_{\pi_2} \leq \cdots \leq x_{\pi_{n+1}} \}$.

Consider a permutation $\pi = \pi_1 \cdots \pi_{n+1}$. The region corresponding to π has the
hyperplane H_{ij} in its separating set if and only if (j, i) is an inversion of π. Furthermore, H_{ij} is a lower hyperplane of the region if and only if (j, i) is a descent of π. The intersection of the lower hyperplanes of the region is the intersection of all subspaces

$$\{ \vec{x} \in \mathbb{R}^{n+1} : x_{\pi_r} = x_{\pi_{r+1}} = \cdots = x_{\pi_{s-1}} = x_{\pi_s} \}$$

such that $\pi_r \pi_{r+1} \cdots \pi_{s-1} \pi_s$ a descending run of π.

A shard Σ in $\mathcal{A}(A_n)$ is defined by a set of linear inequalities:

$$\Sigma = \{ \vec{x} \in \mathbb{R}^{n+1} : x_p = x_q, x_p \leq x_q \forall q \in R, x_p \geq x_q \forall q \in L, p < r \}$$

where the sets R and L partition the interval (p, r). Such a shard exists for every choice of $p < r$ and every choice of L and R partitioning (p, r). Each shard corresponds to a join-irreducible permutation in the weak order, and each join-irreducible permutation corresponds to a noncrossing arc diagram on $n + 1$ points with a single arc. The noncrossing arc diagram corresponding to the shard Σ above has a single arc from p to r which passes left of all $q \in R$ and right of all $q \in L$. The sets L and R give the position of points q relative to the arc from p to r, in contrast with our earlier language which describes arcs passing right or left of points. Thus, for example, $q \in L$ if q is left of the arc, meaning the arc passes right of q.

Each arc α encodes the defining inequalities of its corresponding shard, denoted Σ_{α}, and this idea can be extended easily to blocks with many arcs. A block B with endpoints $p < q_1 < \cdots < q_k < r$ corresponds to the shard intersection:

$$\Gamma_B = \bigcap_{\alpha \in B} \Sigma_{\alpha} = \{ \vec{x} \in \mathbb{R}^{n+1} : x_p = x_{q_1} = \cdots = x_{q_k} = x_r, x_p \leq x_i \forall i \in R, x_p \geq x_i \forall i \in L \}$$

where R and L partition the set $(p, r) \setminus \{q_1, \ldots, q_k\}$, with $i \in R$ if an arc in B passes left of i and $i \in L$ if an arc in B passes right of i. The shard intersection order on A_2, realized both as the set of permutations on $[3]$ and as the set of noncrossing arc diagrams on 3 points, is pictured in Fig. 3.18. The shard intersection order on A_3, realized as the set of noncrossing arc diagrams on 4 points, is pictured in Fig. 3.19.

As noted in [4, Proposition 2.11] and [28, Observation 2], the shard intersection order lattice on A_n is graded, and the rank of a permutation π is equal to the number of descents in π. This is the type-A case of [33, Proposition 1.1]. By construction, each arc in the noncrossing arc diagram corresponding to π represents exactly one descent in π. The following proposition restates this observation in terms of noncrossing arc diagrams.
Proposition 3.3.12. For any permutation $\pi \in S_n$, the rank of π in $\Psi(S_n) = \Psi(A_{n-1})$ is equal to the number of arcs in $\delta(\pi)$.

In the paragraph following [4, Proposition 2.11], Bancroft explains how to go up by a cover from a shard intersection Γ in the shard intersection order, phrased in terms of permutation pre-orders. That explanation is restated as the following proposition.

Proposition 3.3.13. Suppose σ and τ are permutations in S_n. Then $\sigma \prec \tau$ in $\Psi(S_n)$ if and only if $\mu(\tau)$ can be obtained from $\mu(\sigma)$ by combining two blocks which are unrelated or related by a cover in $\mu(\sigma)$.

The previous proposition holds in part because blocks of $\mu(\sigma)$ that are unrelated or related by a cover can be combined without changing any order relations between the combined blocks and other blocks of $\mu(\sigma)$.

Recall that we consider an isolated point to be a block with no arcs. We define two moves on a pair of blocks in a noncrossing arc diagram, depending on whether the pair overlaps.

Let N be a noncrossing arc diagram on n points with each block B having bottom endpoint p and top endpoint r. Consider two blocks B_1 and B_2 which do not overlap, so $(p_1, r_1) \cap (p_2, r_2) = \emptyset$, and are unrelated by the transitively left relation; let B_1 denote the lower block. A link move on B_1 and B_2 adds a single arc from p_2 to r_1, as long as it gives a valid noncrossing arc diagram (that is, it goes monotone down from p_2 to r_1 without crossing any arc along the way). The results of two valid link moves on $\delta(24178536)$ are pictured in the middle of Fig. 3.20.

For the other move, consider two blocks B_1 and B_2 which overlap, so $(p_1, r_1) \cap (p_2, r_2) \neq \emptyset$, and B_1 is immediately left of B_2. A merge move on B_1 and B_2 breaks as few arcs as
Figure 3.19: The shard intersection order on A_3.

possible to create pairs of combinatorially equivalent arcs from the lower of r_1 and r_2 to the higher of p_1 and p_2, then identifies equivalent arcs to give a valid noncrossing arc diagram. The block resulting from the merge move has all endpoints from both B_1 and B_2 as endpoints, and it passes left of a non-endpoint if and only if at least one of B_1 and B_2 passes left of that point. (Because B_1 is immediately left of B_2, there can be no point that the two blocks pass to opposite sides of.) The simplest version of a merge move is done by breaking any arc in N at an isolated point immediately left or right of the arc. The results of two valid link moves on $\delta(24178536)$ are pictured on the right of Fig. 3.20.

Proposition 3.3.14. Let N and N' be two noncrossing arc diagrams on n points. N' covers N in $\Psi(A_{n-1})$ precisely when N' is the result of doing a valid link move or a valid merge move on two blocks of N.

Proof. A pair of non-overlapping blocks B_1 and B_2 in N such that neither block is transitively left of the other corresponds to a pair of unrelated blocks in the permutation pre-order $\mu(\rho(N))$. Adding an arc connecting the two blocks to create a valid noncrossing arc diagram
combines the two unrelated blocks in $\mu(\rho(N))$ to give a new permutation pre-order $\mu(\rho(N'))$. A link move corresponds to combining two unrelated blocks in the permutation pre-order associated with N.

If B_1 and B_2 overlap and B_1 is immediately left of B_2 in N, then B_2 covers B_1 in the permutation pre-order $\mu(\rho(N))$. The block in $\mu(\rho(N'))$ resulting from the merge move on B_1 and B_2 is the combination of the two corresponding blocks in $\mu(\rho(N))$, and because the resulting block respects the left/right information of the two original blocks, all blocks covering or covered by $\mu(\rho(B_1))$ or $\mu(\rho(B_2))$ in $\mu(\rho(N))$ will still cover or be covered by the merged block in $\mu(\rho(N'))$. A merge move corresponds to combining two blocks which are related by a single cover in the permutation pre-order associated with N.

Thus, this proposition is a direct translation of moves, in terms of permutation pre-orders, which go up by a cover in $\Psi(A_{n-1})$ as stated in Proposition 3.3.13.

Theorem 3.3.15. Given two permutations σ and τ in S_n with noncrossing arc diagrams $N_1 = \delta(\sigma)$ and $N_2 = \delta(\tau)$, their meet in $\Psi(A_{n-1})$ is the permutation corresponding to $cn(N_1, N_2)$.

Proof. Let $\pi = \rho(cn(N_1, N_2))$. The proof consists of two parts. In the first, we prove that the permutation π is below both σ and τ in the shard intersection order. In the second, we prove that an element strictly above π cannot be below both σ and τ; since $\Psi(A_{n-1})$ is a lattice, this suffices to show that π is the (unique) maximal element below both σ and τ and is thus their meet.

We first prove that π is weakly below both σ and τ in the shard intersection order. Consider an arc α in $cn(N_1, N_2)$ with upper endpoint r and lower endpoint p. By definition of

\[\text{Figure 3.20: Link moves and merge moves on } \delta(24178536). \]
We will show in either case that \(\mu \Gamma B \) and the shard intersection associated with diagrams, say \(\sigma N \) two sequences of arcs disagree. In particular, an arc in one of the original noncrossing arc diagrams, say \(N \), must not pass left of each point in \(R \) and weakly agree with \(\sigma \) at each point between \(r \) and \(p \). Since \(B \) weakly agrees with \(\alpha \) at each point between \(r \) and \(p \), each inequality in \(\Sigma \alpha \) also holds in the intersection. Moreover, since \(B \) may have additional endpoints between \(r \) and \(p \), above \(r \), or below \(p \), it is possible that \(\Gamma B \) has strict equalities in addition to those defining \(\Sigma \alpha \). So, the shard \(\Sigma \alpha \) contains the shard intersection \(\Gamma B \). Because such containment holds for each arc in \(\text{cn}(N_1, N_2) \) and its corresponding block in \(N_1 \), the shard intersection for \(\text{cn}(N_1, N_2) \) contains the shard intersection for \(N_1 \). Thus, \(\pi \) is below \(\sigma \) in \(\Psi(A_{n-1}) \), and an identical argument can be made to prove that \(\pi \) is also below \(\tau \) in \(\Psi(A_{n-1}) \).

We now prove that \(\pi \) is the maximal element of \(\Psi(A_{n-1}) \) which is below both \(\sigma \) and \(\tau \). Suppose \(\mu \) covers \(\pi \) in the shard intersection order, and let \(N_3 = \delta(\mu) \). By Proposition 3.3.12, \(N_3 \) has one more arc than \(\text{cn}(N_1, N_2) \), and by Proposition 3.3.14, the additional arc is either the result of doing a valid link move or a valid merge move on a pair of blocks in \(\text{cn}(N_1, N_2) \). We will show in either case that \(\mu \) must not be below at least one of \(\sigma \) and \(\tau \).

Case 1. \(N_3 \) is the result of doing a valid link move on a pair of blocks in \(\text{cn}(N_1, N_2) \). Let \(\alpha \) be the arc, from \(r \) to \(p \), which is added to \(\text{cn}(N_1, N_2) \) to yield \(N_3 \), and let \(L \) and \(R \) denote the points left and right of \(\alpha \), respectively. Since \(\alpha \) is not in \(\text{cn}(N_1, N_2) \), there must not be sequences of arcs, one in \(N_1 \) and one in \(N_2 \), both connecting \(r \) to \(p \) and passing weakly left of each point in \(R \) and weakly right of each point in \(L \).

If there is no sequence of arcs in, without loss of generality, \(N_1 \), which connects the two points, then the descent \((r, p)\) in \(\mu \) is not a pair in a descending run of \(\sigma \). In this case, \(H_{pr} \) is a lower hyperplane of the region \(Q \) associated to \(\mu \) but not a lower hyperplane of the region \(P \) associated to \(\sigma \), so \(\bigcap_{H \in \mathcal{L}(Q)} H \) does not contain \(\bigcap_{H \in \mathcal{L}(P)} H \). Because the intersection of lower hyperplanes for \(Q \) does not contain the intersection of lower hyperplanes for \(P \) and containment of lower hyperplanes is one of the conditions for \(\mu \leq \sigma \) as stated in Theorem 3.2.1, \(\mu \) is not below \(\sigma \) in the shard intersection order.

Suppose there are sequences of arcs, one in \(N_1 \) and one in \(N_2 \), which connect \(r \) and \(p \). Since \(\alpha \) is not in \(\text{cn}(N_1, N_2) \), there must be a point \(q \) between \(p \) and \(r \) about which the two sequences of arcs disagree. In particular, an arc in one of the original noncrossing arc diagrams, say \(N_2 \), must pass to the opposite side of \(q \) as \(\alpha \). If \(\alpha \) passes right of \(q \), the pair \((q, p)\) is an inversion of \(\mu \) but not of \(\tau \); if \(\alpha \) passes left of \(q \), the pair \((r, q)\) is an inversion of \(\mu \).
but not of \(\tau \). In either case, \(\mu \) is not below \(\tau \) in the weak order. According to Theorem 3.2.1, in order to have \(\mu \preceq \tau \), \(\mu \) must be below \(\tau \) in the weak order. Thus \(\mu \) is not below \(\tau \) in the shard intersection order.

Case 2. \(N_3 \) is the result of doing a valid merge move on a pair of blocks in \(\text{cn}(N_1, N_2) \). For any merge move, there must be at least one point at which a block is broken; let \(q \) denote one such point in the merge move from \(\text{cn}(N_1, N_2) \) to \(N_3 \), and let \(\alpha \) denote the arc from \(r \) to \(p \) in \(\text{cn}(N_1, N_2) \) which is broken at \(q \).

The arc \(\alpha \) in \(\text{cn}(N_1, N_2) \) which passes \(q \) must pass to the left or right side of \(q \). In order for \(\alpha \) to do so, the blocks in both \(N_1 \) and \(N_2 \) which give rise to \(\alpha \) must pass weakly to the same side \(q \) as \(\alpha \); in particular, at least one arc from these blocks the same side of \(q \) as \(\alpha \).

Suppose without loss of generality that the block in \(N_1 \) has such an arc. By Lemma 3.3.5, since \(q \) in the same block as \(r \) and \(p \) in \(N_1 \), it is not both transitively left and transitively right of \(r \) and \(q \). So, one of the pairs \((r, q)\) and \((q, p)\) is not an inversion of \(\sigma \). Since \(q \) is both transitively left and transitively right of \(r \) and \(p \) in \(N_3 \), both pairs are inversions of \(\mu \). In either case, the inversion set of \(\sigma \) does not contain the inversion set of \(\mu \), so \(\mu \) is not below \(\sigma \) in the weak order. Thus \(\mu \) is not below \(\sigma \) in the shard intersection order.

Next, we build toward a theorem similar to Theorem 3.3.15, that the join in \(\Psi(A_n) \) of two permutations is given by their matted noncrossing arc diagram. To do this, we present statements of increasing strength leading to the desired theorem.

Expanding on the notation of the shard intersection \(\Gamma_B \) corresponding to a block \(B \), we let \(\Gamma_C = \bigcap_{\alpha \in C} \Sigma_\alpha \) denote the shard intersection corresponding to any collection \(C \) of arcs. With this convention in place, the first lemma is immediate.

Lemma 3.3.16. If \(N \) is a noncrossing arc diagram consisting of a set of blocks \(\{B_1, \ldots, B_k\} \), then the shard intersection corresponding to \(N \) is

\[
\Gamma_N = \bigcap_{i \in [k]} \Gamma_{B_i}.
\]

Proposition 3.3.17. Let \(N_1 \) and \(N_2 \) be two noncrossing arc diagrams on \(n \) points. If each diagram consists of a single nontrivial block, then the join of \(\rho(N_1) \) and \(\rho(N_2) \) in \(\Psi(A_{n-1}) \) is \(\text{mn}(N_1, N_2) \).

Proof. Since the join in the shard intersection order corresponds to the intersection of shard intersections, proving the proposition amounts to proving that \(\Gamma_{N_1} \cap \Gamma_{N_2} = \Gamma_{\text{mn}(N_1, N_2)} \).

