
ABSTRACT

YANCHENKO, ERIC KNOWLTON. On Prior Distributions for Scale Parameters in Hierarchical
Models and Inference for Meso-scale Structures in Networks. (Under the direction of Brian J.
Reich and Srijan Sengupta).

This dissertation is divided into two parts. First, Bayesian inference has grown in popularity

recently, but one key challenge is selecting prior distributions, especially for parameters in

hierarchical models. The R2D2 prior framework allows users to choose the prior distribution for

a Bayesian coefficient of determination (R 2) which induces prior distributions on the individual

parameters. The first chapter adapts the R2D2 prior to generalized linear mixed models, and

it is further extended to spatially-correlated data in the second chapter. In both cases, the

prior frameworks yield a simple way to include domain expertise into the prior, as well as an

automatic approach in the absence of such information.

The focus then shifts to networks for the final two chapters. Thanks to their generality,

networks have been studied in a variety of fields. Across various domains, many networks

share similar structural properties. One such feature is community structure where similar

nodes are clustered together. Chapter 4 statistically formalizes this concept by deriving a

model-agnostic parameter and test statistic for quantify community structure. In addition,

we propose two testing frameworks to determine the statistical significance of the feature. In

Chapter 5, our attention turns to another common feature, core-periphery (CP) structure, where

a network separates into a densely-connected core and sparsely-connected periphery. We

present a review of existing CP methodologies from a statistical angle, in addition to proposing

a divide-and-conquer algorithm for detecting CP structures in large networks.
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CHAPTER

1

INTRODUCTION

This dissertation consists of two distinct components. In the �rst two chapters, the focus

is on constructing prior distributions for scale parameters in Bayesian hierarchical models.

Speci�cally, we derive principled priors for generalized linear mixed models and spatially

correlated data using the R2D2 framework. For the second half, our focus turns to statistically

formalizing meso-scale structures in networks. In particular, we �rst propose a statistical

hypothesis test for community structure, before providing an overview of core-periphery

structure and proposing a detection algorithm for large networks.

1.1 Prior distributions for scale parameters

While Thomas Bayes and Pierre-Simon Laplace laid the foundation for Bayesian statistics as

early as the eighteenth century (Bayes 1763; De Laplace 1774), Bayesians were an obscure

minority in the statistics community through most of the 20th century. Instead, the frequentist

paradigm, dominated scienti�c laboratories and statistical textbooks throughout the 1900s.

This began to change in the 1980s as computing power began to take off (Robert and Casella

2011). With other factors such as Markov Chain Monte Carlo maturing as a technique, Bayesian

solutions to dif�cult problems became viable. Today, Bayesian inference is widely accepted in

statistics and many scienti�c communities.
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A complete discussion of the strengths and weakness of Bayesian inference is outside the

scope of this dissertation. Rather, we highlight how Bayesians can incorporate prior domain

knowledge about the model and / or parameters into the modeling framework. Especially in

small data sets, carefully integrating expert knowledge about the problem can greatly improve

inference. In many cases, however, this can be a challenging task. For example, in complex

hierarchical models, it is non-trivial to intuitively incorporate prior information for certain

parameters, especially when eliciting this information from researchers without extensive

formal training in statistics (Simpson et al. 2017). A distinct, but related problem, concerns

the transformation of parameters. A prior distribution that is sensible for some parameter

may induce an unreasonable distribution on a transformation of that parameter (Jeffreys 1946;

Gelman 1996).

Challenges and existing work

One setting where this is a well-known problem is eliciting prior information for scale param-

eters in multi-level models (Gelman 2006). As a simple example, consider an experimenter

who wants to model student success at various schools 1. Here, the response may be the score

on some standardized test and we want to perform a regression using standard covariates

like gender, GPA, etc. Since the data is to be collected across multiple schools, we also plan to

include a random effect for the schools. Mathematically, our model is

Yi = Xi � + � gi
+ " i (1.1)

where Yi is the test score, Xi are the covariates, � are the �xed effects, � gi
is the random school

effect for gi 2 f 1, . . . ,Ggand " i is the noise for response i 2 f 1, . . . ,n gwith " i
iid
� N(0, � 2). Typically,

we model the random effect as � 1, . . . ,� G
iid
� N(0, � 2

� ) where � 2
� represents the within-school

variation. If the number of schools in our study (G) is relatively small, to obtain a good estimate

of � 2
� , we may need to incorporate domain knowledge into our prior distribution � (� 2

� ). This

task, however, is non-trivial. It is dif�cult to conceptualize � 2
� , especially disentangling its

relation to � 2. Even if this difference is well understood, converting domain expertise, e.g.,

low expected variation in test scores between schools, into a parametric prior is far from

standardized. This problem arises for this relatively simple model and is only exacerbated in

more complicated hierarchies.

One way to address this challenge is setting a prior distribution on the model or summary

of the model �t which then induces prior distributions on the individual parameters. One

recent example of this is the Penalized Complexity (PC) prior (Simpson et al. 2017). The PC

1This toy example was adapted from (Hoff 2009)
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prior places a prior distribution on the Kullback-Leibler (KL) divergence between the �tted

model and some “base” model. This prior effectively shrinks the model towards the base model

to prevent over�tting. For example, if � (Y j� 2
� ) represents the likelihood of the model in (1.1),

and � (Y j� 2
� = 0) is the likelihood for the base model without the school-speci�c random effect,

then

KLD(� (Y j� 2
� )k� (Y j� 2

� = 0)) � Exp(� )

induces a � � � Exp(� ) prior. While the PC prior focuses on the prior distribution for the model

�t instead of individual parameters, conceptually understanding the KL divergence between

two models and choosing hyper-parameters is still not straightforward.

This work focuses on a different paradigm for model-wide prior distributions: the R2D2

prior. Originally proposed for the linear model in Zhang et al. (2022), the R2D2 prior places

a beta distribution on a Bayesian coef�cient of determination (R2), inducing a beta prime

distribution on the global variance which is then allocated to different model components via

a Dirichlet distribution. Using similar notation as above, let

Yi = Xi � + " i

for i = 1, . . . ,n and � � Normal(0, � 2� ) where � is a diagonal matrix with f � 1, . . . ,� p gon the

diagonals. Then Zhang et al. (2022) de�ne a marginal R2 as

R2 =
Var(X � )

Var(Y )
=

P p
j =1 � 2� j

P p
j =1 � 2� j + � 2

=
W

W + 1

where W =
P p

j =1 � j . Thus, R2 � Beta(a ,b ) induces W � BetaPrime(a ,b ) where W is the global

variance of the mean function. If � j = � j W where
P p

j =1 � j = 1, then the condition W =
P p

j =1 � j

is satis�ed. A natural choice is the Dirichlet distribution for � = (� 1, . . . ,� p )T . Thus, the full

prior speci�cation is:

� j � DE((� 2� j W =2)1=2), � � Dirichlet(a � , . . . ,a � ), W � BetaPrime(a ,b ),

where DE(�) is the Double Exponential (Laplace) distribution. This paper extensively studies

the shrinkage properties of this prior distribution and, in particular, shows that it leads to

greater concentration near the origin while simultaneously having heavier tails than any other

shrinkage prior. Empirical results also show that this prior is adept at both inference and

prediction in the sparse, high-dimensional regression setting.
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R2D2 prior for GLMMs

While Zhang et al. (2022) study this prior distribution in the high-dimensional regression

setting, a contribution of this work is exploring how the framework can be used for both

uninformative and subjective prior construction. In particular, the R2D2 prior makes it easy to

leverage domain expertise for complicated models. Returning to our example one �nal time, it

is much easier to elicit information from our expert about how well the model is expected to �t

the data as measured by R2, as opposed to asking about the expected within-school variation.

Moreover, in situations where domain knowledge is unavailable, the R2D2 prior also provides

an automatic approach.

The goal of Chapter 2 is to extend the R2D2 prior to generalized linear mixed models

(GLMMs), while also drawing out the utility of the framework for automatic and subjective

prior constructions. We accomplish this by proposing a beta prior on Zhang et al. (2022)'s

de�nition of R2 for generalized linear mixed models. We derive closed-form expressions in

multiple scenarios for the prior of the global variance parameter that induces a beta prior on

R2. We also present several approximation strategies when an analytic prior distribution is not

possible. The main approach we suggest approximates the prior by a generalized beta prime

(GBP) distribution. This distribution is quite �exible as it can achieve boundedness at the origin

as well as a heavy tail (Perez et al. 2017). The scaled beta prime distribution, a special case of

the GBP, has also previously been used as a prior for the variance of the regression coef�cients

(Klein et al. 2021; Bai and Ghosh 2021). Our method differs from these previous approaches

in that we place a GBP prior on the global variance which is then further decomposed in

the hierarchy to the individual regression parameters. Finally, our proposed prior is easy to

implement in standard Bayesian softwares, e.g., JAGSand Stan.

Spatial R2D2

While GLMMs provide one setting where careful construction of scale parameter priors is

necessary, another situation where this can be dif�cult is when data has spatial correlation, the

topic of Chapter 3. Spatially-dependent data arise in many applications including ecology (e.g.,

Plant 2018), public health (e.g., Reich and Haran 2018), environmental exposure monitoring

(e.g., Berrocal et al. 2020; Self et al. 2021), pollen concentrations (e.g., Pirzamanbein and

Lindström 2022; Zapata-Marin et al. 2023) and medical imaging (e.g., Masotti et al. 2021).

A common approach to modeling spatial data is with Gaussian Processes. Estimating the

hyper-parameters of this covariance structure, however, is notoriously dif�cult (e.g., Zhang

2004) which makes selecting prior distributions paramount. The standard approach places a

vague (large variance) inverse gamma prior distribution on the spatial variance and informative
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gamma prior distribution on spatial correlation parameters (Gelfand et al. 2010). As Berger et al.

(2001) discuss, eliciting an informative prior distribution is challenging as the spatial correlation

parameters can be dif�cult to interpret. To provide an automatic approach, the authors derive

reference priors for the covariance parameters using an objective Bayesian paradigm which

minimizes the prior information from an information theory perspective (Berger 2006). The

Bayesian hierarchical spatial model is quite intricate so the resulting prior distribution has

a complicated form. To provide a prior construction that can more easily incorporate prior

knowledge while still being weakly informative, Fuglstad et al. (2019) adapt the penalized

complexity prior framework of Simpson et al. (2017) to construct prior distributions for the

hyper-parameters of a Matérn covariance structure. This prior distribution shrinks the spatial

component of the model towards a base model, i.e., one with no spatial dependence, and

the resulting prior distribution is much faster and easier to compute than that of Berger et al.

(2001).

In order to construct a framework that easily allows for subjective and uninformative prior

distributions, we leverage the ideas of the R2D2 prior. In this setting, however, the marginal

de�nition of R2 used in Zhang et al. (2022) is not useful as it removes all spatial correlation.

Instead, we leverage the sample-based R2
n of Gelman et al. (2019) to account for the spatial

correlation. In Chapter 2, we show that these two de�nitions of R2 are non-trivially related, and

in many cases, the sample de�nition does not converge to the population de�nition for large

n . Thus, while super�cially similar to Zhang et al. (2022), using this different coef�cient-of-

determination de�nition leads to substantive differences in the prior derivation. Despite this

difference in de�nition, we again �nd that a beta distribution on R2 induces a generalized beta

prime distribution on the global variance parameter. This method can also be thought of as

shrinking the �t towards the intercept-only (null) model. We derive an ef�cient Gibbs sampler

for the majority of the parameters and use Metropolis-Hasting updates for the others. Finally,

the method is applied to a marine protection area data set. We estimate the effect of marine

policies on biodiversity and conclude that no-take �shing restrictions lead to a slight increase

in biodiversity and that the majority of the variance in the linear predictor comes from the

spatial effect.

The proposed method relates to the existing methods in several ways. First, each is weakly

informative in some sense: Berger et al. (2001) in terms of information theory, Fuglstad et al.

(2019) in terms of the Kullback-Leibler divergence between the base and �tted model, and the

proposed method in terms of R2
n . Similar to Fuglstad et al. (2019), the proposed method allows

for intuitive incorporation of prior domain knowledge, facilitates fast and easy computation

and shrinks the �t towards a base model. Speci�cally, a prior distribution with large mass

near R2
n = 0 is akin to shrinking or penalizing towards the intercept-only (baseline) model.
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The difference is that Fuglstad et al. (2019) treats the model without spatial dependence as

the baseline model. In contrast with the previous two methods, our approach chooses the

prior distribution for the global variance which induces a prior distribution on the other

spatial parameters whereas Berger et al. (2001) and Fuglstad et al. (2019) directly set the prior

distribution on the spatial hyper-parameters and marginal variance.