Let \(B_1 \) and \(B_2 \) denote the nontrivial blocks in \(N_1 \) and \(N_2 \) respectively. The shard
intersection corresponding to N_1 is

$$
\Gamma_1 = \{ \vec{x} \in \mathbb{R}^n : x_{b_0} = x_{b_1} = \cdots = x_{b_k}, x_{b_0} \leq x_i \forall i \in R_1, x_{b_0} \geq x_i \forall i \in L_1 \}
$$

where $b_0 < b_1 < \cdots < b_k$ are the endpoints of B_1, and R_1 and L_1 are the points right and left of B_1 respectively. Likewise, the shard intersection corresponding to N_2 is

$$
\Gamma_2 = \{ \vec{x} \in \mathbb{R}^n : x_{c_0} = x_{c_1} = \cdots = x_{c_l}, x_{c_0} \leq x_i \forall i \in R_2, x_{c_0} \geq x_i \forall i \in L_2 \}
$$

where $c_0 < c_1 < \cdots < c_l$ are the endpoints of B_2, and R_2 and L_2 are the points right and left of B_2 respectively. We consider two cases.

Case 1: B_1 and B_2 are disjoint. In this case, each block constitutes its own woven block. The matting process returns the two original blocks, so $\text{mn}(N_1, N_2)$ is simply the union of N_1 and N_2. The shard intersection corresponding to $\text{mn}(N_1, N_2)$ in this case is

$$
\Gamma_{\text{mn}(N_1, N_2)} = \{ \vec{x} \in \mathbb{R}^n : x_{b_0} = \cdots = x_{b_k}, x_{b_0} \leq x_i \forall i \in R_1, x_{b_0} \geq x_i \forall i \in L_1 \}
\cap \{ \vec{x} \in \mathbb{R}^n : x_{c_0} = \cdots = x_{c_l}, x_{c_0} \leq x_i \forall i \in R_2, x_{c_0} \geq x_i \forall i \in L_2 \}
= \Gamma_1 \cap \Gamma_2
$$

Case 2: B_1 and B_2 are not disjoint. In this case, B_1 and B_2 form a single woven block \mathcal{W}, and $\text{mn}(N_1, N_2) = \text{mat}(\mathcal{W})$. Let p_0, \ldots, p_m denote the endpoints of $\text{mat}(\mathcal{W})$. By definition, each endpoint p_m of $\text{mat}(\mathcal{W})$ must be at least one of the following:

- an endpoint of B_1 ($p_m = b_i$ for some $i \in \{1, \ldots, k\}$),
- an endpoint of B_2 ($p_m = c_j$ for some $j \in \{1, \ldots, l\}$), or
- a point of disagreement between B_1 and B_2 (either $p_m \in L_1$ and R_2 or $p_m \in R_1$ and L_2).

The shard intersection corresponding to $\text{mn}(N_1, N_2) = \text{mat}(\mathcal{W})$ is

$$
\Gamma_{\text{mn}(B_1, B_2)} = \{ \vec{x} \in \mathbb{R}^n : x_{p_0} = x_{p_1} = \cdots = x_{p_m},
\quad x_{p_0} \leq x_i \forall i \in (R_1 \setminus L_2) \cup (R_2 \setminus L_1),
\quad x_{p_0} \geq x_i \forall i \in (L_1 \setminus R_2) \cup (L_2 \setminus R_1) \}
$$

129
The shard intersection corresponding to $\rho(N_1) \lor \rho(N_2)$ is

$$
\Gamma_1 \cap \Gamma_2 = \{ \vec{x} \in \mathbb{R}^n : x_{b_0} = \cdots = x_{b_k}, x_{c_0} = \cdots = x_{c_l}, \forall i \in R_1, x_{b_0} \geq x_i \forall i \in L_1 \}
\cap \{ \vec{x} \in \mathbb{R}^n : x_{c_0} = \cdots = x_{c_l}, x_{c_0} \leq x_i \forall i \in R_2, x_{b_0} \geq x_i \forall i \in L_2 \}.
$$

We claim that the intersection $\Gamma_1 \cap \Gamma_2$ is contained in the subspace defined by the string of equations $x_{b_0} = \cdots = x_{b_k} = x_{c_0} = \cdots = x_{c_l}$. If B_1 and B_2 share an endpoint, then the claim is immediate. Otherwise, B_1 and B_2 must cross without sharing an endpoint, so there exists a pair of distinct points i and j such that $x_{b_0} \leq x_i$ in Γ_1 and $x_{c_0} \geq x_i$ in Γ_2, and $x_{b_0} \geq x_j$ in Γ_1 and $x_{c_0} \leq x_j$ in Γ_2. Thus, in $\Gamma_1 \cap \Gamma_2$ it must be that $x_{b_0} = x_i = x_j = x_{c_0}$, and the claim follows.

Now, the claim implies that

$$
\Gamma_1 \cap \Gamma_2 = \{ \vec{x} \in \mathbb{R}^n : x_{b_0} = \cdots = x_{b_k} = x_{c_0} = \cdots = x_{c_l}, x_{b_0} \leq x_i \forall i \in R_1, x_{b_0} \geq x_i \forall i \in L_1, x_{b_0} \leq x_i \forall i \in R_2, x_{b_0} \geq x_i \forall i \in L_2 \}.
$$

For any i in L_1 and R_2 or in R_1 and L_2, the inequalities $x_{b_0} \leq x_i$ and $x_{b_0} \geq x_i$ combine to give $x_{b_0} = x_i$. Thus $\Gamma_1 \cap \Gamma_2 = \Gamma_{\text{mat}(B_1, B_2)}$. \square

Lemma 3.3.18. If the woven block W is a union of m blocks B_1, \ldots, B_m, then

$$
\Gamma_{\text{mat}(W)} = \bigcap_{i \in [m]} \Gamma_{B_i}
$$

Proof. The proof proceeds by induction on the number of blocks in W. The nontrivial base case, when $m = 2$, is addressed by Proposition 3.3.17.

Suppose for each $k < m$, for any woven block W consisting of k blocks, $\Gamma_{\text{mat}(W)} = \bigcap_{i \in [k]} \Gamma_{B_i}$.

We wish to prove that if W is the union of m blocks, then $\Gamma_{\text{mat}(W)} = \bigcap_{i \in [m]} \Gamma_{B_i}$. Without loss of generality, B_{m-1} and B_m intersect, and at least one of the two blocks intersects with another block in W. We begin by considering the intersection of shard intersections for all blocks in W and explicitly consider the shard intersections for B_{m-1} and B_m separately from the remaining blocks:

$$
\bigcap_{i \in [m]} \Gamma_{B_i} = \left(\bigcap_{i \in [m-2]} \Gamma_{B_i} \right) \cap (\Gamma_{B_{m-1}} \cap \Gamma_{B_m})
$$

130
By Proposition 3.3.17, the intersection of $\Gamma_{B_{m-1}}$ and Γ_{B_m} can be rewritten to give

$$\bigcap_{i \in [m]} \Gamma_{B_i} = \left(\bigcap_{i \in [m-2]} \Gamma_{B_i} \right) \cap \left(\Gamma_{\text{mat}(B_{m-1}, B_m)} \right)$$

Since $\text{mat}(B_{m-1}, B_m)$ is a block, the right side of the equation above is the intersection of shard intersections corresponding to $m - 1$ blocks. Thus by the induction hypothesis,

$$\bigcap_{i \in [m]} \Gamma_{B_i} = \Gamma_{\text{mat}(B_1, \ldots, B_{m-2}, \text{mat}(B_{m-1}, B_m))}$$

It remains to show that $\text{mat}(B_1, \ldots, B_{m-2}, \text{mat}(B_{m-1}, B_m)) = \text{mat}(W)$.

We begin by considering $\text{mat}(B_{m-1}, B_m)$, with endpoints $b_0 < b_1 < \cdots < b_r$. Each b_i is either an endpoint of at least one of the blocks or a point of disagreement between the blocks, meaning B_{m-1} and B_m pass to opposite sides of b_i. Let R_M and L_M denote the set of points right and left of $\text{mat}(B_{m-1}, B_m)$, respectively. A point $c \in (b_0, b_r) \setminus \{b_1, \ldots, b_{r-1}\}$ is in R_M if one of B_{m-1} and B_m passes left of c and the other block is not right of it; similarly, c is in L_M if one of the blocks passes right of c and the other block is not left of it.

Next, we consider $\text{mat}(W)$. It has endpoints $p_0 < p_1 < \cdots < p_s$, each of which is either an endpoint of some original block B_i, for some $i \in \{1, \ldots, m\}$ or a point of disagreement between two blocks — there are two blocks B_i and B_j such that B_i has an arc left of p_k and and B_j has an arc right of p_k. The set of points right of $\text{mat}(W)$, which we denote R_w, consists of all non-endpoints that are right of some block B_i and are not left of another block B_j. Letting R_i and L_i denote the set of all points right and left of the block B_i, we can represent R_w as follows:

$$R_w = \{ r \in (p_0, p_s) \setminus \{p_1, \ldots, p_{s-1}\} : \bigcup_{i \in [k]} r \in R_i \setminus (\bigcup_{j \neq i} L_j) \}.$$

The set of all points left of $\text{mat}(W)$, denoted L_w can be represented similarly:

$$L_w = \{ l \in (p_0, p_s) \setminus \{p_1, \ldots, p_{s-1}\} : \bigcup_{i \in [k]} l \in L_i \setminus (\bigcup_{j \neq i} R_j) \}.$$

Claim: There is some $j \in \{1, \ldots, m - 2\}$ such that $\text{mat}(B_{m-1}, B_m)$ intersects B_j.

Proof. At least one of B_{m-1} and B_m, say B_m, intersects B_j for some $j \in \{1, \ldots, m - 2\}$. We will show that $\text{mat}(B_{m-1}, B_m)$ also intersects B_j.

If B_m intersects with B_j at an endpoint q, then $\text{mat}(B_{m-1}, B_m)$ will also have q as an
endpoint and thus also intersect with B_j at q. If B_m and B_j intersect in the interior of two arcs, there are distinct points k and l such that B_m is left of B_j at k and right of B_j at l. We consider three cases of B_j’s behavior: when B_j passes right of k and left of l, when it has k as an endpoint and passes left of l (or has l as an endpoint and passes right of k), and when it has both k and l as endpoints.

Case 1. If B_j passes right of k and left of l, then B_m must be weakly left of k and weakly right of l. $\text{mat}(B_{m-1}, B_m)$ may agree with B_m at either or both points; if it does not agree with B_m at a point, it differs by having the point as an endpoint. Regardless, it will also be weakly left of k and weakly right of l and thus still intersects B_j in the interior of two arcs.

Case 2. If B_j has k as an endpoint and passes left of l, then B_m must pass left of k and be weakly right of l. $\text{mat}(B_{m-1}, B_m)$ may agree with B_m at either or both points; if it does not agree with B_m at a point, it differs by having the point as an endpoint. If k is an endpoint of $\text{mat}(B_{m-1}, B_m)$, then the block intersects B_j at an endpoint. Otherwise, it passes left of k and weakly right of l and thus still intersects B_j in the interior of two arcs.

Case 3. If B_j has k and l as endpoints, then B_m must pass left of k and right of l. $\text{mat}(B_{m-1}, B_m)$ may agree with B_m at either or both points; if it does not agree with B_m at a point, it differs by having the point as an endpoint. If either k or l is an endpoint of $\text{mat}(B_{m-1}, B_m)$, then the block intersects B_j at an endpoint. Otherwise, it passes left of k and right of l and thus still intersects B_j in the interior of two arcs. \(\square\)(Claim)

The claim shows that the set of blocks \{\(B_1, \ldots, B_{m-2}, \text{mat}(B_{m-1}, B_m)\)\} is a single woven block. Let $B_T = \text{mat}(B_1, \ldots, B_{m-2}, \text{mat}(B_{m-1}, B_m))$, the result of matting this new woven block. B_T has endpoints $c_0 < c_1 < \cdots < c_t$, where each c_i is an endpoint of a block B_i for $i \in \{1, \ldots, m-2\}$, an endpoint of $\text{mat}(B_{m-1}, B_m)$, or a point of disagreement between either B_i and B_j with $i, j \in \{1, \ldots, m-2\}$ or between some B_i and $\text{mat}(B_{m-1}, B_m)$. Let R_T and L_T denote the sets of points right and left of B_T, respectively. A point $q \in (c_0, c_t) \setminus \{c_1, \ldots, c_{t-1}\}$ is in R_T if it is either in R_i for some block B_i and in neither L_M nor L_j for any block B_j or if q is in R_M and not in L_i for any block B_i. Likewise, q is in L_T if it is either in L_i for some block B_i and in neither R_M nor R_j for any block B_j or if q is in L_M and not in R_i for any block B_i.

It remains to show that the sets of endpoints, points right of and points left of the twice-matted block B_T exactly match the corresponding sets for $\text{mat}(\mathcal{W})$. The bottom endpoint of B_T, c_0, is the bottom endpoint of either some B_i with $i \in \{1, \ldots, m-2\}$ or of $\text{mat}(B_{m-1}, B_m)$, in which case it is the bottom endpoint of either B_{m-1} or B_m. By similar reasoning, c_t is the top endpoint of some B_i for $i \in \{1, \ldots, m\}$. If c_k is an endpoint in (c_0, c_t), there are several possibilities.
Case 1. c_k is an endpoint of some B_i with $i \in \{1, \ldots, m - 2\}$. It is obvious in this case that c_k is also an endpoint of $\mat(W)$.

Case 2. c_k is an endpoint of $\mat(B_{m-1}, B_m)$. In this case, c_k may be an endpoint of B_{m-1} or B_m and it is clearly an endpoint of $\mat(W)$. Otherwise, c_k may be a point of disagreement between B_{m-1} and B_m. Since both blocks are in W, c_k is also a point of disagreement between two blocks of W and thus an endpoint of $\mat(W)$.

Case 3. c_k is a point of disagreement between B_i and B_j with i and j in $\{1, \ldots, m - 2\}$. Since the blocks are in W, c_k is also a point of disagreement in W and thus an endpoint of $\mat(W)$.

Case 4. c_k is a point of disagreement between some B_i and $\mat(B_{m-1}, B_m)$ with i in $\{1, \ldots, m - 2\}$. In order for $\mat(B_{m-1}, B_m)$ to pass to the opposite side of c_k as B_i, at least one of B_{m-1} and B_m must pass to the opposite side of c_k as B_i. Thus c_k is a point of disagreement between B_i and at least one of B_{m-1} and B_m. Since all three of the blocks are in W, c_k is also a point of disagreement in W and thus an endpoint of $\mat(W)$.

The above cases cover all ways that endpoints can occur in $\mat(W)$: as an endpoint of an original block or as a point of disagreement between two blocks in W, where each original block may be in either $\{B_1, \ldots, B_{m-2}\}$ or $\{B_{m-1}, B_m\}$.

Let R_T denote the the set of points right of the twice-matted block B_T. A point $q \in (c_0, c_k) \setminus \{c_1, \ldots, c_{k-1}\}$ may be in R_T if it is in R_i for some block B_i with $i \in \{1, \ldots, m-2\}$ and in neither L_M nor L_j for any $j \neq i$ in $\{1, \ldots, m - 2\}$. If q is not in L_M and not an endpoint of B_T, q must not be left of B_{m-1} or B_m. Alternatively, q may be in R_T if it is in R_M and not in L_i for any $i \in \{1, \ldots, m - 2\}$. If q is in R_M, it must be right of either B_{m-1} or B_m and not left of either block. In either case, q is in R_i for some $i \in \{1, \ldots, m\}$ and not in any L_j. This is precisely what is required for q to be in R_w. The argument that L_T (the set of points left of B_T)and L_w are equal sets follows by the same logic.

Theorem 3.3.19. Given two permutations σ and τ in S_n with noncrossing arc diagrams $N_1 = \delta(\sigma)$ and $N_2 = \delta(\tau)$, their join in $\Psi(A_{n-1})$ is the permutation corresponding to $\mn(N_1, N_2)$.

Proof. By definition of $\mn(N_1, N_2)$, the matting process in step (2) may need to be repeated several times before the resulting set of arcs is a noncrossing arc diagram.

Suppose $\mn(N_1, N_2)$ requires k repetitions of the matting process to result in a noncrossing arc diagram. Let M^i denote the ith iteration of the matting process, so $M^0 = N_1 \cup N_2$ and $M^k = \mn(N_1, N_2)$. Thus, $\Gamma_{\mn(N_1, N_2)} = \Gamma_{M^k}$. Since the matting process must be repeated k times, M^k is a noncrossing arc diagram and M^{k-1} is not a valid noncrossing arc diagram.
diagram. Since \(M^{k-1} \) is not a noncrossing arc diagram, it consists of some number of woven blocks. As \(M^k = \text{mat}(M^{k-1}) \) and by Lemma 3.3.18, we can write \(\Gamma_{M^k} \) as the intersection of the shard intersections corresponding to the blocks making up \(M^{k-1} \):

\[
\Gamma_{M^k} = \Gamma_{\text{mat}(M^{k-1})} = \bigcap_{B \in M^{k-1}} \Gamma_B .
\]

If \(k \geq 2 \), then the shard intersection corresponding to each block \(B \) in \(M^{k-1} \) can likewise be written as an intersection of the shard intersections corresponding to all blocks of \(M^{k-2} \) which are part of the woven block that is matted to form \(B \). That is,

\[
\Gamma_{M^k} = \bigcap_{B \in M^{k-1}} \left(\bigcap_{C \in M^{k-2}(B)} \left(\bigcap_{\text{mat}(W) \in M^1} \Gamma_{\text{mat}(W)} \right) \right) .
\]

Continuing in this manner, we can write \(\Gamma_{M^k} \) as an intersection of shard intersections coming from blocks in the first matting of \(N_1 \cup N_2 \). We write each such block as \(\text{mat}(W) \), where \(W \) is a woven block of \(N_1 \cup N_2 \).

\[
\Gamma_{M^k} = \bigcap_{B \in M^{k-1}} \left(\bigcap_{C \in M^{k-2}(B)} \left(\bigcap_{\text{mat}(W) \in M^1} \Gamma_{\text{mat}(W)} \right) \right) ,
\]

and by Lemma 3.3.18, the shard intersection \(\Gamma_{\text{mat}(W)} \) for each woven block can be written as an intersection of the shard intersections of the blocks in \(W \):

\[
\Gamma_{M^k} = \bigcap_{B \in M^{k-1}} \left(\bigcap_{C \in M^{k-2}(B)} \left(\bigcap_{\text{mat}(W) \in M^1} \Gamma_{\text{mat}(W)} \right) \right) ,
\]

Each block in the union of \(N_1 \) and \(N_2 \) is part of some woven block, and each woven block in \(M^i \) becomes part of some matted block \(M^{i+1} \) for each \(i \in \{0, \ldots, k-1\} \). Thus, the repeated intersection notation in the previous equation can be collapsed to give

\[
\Gamma_{M^k} = \bigcap_{B_i \in N_1 \cup N_2} \Gamma_{B_i} = \bigcap_{B_i \in N_1} \Gamma_{B_i} \cap \bigcap_{C_j \in N_2} \Gamma_{B_i} .
\]

Finally, by Lemma 3.3.16, the intersections on the right side of the equation above can be rewritten as \(\Gamma_{N_1} \) and \(\Gamma_{N_2} \). Since \(M^k \) was defined to be \(\text{mn}(N_1, N_2) \), we conclude that \(\Gamma_{\text{mn}(N_1, N_2)} = \Gamma_{N_1} \cap \Gamma_{N_2} \), so the proof is complete. \(\Box \)
3.4 Type B

3.4.1 Signed permutations and noncrossing arc diagrams

We describe two models of noncrossing arc diagrams of type B in Section 3.4.1. A signed permutation of $\pm [n]$ is an automorphism on the set $\{\pm 1, \pm 2, \ldots, \pm n\}$, with the requirement that for every i in the set, $\pi(-i) = -\pi(i)$, or in the shorthand established in type A, $\pi_{-i} = -\pi_i$. The Coxeter group of type B_n can be realized as the group of signed permutations of $\pm [n]$. As in type A, we will consider noncrossing arc diagrams corresponding to signed permutations and describe certain operations on noncrossing arc diagrams.

A symmetric model

As with a permutation, we can construct one-line notation for a signed permutation π of $\pm [n]$ by writing what each of the elements in the set maps to under π. To mark the symmetry of the signed permutation, we include a vertical line $|$ between π_{-1} and π_1. We refer to this as the long one-line notation for a signed permutation. We discuss the short one-line notation in the next section.

We will construct noncrossing arc diagrams on $2n$ points on a vertical line, numbered from $-n$ at the bottom, in order up to -1, then from 1 up to n at the top so that there is a half-turn rotation of the plane that sends each point i to $-i$. The map δ from type A can be modified to map signed permutations on $\pm [n]$ to noncrossing arc diagrams on these $2n$ points. Specifically, δ plots points (i, π_i) on the Cartesian plane, then creates a line segment between a point and the point immediately to its right if the left point is above the right point. Once all necessary line segments have been drawn, the map brings all the points into a vertical line, letting all the line segments bend so that they stay to the correct side of the points they pass left or right of. This construction is presented in work by Barnard and Reading [6] as well as Albertin and Pilaud [1]. Additionally, recent work in Chapter 2 presents type-B lattice-theoretic results analogous to those proven for type A in [35].

The symmetry of signed permutations is preserved by δ to yield a symmetry of noncrossing arc diagrams on $2n$ points. Recall that for a permutation, descents are pairs of consecutive entries (π_i, π_{i+1}) such that $\pi_i \geq \pi_{i+1}$. For signed permutations, the idea of descents is altered to account for their symmetry.

If for some $i \in \{1, \ldots, n-1\}$ π_i is greater than π_{i+1}, the symmetry of signed permutations implies that π_{-i-1} is also greater than π_{-i}. Together, the two pairs (π_i, π_{i+1}) and (π_{-i-1}, π_{-i}) are considered a single type-B descent. Additionally, an entry π_j satisfying $\pi_{i+1} < \pi_j < \pi_i$ occurs after π_{i+1} if and only if the entry $\pi_{-j} = -\pi_j$ satisfies $\pi_1 < \pi_j < \pi_{-1}$.

135
and occurs before π_{-i-1}. This type of descent, therefore, corresponds to a pair of arcs $\{\alpha, -\alpha\}$ which are symmetric to one another under the half-turn rotational symmetry of the numbered points. The arc α from π_i to π_{i+1} passes right of a point π_j if and only if the arc symmetric to it, $-\alpha$, from π_{-i-1} to π_{-i} passes left of π_{-j}.

The other kind of type-B descent is a pair (π_1, π_{-1}) such that π_1 is negative. An entry π_j satisfying $\pi_1 < \pi_j < \pi_{-1}$ occurs after π_1 if and only if the entry π_{-j} satisfies $\pi_1 < \pi_j < \pi_{-1}$ and occurs before π_{-1}. Therefore, this type of descent corresponds to a single arc from π_{-1} to π_1 which is itself symmetric under the half-turn symmetry of the numbered points, passing right of π_j if and only if it passes left of π_{-j}.

We see that δ maps the set of signed permutations bijectively to the set of centrally symmetric noncrossing arc diagrams on $2n$ points. For example, the symmetric noncrossing arc diagrams of type B_2 are shown in Fig. 3.21.

The idea of a block translates naturally from type A to the symmetric construction of type-B noncrossing arc diagrams. In this construction, there may be a centrally symmetric pair of type-A blocks, one having only positive endpoints and the other having only negative endpoints. Alternatively, a centrally symmetric pair of blocks may overlap one another: each block has at least one negative and at least one positive endpoint. Finally, a block may itself be centrally symmetric, consisting of a single symmetric arc connecting a centrally symmetric pair of collections of type-A arcs, one connected to the top of the symmetric arc and one connected to the bottom of it.

We now consider how the cooperation and matting processes (Definitions 3.3.8 and 3.3.10) apply to pairs of symmetric noncrossing arc diagrams on $2n$ points. When N_1 and N_2 are centrally symmetric, the blocks B in N_1 and C in N_2 pass weakly left of a point i if and only if the blocks or their symmetric partners pass weakly right of $-i$. Similarly, a woven block W in $N_1 \cup N_2$ passes right of a point i if and only if either W or its symmetric partner passes left of $-i$. Thus the following lemmas are immediate.

Lemma 3.4.1. If N_1 and N_2 are symmetric noncrossing arc diagrams on $2n$ points, then
\(cn(N_1, N_2) \) is a symmetric noncrossing arc diagram on \(2n \) points.

Lemma 3.4.2. If \(N_1 \) and \(N_2 \) are symmetric noncrossing arc diagrams on \(2n \) points, then \(mn(N_1, N_2) \) is a symmetric noncrossing arc diagram on \(2n \) points.

An orbifold model

As mentioned in Section 3.4.1, we can construct a short one-line notation for each signed permutation \(\pi \) of \(\pm [n] \) along with its long one-line notation. The long one-line notation is somewhat redundant since \(\pi_{-i} = -\pi_i \) for each \(i \in [n] \), and the short one-line notation eliminates this redundancy. The **short one-line notation** or **window notation** of \(\pi \) consists only of the images of \(1 \) through \(n \) in order, \(\pi_1 \cdots \pi_n \).

As we consider type-B analogues of noncrossing arc diagrams, a natural question arises: Is there a way to exploit the symmetry of signed permutations to make more “compact” noncrossing arc diagrams? Fortunately, the answer to this question is yes, and though the construction of these diagrams requires some care, it also sets us up for a satisfyingly short and self-evident answer to the central question at hand: Is \(\Psi(A_n) \) a sublattice of \(\Psi(B_n) \)?

With that motivation, let’s consider this new construction of noncrossing arc diagrams.

Following Chapter 2, we take advantage of the symmetry of the type-B noncrossing arc diagrams on \(2n \) points by “modding out” by the half-turn rotation under which all such diagrams are symmetric. The underlying structure of the new construction consists of \(n + 1 \) distinct points on a vertical line, with the lowest point marked by the symbol \(\times \) (the **orbifold point**) and the \(n \) points above \(\times \) identified with \(1 \) through \(n \) in order from bottom to top.

Recall that type-B descents occur in one of two forms: as a pair \((\pi_i, \pi_{i+1})\) and \((\pi_{i-1}, \pi_{i-1})\) or as a single descent \((\pi_{-1}, \pi_1)\). We define three kinds of type-B arcs based on three types of type-B descents. The first two types are ways in which a descent as a pair may occur.

In the first type of descent, \(\pi_i \) and \(\pi_{i+1} \) have the same sign. This results in a symmetric pair of arcs where one arc has only positive endpoints and the other arc has only negative endpoints. When we mod out by half-turn symmetry, this pair becomes a single arc from \(|\pi_i| \) to \(|\pi_{i+1}| \). We this a **type-A arc**, as it meets exactly the criteria that curve must meet to be an arc in the type-A sense.

In the second type of descent, \(\pi_i \) and \(\pi_{i+1} \) have opposite signs. This results in a symmetric pair of arcs where each arc in the pair will have one positive and one negative endpoint, so the two arcs overlap. When we mod out by half-turn symmetry, this pair becomes a single arc which has \(\pi_i \) as an endpoint, goes monotone down to the right of the point \(\times \), passes in a half-circle clockwise around \(\times \), and goes monotone up to the endpoint \(|\pi_{i+1}| \),
never crossing itself. By definition of signed permutations, \(\pi_i \neq |\pi_{i+1}| \), so the arc has two distinct endpoints. We call any arc meeting this description a **long arc**.

The third type of descent is of the form \((\pi_{-1}, \pi_1)\). The resulting arc from \(\pi_{-1}\) to \(\pi_1\) is itself centrally symmetric. When we mod out by half-turn symmetry, this arc becomes an arc from \(\pi_{-1}\) to the point \(\times\). We call such an arc an **orbifold arc**.

Any type-A, long, or orbifold arc is a **type-B arc**. A collection of type-B arcs constitutes a **type-B noncrossing arc diagram** if and only if each pair of type-B arcs satisfies the same compatibility conditions as those stated in type A: no crossing along interiors of arcs and no sharing of upper endpoints or lower endpoints. We include \(\times\) in consideration as a lower endpoint in considering compatibility: if there are two orbifold arcs in a collection of arcs, it is not a noncrossing arc diagram. We also use the convention that both endpoints of a long arc to be upper endpoints.

Orbifold representations of all type-B noncrossing arc diagrams for \(B_2\) and \(B_3\) are in Fig. 3.22 and Fig. 3.23. To see the relationship between the symmetric and orbifold constructions, compare Fig. 3.22 with Fig. 3.21.

As with arcs, a **type-B block** in a type-B noncrossing arc diagram may occur in one of three forms.

The first form is the simplest: The block may consist only of type-A arcs, in which case we call it a **type-A block**. Its numbered endpoints \(p, q_1, \ldots, q_s, r\), with \(p < q_1 < \cdots < q_s < r\), correspond to the descending run \(rq_s \cdots q_1 p\) or \((-p)(-q_1) \cdots (-q_s)(-r)\) in the window notation of a signed permutation \(\pi\). Which descending run appears in the window notation depends on the block’s position relative to other blocks in a given diagram, and we will introduce the language needed to make this statement less vague shortly.

In the second form, the block has one orbifold arc with upper endpoint \(q_1\), along with some (or no) type-A arcs; we call this an **orbifold block**. Its numbered endpoints \(q_1, \ldots, q_s\), with \(q_1 < \cdots < q_s\), correspond to the descending run \(q_s \cdots q_1(-q_1) \cdots (-q_s)\) in the long one-line notation with the line \(|\) between \(q_1\) and \((-q_1)\). In the window notation, the first \(s\) entries are the second half of the descending run, \((-q_1) \cdots (-q_s)\).

In the third form, the block has one long arc along with some (or no) type-A arcs; we
call this a long block. Its numbered endpoints $p, q_1, \ldots, q_l, q_{l+1}, \ldots, q_{s-1}, r$, all distinct and with $p = q_0 > q_1 > \cdots > q_l > 0 < q_{l+1} < \cdots < q_s = r$ such that p, q_1, \ldots, q_l are on the left side of the block and $q_{l+1}, \ldots, q_{s-1}, r$ are on the right side of the block, correspond to the descending run $r q_{s-1} \cdots q_{l+1} (-q_l) \cdots (-q_1) (-p)$ in the window notation. It is possible that there are no type-A arcs on the left side of the block (i.e. $l = 0$) and/or no type-A arcs on the right side of the block (i.e. $l + 1 = s$).