1.2 Meso-scale structures in networks

We now turn our attention to networks, which are the topic of the second half of this dissertation.

In 1736, Leonhard Euler solved what became known as the “Seven bridges of Königsberg

problem” where he proved that it was impossible to traverse the city while crossing each bridge

only once (Euler 1741). Many assert this was the �rst problem in network science, which over

the past four centuries has blossomed into a rich and diverse �eld.

While Euler solved the �rst networks problem in the 18th century, it was not until the

past several decades that interest in networks really took off. Researchers began collecting

and analyzing a variety of networks, e.g., social interpersonal networks, where each node is

a person and each edge represents some interaction like friendship or social contact (Scott

1988; McPherson et al. 2001; Kane et al. 2014; Dasgupta and Sengupta 2022; Guo et al. 2020);

infrastructural networks like airport networks, where each node is an airport and each edge

represents a �ight between them (Guimera and Amaral 2004; Li and Cai 2004); citation networks

where each node is a paper and each edge represents a citation (Lehmann et al. 2003; Radicchi

et al. 2008; Bradley et al. 2020; Chandrasekharan et al. 2021); and biological networks where

each node is a cell or molecule and each edge represents an interaction in a biological process

(Girvan and Newman 2002; Alm and Arkin 2003; Michailidis 2012).

As these networks were studied, a peculiar observation began to arise: despite being col-

lected in vastly different domains, many networks shared similar structural features. Regardless

of whether the network was generated from friendships on Facebook or brain connectivity in

neuroscience, many shared features were observed (e.g., Girvan and Newman 2002).

One such feature is the scale-freeproperty (Barabási and Bonabeau 2003). A network is

called scale-free if the degree distribution of the network follows a power law distribution,

i.e., the proportion of nodes with degree at least k is asymptotically proportional to k  for

 2 (2,3). While there is some controversy within the networks community about this property,

at a minimum, many networks have been observed to have a heavy-tailed degree distribution.

Another class of common properties is called meso-scalestructures which means that the

feature is observed on the medium (or meso) scale of the network, as opposed to the global or

nodal level. The most well-known is community structure (Girvan and Newman 2002; Fortunato
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2010). In a network with community structure, nodes are partitioned into communities or

clusters where each node in the cluster shares similar properties. Perhaps the most common

community structure is assortative community structure where nodes in the same cluster are

densely connected, but they share fewer edges between groups. Many social networks exhibit

such assortativity.

While these features have been observed in many networks across many domains, it begs

an important question: are these truly signi�cant structures in the network generating process,

or are they simply the result of some random noise? In other words, did researchers “discover”

a community structure in their network simply because they set out looking for just that, or is

there an inherent process generating such features?

As a motivating example, consider the classical in�uence maximization (IM) task where the

goal is to select a small number of seed nodes such that the spread of in�uence is maximized on

the entire network (Kempe et al. 2003; Yanchenko et al. 2023b). In networks lacking community

structure, Osawa and Murata (2015) showed that seeding nodes based on simple, centrality-

based heuristics yields seed sets with substantial spread. On the other hand, when networks

exhibit a community structure, selecting nodes from the same community results in ineffective

seed sets due to nodes sharing many similar neighbors. In this case, more sophisticated seeding

algorithms are needed. Thus, understanding the signi�cance of the community structure in

the network is paramount for adequate seed selection in the IM problem.

Testing for community structure

The second half of this dissertation studies several inferential tasks for meso-scale structures.

More speci�cally, the goal of Chapter 4 is to develop a statistical hypothesis test for community

structure. The framework of statistical hypothesis testing consists of four fundamental com-

ponents: (1) the model parameter of interest, (2) a test statistic that is typically based on an

estimator of the model parameter, (3) a null model that re�ects the absence of the property of

interest, and (4) a rejection region for the test statistic. While previous literature exists on this

problem, there has been a minimal emphasis placed on ingredients (1) and (3). In particular,

none of the existing work identi�es an underlying model parameter and the null model has not

been studied thoroughly. Two popular choices for nulls are the Erd �os-Rényi (ER) (Bickel and

Sarkar 2016; Yuan et al. 2022) and con�guration model (Lancichinetti et al. 2010; Palowitch

et al. 2018; Li and Qi 2020). While these testing methods carry rigorous statistical guarantees,

choosing these null models means that they effectively test against the null hypothesis that the

network is generated from a speci�c null model, rather than testing against the null hypothesis

that there is no community structure. This leads to problems in empirical studies because the

ER model, for example, is so unrealistic that almost all real-world networks would diverge from
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it, leading to many false positives. On the other hand, it may be possible for a con�guration

model to have a small amount of community structure itself. Thus, a careful treatment of the

null model is essential for a statistical test to be relevant for applied network scientists.

The main contributions of this chapter follow the four components of the hypothesis testing

framework. From �rst-principles, we describe a model-agnostic parameter based on expected

differences in edge densities which forms the basis of our statistical inference framework.

Second, we propose an intuitive and interpretable test statistic which is directly connected

to the model. Though the conceptual idea behind a community structure is intuitive, one

challenge of studying this property is that there is no universal mathematical de�nition. Thus,

our metric provides this mathematical clarity by quantifying the strength of the community

structure as the difference between the intra- and inter-community edge probabilities. We

leverage the model parameter and test statistic to formulate two types of hypothesis tests. The

�rst is based on a user-speci�ed threshold value of the parameter, which induces a model-

agnostic test. For the second type, instead of specifying a baseline value of the parameter, the

user speci�es a baseline model or network property to test against. We derive theoretical results

for the asymptotic cutoff in the �rst test and bootstrap cutoff in the second. Finally, we apply

our method to well-studied real-world network datasets in the community structure literature.

The results are insightful, as our method yields rich, new insights about the underlying network

structure.

Core-periphery structure

While Chapter 4 is concerned with community structure, in Chapter 5, the focus turns to

another meso-scale feature: core-periphery (CP) structure. CP structure is a common network

feature where the network is comprised of a densely connected core cluster of nodes, and

a loosely connected peripheral group (Borgatti and Everett 2000; Yanchenko and Sengupta

2023). CP structure has been observed in a wide variety of real-world networks. For example,

in global trading networks, countries with large economies trade with both large and small

economies, forming the core, while small economies are less likely to trade with each other,

forming the periphery (Krugman 1996; Magone et al. 2016). In airport networks, major airports

(corresponding to large cities or airline hubs) have �ights to other major airports as well as

regional airports, but smaller airports have few �ights between themselves (Lordan and Sallan

2017, 2019). Academic citation networks also exhibit a CP structure as high-pro�le papers

receive citations from many types of papers whereas obscure papers are less likely to cite

each other (Zelnio 2012; Sedita et al. 2020; Wedell et al. 2022). In each of these examples, the

groups of nodes (representing the core or the periphery) share some fundamental, underlying

characteristic, which makes their assignment to the correct group an important task.
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Studying the CP structure of a network can also be important for understanding individual

nodes. Nodes in the core are likely more “in�uential" to the network in some sense. For example,

in a power grid network, core power plants are more vital to the health of the grid than those

in the periphery (e.g., Yang et al. 2021). If a core power plant stops being operational due to

a storm or a nefarious actor, the consequences on the power grid are much greater than if

a peripheral plant went of�ine. Additionally, nodes on the boundary between the core and

periphery may play a unique, mediatory role between the two groups (Cattani and Ferriani

2008). Understanding the CP structure of a network helps the researcher determine which

nodes are the most signi�cant and worthy of further investigation.

Similar to community structure, there is no single method to quantify a CP structure. One

of the most popular methods comes from Borgatti and Everett (2000). The authors consider

an “idealized" CP structure � where � i j = 1 if node i or j is in the core and 0 otherwise.

The algorithm then returns the labels (i.e., the classi�cation of each node into the core or

the periphery) which maximize the correlation between the idealized CP structure and the

observed network. This method can be implemented in the popular UCInet software (Borgatti

et al. 2002). Another popular method is from Holme (2005). The author de�nes the core of

the network as the k -core (Newman 2018) with largest closeness centrality (Sabidussi 1966).

Because of this strict core de�nition, �nding the core is fast as the computation time scales

linearly with the total number of edges. Many other methods have also been proposed for

identifying this network structure (e.g., Lip 2011; Zhang et al. 2015; Naik et al. 2021).

There are some key distinctions between a CP structure and community structure. Com-

munity structure implies low edge density between communities and high edge density within

communities. In contrast, a CP structure implies two groups, typically one small group (core)

and one large group (periphery), with high edge density within the �rst group, medium edge

density between the two groups, and low edge density within the second group. Under com-

munity structure, all nodes prefer within-group connections over between-group connections.

Under a CP structure, core nodes prefer within-group connections over between-group connec-

tions, but periphery nodes prefer between-group connections over within-group connections.

Another fundamental difference between these two structures is that a network with commu-

nities can be broken down into separate, minimally interacting, self-contained sets of nodes.

This is in contrast to a CP structure where core nodes in�uence and interact with the entire

network. In Figure 1.1, we see how community structure is composed of two densely connected

sets of nodes which have minimal edges between them. A CP structure, alternatively, has a

dense core (blue nodes) that is highly connected to the periphery (orange nodes) but has few

intra-periphery edges. It is also possible for a network to have multiple communities and / or

CP structures.
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(a) Community Structure (b) Core-periphery structure

Figure 1.1: Comparison of networks generated with community structure versus core-
periphery structure.

The goal of the �rst part of Chapter 5 is to survey the research landscape of CP structures

from a statistical perspective. We are not only interested in methods to identify this network

feature, but also in understanding how these structures are generated, their signi�cance and

what they mean in the context of the speci�c application. Our work builds off the reviews in

Csermely et al. (2013) and Tang et al. (2019) but has a greater emphasis on important statistical

concepts related to CP structures, such as hypothesis testing and Bayesian inference. Another

contribution of this review is that, in each section, we include a careful discussion of the existing

methods, comparing and contrasting them and presenting the strengths and weakness of the

literature in this area.

In the second half of the chapter, our attention shifts to detecting core-periphery structure in

large networks. In the modern era of “big data," networks can consist of hundreds of thousands

or even millions of nodes (e.g., Backstrom et al. 2006; Rozemberczki et al. 2021). Thus, new

methods and algorithms to study networks must be capable of handling such large data sets.

In this chapter, we propose a scalable method to identify core-periphery structure.

The existing methods for this task suffer from one of two problems: they either have a

�exible core de�nition (objective function) but are slow for large networks (e.g., Borgatti and

Everett 2000), or they are fast but are restricted to a particular objective function (e.g., Holme

2005). To address both of these issues, we propose a divide-and-conquer algorithm for CP

identi�cation in large networks. The proposed method �nds the CP structure on smaller subsets
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of the network and then combines the results across sub-samples, yielding fast and accurate CP

identi�cation. We demonstrate the performance of the method on a network with over 35,000

nodes but the method can scale to handle even larger networks. Moreover, our approach is

�exible enough to handle many popular core de�nitions. Here we use the Borgatti and Everett

(2000) metric but the proposed method can easily be adapted to many other metrics. This

approach also yields a sense of the statistical signi�cance of the CP structure.
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CHAPTER

2

THE R2D2 PRIOR FOR GENERALIZED

LINEAR MIXED MODELS

2.1 Introduction

As we saw in Chapter 1, eliciting prior distributions for scale parameters in hierarchical models

can be challenging. In this chapter, we tackle this problem for generalized linear mixed models

(GLMMs) using the R2D2 framework (Yanchenko et al. 2021). In Section 2.2, we describe the

generalized linear mixed model framework and present several speci�c examples. In Section

2.3, we precisely de�ne a Bayesian R2 and show how the model-level prior induces prior

distributions for the individual model prior parameters. We also present the prior distributions

for several speci�c regression models as well as approximation techniques when a closed-form

solution cannot be found. Section 2.5 applies the proposed method to real-world data and

Section 2.6 concludes with recommendations for default use and next steps.
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2.2 Generalized linear mixed models

For notational simplicity, we follow Simpson et al. (2017) and specify our model for a gen-

eralized linear mixed model (GLMM), although the ideas presented here can generalize to

other settings. For observations i 2 f 1, . . . ,n g, let Yi be the response, Xi = (Xi 1, . . . ,Xi p ) be the

explanatory variables and � = (� 1, . . . ,� p )T be the corresponding �xed effects. We standardize

the explanatory variables such that each column of X has mean zero and variance one. We also

assume that there are q types of random effects, u k , k 2 f 1, . . . ,qgwhere u k = (u k 1, ...,u k L k
)T

has Lk levels. We let gi = (gi 1, . . . ,gi q )T for i 2 f 1, . . . ,n gbe membership vectors such that gi k is

the level of random effect k for observation i and where mixed-membership is excluded. The

�xed and random effects are assumed to be independent and are related to the response via

the linear predictor

� i = � 0 + Xi � +
qX

k =1

u kg i k
(2.1)

where � 0 is the intercept. The responses are assumed to be conditionally independent given

the linear predictor and follow density function Yi j� i , � � f (y j� i , � ), where � is an additional

parameter in the likelihood function (see examples below).

The model for the �xed and random effects is � j j� j ,W
i nd e p

� Normal (0, � j W )and u k j� p +k ,W
i nd e p

�

Normal (0, � p +k W I Lk
) where W > 0 controls the overall variance of the linear predictor (not the

response) and � j � 0 satisfy
P p +q

j =1 � j = 1 and apportion the variance to the different model

components. Thus, W may be interpreted as the total amount of variation in the �xed and

random effects, or as a transformation of the total variation of the mean function. In the latter

case, the interpretation depends on the link function. Moreover, large values of W encode a

model with greater �exibility since large variance in the mean function means that the model

can capture more trends in the data. In the limit as W ! 0, conversely, we are reduced to the

intercept-only model. This interpretation will be important later in this work when we treat

the placement of a large prior mass on W near zero as “penalizing" towards the null (intercept-

only) model. Additionally, notice that the �xed and random effects are modeled similarly, i.e.,

with a random variance. Even so, we maintain their differing interpretations. Speci�cally, if

we are interested in effect estimates themselves, then we treat this effect as “�xed," but if our

interest lies in the underlying population of the effect, then it is treated as “random" (Searle

et al. 2009). Following this interpretation, we are most interested in the estimates of � and

� j W for j = p + 1, . . . ,p + q .

The prior distribution of R2 relies on the distribution of � i . For the majority of this work,

we assume

� i j� 0,W � Normal (� 0,W ). (2.2)
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We derive this result in the Supplementary Materials whether Xi is treated as �xed or random.

If we treat Xi as random, then � i will be approximately normal for moderate p by the Central

Limit Theorem. On the other hand, if we consider � i conditional on Xi , then the distribution

of � i is exactly normal where the variance is different for each i but the average variance is W

due to X's standardization. Alternative distributions are discussed in Sections 2.3.2 - 2.3.2 but

the normality of � i is assumed for all experiments.

2.2.1 Variance decomposition of the linear predictor

The variance parameters � = (� 1, ...,� p +q ) determine the relative variance of each component

of the model and are restricted to sum to one. These parameters could be �xed, or given prior

distributions to add �exibility to the variance decomposition. In the most general case we

can assign these parameters a Dirichlet distribution, � � Dirichlet (� 1, ...,� p +q ). Often times

we will take � 1 = � � � = � p +q � � 0. The concentration parameter � 0 > 0 controls the variation of

the prior distribution with large � 0 encouraging all the variance components to be roughly

equal to 1=(p + q ) and small � 0 re�ecting prior uncertainty in the variance components. In

some cases, the effects will be grouped and the variance across groups will be decomposed

using a Dirichlet prior, e.g., all �xed effects assumed to have the same variance. These ideas

are illustrated through examples below.

2.2.2 Examples

To help �x ideas, we present a few speci�c examples of this prior construction.

Example 1: Gaussian linear regression model: In the linear regression setting with no random

effects, the linear predictor is simply

� i = � 0 + Xi �

and we have Yi j� i , � 2 � Normal (� i , � 2) so that � = � 2 is the error variance. We then take

� j j� j ,W � Normal (0, � j W ) for j = 1, . . . ,p . Zhang et al. (2022) study the theoretical properties

of this approach for various prior distributions on W and � . In general, this is a global-local

shrinkage prior which has been studied in various contexts (e.g., Carvalho et al. 2010; Polson

and Scott 2012; Polson et al. 2012; Bhattacharya et al. 2015; Zhang and Bondell 2018).

14



Example 2: Poisson regression with two-way random effects: For a mixed effects model

with two-way (non-interacting) random effects, the linear predictor is

� i = � 0 + Xi � + u 1gi 1
+ u 2gi 2

,

and Yi j� i � Poissonf exp(� i )g. The membership vectors gi 1 and gi 2 indicate the level assigned

to observation i for random effects type one and two, respectively. The variance weights given

to the �xed and random effects are determined by the Dirichlet parameter � . For example, to

allow each �xed effect to have a different variance, we might take � � Dirichlet (� 1, . . . ,� p +2)

where � k are �xed hyperparameters; on the other hand, for each �xed effect to have the same

variance, we might take � � Dirichlet (� 1, � 2, � 3) and then let � j j� 1,W � Normal (0, 1
p � 1W ) for

j = 1, . . . ,p and u k � Normal (0,� k W I Lk
) for k = 2,3.

Example 3: Weibull model: Survival analysis often uses a Weibull model. For simplicity, we

consider uncensored data but this could be extended to censored data. Let there be a single

random effect so that the linear predictor is

� i = � 0 + Xi � + u gi

for membership vector gi 2 f 1. . . . ,Lg. If Yi is the survival time, then the model is Yi j� i , � �

Weibull (e � i , � ) for shape parameter � . If we assume that the �xed effects have equal variance,

then � j� 1,W � Normal (0, 1
p � 1W Ip )and u j� 2,W � Normal (0, � 2W I L )where � � Dirichlet (� 0, � 0).

Example 4: Generalized linear regression with spatial random effects: Consider the sce-

nario where we observe data from L spatial clusters (e.g., cities or villages) at spatial locations

s1, . . . ,sL 2 R2. Then let Yi be the response from location sgi
2 R2 where gi 2 f 1, . . . ,Lgis the clus-

ter indicator. Spatial generalized linear models account for correlation between observations at

nearby locations by adding spatially-correlated random effects (e.g., Diggle et al. 1998). Let u gi

be the Gaussian random effect for cluster gi . The linear predictor is then � i = � 0+Xi � + u gi
. A sta-

tionary and isotropic model assumes E(u i ) = 0and Var(u i ) = � 2
u for all i and Cor(u i ,u j ) = C(d i j ),

where C is a spatial correlation function such as the exponential function C(d ) = exp(� d =� )

and d i j is the distance between locations si and sj . The covariance structure of the model is

determined by the L � L correlation matrix C with (i , j ) element C(d i j ). The spatial regression

model is then in the form of (2.1) where u j� p +1,W,� � Normal (0, � p +1W C) and � 2
u = � p +1W .

While the covariance matrix of the random effect is no longer diagonal, the derivation of (2.2)

still holds as the different random effect levels have the same variance and the covariance

terms do not appear in the derivation.
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Example 5: Generalized additive model: Non-linear regression models can also be written

as (2.1). Assume that p explanatory variables, xi 1, ...,xi p , are allowed to have a non-linear

relationship with the response variable. The generalized additive model (e.g., Hastie 2017; Klein

et al. 2021) is

� i = � 0 +
pX

j =1

f j (xi j )

for unknown functions f1, ..., fp . A common approach is to model the f j 's using a basis expansion

f j (x ) =

L jX

l =1

B j l (x )� (k )
l

where B j l , ...,B j L j
are basis function, e.g., spline functions and � (k ) are “grouped" �xed effects.

This model then �ts (2.1) with X̃ = (X̃1, . . . ,X̃p ) where X̃ j 2 R n � L j is such that (X̃ j )i k = B j k (xi j ),

and � = (� (1)T , . . . ,� (p )T )T . Then � ( j )
k � Normal (0, 1

L j
� j W ) for j 2 f 1, . . . ,p gand k 2 f 1, . . . ,L j g

such that � j determines the proportion of the variance allocated to the non-linear effect of xi j .

2.3 Variance Decomposition R2 and the R2D2 prior

Gelman et al. (2019), Gelman and Hill (2006) and Zhang et al. (2022) propose measures of

model complexity that we name the Variance Decomposition R2 (VaDeR). For the GLMM in

Section 2.2, de�ne E(Yi j� i ) = � (� i ) and Var(Yi j� i ) = � 2(� i ) which relates the linear predictor to

the response distribution. Gelman et al. (2019) use the empirical de�nition of R2

R2
n =

Vf � (� 1), ...,� (� n )jX,g, � ,u g

Vf � (� 1), ...,� (� n )jX,g, � ,u g+ Mf � 2(� 1), ...,� 2(� n )jX,g, � ,u g
(2.3)

where M and V are the sample mean and variance operators, respectively.

In (2.3), Vf � (� 1), . . . ,� (� n )jX,g, � ,u gis the variance of the expectation of future data and

Mf � 2(� 1), . . . ,� 2(� n )jX,g, � ,u gis the expected variance of future residuals, both conditioned

on the explanatory variables, membership vectors and �xed and random effects. Because

of this conditioning, Gelman et al. (2019) propose R2
n as an a posteriori measure of model

�t. In principle, however, if the values of Xi and gi are known but we had yet to observe the

responses Yi , then the prior distributions of the �xed and random effects would induce a prior

distribution on R2
n . Then R2

n is the proportion of variance explained by the model for future

data, conditioned on these variables and our prior information for � and u k .

While R2
n is an intuitive measure of the �t of the model to a particular dataset, for the

purpose of setting prior distributions we follow Zhang et al. (2022). We measure complexity at
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the population level and use the marginal version of R2 that averages over variation in both

the explanatory variables and random effect levels ( X and g) as well as parameters (� and u k ).

The marginal distribution does not depend on Xi or gi so the observations are exchangeable.

We can then drop the subscript distinguishing them and consider the model for an arbitrary

observation Y with E(Y j� ) = � (� ), Var(Y j� ) = � 2(� ) and � j� 0,W � Normal (� 0,W ) as in (2.2).

Then R2 becomes

R2(� 0,W ) =
Varf � (� )g

Var(Y )
=

Varf � (� )g

Varf � (� )g+ Ef � 2(� )g
(2.4)

where Ef � 2(� )g and Varf � (� )g are summaries of the distribution of � and thus depend on

parameters � 0 and W . For the sake of simplicity, we suppress the dependence on (� 0,W ) and

write R2(� 0,W ) = R2 for the remainder of the paper. The Supplementary Materials discusses

the relationship between R2
n and R2 and shows that under general conditions, R2

n will converge

to R2 when both the sample size and number of effective parameters increase.

As denoted by (2.4), the prior distribution of R2 is determined by the joint prior ( � 0,W ). For

Gaussian responses the distribution of R2 is invariant to � 0, and so to reduce the problem to

matching univariate distributions, we parameterize the prior for (� 0,W ) as the conditional prior

for W j� 0 and marginal prior for � 0 � � 0. We then select a prior for W j� 0 so that R2 � Beta(a ,b ).

By construction, since R2 � Beta(a ,b ) conditioned on any � 0, R2 also follows a Beta(a ,b )

marginally over the joint prior for (� 0,W ) for any marginal prior � 0. Combined with the Dirichlet

prior distribution on the variance proportions, this de�nes the R2 Dirichlet decomposition

prior (R2D2).

The Beta(a ,b ) prior for R2 is our default choice, but in some cases the support of R2 can

be restricted to a subspace of [0,1] and a modi�cation is required. Typically, when W = 0 we

also have Varf � (� )g= 0 and thus R2 = 0 assuming the distribution of Y j� is not degenerate,

i.e., � 2(� ) > 0. If, however, Varf � (� )g> 0 when W = 0, then the lower bound of R2, R2
min , is

strictly greater than zero (e.g. Poisson regression with offsets in Section 2.3.1). Conversely, for

some link functions, R2 < 1 for all W (e.g., the zero-in�ated Poisson model in Section 2.3.1). In

general, the upper bound of R2, R2
ma x , is 1 if and only if Ef � 2(� )g= o

�
Varf � (� )g

�
asW ! 1 . In

cases whereR2
min > 0 and/ or R2

ma x < 1, we use a Beta(a ,b ) prior distribution for the shifted and

scaled R2, denoted R̃2 = (R2 � R2
min )=(R2

ma x � R2
min ). This is equivalent to using a four-parameter

beta distribution for the prior where R2 � Beta(a ,b ,R2
min ,R2

ma x ) has density function

� (r 2) =
(r 2 � R2

min )a � 1(R2
ma x � r 2)b � 1

(R2
ma x � R2

min )a+ b � 1B(a ,b )
, R2

min � r 2 � R2
ma x .