Our next objective is to present type-B versions of cooperative and matted noncrossing arc diagrams in this orbifold construction. Recall that in type A, the cooperation process included going from an upper endpoint shared by a pair of blocks to a lower endpoint shared by the pair of blocks. However, because the orbifold model of noncrossing arc diagrams conflates the top and bottom of the symmetric model, defining and using upper and lower endpoints is perhaps more trouble than it is worth. Instead, we will refer to endpoints of blocks in generality — an endpoint of a nontrivial block is an endpoint of some arc in the block. For an orbifold block, we count \times as an endpoint.

Definition 3.4.3. Let N_1 and N_2 be two type-B noncrossing arc diagrams on n points. The type-B cooperative noncrossing arc diagram of N_1 and N_2, denoted $cn_B(N_1, N_2)$, consists of all arcs α constructed as follows. An arc α exists only when there exists a pair of
points \(r \in [n] \) and \(p \in [n] \cup \{\times\} \), each an endpoint of a block \(B \) in \(N_1 \) and a block \(C \) in \(N_2 \), satisfying one of the following conditions:

1. \(p \in [n] \) such that \(r \) and \(p \) are connected by a sequence of type-A arcs in \(B \) and also by a sequence of type-A arcs in \(C \) that pass weakly to the same side of each point between \(r \) and \(p \), but the two sequences do not share any endpoint between \(r \) and \(p \).

2. \(p = \times \) and \(B \) and \(C \) are orbifold blocks such that \(r \) is the lowest numbered endpoint shared by the two blocks, and both blocks pass weakly to the same side of every numbered point below \(r \).

3. \(p \in [n] \) and \(B \) and \(C \) are long blocks such that \(r \) and \(p \) are the lowest endpoints shared by the right and left sides respectively of the two blocks, the right sides of \(B \) and \(C \) pass weakly to the same side of every numbered point below \(r \), and the left sides of \(B \) and \(C \) pass weakly to the same side of every numbered point below \(p \).

4. \(p \in [n] \) and \(B \) and \(C \) are a long block and an orbifold block such that \(r \) and \(p \) are endpoints on the right side and left side respectively of the long block and endpoints of the orbifold block, and the orbifold block passes weakly to the same side of each numbered point below \(r \) as the right side of the long block and weakly to the same side of each numbered point below \(p \) as the left side of the long block, but the orbifold block does not share any endpoint below \(p \) on the left side of the long block or below \(r \) on the right side of the long block.

If the requirements above are satisfied, \(\alpha \) is the arc that follows \(B \) and \(C \) from \(r \) to \(p \) and passes to the same side of each point between \(r \) and \(p \) (possibly including \(\times \)) as the appropriate side of \(B \) and of \(C \).
Examples of arcs resulting from each condition of Definition 3.4.3 are included in Fig. 3.24.

Lemma 3.4.4. Let N_1 and N_2 be type-B noncrossing arc diagrams on n points, and let M_1 and M_2 be the corresponding symmetric noncrossing arc diagrams on $2n$ points. Then $\text{cn}(M_1, M_2)$ is the symmetric noncrossing arc diagram on $2n$ points corresponding to $\text{cn}_B(N_1, N_2)$.

Proof. In requirement (1) of Definition 3.4.3, the arcs connecting r and p are all type-A. Each of these arcs corresponds to a pair of arcs in M_1 and M_2, and the weak agreement of the sequence of arcs connecting r and p (and those connecting $-r$ and $-p$ in M_1 and M_2) is precisely the weak agreement required for an arc to exist in the type-A $\text{cn}(M_1, M_2)$. The type-A cooperative process results in a non-overlapping pair of arcs in $\text{cn}(M_1, M_2)$ whose image under modding out by rotational symmetry is the arc from r to p which agrees with the type-A arcs connecting them.

In requirement (2), the symmetric versions of B and C are centrally symmetric blocks which weakly agree between r and $-r$ but share no endpoint between r and $-r$. The type-A cooperative process results in a single centrally symmetric arc from r to $-r$ in $\text{cn}(M_1, M_2)$ whose image under modding out by rotational symmetry is the arc from r to \times which agrees with the arcs connecting them.

In requirement (3), the symmetric versions of B and C are centrally symmetric pairs of blocks whose right blocks have endpoints r and $-p$ and whose left blocks have endpoints p and $-r$. The right blocks weakly agree between r and $-p$ but do not share an endpoint between r and $-p$. The type-A cooperative process results in an overlapping centrally symmetric pair of arcs whose right arc goes from r to $-p$ and whose left arc goes from p to $-r$. The image of this pair of arcs under modding out by rotational symmetry is the long arc from r to p which has r as its right endpoint and p as its left endpoint and which agrees with the right sides of B and C below r and the left sides of the two blocks below p.

In requirement (4), the symmetric version of either B or C is an overlapping centrally symmetric pair of blocks whose right block has endpoints r and $-p$, and the symmetric version of either C or B is a centrally symmetric block which has $-r$, $-p$, and p, and r among its endpoints. As in (3), the type-A cooperative process results in an overlapping centrally symmetric pair of arcs whose right arc goes from r to $-p$ and agrees with the symmetric block and the right block of the overlapping pair. The the image of this pair of arcs under modding out by rotational symmetry is the long arc from r to p which has r as its right endpoint and p as its left endpoint and which agrees with B and C below r on the right side and below p on the left side.

Next, we define the matted noncrossing arc diagram in type B. As in type A, its
construction consists of matting woven blocks. Before stating the definition, we describe the
three forms that type-B woven blocks may take.

A collection C of type-B arcs on n points which is connected may take one of three
forms: It is type-A if it has no orbifold or long arcs. It is bilateral if it contains at least one
long block, does not contain an orbifold block, and it has well-defined right and left sides: the
right side of C is the union of the right sides of all long blocks in C and any type-A blocks
that are connected to the right side of a long block, the left side of C is defined similarly,
and no part of any arc on the right side is left of any arc on the left side (and vice versa).
Otherwise, the collection is called unilateral.

Definition 3.4.5. Let N_1 and N_2 be two type-B noncrossing arc diagrams on n points.
The type-B matted noncrossing arc diagram of N_1 and N_2, denoted $\text{mn}_B(N_1, N_2)$, is
constructed as follows:

1. Consider the union of N_1 and N_2 on the same set of n numbered points and orbifold
 point \times. As in type A, the connected components of this union are called woven
 blocks.

2. For each woven block W, there is a corresponding block $\text{mat}_B(W)$, the result of “matting”
 W, described as follows:

 - Each endpoint of W (including possibly \times) is an endpoint of $\text{mat}_B(W)$.
 - If W is a type-A woven block, then $\text{mat}_B(W)$ agrees with $\text{mat}(W)$ as defined in
 Definition 3.3.10.
 - If W is bilateral with top-left endpoint l and top-right endpoint r, then $\text{mat}_B(W)$
 is a long block. If all arcs in the right side of W pass to the same side of a point
 $q \in [1, r)$, the right side of $\text{mat}_B(W)$ passes to that side of q; likewise, if all arcs
 in the left side of W pass to the same side of a point $q \in [1, l)$, the left side of
 $\text{mat}_B(W)$ passes to that side of q. If two arcs in the right side of $\text{mat}_B(W)$ pass
 to opposite sides of a point $q \in [1, r)$, then q is an endpoint of the right side of
 $\text{mat}_B(W)$; similarly, if two arcs in the left side of W pass to opposite sides of a
 point $q \in [1, l)$, then q is an endpoint of the left side of $\text{mat}_B(W)$.
 - If W is unilateral with highest endpoint r, then $\text{mat}_B(W)$ is an orbifold block. If
 all arcs in W pass to the same side of a point $q \in [1, r)$, an arc in $\text{mat}_B(W)$
 passes to that side of q. If any arcs in W pass to opposite sides of a point $q \in [1, r)$,
 q is an endpoint of $\text{mat}_B(W)$.

3. If steps (1) and (2) yield a valid noncrossing arc diagram, stop. If not, then form woven
 blocks from the arcs created and repeat step (2).
Lemma 3.4.6. Let N_1 and N_2 be type-B noncrossing arc diagrams on n points, and let M_1 and M_2 be the corresponding symmetric noncrossing arc diagrams on $2n$ points. Then $\text{mn}(M_1, M_2)$ is the symmetric noncrossing arc diagram on $2n$ points corresponding to $\text{mn}_B(N_1, N_2)$.

Proof. Any woven block \mathcal{W} in the orbifold setting corresponds to either a single centrally symmetric woven block \mathcal{V} or to a centrally symmetric pair of woven blocks $\{\mathcal{V}, -\mathcal{V}\}$.

We consider the three types of woven blocks in the union of N_1 and N_2 and confirm that for each type, the matting process described in Step (2) of Definition 3.4.5 agrees with the matting process in the symmetric setting, as described in Definition 3.3.10.

A type-A woven block \mathcal{W} in the orbifold setting corresponds to a non-overlapping symmetric pair of woven blocks $\{\mathcal{V}, -\mathcal{V}\}$ in the symmetric setting. The matting process on \mathcal{V} is exactly the matting process in type A, and the matting process on $-\mathcal{V}$ yields a block which is symmetric to $\text{mat}(\mathcal{V})$. The image of this pair of blocks under modding out by rotational symmetry is the type-A block on n points exactly matching $\text{mat}(\mathcal{V})$.

A bilateral woven block \mathcal{W} in the orbifold setting corresponds to an overlapping symmetric pair of woven blocks $\{\mathcal{V}, -\mathcal{V}\}$ in the symmetric setting. Because \mathcal{W} has right
and left sides which remain strictly right and left of one another, V and $-V$ are disjoint and one of the woven blocks must be right of the other. Let V denote the right woven block, so it has highest endpoint r and lowest endpoint $-l$; the left woven block $-V$ has highest endpoint l and lowest endpoint $-r$. The two blocks $\text{mat}(V)$ and $\text{mat}(-V)$ will be an overlapping symmetric pair of blocks, where $\text{mat}(V)$ has top endpoint r and bottom endpoint $-l$, and $\text{mat}(V)$ is right of $\text{mat}(-V)$. The image of this pair under modding out by rotational symmetry is the long block with top-left endpoint l and top-right endpoint r whose right side agrees with the portion of $\text{mat}(V)$ along the interval $[1, r]$ and whose left side agrees with the portion of $\text{mat}(-V)$ along the interval $[1, l]$.

A unilateral woven block W in the orbifold setting corresponds to a centrally symmetric woven block V in the symmetric setting. Because V is centrally symmetric with top endpoint r and bottom endpoint $-r$, $\text{mat}(V)$ is also centrally symmetric and has the same top and bottom endpoints. The image of $\text{mat}(V)$ under modding out by rotational symmetry is the orbifold arc whose highest endpoint is r which agrees with the top half of $\text{mat}(V)$.

3.4.2 Shard intersection order of type B

Recall that a Coxeter group of type B_n can be realized as the group of signed permutations of $\pm[n]$. As we did in type A, we begin by discussing the geometric realization of the type B_n Coxeter group.

The hyperplane corresponding to the generator $s_0 = (-1, 1)$ is $H_1 = \{ \vec{x} \in \mathbb{R}^n : x_1 = -x_1 \}$. For $i \in \{1, \ldots, n-1\}$, the hyperplane corresponding to the generator $s_i = (i \ i+1)$ is $H_i = \{ \vec{x} \in \mathbb{R}^n : x_i = x_{i+1} \}$, as in type A. The natural choice for the base region B in the Coxeter arrangement $A(B_n)$ is the region containing $[1, 2, \ldots, n+1]$. We often write x_{-i} instead of $-x_i$, as this notation agrees nicely with the symmetry of signed permutations. As in type A, in order to have the action of reflection across hyperplanes agree with the right weak order on B_n, the region corresponding to the signed permutation π with window notation $\pi_1 \cdots \pi_n$ is $\{ \vec{x} \in \mathbb{R}^n : x_{\pi_1} \leq x_{\pi_2} \leq \cdots \leq x_{\pi_n} \}$.

Just as we have characterized the meet and join in the shard intersection order of type A in terms of noncrossing arc diagrams, we want to understand the shard intersection order of type B in terms of noncrossing arc diagrams, first in the centrally symmetric model and then in the orbifold model. The set of all permutations of $\pm[n]$ is a Coxeter group of type A_{2n-1}. The signed permutations are precisely the permutations that are fixed under the map that sends $\pi_{-n} \cdots \pi_{-1} \pi_1 \cdots \pi_n$ to $(-\pi_n) \cdots (-\pi_1)(-\pi_{-1}) \cdots (-\pi_{-n})$. This map is conjugation by w_0 in the type-A Coxeter group, which is an automorphism of the shard intersection order. It is a known lattice theoretic result that the set of fixed points of a
lattice automorphism $\eta : L \to L$ forms a sublattice of L. In light of this result, the following proposition is immediate.

Proposition 3.4.7. The shard intersection order on the Coxeter group of type B_n is a sublattice of the shard intersection order on the Coxeter group of type A_{2n-1}.

Proposition 3.4.7 says that the meet and join operations in $\Psi(B_n)$ are precisely the meet and join in $\Psi(A_{2n-1})$. The two theorems that follow are therefore immediate from Theorems 3.3.15 and 3.3.19 and Proposition 3.4.7.

Theorem 3.4.8. Given two signed permutations σ and τ of $\pm [n]$ with centrally symmetric noncrossing arc diagrams $M_1 = \delta(\sigma)$ and $M_2 = \delta(\tau)$, their meet in $\Psi(B_n)$ is the signed permutation corresponding to $\pi_{\text{cn}}(M_1, M_2)$.

Theorem 3.4.9. Given two signed permutations σ and τ of $\pm [n]$ with centrally symmetric noncrossing arc diagrams $M_1 = \delta(\sigma)$ and $M_2 = \delta(\tau)$, their join in $\Psi(B_n)$ is the signed permutation corresponding to $\pi_{\text{mn}}(M_1, M_2)$.

With this understanding of the shard intersection order of type B in terms of symmetric noncrossing arc diagrams, we now synthesize the results above using the orbifold construction of type-B noncrossing arc diagrams. The reason for this is that the orbifold construction has advantages that can be leveraged to better understand the shard intersection order of type B. The first and most obvious advantage is that the grading of $\Psi(B_n)$ can be framed more succinctly in the orbifold construction than the symmetric construction. As stated by Petersen in [28, Observation 4], the rank of a signed permutation in $\Psi(B_n)$ is given by its descent number, the number of type-B descents. As discussed in Section 3.4.1, each type-B descent in a signed permutation π corresponds either to a single symmetric arc or to a symmetric pair in the symmetric noncrossing arc diagram. Thus, from the symmetric perspective, the shard intersection order is graded by the sum of the number of symmetric arcs and the number of pairs of symmetric arcs. In contrast, in the orbifold construction, each type-B descent corresponds to exactly one arc. The following proposition is a restatement of Petersen’s observation from the simpler orbifold perspective, and is immediate.