In most cases, R2
min = 0 and R2

ma x = 1 so unless otherwise noted we simply denote the prior as

R2 � Beta(a ,b ).
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Figure 2.1: Plot of the prior distribution of W for different models to induce R2 � Beta(a ,b )
with � 0 = 0. The normal case takes � 2 = 1 and the negative binomial case takes � = 2.

2.3.1 Special cases with exact expressions

Below we derive the expressions for the prior distribution for W in several special cases where

the exact prior distribution is available. The prior distributions are plotted in Figure 2.1.

Location-scale models: The location-scale model is Yi = � i + �� i , where the errors � i have

mean zero and variance one. Then � (� ) = � and � 2(� ) = � 2 and thus R2 = W =(W + � 2).

Assuming R2 follows a Beta(a ,b ) and � = 1 (or more generally that � 2 appears in the prior

variance, � j j� 2, � j ,W � Normal (0, � 2� j W )), Zhang et al. (2022) show that the induced prior

on W is a Beta Prime distribution, denoted W � BP(a ,b ) with density function

� (w ) =
1

B(a ,b )

w a � 1

(1+ w )a+ b
, w � 0, (2.5)
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where B(�, �) denotes the Beta function. From Figure 2.1 (top left), we can see that the BP prior

distribution for W has heavier tails when the expected R2 is large (a > b ) versus small (a < b ).

For � 2 6= 1, and not included in the prior variance, i.e., � j j� j ,W � Normal (0, � j W ), the

induced prior distribution for W is a Generalized Beta Prime (GBP) distribution, W j� 2 �

GBP(a ,b ,1, � 2). The GBP distribution can be obtained via a transformation of a BP random

variable, i.e., if V � BP(a ,b ) then W = d V 1=c � GBP(a ,b ,c ,d ) and has density function

� (w ;a ,b ,c ,d ) =
c

�
w
d

�a c � 1 �
1+

�
w
d

� c � � a � b

d B(a ,b )
, w � 0 (2.6)

for a ,b ,c ,d > 0. The GBP reduces to the BP if c = d = 1.

We note a few properties of the GBP distribution. The behavior at the origin is controlled

by the value of a c , with

lim
w ! 0

� (w ;a ,b ,c ,d ) =

8
>><

>>:

1 a c < 1

c
B(a ,v )d a c = 1

0 a c > 1

.

The tail behaviour is controlled by b c with valid mean if only if b c > 1. Also, for any model with

W � GBP(a ,b ,c ,d ) for the overall variance, then the standard deviation has prior distribution

W 1=2 � GBP(a ,b ,2c ,d 1=2). As another special case of the GBP, if a = 1=2, b = �= 2, c = 2 and

d =
p

�� 2, then W is distributed as a half- t distribution with � degrees of freedom and scale

� 2. Speci�cally, if W � GBP(1
2 , 1

2 ,1, � 2), then
p

W follows a half-Cauchy distribution with scale

� as in Gelman (2006).

Poisson regression: The Poisson regression model is Y j� � Poisson(e � ) and thus � (� ) =

� 2(� ) = e � . Since � j� 0,W � Normal (� 0,W ), e � j� 0,W � LogNormal (� 0,W ), and thus

R2 =
eW � 1

eW � 1+ e � � 0� 1
2 W

. (2.7)

R2 � Beta(a ,b ) induces (see Supplementary Materials) the prior for W with density

� (w j� 0;a ,b ) =
1

B(a ,b )

(ew � 1)a � 1e � b (� 0+ w =2)(3ew � 1)

2(ew � 1+ e � � 0� w =2)a+ b
, w � 0. (2.8)

The shape of the prior looks very similar to that of the location-scale case but the decay of the

tails is of note. The prior for W has exponential-decaying tails on the scale of E(Y j� ) = e � as

seen in (2.8). But, on the scale of logf E(Y j� )g= � , which is the same scale as � and u , the prior
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has polynomial-decaying tails. The value of the prior at 0 is 1 if a < 1, b e � 0 if a = 1 and 0 if

a > 1.

Poisson regression with offsets: Poisson regression models often include a �xed offset term

Ni , e.g., if i is a spatial region then Ni may be taken as the population of region i . The model is

Yi j� i � Poisson(e � i ) where � i = log(Ni ) + � 0 + Xi � +
P q

k =1 Z i k u k . As with the other covariates,

we standardize the log offset terms so that
P n

i =1 log(Ni ) = 0 and Varf log(Ni )g= � 2
N and treat

the offset as a random variable independent of each of the other terms in the model. Thus,

� j� 0,W � Normal (� 0,W + � 2
N ) so

R2 =
� eW � 1

� eW � 1+ � � 1=2e � � 0� 1
2 W

. (2.9)

where � = e � 2
N . Because variability in the offset terms remains even if W = 0, the lower bound

of R2 is

R2
min =

� � 1

� � 1+ � � 1=2e � � 0
> 0. (2.10)

In this case, we use the four-parameter beta prior R̃2 � Beta(a ,b ,R2
min ,1) conditioned on � 0

and � that induces the prior for W with density

� (w j� 0, � ;a ,b ) =
� a=2ea � 0f 1+ e � 0(� � 1)

p
� gb

2B(a ,b )

�
f 1 � � + ew =2(� ew � 1)ga � 1(3� e3w =2 � ew =2)

f 1+
p

� e � 0+ w =2(� ew � 1)ga+ b
, w � 0. (2.11)

Negative Binomial regression: The Negative Binomial (NB) distribution generalizes the

Poisson distribution and allows for overdispersion. Let Y j� , � � NB(e � , � ), parameterized so

that � (� ) = e � and � 2(� ) = � e � for overdispersion parameter � > 1. Similar to the Poisson

example,

R2 =
eW � 1

eW � 1+ � e � � 0� 1
2 W

. (2.12)

R2 � Beta(a ,b ) induces (see Supplementary Materials) the prior for W , conditioned on � , with

density

� (w j� 0, � ;a ,b ) =
� b

2B(a ,b )

(ew � 1)a � 1e � b (� 0+ w =2)(3ew � 1)

(ew � 1+ � e � � 0� w =2)a+ b
, w � 0. (2.13)

The shape of the prior is very similar to that of the Poisson case, except that is has a greater

probability of a larger value. The value of the prior at 0 is 1 if a < 1, b e � 0=� if a = 1 and 0 if

a > 1.
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Zero-in�ated Poisson regression: Another generalization of the Poisson model is the zero-

in�ated Poisson (ZIP) model. In the ZIP model, Y j� is zero with probability � (� ) and Pois-

son with mean � (� ) with probability 1 � � (� ). Then � (� ) = f 1 � � (� )g� (� ) and � 2(� ) = f 1 �

� (� )g� (� )f 1+ � (� )� (� )g. A closed form solution for the R2D2 prior exists for the special case

with � (� ) = � for all � and � (� ) = e � . Then

R2 =
(1 � � )(eW � 1)

(1 � � )(eW � 1) + e � � 0� W =2 + � eW
. (2.14)

In this case, R2 is bounded above by R2
ma x = 1 � � so R̃2 � Beta(a ,b ,0,1 � � ) induces the prior

for W with density:

� (w j� 0, � ;a ,b ) =
(ew � 1)a � 1e � b (� 0+ w =2)(1+ � e � 0+3w =2)b

2B(a ,b )(ew � 1+ e � � 0� w =2 + � )a+ b

�
(3ew � 1+ 2� e � 0+3w =2)

(1+ � e � 0+3w =2)
, w � 0. (2.15)

The value of the prior at 0 is 1 if a < 1, b e � b � 0(1+ � e � 0)b =(� + e � � 0)1+ b if a = 1 and 0 if a > 1.

Weibull model: Consider the Weibull model (without censoring) Y j� , � � Weibull (e � , � ) such

that � (� ) = e � �
�
1+ 1

�

�
and � 2(� ) = e2�

�
�

�
1+ 2

�

�
� � 2

�
1+ 1

�

�	
for shape parameter � > 0. Then

R2 =
eW � 1

� (1+ 2
� )

� 2(1+ 1
� )

eW � 1
. (2.16)

Interestingly, this does not depend on � 0. R2 is bounded above by R2
ma x = � 2(1+ 1

� )=� (1+ 2
� ) :=

r � 1(� ) so R̃2 � Beta(a ,b ,0,r � 1(� )) induces a prior for W with density:

� (w j� ;a ,b ) =
f r (� ) � 1gb

B(a ,b )

eb w (ew � 1)a � 1

f r (� )ew � 1ga+ b
, w � 0. (2.17)

The value of the prior at 0 is 1 if a < 1, b =f r (� ) � 1gif a = 1 and 0 if a > 1.

2.3.2 Approximate Methods

In some cases, a closed-form expression for VaDeR is not available so in this section we discuss

alternatives.
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Quasi-Monte Carlo (QMC)

Since �nding R2 reduces to computing complicated integrals, we can use integral approxi-

mation techniques, like quasi-Monte Carlo (QMC; e.g., Morokoff and Ca�isch 1995). In usual

Monte Carlo integration, the integral of interest is approximated by summing over a randomly

generated sample of points. QMC is similar except that the points are selected deterministically.

To construct the R2D2 prior, we approximate

Ef � (� )m g � �̃ m (W j� 0) =
1

K � 1

K � 1X

i =1

� (� 0 + zi

p
W )m (2.18)

and

Ef � 2(� )g � �̃ 2(W j� 0) =
1

K � 1

K � 1X

i =1

� 2(� 0 + zi

p
W ) (2.19)

where zi is the i =K quantile of a standard normal distribution and m = 1,2. This gives an

approximation of R2 for a given � 0 and W , which we denote by

R̃2(W j� 0) �
�̃ 2(W j� 0) � �̃ 2

1(W j� 0)

�̃ 2(W j� 0) � �̃ 2
1(W j� 0) + �̃ 2(W j� 0)

. (2.20)

Assuming R2 � Beta(a ,b ), then the prior for W is

� (w j� 0;a ,b ) =
1

B(a ,b )
f R̃2(w j� 0)ga � 1f 1 � R̃2(w j� 0)gb � 1

�
�
�
�
d R̃2(w j� 0)

d w

�
�
�
� , w � 0. (2.21)

Since this cannot be represented with elementary operations, in practice, we take a numerical

derivative to evaluate the prior at a given value.

The results in (2.18) and (2.19) make use of the normality of � i from (2.2). The QMC pro-

cedure can be modi�ed to account for non-normal � i . Let � � F (� j� 0,W ) for distribution

function F (� j� 0,W ). Then we approximate

Ef � (� )m g � �̃ m (W j� 0) =
1

K � 1

K � 1X

i =1

� f qi (� 0,W )gm

where qi (� 0,W ) is the i =K quantile of F (� j� 0,W ). A similar result holds for approximating

Ef � 2(� )g which then leads to an analogous result to (2.20). In practice, F (� j� 0,W ) can be

derived analytically if the distribution of Xi is known. A more general strategy is to average over

the empirical distribution of X giving a mixture of normal distributions for F (� j� 0,W ).
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Linear approximation

To avoid the grid calculation of the QMC approximation, we also consider a linear approxima-

tion for the �rst two moments. Applying a �rst-order Taylor series approximation of � (� ) and

� 2(� ) around � 0 gives

Varf � (� )g � f � 0(� 0)g2W and Ef � 2(� )g � � 2(� 0). (2.22)

Then denoting s2(� 0) = � 2(� 0)=f � 0(� 0)g2 we have

R2 �
W

W + s2(� 0)
. (2.23)

If R2 � Beta(a ,b ), the resulting prior for W is W j� 0 � GBP(a ,b ,1,s2(� 0)). This result does not

require any distributional assumptions about � i other than a �nite mean and variance after

transformation by � (�) and � 2(�).

Generalized beta prime approximation

The GBP distribution provides an exact solution for the location-scale model in Section 2.3.1,

and an approximate solution for the linear approximation in Section 2.3.2. The prior W �

GBP(a ,b ,c ,d ) also induces the exact R2 � Beta(a ,b ) prior distribution for any model with link

functions Varf � (� )g= W c and Ef � 2(� )g= d c . The GBP will not give an exact solution in all cases,

but it is a �exible four-parameter model which may often provide a reasonable approximation.

Therefore, a general approximation strategy is to �nd the values of (a � ,b � , c � ,d � ) so that the

prior W � GBP(a � ,b � , c � ,d � ) gives an approximate Beta (a ,b ) distribution for R2.

The optimal values of (a � ,b � , c � ,d � ) depend on � (�) and � 2(�) as well as � 0, a and b . For

given link functions and parameters, let W � � (w ) be the distribution that gives exactly R2 �

Beta(a ,b ). The GBP parameters are then set to minimize the Pearson � 2-divergence (Rényi

1961) between the true and approximated PDFs since this metric enforces a close �t at both

the origin and in the tails. We found that minimizing this quantity alone, however, led to

unstable solutions, i.e., the surface being maximizing over is “�at." This means that vastly

different values of (a � ,b � , c � ,d � ) may lead to GBP distributions that yield roughly the same

approximation of � (w ). Thus, we also add a regularization term to shrink the prior towards a

GBP(a ,b ,1,1) distribution. We regularize toward this distribution because it gives the exact

solution in the location-scale case and can be considered the baseline distribution. This results
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in the following optimization problem:

(a � ,b � , c � ,d � ) = argmin
� ,� ,c ,d

Z 1

0

§
fG BP(w ; � , � , c ,d ) � � (w )

� (w )

ª 2

� (w ) d w

+ � f (� � a )2 + (� � b )2 + (c � 1)2 + (d � 1)2g, (2.24)

where � > 0 is a tuning parameter. A larger value of � yields a more stable solution but with a

worse �t whereas a smaller value of � yields a better �t but with more instability. We found that

� = 1
4 gives a good balance between �t and stability. In practice, the integral is approximated

by a sum and � (w ) is approximated using QMC as in Section 2.3.2, if necessary. Since the

GBP approximation may depend on the QMC procedure which can be modi�ed to allow for

non-normality in � , the GBP approach can similarly be adapted to allow for any distribution of

� .

While this approach involves numerical approximation, it is a very good approximation.

Another advantage of the GBP prior is that it can be easily implemented in standard software

such as JAGSor STAN(Plummer et al. 2016; Carpenter et al. 2017). To specify the prior in

these packages, we use the relationship that if R2 � Beta(a ,b ) and W = d f R2=(1 � R2)g1=c , then

W � GBP(a ,b ,c ,d ). We also prefer to use JAGSbecause for any generalized linear model with

exponential link function, there is not a Gibbs sampler for the �xed or random effects. Moreover,

sampling from the posterior of W requires a non-Gibbs step, e.g., Metropolis-Hastings. Because

of these features, we recommend this method for general use in cases where exact expressions

are not available, and will be the method we consider in the simulation studies.

Since the GBP approximation depends on � 0 (and � ), this approximation should be updated

with the unknown parameter � 0. This would be time prohibitive, so instead the GBP approxima-

tion is simply found once at the beginning of the analysis at ˆ� 0 = g(
P n

i =1 Yi =n ) for link function

g(�). Thus, to induce R2 � Beta(a ,b ), the �rst step is to �nd (a � ,b � , c � ,d � ) as in (2.24) at ˆ� 0

(and ˆ� M LE , if necessary, the maximum likelihood estimate of the dispersion parameter). After

determining ( a � ,b � , c � ,d � ), � 0 (and � ) are treated as unknown parameters in the subsequent

Bayesian analysis. In the Supplementary Materials, we report the GBP approximations for

various values of (a ,b ) and different models. In most cases, the best �tting a � and b � values

are not close to (a ,b ) which demonstrates the need for this approximation.

Figure 2.2 compares the linear and GBP approximations for the Poisson, Logistic and

negative binomial models to the true distribution. The GBP is nearly a perfect match to the

true distribution in most cases. The linear approximation is reasonable when a = 1,b = 4, but

very poor when a = 4,b = 1. These examples show that the GBP is a very good approximation

to the true distribution of W .
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In the Supplementary Materials, we conduct a simulation study to compare the R2D2

prior with a standard vague prior, the Horseshoe prior (Carvalho et al. 2009), and the PC prior

(Simpson et al. 2017) while also comparing different combinations of (a ,b ). The proposed

method performs favorably across all settings and particularly well in the high-dimensional

regression setting. Indeed, we empirically �nd that prior distributions with large prior mass

near R2 = 0 yield good shrinkage properties.

2.4 Simulations

The objectives of this simulations section are to compare the proposed method with other

methods, as well as understand how the proposed method performs under different combina-

tions of (a ,b ). The different combinations of (a ,b ) that we compare are (1,1),(1,4) and (4,1)

using the GBP approximation of Section 3.2.3.

We consider simulations for linear regression with random effects as Zhang et al. (2022)

already considered the case of �xed effects and sparsity. For the generalized linear models,

we consider two cases: Poisson regression with mixed effects and high-dimensional Logistic

regression with �xed effects. Throughout these experiments, we consider a range of true R2

values from 0.35 to 0.66.

We compare the proposed method to two leading methods. For mixed effects cases, we

consider the penalized complexity (PC) prior of Simpson et al. (2017) and for the �xed effects

case we consider the horseshoe prior of Carvalho et al. (2010). We also compare with a simple

vague prior. Details of the priors are given below.

We use several metrics of comparison. First, we measure the bias and mean squared error

(MSE) of the observed R2. We compute R̂2
n using (3.3) and the true value by plugging in the true

values of �xed and random effects into the de�nition in (3.3). We also compute the difference

between the true � and estimated ˆ� , jj ˆ� � � jj2 =
P p

j =1(
ˆ� j � � j )2=p . For the random effects

scenarios, we compute the MSE of the estimated random effect variances. Lastly, we measure

the performance of the method as computed by prediction error on hold-out test data, Ỹ

and �tted values Ŷ , both of size N = 1000. In the Gaussian case, we compute the MSE as
1
N

P N
i =1(Ỹi � Ŷi )2. In the Poisson case, we compute the log-score as 1

N

P N
i =1 logf f (Ỹi ; � = Ŷi )g

where f (�j� ) is the probability mass function for a Poisson (� ) random variable. For the Logistic

case, we compute the area under the receiver operator curve (AUC). In each setting we simulate

200 data sets and take the average and standard error of these metrics. For all methods we use

JAGS(Plummer et al. 2016) for posterior computation with 10,000 MCMC samples where the

�rst 5,000 are discarded as burn-in.
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(a) Poisson

(b) Logistic

(c) Negative Binomial (� = 2)

Figure 2.2: Comparison of different approximation methods for Poisson, logistic and negative
binomial ( � = 2) regression models, all with � 0 = 0. In many cases the GBP density is very similar
to the exact density and thus obstructs it. The linear approximation, conversely, provides a
poor �t.
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Table 2.1: Simulation study results for Gaussian regression with random effects and
mean(R2) = 0.46 and stdev(R2) = 0.08. Averaged over 200 repetitions. Largest standard er-
ror is in the last row and lowest (absolute) value is in bold.

Prior R2
n bias R2

n MSE Y MSE � 2
u1

MSE � 2
u2

MSE
Vague -0.06 0.13 0.34 0.14 0.10
PC -0.04 0.11 0.33 0.12 0.09

R2 � Beta(1,4) -0.05 0.11 0.33 0.09 0.07
R2 � Beta(1,1) -0.02 0.10 0.33 0.12 0.10
R2 � Beta(4,1) 0.01 0.09 0.33 0.16 0.13
S.E. 0.01 < 0.01 < 0.01 0.01 < 0.01

2.4.1 Gaussian regression with random effects

Let � 0 = 1 and consider two-way random effects without interaction with u 1i � Normal (0, � 2
u1

)

for i = 1, . . . ,L1 = 10 and u 2j � Normal (0, � 2
u2

) for j = 1, . . . ,L2 = 10 where the random effects are

independent. Then Yi j � Normal (� 0 + u 1i + u 2j , � 2). Thus the overall sample size is n = L1L2 =

100. We take� 2
u1

= 0.15, � 2
u2

= 0.10 and � 2 = 0.25 so the true R2 � 0.46.

For R2D2, the full prior speci�cation is

� 0 � Normal (� 0, � 2
0), u1j� 1,W � Normal (0,� 1W I10),u2j� 2,W � Normal (0,� 2W I10),

W j� 2 � GBP(a ,b ,1,� 2), � � Dirichlet (� 1, � 2), � 2 � Inverse-Gammma (a0,b0) (2.25)

for hyper-parameters � 0 = 0,� 2
0 = 100,� 1 = � 2 = 1 and a0 = b0 = 0.01. Notice that � 2

u1
= � 1W

and � 2
u2

= � 2W . For the PC prior, the full prior speci�cation is

� 0 � Normal (� 0, � 2
0), u1j� 2

u1
� Normal (0,� 2

u1
I10),u2j� 2

u2
� Normal (0,� 2

u2
I10),

� u1
, � u2

� Exp(� 0), � 2 � Inverse-Gammma (a0,b0) (2.26)

where � 0 = 0,� 2
0 = 100,� 0 = � log(0.01)=.968 and a0 = b0 = 0.01. The � 0 hyperparameter deter-

mines the penalty for deviating from the null model where large values of � 0 imply a larger

penalty. As a default choice, Simpson et al. (2017) suggest the value of � 0 = � log(0.01)=.968

with interpretation that P(� u1
> 0.968) = 0.01. This implies (after integrating out � ) a marginal

standard deviation for u1 and u2 of approximately 0.30, which is reasonable for this setting.

This choice of hyperparamters yields a prior R2 with a mean of 0.02 and standard deviation

of 0.11. The vague prior is the same as the PC prior except � 2
u1

, � 2
u2

� InvGamma (0.5,0.0005)

(Spiegelhalter et al. 2003), which results in a prior R2 with a mean of 0.22and standard deviation

of 0.41.
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The results are in Table 2.1. The Beta(1,1) and Beta(4,1) priors do the best at estimating R2
n .

We can also see that the PC and R2D2 priors are comparable on the holdout Y MSE with the

Beta(4,1) prior performing slightly better. The Beta(1,4) prior has a clear advantage estimating

the random effects variance. The PC and Beta(1,1) priors are comparable on this metric with

the Beta(4,1) and vague priors doing the worst. The PC prior outperforms the vague prior on

all metrics as well as yielding better random effect variance results than the Beta(1,1) and

Beta(4,1) prior. Note that the Beta(1,1) prior does not perform the best on every metric, even

though its prior mean R2 is closest to the truth. This is likely because of the bias of the sample

R2 estimating the population R2 with the random effects in the model (see Appendix A). We

also brie�y discuss computation time among the different methods. The average number of

effective samples per second for the random effect variances is 6500, 6300, 3100, 2600and

2600for the vague, PCP, Beta(1,4), Beta(1,1) and Beta(4,1), respectively. While the vague and

PCP priors are slightly more computationally ef�cient, all speeds are on the same order of

magnitude.

2.4.2 Poisson mixed effects model

We consider a mixed effects scenario for Poisson likelihood as in Section 3.1. Let Xi � Normal (0, � )

where � is from a �rst-order auto-regressive process (AR(1)) with � = 0.8. Let � 0 = 0.25 and

consider �xed effects � j � Normal (0,0.1) for j = 1, . . . ,p = 5. Let there be one random effect

u j � Normal (0, � 2
u ) for j = 1, . . . ,L1 = 20 where all �xed and random effects are independent.

Then Yi j � Poissonf exp(� 0 + Xi � + u j )gwith i = 1, ...,m = 5 replicates. Thus the overall sample

size is n = mL 1 = 100. We take� 2
u = 0.50 which gives a true R2 � 0.66.

For R2D2, the full prior speci�cation is

� 0 � Normal (� 0, � 2
0), � j� 1,W � Normal (0, 1

5 � 1W I5), uj� 2,W � Normal (0,� 2W I20),

W � GBP(a � ,b � , c � ,d � ), � � Dirichlet (� 1, � 2) (2.27)

for hyper-parameters � 0 = 0,� 2
0 = 3,� 1 = � 2 = 1.