Proposition 3.4.10. For any $\pi \in B_n$, the rank of π in $\Psi(B_n)$ is equal to the number of arcs in the type-B noncrossing arc diagram corresponding to π.

The shard intersection order of type B_2, realized both as symmetric noncrossing arc diagrams on 4 points and as type-B noncrossing arc diagrams on 2 points, is pictured in Fig. 3.27. Even in this small example, the grading of $\Psi(B_2)$ is more easily seen in the orbifold construction.
The second, less obvious advantage is that the orbifold construction is suggestive of (and indeed matches) a nice embedding of the lattice $\Psi(A_n)$ into the $\Psi(B_n)$, which we discuss in Section 3.5.1. As a preface to that discussion, we note that 24 of the 48 type-B noncrossing arc diagrams on 3 points in $\Psi(B_3)$, as seen in Fig. 3.28, look like type-A noncrossing arc diagrams on 4 points, except that the lowest point in the diagram is \times instead of the numbered point 1.

Combining the results of Lemmas 3.4.4 and 3.4.6, which state that cooperation and matting commute with modding out by half-turn symmetry, with Proposition 3.4.7, we obtain the following theorems in type B which are analogous to Theorems 3.3.15 and 3.3.19.

Theorem 3.4.11. Given two signed permutations σ and τ with type-B noncrossing arc diagrams $N_1 = \delta^\circ(\sigma)$ and $N_2 = \delta^\circ(\tau)$, their meet in $\Psi(B_n)$ is the signed permutation corresponding to $\text{cn}_B(N_1, N_2)$.

Theorem 3.4.12. Given two signed permutations σ and τ with type-B noncrossing arc diagrams $N_1 = \delta^\circ(\sigma)$ and $N_2 = \delta^\circ(\tau)$, their join in $\Psi(B_n)$ is the signed permutation corresponding to $\text{mn}_B(N_1, N_2)$.
In this section, we discuss all four surjective lattice homomorphisms from the weak order on B_n to the weak order on type A_n. The homomorphisms we consider are discussed in depth in [38, Section 6]. Three of these homomorphisms have nice properties which suggest them as good candidates to induce embeddings of the type-A shard intersection order lattice into the shard intersection order lattice on type B, as we now explain.

Recall that the fibers of a lattice homomorphism are intervals, so for any surjective lattice homomorphism $\eta : L \to M$, there is a natural inclusion $\zeta : M \to L$ in the opposite direction that sends an element $m \in M$ to the bottom element of its fiber in η. In an important example, the homomorphism from the weak order (W, \leq) to a Cambrian lattice $\Theta_c(W)$, the inclusion is actually an embedding as a sublattice of the shard intersection order.
order [33, Proposition 8.7]. As stated in [33, Proposition 8.21], a necessary condition for ζ to be an embedding as a sublattice of the shard intersection order is that the congruence associated with η be homogeneous of degree two. This condition is not met by one of the four homomorphisms we will discuss, so the remaining homomorphisms are the only possible candidates. Namely, the three homomorphisms discussed in Sections 3.5.1 and 3.5.3 are homogeneous of degree two.

Remark 3.5.1. While this dissertation’s main focus is the relationship between shard intersection orders of types A and B, there is a more general underlying question: If a finite Coxeter group W dominates another Coxeter group W', is the shard intersection order on W' a sublattice of the shard intersection order on W? Dominance can be understood by considering the Coxeter diagrams of the two groups: W dominates W' if the two diagrams have the same number of vertices and the diagram for W' can be obtained from that of W by lowering or erasing the label between two adjacent vertices or by erasing edges.

It is possible that the Coxeter diagrams of W and W' differ only in the subgraph induced by two generators s_i and s_j which are adjacent in the diagram for W. In this case, we might expect that a homomorphism from W to W' that induces a congruence on W with a join-irreducible generator outside of the standard parabolic subgroup generated by s_i and s_j does not fit nicely with the operations on diagrams which correspond to dominance.

We consider each homomorphism in [38, Section 6] in terms of the orbifold construction of type-B noncrossing arc diagrams. Each homomorphism corresponds to a congruence generated by a small set of join-irreducible signed permutations. In [35], noncrossing arc diagrams are shown to be very useful in understanding congruences of the weak order on Coxeter groups of type A. A direct consequence of [35, Theorem 4.4], is that any congruence on (A_n, \leq) can be described completely by listing the “smallest” arcs it contracts (in the sense of subarcs). An analogous result for type-B noncrossing arc diagrams is stated in Theorem 2.4.22, and we will use it several times in the sections that follow.

3.5.1 Simion’s homomorphism

In [41], Simion describes an operation on a signed permutation $\pi = \pi_{-n} \cdots \pi_{-1} | \pi_1 \cdots \pi_n$ of $\pm [n]$. The map is denoted η_σ in [38], but we denote it instead by η_0 for reasons that will be apparent shortly. Simion’s operation on π is described as follows: replace the vertical line $|$ between π_{-1} and π_1 with a zero, read off the sequence of nonnegative integers from left to right, then add one to each entry of the sequence. This gives a permutation of $[n+1]$, and in [38, Theorem 6.1], the operation is shown to be a surjective lattice homomorphism from the weak order on B_n to the weak order on A_n.

148
Figure 3.29: Contracted arcs that generate the congruence defined by η_0.

Example 3.5.2. $\eta_0(2(-5)1(-4)(-3)) = 456132$

<table>
<thead>
<tr>
<th>3 4 -1 5 -2</th>
<th>2 -5 1 -4 -3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4 -1 5 -2 0 2 -5 1 -4 -3</td>
<td></td>
</tr>
<tr>
<td>becomes 0</td>
<td></td>
</tr>
<tr>
<td>read sequence ≥ 0</td>
<td></td>
</tr>
<tr>
<td>3 4 5 0 2 1</td>
<td></td>
</tr>
<tr>
<td>add one</td>
<td></td>
</tr>
<tr>
<td>4 5 6 1 3 2</td>
<td></td>
</tr>
</tbody>
</table>

[38, Theorem 6.1] also states that the congruence defined by η_0 is generated by the join-irreducible elements $s_0 s_1$ and $s_1 s_0 s_1$, which are the signed permutations $2(-1)3\cdots n$ and $1(-2)3\cdots n$. These arcs in B_3 are pictured in Fig. 3.29, and in larger type-B Coxeter groups, the noncrossing arc diagrams are only changed by adding numbered points above 3. It is easy to verify (using Section 2.4.2) that the superarcs of these two arcs are exactly the long arcs. (This recovers [38, Proposition 6.3] much more easily.) Thus by Theorem 2.4.22 and Corollary 2.4.24, the uncontracted elements in the congruence on the weak order on B_n corresponding to η_0 are *exactly* those which have only type-A and orbifold arcs in their noncrossing arc diagrams. These type-B noncrossing arc diagrams on n points look like type-A noncrossing arc diagrams on $n + 1$ points, except that \times is occupying the space of the numbered point 1. This is not a coincidence.

The natural inclusion ζ_0 from A_n to B_n which sends each permutation π to the bottom element of the congruence defined by η_0 that maps to π is described as follows: First, subtract one from each entry of π. The resulting permutation σ of $\{0, \ldots, n\}$ will have three parts, $\sigma_1 \cdots \sigma_{j-1}$, then $\sigma_j = 0$, and then $\sigma_{j+1} \cdots \sigma_{n+1}$, so the first and third parts together constitute a permutation of $[n]$. Next, write the window notation of a signed permutation of $\pm[n]$, $(-\sigma_{j-1}) \cdots (-\sigma_1) \sigma_{j+1} \cdots \sigma_{n+1}$. (See Examples 3.5.3 to 3.5.6.) The long one-line notation of $\zeta_0(\pi)$ is

$(-\sigma_{n+1}) \cdots (-\sigma_{j+1}) \sigma_1 \cdots \sigma_{j-1} \ | \ (-\sigma_{j-1}) \cdots (-\sigma_1) \sigma_{j+1} \cdots \sigma_{n+1}$.

The signed permutation $\zeta_0(\pi)$ has the fewest possible inversions among signed permutations that map to π, because both the positive entries left of $|$ and the positive entries right of $|$ are as far right as possible.

Example 3.5.3. $\zeta_0(1452736) = 3 4 1 6 2 5$
Example 3.5.4. \(\zeta_0(4521736) = (-1)(-4)(-3)625 \)

Example 3.5.5. \(\zeta_0(4251736) = (-4)(-1)(-3)625 \)

Example 3.5.6. \(\zeta_0(4517326) = (-4)(-3)6215 \)

Proposition 3.5.7. The map \(\zeta_0 \) on permutations corresponds to the following operation on noncrossing arc diagrams: For any \(\pi \in A_n = S_{n+1} \), the type-B noncrossing arc diagram \(\delta^o(\zeta_0(\pi)) \) is identical to the type-A noncrossing arc diagram \(\delta(\pi) \), except that the numbered point 1 in \(\delta(\pi) \) is replaced by the orbifold point \(\times \) and the numbered points 2, \ldots, \(n+1 \) are renumbered as 1, \ldots, \(n \).

The operation on noncrossing arc diagrams corresponding to \(\zeta_0 \) for Examples 3.5.3 to 3.5.6 is pictured in Fig. 3.30.

Proof. Let \(\pi \) be a permutation in \(S_{n+1} \), and let \(j \) denote the position of 1 in \(\pi \). The long one-line notation of \(\zeta_0(\pi) \) is

\[
(-\sigma_{n+1}) \cdots (-\sigma_{j+1}) \ \sigma_1 \cdots \sigma_{j-1} \ | \ (-\sigma_{j-1}) \cdots (-\sigma_1) \ \sigma_{j+1} \cdots \sigma_{n+1} ,
\]

where \(\sigma_i = \pi_i - 1 \) for all \(i \in [n+1] \setminus \{j\} \).
If $j = 1$, then 1 is in a trivial descending run in π and thus there is no arc with lower endpoint 1 in $\delta(\pi)$. In this case, the window notation for $\zeta_0(\pi)$ is $(\pi_2 - 1)(\pi_3 - 1) \cdots (\pi_{n+1} - 1)$. Because all terms in the window notation for $\zeta_0(\pi)$ are positive, all blocks in $\delta^\circ(\eta_0(\pi))$ are type-A. Consider any block B above 1 in $\delta(\pi)$, which corresponds to the descending run $\pi_1 \cdots \pi_k$. In $\zeta_0(\pi)$, this descending run corresponds to the descending run $(\pi_k - 1) \cdots (\pi_1 - 1)$ beginning in the $k - 1$th position. This corresponds to a type-A block which is just B shifted down by one, since $\pi_j - 1$ is before $\pi_k - 1$ in the window of $\zeta_0(\pi)$ and thus transitively left of $\delta^\circ(\zeta_0(\rho^\circ(B)))$ in $\delta^\circ(\zeta_0(\pi))$ if and only if π_j is before π_k in π and thus transitively left of B in $\delta(\pi)$. This occurs in Example 3.5.3 and is pictured in the leftmost part of Fig. 3.30.

If $j > 1$, then 1 is in a nontrivial descending run, since π_{j-1} must be greater than 1. Let $\pi_k \cdots \pi_{j-1} \pi_j$ be the descending run ending in 1, so the block in $\delta(\pi)$ which contains 1 has top endpoint π_k. The first $j - k - 1$ terms in the window notation of $\zeta_0(\pi)$ are $(-\pi_{j-1} + 1) \cdots (-\pi_k + 1)$ which corresponds to an orbifold block in $\delta^\circ(\zeta_0(\pi))$ with top endpoint $\pi_k - 1$. In fact, the orbifold block is identical to the block containing 1 in $\delta(\pi)$ except that the numbered point 1 has been replaced by \times, since a positive term $\pi_l - 1$ is in the window of $\zeta_0(\pi)$ and thus transitively right of the orbifold block in $\delta^\circ(\zeta_0(\pi))$ if and only if π_l is after 1 in π and thus transitively right of the block containing 1 in $\delta(\pi)$. Any block B that is transitively right of the block containing 1 in $\delta(\pi)$ corresponds to a descending run in the window notation of $\zeta_0(\pi)$, which corresponds to a type-A block in $\delta^\circ(\zeta_0(\pi))$ which, by the same reasoning as in the case where $j = 1$, is B shifted down by one. Consider a block C that is transitively left of the block containing 1 in $\delta(\pi)$ corresponding to the descending run $\pi_r \cdots \pi_q$, where $q < k$. In $\zeta_0(\pi)$, this corresponds to the descending run $(-\pi_r + 1) \cdots (-\pi_q + 1)$ in the window notation, after $-\pi_k + 1$. This descending run corresponds to a type-A block with endpoints $(\pi_r - 1), \ldots, (\pi_q - 1)$ to the left of the orbifold block in $\delta^\circ(\zeta_0(\pi))$. The block is C shifted down by one, since a negative term $-\pi_l + 1$ in the window of $\zeta_0(\pi)$ is after $-\pi_q + 1$ and thus $\pi_l - 1$ is left of $\delta^\circ(\zeta_0(\rho^\circ(C)))$ in $\delta^\circ(\zeta_0(\pi))$ if and only if π_l is before π_q and thus left of C in $\delta(\pi)$.

Regardless of the position of 1 in π, all blocks in $\delta(\pi)$ with bottom endpoint above 1 are shifted down by 1 in $\delta^\circ(\zeta_0(\pi))$, and the block containing 1 in $\delta^\circ(\zeta_0(\pi))$ has its bottom endpoint 1 replaced with \times. This occurs in Examples 3.5.4 to 3.5.6 and is pictured in every part of Fig. 3.30 except the leftmost part.

Because of the relationship between η_0 and ζ_0, we can also describe what the operation on type-B noncrossing arc diagrams corresponding to η_0 does to diagrams with no long block. For a type-B noncrossing arc diagram $\delta^\circ(\pi)$ with no long arcs, the operation corresponding to η_0 can be described as follows: turn \times into the numbered point 1, and add one to the label of each originally numbered point.
Because η_0 and ζ_0 are so efficiently captured by noncrossing arc diagrams, they can be used to consider whether ζ_0 embeds $\Psi(A_n)$ as a sublattice of $\Psi(B_n)$, as shown in Fig. 3.31.

Theorem 3.5.8. ζ_0 embeds the shard intersection order on the Coxeter group of type A_n as a sublattice of the shard intersection order on the Coxeter group of type B_n.

Proof. Consider two type-A noncrossing arc diagrams, N_1 and N_2, on $n + 1$ points. We will show that it does not matter in what order we do two operations: mapping from A_n to B_n via ζ_0 and taking the meet using the appropriate type of cooperative noncrossing arc diagram.

We first consider $\zeta_0(\text{cn}(N_1, N_2))$. There will be an arc in $\text{cn}(N_1, N_2)$ precisely when the requirements stated in Definition 3.3.8 are met. In particular, there will be an arc in $\text{cn}(N_1, N_2)$ whose lower endpoint is 1 if and only if both of the original diagrams have arcs whose lower endpoint is 1 and the two blocks containing 1 weakly agree up to their next-
highest shared endpoint, which we will call \(i\). By Proposition 3.5.7, \(\zeta_0(\text{cn}(N_1, N_2))\) matches the type-A cooperative noncrossing arc diagram except that the point 1 is replaced by the point \(\times\) and one is subtracted from all other numbered points.

Next, we consider \(\text{cn}_B(\zeta_0(N_1), \zeta_0(N_2))\). Again by Proposition 3.5.7, \(\zeta_0(N_1)\) matches the original type-A noncrossing arc diagram except that the point 1 is replaced by the point \(\times\), and one is subtracted from all other numbered points, and similarly for \(\zeta_0(N_2)\). In particular, each image may contain at most one orbifold arc in addition to a collection of type-A arcs. So, constructing the type-B cooperative noncrossing arc diagram \(\text{cn}_B(\zeta_0(N_1), \zeta_0(N_2))\) consists mostly of considering type-A cooperation, with perhaps one exception. If both \(\zeta_0(N_1)\) and \(\zeta_0(N_2)\) have orbifold arcs and the two orbifold blocks weakly agree up to their next-highest shared point, then \(\text{cn}_B(\zeta_0(N_1), \zeta_0(N_2))\) contains an orbifold arc with that point as its upper endpoint. In fact, the upper endpoint of this orbifold arc is \(i - 1\), corresponding to the arc from \(i\) to 1 in the type-A cooperative noncrossing arc diagrams. Moreover, the type-A cooperation above \(\times\) in \(\text{cn}_B(\zeta_0(N_1), \zeta_0(N_2))\) agrees exactly with the cooperation in \(\text{cn}(N_1, N_2)\), except that the labels on all numbered points are one less than in \(\text{cn}(N_1, N_2)\).

We have shown that \(\text{cn}_B(\zeta_0(N_1), \zeta_0(N_2)) = \zeta_0(\text{cn}(N_1, N_2))\). So, \(\zeta_0\) embeds the shard intersection order on \(S_{n+1}\) as a meet-sublattice of the shard intersection order on \(B_n\). In particular, \(\zeta_0\) is an order isomorphism from \(S_{n+1}\) to its image. The map \(\zeta_0\) would fail to embed \(S_{n+1}\) as a sublattice if there were two elements \(\sigma, \tau \in S_{n+1}\) such that \(\zeta_0(\sigma \lor \tau)\) is strictly larger than \(\zeta_0(\sigma) \lor \zeta_0(\tau)\). However, [33, Proposition 7.8] says that the image of \(\zeta_0\) is also a join-sublattice of the shard intersection order on \(B_n\). Thus \(\zeta_0(\sigma) \lor \zeta_0(\tau)\) is in the image of \(\zeta_0\), and since \(\zeta_0\) is an order isomorphism onto its image, we conclude that \(\zeta_0(\sigma \lor \tau) = \zeta_0(\sigma) \lor \zeta_0(\tau)\). We conclude that \(\zeta_0\) embeds \(S_{n+1}\) as a sublattice.

3.5.2 A nonhomogeneous homomorphism

Another map from \(B_n\) to \(A_n\), described in [38, Section 6.2], consists of a straightforward operation on a signed permutation. The map is denoted \(\eta_v\) in [38], but we denote it instead by \(\eta_{-1}\) for reasons that will be apparent shortly. Given a signed permutation \(\pi = \pi_{-n} \cdots \pi_{-1} \mid \pi_1 \cdots \pi_n\), the operation is described as follows: read off the sequence of terms greater than or equal to \(-1\) from left to right, replace \(-1\) with zero, then add one to each entry of the sequence.

Example 3.5.9. \(\eta_{-1}(2(-5)1(-4)(-3)) = 451632\)

\[
\begin{array}{ccccccc}
3 & 4 & -1 & 5 & -2 & | & 2 & -5 & 1 & -4 & -3 \\
3 & 4 & -1 & 5 & & 2 & 1 \& \\
3 & 4 & 0 & 5 & & 2 & 1 \& \\
4 & 5 & 1 & 6 & & 3 & 2 & \\
\end{array}
\]

read sequence \(\geq -1\)

\(-1\) becomes 0

add one
As with η_0, the output is a permutation of $[n + 1]$. Although η_{-1} is a surjective lattice homomorphism from the weak order on B_n to the weak order on A_n [38, Theorem 6.4] and its description is comparable in simplicity to that of η_0, its associated congruence is not homogeneous of degree 2. Later in this section, we will show that the corresponding map ζ_{-1} does not embed $\Psi(A_n)$ as a sublattice of $\Psi(B_n)$. First, we will explore details of η_{-1} and ζ_{-1}, as they are foundational to understanding the maps discussed in the next section.

[38, Theorem 6.4] states that the congruence defined by η_{-1} is generated by the join-irreducible elements $s_0s_1s_0$, s_1s_0, $s_1s_0s_1s_2$, and $s_2s_1s_0s_1s_2$, which are the signed permutations $(-2) (-1) 3 \cdots n$, $(-2) 13 \cdots n$, $13 (-2) 4 \cdots n$, and $12 (-3) 4 \cdots n$. The arcs in B_3 are pictured in Fig. 3.32, and in larger type B Coxeter groups, the noncrossing arc diagrams are only changed by adding numbered points above 3. (Because the generators $s_1s_0s_1s_2$ and $s_2s_1s_0s_1s_2$ each have degree 3, the congruence on (B_n, \leq) associated with η_{-1} is not homogeneous of degree 2.) It is easy to verify (using Section 2.4.2) that the superarcs of these four arcs are exactly the orbifold arcs with upper endpoint above 1 and long arcs with both left and right endpoints above 1. (This recovers [38, Proposition 6.6] much more easily.) Thus by Theorem 2.4.22 and Corollary 2.4.24, the uncontracted elements in the congruence on the weak order on B_n corresponding to η_{-1} are exactly those which have only type-A arcs and long arcs with left or right endpoint 1 in their noncrossing arc diagrams.

The natural inclusion ζ_{-1} from A_n to B_n which sends each permutation π to the bottom element of the congruence defined by η_{-1} that maps to π is described as follows: First, subtract one from each entry of π greater than 1 and subtract two from the entry 1. The resulting permutation σ of $\{-1, 1, \ldots, n\}$ will have three parts, $\sigma_1 \cdots \sigma_{j-1}$, then $\sigma_j = (-1)$, and then $\sigma_{j+1} \cdots \sigma_{n+1}$, so the first and third parts together constitute a permutation of $[n]$. Next, write the window notation of a signed permutation of $\pm [n]$, depending on the relative position of 1 and (-1). Let i denote the position of 1 in σ. If $j = 1$, then the one line-notation of the signed permutation is simply $\sigma_{j+1} \cdots \sigma_{n+1}$. (See Example 3.5.10.) If $j > 1$ and $i = j - 1$, then the one line-notation of the signed permutation is $(-\sigma_j) \cdots (-\sigma_1) \sigma_{j+1} \cdots \sigma_{n+1}$. (See Example 3.5.11.) If $j > 1$ and $i < j - 1$, then the one-line notation of the signed permutation is $\sigma_{i+1} \cdots \sigma_{j-1} (-\sigma_i) \cdots (-\sigma_1) \sigma_{j+1} \cdots \sigma_{n+1}$. (See Example 3.5.12.) If $j > 1$ and $i > j$, then the one-line notation of the signed permutation is $\sigma_{j+1} \cdots \sigma_{i-1} \sigma_i (-\sigma_{j-1}) \cdots (-\sigma_1) \sigma_{i+1} \cdots \sigma_{n+1}$.
Example 3.5.10. \(\zeta_{-1}(1452736) = 3\;4\;1\;6\;2\;5\)
\[
\begin{array}{cccccc}
1 & 4 & 5 & 2 & 7 & 3 & 6 \\
-1 & 3 & 4 & 1 & 6 & 2 & 5 \\
3 & 4 & 1 & 6 & 2 & 5
\end{array}
\]
\(j = 1, i = 4\)

Example 3.5.11. \(\zeta_{-1}(4521736) = (-1)(-4)(-3)6\;2\;5\)
\[
\begin{array}{cccccc}
4 & 5 & 2 & 1 & 7 & 3 & 6 \\
3 & 4 & 1 & -1 & 6 & 2 & 5 \\
-1 & -4 & -3 & 6 & 2 & 5
\end{array}
\]
\(j = 4, i = 3\)

Example 3.5.12. \(\zeta_{-1}(4251736) = 4(-1)(-3)6\;2\;5\)
\[
\begin{array}{cccccc}
4 & 2 & 5 & 1 & 7 & 3 & 6 \\
3 & 1 & 4 & -1 & 6 & 2 & 5 \\
4 & -1 & -3 & 6 & 2 & 5
\end{array}
\]
\(j = 4, i = 2\)

Example 3.5.13. \(\zeta_{-1}(4517326) = 6\;2\;1(-4)(-3)5\)
\[
\begin{array}{cccccc}
4 & 5 & 1 & 7 & 3 & 2 & 6 \\
3 & 4 & -1 & 6 & 2 & 1 & 5 \\
6 & 2 & 1 & -4 & -3 & 5
\end{array}
\]
\(j = 3, i = 6\)

Proposition 3.5.14. The map \(\zeta_{-1}\) on permutations corresponds to the following operation on noncrossing arc diagrams: For any \(\pi \in A_n = S_{n+1}\), the type-B noncrossing arc diagram \(\delta^0(\zeta_{-1}(\pi))\) is identical to the type-A noncrossing arc diagram \(\delta(\pi)\), except that the numbered point 1 is replaced by the orbifold point \(\times\), the numbered points 2, \ldots, \(n+1\) are renumbered as 1, \ldots, \(n\), and if \(\delta(\pi)\) contains an arc \(\alpha\) which passes left [resp. right] of 2 and has 1 as its lower endpoint, then this arc is replaced by a long arc whose left [resp. right] side agrees with \(\alpha\) shifted down by one and whose right [resp. left] endpoint is 1.

The operation on noncrossing arc diagrams corresponding to \(\zeta_{-1}\) for Examples 3.5.10 to 3.5.13 is pictured in Fig. 3.33.

Proof. Let \(\pi\) be a permutation in \(S_{n+1}\). Let \(j\) denote the position of 1 in \(\pi\) and let \(i\) denote the position of 2 in \(\pi\).

If \(j = 1\) or if \(j > 1\) and \(i = j - 1\), the argument follows exactly as in the proof of Proposition 3.5.7. This occurs in Examples 3.5.10 and 3.5.11 and is pictured in the two left
part of Fig. 3.33. In the case where \(j > 1 \) and \(i = j - 1 \), the orbifold block has 1 as its lowest numbered endpoint.

If \(j > 1 \) and \(i < j - 1 \), then 1 is in a nontrivial descending run and 2 precedes the descending run ending in 1. The one-line notation of \(\zeta_{-1}(\pi) \) is \(\sigma_i \cdots \sigma_{j-1}(-\sigma_i) \cdots (-\sigma_1)\sigma_{j+1} \cdots \sigma_{n+1} \), where \(\sigma_m = \pi_{m-1} - 1 \) for all \(m \in [n+1] \setminus j \). Let \(\pi_k \cdots \pi_{j-1} \pi_j \) be the descending run ending in 1, so the block in \(\delta(\pi) \) which contains 1 has top endpoint \(\pi_k \) and an arc which passes right of 2. Let \(\pi_l \cdots \pi_{i-1} \pi_i \) be the descending run ending in 2, so the block in \(\delta(\pi) \) which contains 2 has top endpoint \(\pi_l \). Within the window notation of \(\zeta_{-1}(\pi) \) is the descending run \(\pi_{j-1}(\pi_{j-1}-1)(-\pi_{i-1}+1)(-\pi_{i-1}+1)(-\pi_{i+1}+1) \cdots (\pi_{j+1}+1) \) which, since \(-\pi_{i+1} = -1 \), corresponds to a long block in \(\delta(\zeta_{-1}(\pi)) \) with top-left endpoint \(\pi_l - 1 \) and top-right endpoint \(\pi_k - 1 \). In fact, the left and right sides of the long block are identical to the blocks containing 2 and 1 in \(\delta(\pi) \) shifted down by one, except that the arc with lower endpoint 1 is replaced by a long arc with left endpoint 1.

Any block \(B \) that is transitively right of the block containing 1 in \(\delta(\pi) \) corresponds to a descending run \((\pi_{s-1} - 1) \cdots (\pi_{t-1}) \) beginning in the \((s-1) \)th position of the window notation of \(\zeta_{-1}(\pi) \), where \(s > j \). So, \(B \) corresponds to a type-A block that is transitively right of the right side of the long block in \(\delta(\zeta_{-1}(\pi)) \). This block is \(B \) shifted down by one, since \(\pi_{w-1} \) is after \(\pi_{t-1} \) in the window of \(\zeta_{-1}(\pi) \) and thus transitively right of \(\delta(\zeta_{-1}(\rho^{\sigma}(B))) \) in \(\delta(\zeta_{-1}(\pi)) \) if and only if \(\pi_{w} \) is after \(\pi_{t} \) in \(\pi \) and thus transitively right of \(B \) in \(\delta(\pi) \). Any block \(C \) that is transitively left of the block containing 2 in \(\delta(\pi) \) corresponds to the descending run \(\pi_{r} \cdots \pi_{q} \) where \(q < i \). In \(\zeta_{-1}(\pi) \), this corresponds to the descending run \((-\pi_{r} - 1) \cdots (-\pi_{q} + 1) \) in the window notation, after \((-\pi_{i} + 1) \). This corresponds to a type-A block with endpoints \((\pi_{r} - 1), \ldots, (\pi_{q} - 1) \) transitively left of the left side of the long block in \(\delta(\zeta_{-1}(\pi)) \). The block is identical to \(C \) shifted down by one, since a negative term \(-\pi_{w} + 1\) in the window.
of $\zeta_{-1}(\pi)$ is after $-\pi_q + 1$ and thus $\pi_w - 1$ is left of $\delta^0(\zeta_{-1}(\rho^2(C)))$ in $\delta^0(\zeta_{-1}(\pi))$ if and only if π_w is before π_q and thus left of C in $\delta(\pi)$. Any block D that is transitively right of the block containing 2 and transitively left of the block containing 1 in $\delta(\pi)$ corresponds to the descending run $\pi_u \cdots \pi_v$ where $i < u$ and $v < k$. In $\zeta_{-1}(\pi)$, this corresponds to the descending run $(\pi_u - 1) \cdots (\pi_v - 1)$ in the window notation, before $(\pi_k - 1)$. This corresponds to a type-A block with endpoints $(\pi_u - 1), \ldots, (\pi_v - 1)$ transitively right of the left side and transitively left of the right side of the long block in $\delta^0(\zeta_{-1}(\pi))$. The block is D shifted down by one, since a positive term $\pi_w - 1$ in the window of $\zeta_{-1}(\pi)$ is before $\pi_u - 1$ and thus transitively left of $\delta^0(\zeta_{-1}(\rho^2(D)))$ in $\delta^0(\zeta_{-1}(\pi))$ if and only if δ_w is before δ_u and thus transitively left of D in $\delta(\pi)$. This occurs in Example 3.5.12 and is pictured in the center-right part of Fig. 3.33.