We compare the proposed method with the PC prior. For the PC prior, the full prior speci�-

cation is

� 0 � Normal (0,� 2
0), � � Normal (0,� 2

1I5), uj� 2
u � Normal (0,� 2

u I20), � u � Exp(� 0) (2.28)

for � 2
0 = 3,� 2

1 = 100 and � 0 = � log(0.01)=.968. The vague prior is the same as the PC prior except

� 2
u � InvGamma (0.5,0.0005). Since the �xed effects have a �xed variance for these two prior

speci�cations, if we consider � 2
u = W , then the prior R2 for the vague prior has a mean of 0.46
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Table 2.2: Simulation study results for Poisson regression with mixed effects and mean (R2) =
0.66 and stdev(R2) = 0.18. Averaged over 200 repetitions. Largest standard errors are in last row
and lowest (absolute) value is in bold.

Prior R2
n bias R2

n MSE log-score jj� � ˆ� jj2 � 2
u MSE

Vague 0.00 0.06 -1.74 0.57 0.29
PC 0.00 0.06 -1.74 0.56 0.29

R2 � Beta(1,4) -0.03 0.07 -1.72 0.47 0.24
R2 � Beta(1,1) -0.01 0.07 -1.72 0.48 0.29
R2 � Beta(4,1) 0.00 0.06 -1.72 0.49 0.30
S.E. < 0.01 < 0.01 0.01 0.01 0.01

and standard deviation of 0.45. The prior R2 mean and standard deviation for the PC prior is

0.11 and 0.20, respectively.

The results are in Table 2.2. The Beta(4,1), PC and vague priors do the best job estimating R2
n .

The R2D2 priors give very similar results for log-score and �xed effect estimates with all three

of them clearly outperforming the two competing methods. The Beta(1,4) prior again yields

the best estimates of the random effect variance but the PC and vague prior do slightly better

than the Beta(1,1) and Beta(4,1) R2D2 priors. The Beta(1,4) also does the best at estimating

the �xed effects with the other R2D2 priors also outperforming the two competing metrics.

Interestingly, the PC prior and vague yield almost identical results across all metrics. Finally,

the average number of effective samples per second for the �xed effects is 100, 100, 190, 160

and 160, and for the random effect variance is 220, 230, 240, 240 and 230 for the vague, PCP,

Beta(1,4), Beta(1,1) and Beta(4,1), respectively. All methods have comparable computational

ef�ciency.

2.4.3 High-dimensional logistic regression

Lastly, we consider a logistic regression example with sparsity. Let n = 60 and p = 50 and

Xi � Normal (0, � ) where � is from an AR(1) process with � = 0.8. Let � 0 = 0.5 and � = (0,B1,0)

where B1 � Normal (0,1) with length 5, i.e., 10% of the covariates are signi�cant. This makes the

true R2 � .37.

For R2D2, the full prior speci�cation is

� 0 � Normal (� 0, � 2
0), � j j� j ,W � Normal (0,� j W ),

W � GBP(a � ,b � , c � ,d � ), � � Dirichlet (� 1, . . . ,� p ) (2.29)

for hyper-parameters � 0 = 0,� 2
0 = 3,� k = 1 for k 2 f 1, . . . ,p g. For Horseshoe, the full prior
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Table 2.3: Simulation study results for Logistic regression with n = 60,p = 50, no random
effects and mean (R2) = 0.35 and stdev(R2) = 0.16. Averaged over 200 repetitions. Largest
standard errors are in the last row and lowest (absolute) value is in bold (largest for AUC).

Prior R2 bias R2 MSE AUC jj� � ˆ� jj2
Vague 0.58 0.58 0.32 68.65
Horseshoe 0.10 0.20 0.28 8.80

R2 � Beta(1,4) -0.03 0.15 0.31 2.64
R2 � Beta(1,1) 0.07 0.18 0.31 5.12
R2 � Beta(4,1) 0.17 0.22 0.30 7.77
S.E. 0.01 0.01 0.01 1.53

speci�cation is

� 0 � Normal (0,� 2
0), � j j� ,Z j � Normal (0,Z 2

j � 2), � ,Z1, . . . ,Zp � Half-Cauchy (1) (2.30)

where � 2
0 = 3. The scale parameter of 1 for the Half-Cauchy distribution is the default choice

given in Carvalho et al. (2009). Despite substantial mass near zero for all � j , the horseshoe

prior also has heavy tails and thus induces a prior distribution on R2 with a mean of 0.92 and

a standard deviation of 0.16. Lastly, the vague prior takes � j � Normal (0,100). Since the �xed

effects have a �xed variance, the prior R2 is effectively a point mass at 0.98.

The results are in Table 2.3. In this high-dimensional �xed-effects scenario the sample and

population de�nition of R2 are approximately equal (see Appendix A), and thus the Beta(1,4)

prior with mean near the true R2 gives small bias for R2
n . The vague and Horseshoe prior yield

a large bias in R2 because their prior R2 has substantial mass near 1 whereas the true R2 is

small. The Beta(1,4) and Beta(1,1) priors do the best job estimating R2 which is sensible since

their prior mean R2 is close to the true mean R2. Interestingly, the vague prior yields the best

AUC. However, estimating the �xed effects is where the R2D2 priors perform particularly well,

with the Beta (1,4) performing the best. This is likely attributed to the large prior R2 mass at 0,

shrinking the �xed effect estimates towards 0. Lastly, the average number of effective samples

per second for the �xed effects is 15, 39, 120, 100 and 84 for the vague, Horseshoe, Beta(1,4),

Beta(1,1) and Beta(4,1), respectively. Clearly, the R2D2 priors have the greatest computational

ef�ciency for this setting.

Summarizing the results of the simulation study, we �nd that in most cases the proposed

method outperforms current leading approaches. The proposed method has a particular

advantage when the true R2 is small and / or when there is sparsity in the �xed effects with the

prior inducing R2 � Beta(1,4) performing the best. This is likely the case for the sparse example

because this prior R2 has a mode at zero which shrinks the parameters to zero. The proposed
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method also performs well when the true R2 is small and the model has �xed effects because

the two competing methods induce a prior on R2 with most of the mass near 1. This is clearly

unrealistic in practice and results in a poor model �t. Interestingly, even when the true R2 is

large, the Beta(1,4) prior performs the best among the proposed method in terms of estimating

the �xed effects and the variance of the random effects.

2.5 Real data analysis

We now analyze the gambiadata set (Thomson et al. 1999) from the geoRpackage (Ribeiro Jr

et al. 2007) in Rto demonstrate the use of the R2D2 prior in practice. We also consider PC and

vague prior distributions. There are n = 2035 children in this data set with binary response

variable Yi which equals 1 if child i tested positive for malaria and 0 otherwise. There are p = 5

explanatory variables including age, indicator of using a bed net, indicator of whether the bed

net is treated, “greenness" of village and indicator of a health center in the area. These variables

are standardized to have mean zero and variance one. There are also the L = 65 villages where

each child lived, along with the spatial location of each village.

We model the village effect as a spatial random effect. As in Example 4 from Section 2.2.2,

the linear predictor is

logit f P(Yi = 1j� i )g= � i = � 0 + Xi � + u gi
(2.31)

where gi 2 f 1, . . . ,Lgis the village of response i . We also assume that E(u i ) = 0 and Var(u i ) = � 2
u

for all i and exponential spatial correlation Ci j = Cor(u i ,u j ) = e � d i j =� where d i j is the distance

between village i and j and � > 0 is the spatial range parameter. Then the full prior speci�cation

for R2D2 is

� 0 � Normal (� 0, � 2
0), � j� 1,W � Normal (0, 1

5 � 1W I5), uj� 2,W,� � Normal (0,� 2W C),

� � Uniform (0,2r ),W � GBP(a � ,b � , c � ,d � ), � � Dirichlet (� 1, � 2) (2.32)

for hyper-parameters set to � 0 = 0,� 2
0 = 3, � 1 = � 2 = 1 and r is the maximum distance between

pairs of villages. Note that � 2
u = � 2W in this model. We �nd ˆ� 0 = � 0.59 and (a � ,b � , c � ,d � ) are

in Table 2.4 and the resulting prior distributions are plotted in Figure 2.3.

For PC prior, the full prior speci�cation is

� 0 � Normal (� 0, � 2
0), � � Normal (0,� 2

1I5), uj� 2
u � Normal (0,� 2

u C),

� � Uniform (0,2r ), � u � Exp(� 0). (2.33)
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Table 2.4: Generalized Beta Prime approximation parameters for Gambiadata with ˆ� 0 = � 0.59.

a b a � b � c � d �

1 4 1.15 2.08 0.91 2.09
0.5 0.5 0.57 0.29 0.90 1.54
1 1 1.47 0.65 0.79 1.67
4 4 7.45 2.72 0.73 1.63
4 1 7.77 0.71 0.68 1.45

Figure 2.3: Prior R2 and global variance parameter for R2D2 prior for Gambiadata.
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Figure 2.4: Posterior R2, global variance and random effect variance and � for vague (uninfor-
mative) prior distributions, PCP and R2D2 for Gambiadata with village spatial random effect.

where � 0 = 0,� 2
0 = 3,� 2

1 = 100 and � 0 = � log(0.01)=.968. The vague prior has the same form as

the PC prior except � 2
u � InvGamma (0.5,0.0005) (Spiegelhalter et al. 2003).

We take 50 000 MCMC samples with the �rst 10 000 discarded as burn-in. We present trace

plots in the Supplementary Materials to check convergence of the MCMC chain. For each

method, the �xed effects effects, random effect variance and spatial range parameter appear

to have good mixing. The results are in Figure 2.4 and Table 2.5. We can see that the posterior

distributions of R2
n are almost identical across the different methods. The posterior of W , how-

ever, is quite different across the different R2D2 priors with the Beta(4,1) and Beta(4,4) having

the greatest mean and Beta(0.5,0.5) and Beta(1,1) having the smallest mean. The posterior

distributions of W and � 2
u are almost identical for the R2D2 priors which means that almost

all of the global variance mass is shifted on the random effect variance and away from the �xed

effect variance. The posterior for � 2
u has the smallest mean for the PC prior, which follows from

the fact that this prior has a mode of zero for this parameter. Lastly, the posterior of � is quite

different across the different priors. The PC prior again yields the smallest posterior mean.

2.6 Discussion

In this work, we proposed a novel method for choosing informative prior distributions in the

generalized linear mixed model setting. The proposed prior is �exible and interpretable in

terms of overall model �t as measured by a Bayesian R2. There are many cases where the prior
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Table 2.5: Posterior mean and standard deviation for R2
n , global variance ( W ), random effect

variance (� 2
u ) and spatial range ( � ) for each method for Gambiadata considering spatial

random effect.

R2 W � 2
u �

Method Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev
Vague 0.177 0.016 � � 2.057 1.166 0.716 0.448

PC 0.173 0.016 � � 1.064 0.422 0.336 0.243
R2 � Beta(1

2 , 1
2) 0.172 0.016 1.461 0.741 1.435 0.739 0.501 0.355

R2 � Beta(1,1) 0.171 0.016 1.891 1.028 1.864 1.024 0.705 0.432
R2 � Beta(1,4) 0.172 0.016 1.373 0.677 1.346 0.673 0.457 0.311
R2 � Beta(4,1) 0.175 0.016 2.613 1.320 2.580 1.317 0.884 0.492
R2 � Beta(4,4) 0.175 0.016 2.898 1.309 2.859 1.304 1.028 0.466

R2 can be induced exactly as well as general approximation strategies when an exact form is not

possible. The main approach that we suggest is approximating the global variance prior with a

generalized beta prime distribution because of its �exibility and ability to be implemented in

standard software.

If there is domain knowledge available on how well the model is expected to �t the data then

this could be used to inform prior choice for R2. In the absence of any prior information, we

suggestR2 � Beta(1,1) as a reasonable default choice. Choosing R2 � Beta(1,4), or another prior

with large mass near 0, is also a good choice, especially when working in a high-dimensional

setting. Combined with an initial estimate of the intercept via a method of moments estimator

and the GBP approximation in the r2d2glmmpackage, we provide a simple and intuitive

method for setting prior distributions in GLMMs.

A limitation of the proposed method is that the hierarchical framework only allows for

random intercepts and not random slopes, for example. Additionally, the �nite mean and

variance requirement precludes applications to some models, e.g., extreme value analysis

(Coles et al. 2001). We have also not proven concentration or shrinkage properties which

is an avenue for future work. We could also extend the method to allow for other survival

analysis settings beyond the uncensored Weibull model and models that are not GLMMs such

as Bayesian deep learning.
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CHAPTER

3

SPATIAL REGRESSION MODELING VIA THE

R2D2 FRAMEWORK

3.1 Introduction

In the last chapter, we derived and studied the R2D2 prior for GLMMs. In this chapter (Yanchenko

et al. 2023a), we propose a principled prior framework for Gaussian process spatial models

using the R2D2 framework. We show that a beta prior distribution on R2
n is (approximately)

equivalent to a conditional generalized beta prime distribution on the linear predictor vari-

ance, which includes the marginal spatial variance. This derivation conditions on other spatial

parameters which allows the proposed method to accommodate virtually any correlation

structure, e.g., non-stationarity. We also derive an ef�cient MCMC sampler which consists

almost entirely of Gibbs sampling steps. Finally, we apply the proposed method to a marine

protection area data set to study the effects of marine policies and �nd that certain �shing

restrictions lead to a small increase in aquatic biodiversity. As in the previous chapter, the

resulting prior speci�cation provides both an interpretable method to select a subjective prior,

and a default approach in the absence of prior information.

The layout for this chapter is as follows. In Section 3.2 we present the modeling framework.

Section 3.3 derives the prior distribution and discusses its properties. Computation is the topic
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of Section 3.4 and we apply the method to simulated date in 3.5 and to a marine protection

area data set in Section 3.6. We close with a discussion in Section 3.7.

3.2 Spatial Gaussian process model

We introduce the method for a Gaussian spatial regression model with �xed effects. For observa-

tion i 2 f 1, . . . ,n g, let Yi be the response, si 2 R 2 be the spatial location and Xi = (Xi 1, . . . ,Xi p ) be

a corresponding vector of explanatory variables. We also de�ne the n � p matrix X = (XT
1 , . . . ,XT

n )T

and n � 2 matrix s= (sT
1 , . . . ,sT

n )T . The standard spatial regression model is

Yi = � 0 + Xi � + � i + " i (3.1)

where � 0 is the intercept, � = (� 1, . . . ,� p )T is a vector of �xed effects, � = (� 1, . . . ,� n )T are the

spatial random effects and " i
i i d
� Normal(0, � 2) is non-spatial error. We de�ne � i = � 0 + Xi � + � i

as the linear predictor for observation i .

3.2.1 Modeling framework

The covariance of the �xed and random effects are parameterized in terms of an overall variance

parameter W > 0, spatial correlation parameters  and proportions � = (� 1, . . . ,� p +1) with

� j > 0 and
P p +1

j =1 � j = 1. The elements of � apportion variance between the �xed and spatial

random effects. Speci�cally,

� j� 2,W,� � Normal(0p , � 2W � ) and � j� 2,W,� ,  � Normal(0n , � 2� p +1W �  ) (3.2)

where 0m is a vector of zeros of length m , � is a p � p diagonal matrix with diagonal elements

f � 1, . . . ,� p g, �  is the n � n spatial correlation matrix (for notational convenience we will

often denote the spatial correlation matrix simply as � ), and � ? � . We stress that the prior

construction is conditional on the spatial correlation matrix � ; therefore the framework holds

for virtually any correlation function, e.g., Matérn, anisotropic, etc.

The ensuing derivations treat the explanatory variables X as �xed. It is common practice to

standardize X such that its columns have mean zero and variance one, although the results still

hold even if this is not the case. We recommend standardizing X so that � 2W is the average

marginal global variance of the linear predictor � i (see Supplemental Materials). Indeed, W is
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then the average signal-to-noise ratio, i.e.,

1

n

nX

i =1

Var(� i )

Var(" i )
=

� 2W

� 2
= W.

3.2.2 Dirichlet decomposition

The parameters � determine the relative variance of the model apportioned to each �xed effect

and the spatial effect. The proportion of variance allocated to the spatial effect is � p +1 and

1� � p +1 =
P p

j =1 � j is the proportion of variance allocated to the �xed effects. We could consider

these parameters as �xed or give them a prior distribution, e.g., � � Dirichlet(� 1, . . . ,� p +1). We

often take � 1 = � � � = � p +1 � � 0 as default choice of these hyper-parameters. The concentration

parameter � 0 > 0 controls the prior variation with large � 0 encouraging all the variance com-

ponents to be roughly equal to 1=(p + 1) and small � 0 encouraging prior uncertainty in the

variance components. Another default choice is � 1 = � � � = � p = 1
2p and � p +1 = 1

2 if it is expected

that the �xed and spatial effects contribute equally to the global variance. Lastly, if we believe

that the variance is the same for each �xed effect, then we can de�ne a new parameter, �̃ , such

that �̃ = ( ˜� 1, ˜� 2) � Dirichlet(� 0, � 0). Then we set � j = ˜� 1=p for j 2 f 1, . . . ,p gand � p +1 = ˜� 2 to

enforce equal variance for all �xed effects. We suggest this �nal parameterization as a default

choice due to its simplicity.

3.3 Spatial R2D2 prior

The goal of this work is to chose prior distributions that induce a desirable distribution on

the Bayesian coef�cient of determination, R2
n , from Gelman et al. (2019) de�ned below in

Section 3.3.1. To achieve this, we specify a prior distribution for W given � and  that induces

a Beta(a ,b ) on R2
n . Since the prior for R2

n is Beta(a ,b ) for all � and  , the marginal distribution

of R2
n over � and  is also Beta(a ,b ). In this sense, the prior for R2

n described below is a function

of the joint prior distribution of W , � and  .

3.3.1 Bayesian coef�cient of determination

If we de�ne � i as the signal and " i as the error, then R2
n (Gelman et al. 2019) is

R2
n =

vn

vn + � 2
(3.3)
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where vn =
P

i (� i � �̄ )2=(n � 1) is the sample variance of the signal and �̄ =
P n

i =1 � i =n is the

sample mean. 1 The interpretation of vn is the variation of the expectation of future data,

conditioned on the �xed and spatial effects as well as the explanatory variables and spatial

locations. Since vn is the variance of the modeled predictive means, and the predicted means

depend on model parameters, then vn is conditional on the distribution of the �xed effects.

Therefore, R2
n measures model complexity because a more complex model can explain more

variation in future data than a simpler model. For example, with W = 0 implying � = 0p and

� = 0n , then � i = � 0 is the intercept-only model and vn = R2
n = 0. Thus, a prior for W with mass

near zero corresponds to a prior for R2
n with mass near zero and shrinks the prior to the simple

intercept-only model.

3.3.2 Prior derivation

While Gelman et al. (2019) proposed R2
n as an a posteriori measure of model �t, we use R2

n

to determine the prior distribution of covariance parameters. We view X and s as �xed and

thus � i is a random function of � and � , whose distribution depends on W ,  and � in (3.2).

In this section, we specify a prior for W given  and � so that averaging over the joint prior

distributions � , � and W gives R2
n � Beta(a ,b ).

In order for R2
n � Beta(a ,b ), the variance vn must have generalized beta prime (GBP) dis-

tribution (Johnson et al. 1995; Yanchenko et al. 2021), i.e., vn � GBP(a ,b ,1, � 2). The GBP

distribution can be obtained via a transformation of a beta random variable: if U � Beta(a ,b ),

then X = d fU =(1 � U )g1=c � GBP(a ,b ,c ,d ) and has density function

� (x ;a ,b ,c ,d ) =
c

�
x
d

�a c � 1 �
1+

�
x
d

� c � � a � b

d B(a ,b )
, x � 0

for a ,b ,c ,d > 0 where B(�, �) is the beta function. The GBP reduces to the beta prime distribution

if c = d = 1.

To specify the prior we write

vn = (X� + � )T P(X� + � ), (3.4)

where P = (In � 1
n 1n 1T

n )=(n � 1), In is the n � n identity matrix and 1n is the vector of ones of

length n . Since the �xed and spatial effects are assumed independent and we condition on

X, X� + � follows a normal distribution with mean zero and covariance � 2W (X� XT + � p +1� ).

Then the distribution of vn can be equivalently written in terms of Z = (� 2W )� 1=2(X� + � ) where

1We do not derive the prior distribution in terms of the marginal Bayesian R2 as in Zhang et al. (2022) and
Yanchenko et al. (2021) because this marginalization removes the effect of the spatial parameters  .
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Z � Normal(0n ,X� XT + � p +1� ) and

vn = � 2W S (3.5)

where S = ZT PZ. Thus, vn = � 2W S � GBP(a ,b ,1,� 2) is equivalent to W S � BP(a ,b ).

To specify a prior distribution for W so that the product W S has a beta prime distribution

requires an understanding of the distribution of S. The classical quadratic form results that yield

a chi-squared distribution do not apply here because the covariance of Z is not idempotent.

Thus, the true distribution is a weighted sum of � 2
1 random variables. Instead of working with

the exact distribution, we approximate it by a gamma distribution with the same mean and

variance (e.g., Box 1954). By properties of quadratic forms,

E(S) = � S = tr (PX� XT ) + � p +1tr (P� )

Var(S) = � 2
S = 2trf P(X� XT + � p +1� )P(X� XT + � p +1� )g.

So,S
app r o x .

� Gamma(�  ,� , �  ,� ) where �  ,� = � 2
S=� 2

S and �  ,� = � 2
S=� S and �  ,� is the scale

parameter.

Since W S � BP(a ,b ) and S
app r o x .

� Gamma(�  ,� , �  ,� ), then the conditional distribution of

W given � and  is speci�ed by the hierarchical model

W = U1V (3.6)

where U1 � BP(a ,b ) and V j , � � IG(�  ,� , �  ,� ) and IG(b1,b2) is the inverse gamma distri-

bution . This expression shows that the distribution of W is conditional on the spatial and

variance allocation parameters,  and � , respectively. This allows trivial extensions of the

prior construction to different spatial variance models. The distribution of R2
n , however, is

unconditional on any model parameters because of this construction.

The distribution in (3.6) is not standard so we would like to write it in a more manageable

form. We begin with the following proposition.

Proposition 1. If X j � Gamma(a ,  � 1) and  � Gamma(b ,1), then X � BP(a ,b ).

By Proposition 1, (3.6) is equivalent to

 � Gamma(b ,1), W jX,s, � ,  ,  � U2V (3.7)

where U2 � Gamma(a ,  � 1). We utilize this form of the distribution for computational purposes,

but we can further simplify it for better conceptual understanding.

Proposition 2. If X1 � Gamma(a1,b1)and X2 � Gamma(a2,b2), then X1=X2 � GBP(a1,a2,1,b1=b2).
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Therefore, an equivalent expression of (3.6) and (3.7) is

 � Gamma(b ,1), W jX,s, � ,  ,  � GBP(a , �  ,� ,1,(�  ,�  )� 1). (3.8)

We can, thus, write out the full prior speci�cation:

� j� 2,W,� � Normal(0p , � 2W � ),

� j� 2,W,� ,  � Normal(0n , � 2� p +1W � ),

W j� ,  ,  � GBP(a , �  ,� ,1,(�  ,�  )� 1) (3.9)

 � Gamma(b ,1)

� � Dirichlet(� 0, . . . ,� 0).

Taking � 0 � Normal(� 0, � 2
0), � 2 � IG(a0,b0) and  � � (�) completes the model. Since this prior

speci�cation was induced by a prior distribution on R2 and the variance is apportioned to the

�xed and spatial effects through the Dirichlet decomposition, we name this the spatial R2D2

prior as in Zhang et al. (2022) and Yanchenko et al. (2021).

3.3.3 Properties

We now explore different properties of the spatial R2D2 prior. First, the unconditional distribu-

tion (not depending on  ) of W is not analytic, but we can �nd its unconditional prior mean

and variance.

Proposition 3. Let  � Gamma(b ,1) and W j � GBP(a , �  ,� ,1,(�  ,�  )� 1). If �  ,� ,b > 1, then

E(W ) =
a

�  ,� (�  ,� � 1)(b � 1)

and E(W ) = 1 otherwise. If �  ,� ,b > 2, then

Var(W ) =
a (a + �  ,� � 1)

� 2
 ,� (�  ,� � 2)(�  ,� � 1)2(b � 1)(b � 2)

+
a 2

� 2
 ,� (�  ,� � 1)2(b � 1)2(b � 2)

and Var(W ) = 1 otherwise.