If $j > 1$ and $i > j$, then 1 is in a nontrivial descending run and 2 follows the descending run ending in 1. The one-line notation of $\zeta_{-1}(\pi)$ is $\sigma_{j+1} \cdots \sigma_i(-\sigma_{j-1}) \cdots (-\sigma_1)\sigma_{i+1} \cdots \sigma_{n+1}$, where $\sigma_m = \pi_m - 1$ for all $m \in [n + 1] \setminus \{j\}$. Let $\pi_k \cdots \pi_{j-1}\pi_j$ be the descending run ending in 1, so the block in $\delta(\pi)$ which contains 1 has top endpoint π_k and an arc which passes left of 2. Let $\pi_1 \cdots \pi_i$ be the descending run ending in 2, so the block in $\delta(\pi)$ which contains 2 has top endpoint π_i. Within the window notation of $\zeta_{-1}(\pi)$ is the descending run $(\pi_1 - 1) \cdots (\pi_i - 1)(-\pi_{j-1} + 1) \cdots (-\pi_k + 1)$, which corresponds to a long block in $\delta^0(\zeta_{-1}(\pi))$ with top-left endpoint $\pi_k - 1$ and top-right endpoint $\pi_i - 1$. In fact, the left and right sides of the long block are identical to the blocks containing 1 and 2 in $\delta(\pi)$ shifted down by one, except that the arc with lower endpoint 1 is replaced by a long arc with right endpoint 1.

Any block B that is transitively right of the block containing 2 in $\delta(\pi)$ corresponds to a descending run $(\pi_s - 1) \cdots (\pi_t - 1)$ beginning in the $(s - 1)$th position of the window notation of $\zeta_{-1}(\pi)$, where $s > i$. So, B corresponds to a type-A block that is transitively right of the right side of the long block in $\delta^0(\zeta_{-1}(\pi))$. This block is B shifted down by one, since $\pi_w - 1$ is after $\pi_t - 1$ in the window of $\zeta_{-1}(\pi)$ and thus transitively right of $\delta^0(\zeta_{-1}(\rho^2(B)))$ in $\delta^0(\zeta_{-1}(\pi))$ if and only if π_w is after π_t in π and thus transitively right of B in $\delta(\pi)$. Any block C that is transitively left of the block containing 1 in $\delta(\pi)$ corresponds to the descending run $\pi_r \cdots \pi_q$ where $q < k$. In $\zeta_{-1}(\pi)$, this corresponds to the descending run $(-\pi_r + 1) \cdots (-\pi_q + 1)$ in the window notation, after $(-\pi_k + 1)$. This corresponds to a type-A block with endpoints $(\pi_r - 1), \ldots, (\pi_q - 1)$ transitively left of the left side of the long block in $\delta^0(\zeta_{-1}(\pi))$. The block is identical to C shifted down by one, since a negative term $-\pi_w + 1$ in the window of $\zeta_{-1}(\pi)$ is after $-\pi_q + 1$ and thus $\pi_w - 1$ is left of $\delta^0(\zeta_{-1}(\rho^2(C)))$ in $\delta^0(\zeta_{-1}(\pi))$ if and only if π_w is before π_q and thus left of C in $\delta(\pi)$. Any block D that is transitively right of the block containing 1 and transitively left of the block containing 2 in $\delta(\pi)$ corresponds to the descending run $\pi_u \cdots \pi_v$ where $j < u$ and $v < l$. In $\zeta_{-1}(\pi)$, this corresponds to the descending run $(\pi_u - 1) \cdots (\pi_v - 1)$ in the window notation, before $(\pi_l - 1)$. This corresponds to a type-A
block with endpoints \((\pi_u - 1), \ldots, (\pi_w - 1)\) transitively right of the left side and transitively left of the right side of the long block in \(\delta^\circ(\zeta_1(\pi))\). The block is \(D\) shifted down by one, since a positive term \(\pi_w - 1\) in the window of \(\zeta_1(\pi)\) is before \(\pi_u - 1\) and thus transitively left of \(\delta^\circ(\zeta_1(\rho^\circ(D)))\) in \(\delta^\circ(\zeta_1(\pi))\) if and only if \(\delta_w\) is before \(\delta_u\) and thus transitively left of \(D\) in \(\delta(\pi)\). This occurs in Example 3.5.13 and is pictured in the rightmost part of Fig. 3.33.

The subposet \(\zeta_1(S_4)\) of \(\Psi(B_3)\), as shown in Fig. 3.34, is not a sublattice of \(\Psi(B_3)\). To prove this, we present a pair of permutations \(\sigma\) and \(\tau\) which demonstrate that \(\zeta_1(\sigma \land \tau)\) is strictly below \(\zeta_1(\sigma) \land \zeta_1(\tau)\). In fact, there are two such pairs, and we leave the similar reasoning of the other pair as an exercise for the reader.

Example 3.5.15. Consider the permutations \(\sigma = 3142\) and \(\tau = 3241\). By Theorem 3.3.15, \(\sigma \land \tau\) in \(\Psi(A_3)\) is the permutation corresponding to the noncrossing arc diagram \(\text{cn}(\delta(\sigma), \delta(\tau))\).

![Figure 3.34: The subposet \(\zeta_1(S_4)\) of \(\Psi(B_3)\).](image)
As shown in the top of Fig. 3.35, the meet of σ and τ is the permutation $1\ 2\ 3\ 4$, the identity in A_3. The signed permutation $\zeta_-(\sigma \wedge \tau)$ is the identity in B_3, the signed permutation $1\ 2\ 3$.

The images of σ and τ under ζ_- are the signed permutations $\zeta_-(\sigma) = 3\ 1\ (-2)$ and $\tau = 3\ (-1\ (-2))$. By Theorem 3.4.11, $\zeta_-(\sigma) \wedge \zeta_-(\tau)$ in $\Psi(B_3)$ is the signed permutation corresponding to $\text{cn}_B(\delta^o(\zeta_-(\sigma)), \delta^o(\zeta_-(\tau)))$. As shown in the bottom of Fig. 3.35, the meet of $\zeta_-(\sigma)$ and $\zeta_-(\tau)$ is the signed permutation $1\ 3\ (-2)$, which is strictly above the identity in $\Psi(B_3)$. The signed permutation $1\ 3\ (-2)$ is not in the image of ζ_-, since both endpoints of the long arc in $\delta^o(1\ 3\ (-2))$ are above 1.

3.5.3 Two more homogeneous homomorphisms

Two additional maps from B_n to A_n are described in [38, Section 6.3], both of which are a mix of the two maps introduced in the two preceding sections. We use the same notation as [38].

One, denoted η_δ, agrees with η_0 when when 1 is in the window notation of a signed permutation π, inserting 0 between π_{-1} and π_1 then reading off the nonnegative sequence of terms and adding one to each term. When -1 is in the window notation of π, η_δ agrees with η_{-1}, reading off the sequence of terms ≥ -1, changing -1 to zero, then adding one to each term.

The other, denoted η_ϵ, agrees with η_{-1} when 1 is in the window notation of π and with η_0 when -1 is in the window notation of π.

Figure 3.35: Example showing that $\zeta_-(A_3)$ is not a sublattice of $\Psi(B_3)$.

As shown in the top of Fig. 3.35, the meet of σ and τ is the permutation $1\ 2\ 3\ 4$, the identity in A_3. The signed permutation $\zeta_-(\sigma \wedge \tau)$ is the identity in B_3, the signed permutation $1\ 2\ 3$.

The images of σ and τ under ζ_- are the signed permutations $\zeta_-(\sigma) = 3\ 1\ (-2)$ and $\tau = 3\ (-1\ (-2))$. By Theorem 3.4.11, $\zeta_-(\sigma) \wedge \zeta_-(\tau)$ in $\Psi(B_3)$ is the signed permutation corresponding to $\text{cn}_B(\delta^o(\zeta_-(\sigma)), \delta^o(\zeta_-(\tau)))$. As shown in the bottom of Fig. 3.35, the meet of $\zeta_-(\sigma)$ and $\zeta_-(\tau)$ is the signed permutation $1\ 3\ (-2)$, which is strictly above the identity in $\Psi(B_3)$. The signed permutation $1\ 3\ (-2)$ is not in the image of ζ_-, since both endpoints of the long arc in $\delta^o(1\ 3\ (-2))$ are above 1.
As both homomorphisms can be thought of as a combination of a homogeneous lattice homomorphism and a nonhomogeneous lattice homomorphism, it may come as a surprise that both of these hybrid maps are homogeneous.

A hybrid map, η_δ

[38, Theorem 6.7] states that the congruence defined by η_δ is generated by the join-irreducible elements $s_0s_1s_0$ and $s_1s_0s_1$, the signed permutations $(-2)(-1)3\cdots n$ and $1(-2)3\cdots n$. These arcs in B_3 are pictured in Fig. 3.36, and in larger type-B Coxeter groups, the noncrossing arc diagrams are only changed by adding numbered points above 3. It is easy to verify (using Section 2.4.2) that the superarcs of these two arcs are exactly the orbifold arcs that pass right of 1 and the long arcs whose right endpoint is 1. (This recovers [38, Proposition 6.9] much more easily.) Thus by Theorem 2.4.22 and Corollary 2.4.24, the uncontracted elements in the congruence on the weak order on B_n corresponding to η_δ are exactly those which have only the following types of arcs in their noncrossing arc diagrams:

- type-A arcs,
- orbifold arcs with an endpoint at 1 or that pass left of 1, and/or
- long arcs whose left endpoint is 1.

The natural inclusion ζ_δ from A_n to B_n which sends each permutation π to the bottom element of the congruence defined by η_δ that maps to π is described as follows: Let j denote the position of 1 in π, and let i denote the position of 2 in π. If $j < i$, then ζ_δ behaves as ζ_0, by first subtracting one from each entry of π to give a permutation $\sigma_1\cdots\sigma_{n+1}$ of $\{0,\ldots,n\}$ whose jth entry is 0. In this case, the signed permutation $\zeta_\delta(\pi) = \zeta_0(\pi)$, with window notation $(-\sigma_j-1)\cdots(-\sigma_1)\sigma_{j+1}\cdots\sigma_{n+1}$. (See Examples 3.5.16 and 3.5.19.) If $i < j$, then ζ_δ behaves as ζ_{-1}, by first subtracting one from each entry of π greater than 1 and subtracting two from 1 to give a permutation $\sigma_1\cdots\sigma_{n+1}$ of $\{-1,1,\ldots,n\}$ whose jth entry is -1. In this case, the signed permutation $\zeta_\delta(\pi) = \zeta_{-1}(\pi)$, with window notation $\sigma_{i+1}\cdots\sigma_{j-1}(-\sigma_1)\cdots(-\sigma_1)\sigma_{j+1}\cdots\sigma_{n+1}$, though the first set of positive entries may be empty if $i = j - 1$. (See Examples 3.5.17 and 3.5.18.)
Example 3.5.16. \(\zeta(1452736) = 341625 \)

\[
\begin{array}{cccccc}
1 & 4 & 5 & 2 & 7 & 3 & 6 \\
0 & 3 & 4 & 1 & 6 & 2 & 5 \\
3 & 4 & 1 & 6 & 2 & 5
\end{array}
\]
\(j = 1, i = 4 \)

Example 3.5.17. \(\zeta(4521736) = (-1)(-4)(-3)625 \)

\[
\begin{array}{cccccc}
4 & 5 & 2 & 1 & 7 & 3 & 6 \\
3 & 4 & 1 & -1 & 6 & 2 & 5 \\
-1 & -4 & -3 & 6 & 2 & 5
\end{array}
\]
\(i = 3, j = 4 \)

Example 3.5.18. \(\zeta(4251736) = 4(-1)(-3)625 \)

\[
\begin{array}{cccccc}
4 & 2 & 5 & 1 & 7 & 3 & 6 \\
3 & 1 & 4 & -1 & 6 & 2 & 5 \\
4 & -1 & -3 & 6 & 2 & 5
\end{array}
\]
\(i = 2, j = 4 \)

Example 3.5.19. \(\zeta(4517326) = (-4)(-3)6215 \)

\[
\begin{array}{cccccc}
4 & 5 & 1 & 7 & 3 & 2 & 6 \\
3 & 4 & 0 & 6 & 2 & 1 & 5 \\
-4 & -3 & 6 & 2 & 1 & 5
\end{array}
\]
\(j = 3, i = 6 \)

Proposition 3.5.20. The map \(\zeta \) on permutations corresponds to the following operation on noncrossing arc diagrams: For any \(\pi \in A_n = S_{n+1} \), the type-B noncrossing arc diagram \(\delta^\circ(\zeta_\delta(\pi)) \) is identical to the type-A noncrossing arc diagram \(\delta(\pi) \), except that the numbered point 1 is replaced by the orbifold point \(\times \), the numbered points \(2, \ldots, n+1 \) are renumbered as \(1, \ldots, n \), and if \(\delta(\pi) \) has an arc \(\alpha \) which passes right of 2 and has 1 as its lower endpoint, then this arc is replaced by a long arc whose right side agrees with \(\alpha \) shifted down by one and whose left endpoint is 1.

The operation on noncrossing arc diagrams corresponding to \(\zeta \) for Examples 3.5.16 to 3.5.19 is pictured in Fig. 3.37.

Proof. Let \(\pi \) be a permutation in \(S_{n+1} \). Let \(j \) denote the position of 1 in \(\pi \) and let \(i \) denote the position of 2 in \(\pi \).

If \(j < i \), then the descending run in \(\pi \) that ends in 1 (regardless of whether it is trivial) occurs before the descending run that ends in 2. Because of this, there is no arc in \(\delta(\pi) \) which has 1 as its lower endpoint and either passes right of or has 2 as its upper endpoint. In this case, \(\delta^\circ(\zeta_\delta(\pi)) \) is identical to the type-A noncrossing arc diagram \(\delta(\pi) \), except that the
numbered point 1 is replaced by the orbifold point \times and the numbered points $2, \ldots, n + 1$ are renumbered as $1, \ldots, n$. This occurs in Examples 3.5.16 and 3.5.19 and is pictured in the leftmost and rightmost parts of Fig. 3.37. The proof of this is the same as the proof of Proposition 3.5.7.

If $i = j - 1$, then 1 and 2 are in the same nontrivial descending run. Because of this, there is an arc in $\delta(\pi)$ from 2 to 1. In this case, $\delta^\circ(\zeta_\delta(\pi))$ is as described in the previous case. This occurs in Example 3.5.17 and is pictured in the center-left part of Fig. 3.37. The proof of this is the same as the proof of Proposition 3.5.14 where $j > 1$ and $i = j - 1$.

If $i < j - 1$, then the nontrivial descending run in π that ends in 1 occurs before the descending run that ends in 2. Because of this, there is an arc in $\delta(\pi)$ that passes right of 2 and has 1 as its lower endpoint. In this case, $\delta^\circ(\zeta_\delta(\pi))$ is identical to the type-A noncrossing arc diagram $\delta(\pi)$, except that the numbered point 1 is replaced by the orbifold point \times, the numbered points $2, \ldots, n + 1$ are renumbered as $1, \ldots, n$, and the arc α which passes right of 2 and has 1 as its lower endpoint is replaced by a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1. This occurs in Example 3.5.18 and is pictured in the center-right part of Fig. 3.37. The proof of this the same as the proof of Proposition 3.5.14 where $j > 1$ and $i < j - 1$.

Theorem 3.5.21. ζ_δ embeds the shard intersection order on the Coxeter group of type A_n as a sublattice of the shard intersection order on the Coxeter group of type B_n.

Proof. As in the proof of Theorem 3.5.8, it is enough to show that $\zeta_\delta(\text{cn}(N_1, N_2)) = \text{cn}_B(\zeta_\delta(N_1), \zeta_\delta(N_2))$.

Consider two type-A noncrossing arc diagrams N_1 and N_2 on $n + 1$ points. We will show that it does not matter in what order we do two operations: mapping from A_n to B_n via ζ_{-1} and taking the meet using the appropriate type of cooperative noncrossing arc diagram.
Figure 3.38: The sublattice $\zeta_\delta(S_1)$ of $\Psi(B_3)$.

It is clear from the definitions that $\text{cn}_B(\zeta_\delta(N_1), \zeta_\delta(N_2)) = \zeta_\delta(\text{cn}(N_1, N_2))$ unless at least one of N_1 and N_2 has an arc that passes right of 2. Thus there are four cases left to consider, without loss of generality where N_1 has an arc passing right of 2 and where N_2 has: no arc with lower endpoint 1; an arc passing left of 2; an arc with upper endpoint 2; or an arc passing right of 2.

In the first case, N_1 has an arc α passing right of 2 and N_2 has no arc with lower endpoint 1. In this case, no two blocks in N_1 and N_2 share 1 as a lower endpoint. Thus there is no arc with lower endpoint 1 in $\text{cn}(N_1, N_2)$ and hence no orbifold or long arc in $\zeta_\delta(\text{cn}(N_1, N_2))$. Because α in N_1 passes right of 2, $\zeta_\delta(N_1)$ has a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1. Because N_2 has no arc with lower endpoint 1, $\zeta_\delta(N_2)$ has no orbifold or long arc. Thus by Definition 3.4.3, the only
arcs in $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$ must be type-A. Moreover, each arc in $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$ is an arc in $\text{cn}(N_{1}, N_{2})$ shifted down by one, as in the operation ζ_{δ} on noncrossing arc diagrams. Therefore, in this case $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2})) = \zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$.

In the second case, N_{1} has an arc α passing right of 2 and N_{2} has an arc β passing left of 2. In this case, the two blocks in N_{1} and N_{2} which share 1 as a lower endpoint pass to opposite sides of 2, and thus there is no arc in $\text{cn}(N_{1}, N_{2})$ whose lower endpoint is 1. Thus there is no orbifold or long arc in $\zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$. As in the previous case, $\zeta_{\delta}(N_{1})$ has a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1. Because β in N_{2} passes left of 2, $\zeta_{\delta}(N_{2})$ has an orbifold arc which passes left of 1. Because the orbifold block containing $\zeta_{\delta}(\beta)$ passes to the opposite side of 1 ad the long block containing $\zeta_{\delta}(\alpha)$, the requirement in (4) of Definition 3.4.3 is not met, so there is no long arc in $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$. Moreover, each arc in $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$ is an arc in $\text{cn}(N_{1}, N_{2})$ shifted down by one, as in the operation ζ_{δ} on noncrossing arc diagrams. Therefore, also in this case $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2})) = \zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$.

In the third case, N_{1} has an arc α passing right of 2 and N_{2} has an arc β from 2 to 1. In this case, the two blocks in N_{1} and N_{2} which share 1 as a lower endpoint pass weakly to the same side of 2, so there is an arc in $\text{cn}(N_{1}, N_{2})$ exactly when these two blocks share another endpoint $i > 2$ and pass weakly to the same side of each point between 2 and i. If $\text{cn}(N_{1}, N_{2})$ has no such arc, then all of its arcs have lower endpoints above 1, so $\zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$ has only type-A arcs. If $\text{cn}(N_{1}, N_{2})$ contains such an arc, which we denote γ, then by Definition 3.3.8, γ has upper endpoint r, lower endpoint 1, and passes to the right of 2. In $\zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$, γ is replaced by a long arc whose right side agrees with γ shifted down by one and whose left endpoint is 1. In $\zeta_{\delta}(N_{1})$, as in previous cases, α is replaced by a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1. In $\zeta_{\delta}(N_{2})$, the lower endpoint 1 of β is replaced by the point \times. By the requirement (4) of Definition 3.4.3, $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$ has a long arc with left endpoint 1 if and only if the right side of the long block in $\zeta_{\delta}(N_{1})$ and the orbifold block in $\zeta_{\delta}(N_{2})$ share an endpoint and the orbifold block weakly agrees with the right side of the long block below the shared endpoint. This shared endpoint is $i - 1$, and the resulting arc, if it exists, is precisely $\zeta_{\delta}(\gamma)$. All other arcs in $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2}))$ are type-A, exactly the arcs in $\text{cn}(N_{1}, N_{2})$ with lower endpoints above 1 shifted down by one by ζ_{δ}. Therefore, also in this case $\text{cn}_{B}(\zeta_{\delta}(N_{1}), \zeta_{\delta}(N_{2})) = \zeta_{\delta}(\text{cn}(N_{1}, N_{2}))$.

In the final case, N_{1} has an arc α passing right of 2 and N_{2} has an arc β which also passes right of 2. In this case also, the two blocks in N_{1} and N_{2} which share 1 as a lower endpoint pass weakly to the same side of 2, so there is an arc in $\text{cn}(N_{1}, N_{2})$ with lower endpoint 1 exactly when these two blocks share another endpoint $i > 2$ and pass weakly to the same side of each point between 2 and i. If $\text{cn}(N_{1}, N_{2})$ has no such arc, then all of
its arcs have lower endpoints above 1, so $\zeta_\delta(cn(N_1, N_2))$ has only type-A arcs. If $cn(N_1, N_2)$ contains such an arc, which we denote γ, then by Definition 3.3.8, γ has upper endpoint r, lower endpoint 1, and passes to the right of 2. In $\zeta_\delta(cn(N_1, N_2))$, γ is replaced by a long arc whose right side agrees with γ shifted down by one and whose left endpoint is 1. In $\zeta_\delta(N_1)$, as in previous cases, α is replaced by a long arc whose right side agrees with α shifted down by one and whose left endpoint is 1. In $\zeta_\delta(N_2)$, as in previous cases, β is also replaced by a long arc whose right side agrees with β shifted down by one and whose left endpoint is 1. By requirement (3) of Definition 3.4.3, $cn_B(\zeta_\delta(N_1), \zeta_\delta(N_2))$ has a long arc with left endpoint 1 if and only if the right sides of the long blocks in $\zeta_\delta(N_1)$ and $\zeta_\delta(N_2)$ share an endpoint and weakly agree below their shared endpoint. This shared endpoint is $i - 1$, and the resulting arc, if it exists, is precisely $\zeta_\delta(\gamma)$. All other arcs in $cn_B(\zeta_\delta(N_1), \zeta_\delta(N_2))$ are type-A, exactly the arcs in $cn(N_1, N_2)$ with lower endpoints above 1 shifted down by one by ζ_δ. Therefore, also in this case $cn_B(\zeta_\delta(N_1), \zeta_\delta(N_2)) = \zeta_\delta(cn(N_1, N_2))$.

We have shown that $cn_B(\zeta_\delta(N_1), \zeta_\delta(N_2)) = \zeta_\delta(cn(N_1, N_2))$ for any pair N_1 and N_2 of noncrossing arc diagrams.

A second hybrid map, η_ϵ

[38, Theorem 6.10] states that the congruence defined by η_ϵ is generated by the join-irreducible elements s_0s_1 and s_1s_0, which are the signed permutations $2 (-1) 3 \cdots n$ and $(-2) 1 3 \cdots n$. These arcs in B_3 are pictured in Fig. 3.39, and in larger type-B Coxeter groups, the noncrossing arc diagrams are only changed by adding numbered points above 3. It is easy to verify (using Section 2.4.2) that the superarcs of these two arcs are exactly the orbifold arcs that pass left of 1 and the long arcs with left endpoint above 1. Thus by Theorem 2.4.22 and Corollary 2.4.24, weak order on B_n corresponding to η_ϵ are exactly those which have only the following types of arcs in their noncrossing arc diagrams:

- type-A arcs,
- orbifold arcs with an endpoint at 1 or that pass right of 1, and/or
- long arcs whose left endpoint is 1.

The natural inclusion ζ_ϵ from A_n to B_n which sends each permutation π to the bottom element of the congruence defined by η_ϵ that maps to π is described as follows: Let j denote the position of 1 in π, and let i denote the position of 2 in π. If $j < i$, then ζ_ϵ behaves as ζ_{-1}, by subtracting one from each entry of π greater than 1 and subtracting two from 1 to give a permutation $\sigma_1 \cdots \sigma_{n+1}$ of $\{-1, 1, \ldots, n\}$ whose jth entry is -1. In this case, the signed permutation $\zeta_\epsilon(\pi) = \zeta_{-1}(\pi)$, with window notation $\sigma_{j+1} \cdots \sigma_{i-1} \sigma_{i}(-\sigma_{j-1}) \cdots (-\sigma_{1}) \sigma_{i+1} \cdots \sigma_{n+1}$.
(See Examples 3.5.22 and 3.5.25.) If \(i < j \), then \(\zeta \) behaves as \(\zeta_0 \), by subtracting one from each entry of \(\pi \) to give a permutation \(\sigma_1 \cdots \sigma_{n+1} \) of \(\{0, \ldots, n\} \) whose \(j \)th entry is 0. In this case, the signed permutation \(\zeta(\pi) = \zeta_0(\pi) \), with window notation \((-\sigma_{j-1}) \cdots (-\sigma_1)\sigma_{j+1} \cdots \sigma_{n+1} \).

(See Examples 3.5.23 and 3.5.24.)

Example 3.5.22. \(\zeta(1452736) = 3 \ 4 \ 1 \ 6 \ 2 \ 5 \)

\[
\begin{array}{ccccccc}
1 & 4 & 5 & 2 & 7 & 3 & 6 \\
-1 & 3 & 4 & 1 & 6 & 2 & 5 \\
3 & 4 & 1 & 6 & 2 & 5 \\
\end{array}
\]

\(j = 1, \ i = 4 \)

Example 3.5.23. \(\zeta(4521736) = (-1) (-4) (-3) 6 \ 2 \ 5 \)

\[
\begin{array}{ccccccc}
4 & 5 & 2 & 1 & 7 & 3 & 6 \\
3 & 4 & 1 & 0 & 6 & 2 & 5 \\
-1 & -4 & -3 & 6 & 2 & 5 \\
\end{array}
\]

\(i = 3, \ j = 4 \)

Example 3.5.24. \(\zeta(4251736) = (-4) (-1) (-3) 6 \ 2 \ 5 \)

\[
\begin{array}{ccccccc}
4 & 2 & 5 & 1 & 7 & 3 & 6 \\
3 & 1 & 4 & 0 & 6 & 2 & 5 \\
-4 & -1 & -3 & 6 & 2 & 5 \\
\end{array}
\]

\(i = 2, \ j = 4 \)

Example 3.5.25. \(\zeta(4517326) = 6 \ 2 \ 1 (-4) (-3) 5 \)

\[
\begin{array}{ccccccc}
4 & 5 & 1 & 7 & 3 & 2 & 6 \\
3 & 4 & -1 & 6 & 2 & 1 & 5 \\
6 & 2 & 1 & -4 & -3 & 5 \\
\end{array}
\]

\(j = 3, \ i = 6 \)

Proposition 3.5.26. The map \(\zeta \) on permutations corresponds to the following operation on noncrossing arc diagrams: For any \(\pi \in \mathbb{A}_n = \mathbb{S}_{n+1} \), the type-B noncrossing arc diagram \(\delta^\circ(\zeta(\pi)) \) is identical to the type-A noncrossing arc diagram \(\delta(\pi) \), except that the numbered point 1 is replaced by the orbifold point \(\times \), the numbered points \(2, \ldots, n+1 \) are renumbered as \(1, \ldots, n \), and if \(\delta(\pi) \) has an arc \(\alpha \) which passes left of 2 and has 1 as its lower endpoint, then this arc is replaced by a long arc whose left side agrees with \(\alpha \) shifted down by one and whose right endpoint is 1.
The operation on noncrossing arc diagrams corresponding to \(\zeta_\epsilon \) for Examples 3.5.22 to 3.5.25 is pictured in Fig. 3.40.

Proof. Let \(\pi \) be a permutation in \(S_{n+1} \). Let \(j \) denote the position of 1 in \(\pi \) and let \(i \) denote the position of 2 in \(\pi \).

If \(j = 1 \), then 1 is in a trivial descending run and thus not the lower endpoint of any arc in \(\delta(\pi) \). This occurs in Example 3.5.22 and is pictured in the leftmost part of Fig. 3.40. In this case, the argument follows exactly as in the proofs of Propositions 3.5.7 and 3.5.14.

If \(1 < j < i \), then the nontrivial descending run in \(\pi \) that ends in 1 occurs before the descending run that ends in 2 and thus the arc \(\alpha \) in \(\delta(\pi) \) which has 1 as its lower endpoint passes left of 2. In this case, \(\delta^o(\zeta_\epsilon(\pi)) \) is identical to \(\delta(\pi) \), except that the numbered point 1 is replaced by the orbifold point \(\times \), the numbered points \(2, \ldots, n+1 \) are renumbered as \(1, \ldots, n \), and the arc \(\alpha \) is replaced by a long arc whose left side agrees with \(\alpha \) shifted down by one and whose right endpoint is 1. This occurs in Example 3.5.25 and is pictured in the rightmost part of Fig. 3.40. The proof of this is the same as the proof of Proposition 3.5.14 where \(j > 1 \) and \(i > j \).

If \(i < j \), then 2 is either part of or precedes the nontrivial descending run in \(\pi \) that ends in 1 and thus the arc in \(\delta(\pi) \) which has 1 as its lower endpoint either has 2 as its upper endpoint or passes right of 2. In this case, \(\delta^o(\zeta_\epsilon(\pi)) \) is identical to \(\delta(\pi) \), except that the numbered point 1 is replaced by the orbifold point \(\times \), the numbered points \(2, \ldots, n+1 \) are renumbered as \(1, \ldots, n \). This occurs in Examples 3.5.23 and 3.5.24 and is pictured in the two middle parts of Fig. 3.40. The proof of this is a the same as the proof of Proposition 3.5.7. \(\square \)

Comparing Proposition 3.5.26 with Proposition 3.5.20, we see that \(\zeta_\epsilon \) and \(\zeta_\delta \) are related by reflection in a vertical line. Specifically, the map \(\zeta_\epsilon \) corresponds to reflecting the type-A
Theorem 3.5.27. ζ_ϵ embeds the shard intersection order on the Coxeter group of type A_n as a sublattice of the shard intersection order on the Coxeter group of type B_n.

noncrossing arc diagram, applying ζ_δ, and then reflecting the result. Thus the proof of the following theorem is symmetric to the proof of Theorem 3.5.21.

Figure 3.41: The sublattice $\zeta_\epsilon(S_4)$ of $\Psi(B_3)$.

REFERENCES