While �  ,� and �  ,� are complex functions of the explanatory variables, spatial locations

and spatial covariance matrix, a and b can be tuned to enforce certain properties on W . For

example, the expectation of W increases asa=b increases (which also increases the prior mean

of R2
n ) and b > 2 is required for both �nite and mean and variance. Conversely, if b is large then
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Figure 3.1: Prior distribution of W for different combinations of (a ,b ).

there is large prior mass near R2
n = 0 and the prior mean of W is also small. If a < 1 and b � 1,

then W has in�nite expectation (i.e., heavy tail) as well as a mode at 0, a desirable property of

shrinkage priors (e.g. Carvalho et al. 2009; Bhattacharya et al. 2015; Zhang et al. 2022).

We also plot the prior distribution of W under different settings. Let n = 100, p = 5, � =

(0.1,0.1,0.1,0.1,0.1,0.5) and Xi j
i i d
� Normal(0,1). The locations si are sampled uniformly from

[0,1]2 and we use the Matérn correlation function with � = � = 0.5. In Figure 3.1 we plot the

prior distribution of W for (a ,b ) 2 f (1,1),(1,4),(4,1),(4,4),(0.5,0.5)gfor a particular realization

of X and s. For priors with large mass near R2
n = 0, e.g.,(a ,b ) = (1,4), the prior for W has a mode

at W = 0. On the other hand, the distribution of W for (a ,b ) = (4,1) has much heavier tails.

In Table 3.1 we report the prior mean and variance of W for the same settings as above

but let � 2 f 0.2,0.4,0.6,0.8,1.0g. Again, these results are for a speci�c realization of covariates

and sampling locations. To ensure �nite mean and variance of W we take (a ,b ) = (4,4). As

the spatial correlation increases, both the mean and variance of W increase since the model

cannot capture the same amount of spatial variation without W increasing. This highlights the

interplay between � and W for determining the prior distribution.

Since the prior distribution of W is highly dependent on � S and � 2
S, we are interested in

their behavior for several speci�c correlation structures without covariates, i.e., � p +1 = 1. Recall
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Table 3.1: Values of parameters �  ,� and �  ,� and summaries of prior distribution of W for
(a ,b ) = (4,4) and different values of the spatial range parameter � .

� �  ,� �  ,� E(W ) Var(W )
0.2 6.63 0.14 1.70 3.68
0.4 5.37 0.16 1.97 5.56
0.6 4.72 0.16 2.21 7.62
0.8 4.32 0.17 2.40 9.72
1.0 4.05 0.17 2.57 11.82

that the prior for W in (3.6) is W Sj� ,  � BP(a ,b ) for scaling factor S that is (approximately)

distributed as a gamma random variable with mean � S and variance � 2
S. This mean and variance

depend on the spatial correlation matrix and therefore studying their forms can illustrate how

spatial correlation affects W 's prior distribution. In the following examples, we consider three

speci�c spatial correlation structures � and their effect on the prior distribution of W .

Example 1 – Compound symmetry First consider the compound symmetry model with

correlation � between all observations. Then

� S = 1 � � and � 2
S = 2

(1 � � )2

n � 1
.

Therefore, if � < 1 then S ! � S in distribution and, in particular, if the observations are

independent with � = 0 then S converges in distribution to one and W � BP(a ,b ) as in

Zhang et al. (2022). On the other hand, if � = 1 then S is degenerate at zero. In this extreme,

the covariance is singular and restricts vn = 0 so that no prior for W can achieve the prior

R2
n � Beta(a ,b ). For � near to but less than one, S has mean and variance near zero implying

the prior scale of W must be large to compensate for the restrictions of vn induced by the

correlation.

Example 2 – Blocked compound symmetry Next assume the n locations are partitioned into

m blocks, each with n =m locations, and the correlation is � within block and zero between

blocks. Then

� S = 1 �
1

m

n � m

n � 1
� .

We recover the compound symmetry result for m = 1 and the mean increases as the number of

blocks m increases and/ or as the correlation decreases. As the number of blocks increases, the

number of correlated observations decreases which causes the prior mean of W to decrease

since the mean of W and S are inversely proportional. Put another way, a smaller spatial
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correlation does not require as large of a W to capture the dependency.

Example 3 – Matern correlation For the general Matern (or any other) spatial correlation

model we have

� S = 1 �
2

n (n � 1)

X

i < j

� (d i j ) ! 1 � Ef � (D )g

as n ! 1 where the expectation is with respect to the sampling distribution of the spatial

locations 1. If the correlation function is convex (e.g., exponential), then

� S = 1 �
2

n (n � 1)

X

i < j

� (d i j ) � 1 � � (d̄ )

where d̄ is the average distance between points. Again, we see that � S is inversely related to

the strength of spatial correlation.

3.4 Posterior computation

The posterior distribution is approximated using a combination of Gibbs and Metropolis-

Hastings sampling. We use the formulation of W from Proposition 1. Speci�cally,  � Gamma(b ,1),

U j � Gamma(a ,  � 1), V � IG(�  ,� , � � 1
 ,� ) and then W = U V . Additionally, let Z � giG(� , � , � )

be a generalized inverse Gaussian distribution with density function p (z) / z � � 1 expf� (� z +

z=� )=2g. The MCMC sampler is then as follows.

1. � 0jY,X, � , � , � 2 � Normal(V M ,V ) where M = 1
� 2 1T

n (Y� X� � � ) + 1
� 2

0
� 0 and V = (n =� 2 +

1=� 2
0)� 1

2. � jY,X, � ,U ,V, � , � 2 � Normal(V1M1, � 2V) where M1 = X0(Y � � 01n � � ) and V1 = f X0X +

(U V � )� 1g� 1

3. � jY,X, � ,U ,V, � , � 2,  � Normal(V2M2, � 2V2) where M2 = (Y� � 01n � X� ) and V2 = f In +

(� p +1U V � )� 1g� 1

4. � 2jY, � , � ,U ,V, � ,  � IG(a0 + n + p =2,b0 + f (Y � � 01n � X� � � )0(Y � � 01n � X� � � ) +

� 0(U V � )� 1� + � 0(� p +1U V � )� 1� g=2)

5. U j� , � ,V, � ,  ,  � giG(2 , � 0(� 2V � )� 1� + � 0(� 2� p +1V � )� 1� ,a � (n + p )=2)

6. V j� , � ,U , � ,  � IG(�  ,� + (n + p )=2,� � 1
 ,� + 1

2 f � 0(� 2U � )� 1� + � 0(� 2� p +1U � )� 1� g)

1While in the prior construction we considered the spatial sampling locations to be �xed, for theoretical study
it is more convenient to treat them as random.

43



7.  jU � Gamma(a + b ,1+ U )

8. � j� 0, � , � ,U ,V, � 2,  � Metropolis-Hastings step.

9.  j� 0, � , � ,U ,V, � 2, � � Metropolis-Hastings step

Since � and  are not conjugate, they require a Metropolis-Hastings step to update. Let

� (t ) be the value of � at step t of the sampler. Then the candidate value � � is drawn from

� � � Dirichlet(c1� (t )) for some hyper-parameter c1. Using a similar de�nition and assuming

that the spatial correlation model is Matérn with �xed � , the candidate value � � is drawn from

log � � � Normal(log � (t ), c2) for hyper-parameter c2. Both c1 and c2 are tuned during the burn-in

stage to ensure an acceptance rate between 20% and 50%.

Although the steps of the algorithm are straightforward to implement, they can be slow for

large n . The distribution for W depends on �  ,� and �  ,� which are functions of � and  . Since

� and  are updated each iteration of the sampler, so too must �  ,� and �  ,� be updated. But

these terms depend on traces of matrix multiplication so this is a computationally expensive

process. This computational burden can be mitigated by the following observation. For some

matrix A with eigenvalues f � i gn
i =1, tr (A) =

P n
i =1 � i and tr (A2) =

P n
i =1 � 2

i . Thus, we can replace

the computations of the trace of squared matrices with the sum of eigenvalues. Since we only

require the eigenvalues (and not the eigenvectors), this can be done in O(n 2) as compared to

the O(n 3) needed for matrix multiplication. Additionally, these eigenvalues only need to be

computed once per iteration since � S / tr (A) and � 2
S / tr (A2) where A = P(X� XT + � p +1� ).

3.5 Simulation study

We conduct a brief simulation study to compare the proposed R2D2 prior framework with that

of a vague/ uninformative prior and the penalized complexity (PC) prior (Fuglstad et al. 2019).

3.5.1 Data generation model

We generate the response, Yi , from a normal likelihood:

Yi = � 0 + Xi � + � i + " i

where � 2 R p are the �xed effects, � i is the spatial effect of response i and " i
i i d
� Normal(0, � 2)

for i = 1, . . . ,n . We generate the �xed effects with AR(1) auto-correlation i.e.,

Xi � Normal(0p , � X )
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where � X has an AR(1) auto-correlation, i.e., Cor(Xi j ,Xi k ) = r j j � k j for j 6= k and r 2 (0,1).

Additionally, we generate the true value of the �xed effects from � j � Normal(0, � 2� 2
� ) for

j = 1, . . . ,p . Next, � � Normal(0n , � 2� 2
� � ) where � has an exponential correlation structure, i.e.,

� i j = e � d i j =�

where d i j = jjsi � sj jj is the distance between the sampling locations of observations i and j ,

and � is the spatial range parameter. We generate sampling locations, si , randomly within the

unit square.

3.5.2 Prior speci�cations

We compare the proposed R2D2 prior with a vague prior and PC prior. For the R2D2 prior, the

full model speci�cation is

� j j�
2, � j ,W � Normal(0,� 2� j W ), j = 1, . . . ,p , � j� 2, � p +1,W,� � Normal(0n , � 2� p +1W � ),

 � Gamma(b ,1), W j� , � ,  � GBP(a , �  ,� ,1,(�  ,�  )� 1). (3.10)

To complete the prior speci�cation, we let � 0 � Normal (0,100), � = (� 1, . . . ,� p +1) � Dirichlet(1, . . . ,1),

� 2 � IG(0.10,0.10) and log(� ) � Normal(� 2,1). We consider (a ,b ) = (1,1),(1,4) and (4,1).

For the vague prior, we take

� � Normal(0p , � 2
� Ip ), � j� 2, � 2

� , � � Normal(0n , � 2� 2
� � ), � 2

� � IG(0.10,0.10)

where we �x � 2
� = 100 and the rest of the parameters have the same prior distribution as in the

spatial R2D2 prior. From Fuglstad et al. (2019), the PC prior is

� � Normal(0p , � 2
� Ip ), � j� 2, � 2

� , � � Normal(0n , � 2� 2
� � ),

� � � Exp(� log(� )=� 0), � � IG(1,� log(� )� 0)

where we set � = 0.05, � 0 = 10� �
� and � 0 = � � =10 as per Fuglstad et al. (2019), where � �

� and � �
�

are the true values of the spatial variance and range, respectively. Again, all other parameters

have the same prior distributions as above.
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3.5.3 Settings and metrics

For data generation, we set p = 10 and r = 0.8. We also choose � 2 = 1, � 2
� = � 2

� = 0.52 and

vary n = 100,200 and � = 0.1,0.2,0.3 for a total of six simulation settings. This leads to a

true R2
n � 0.67. We generate 11,000 MCMC samples and discard the �rst 1,000 as burn-in. We

compute the root mean squared error (MSE) loss between the true value and posterior median

for � , � 2
� , � , R2

n as well as the frequentist coverage of the 95% credible intervals. Note that

the true R2
n is calculated as Var(� 1, . . . ,� n )=fVar(� 1, . . . ,� n ) + � 2gwhere � i = � 0 + Xi � + � i for

i = 1, . . . ,n . We average the results over 50 simulations for each combination of n and � .

3.5.4 Results

We report the results in Tables 3.2-3.7. For estimating � , all methods perform comparably

in terms of both MSE and coverage, with the R2D2 prior yielding slightly lower MSE values

when n = 100. The results appear to be independent of � , while MSE decreases asn increases

for all models. Additionally, the different R2D2 priors perform almost identically. The R2D2

priors perform notably better than the Vague and PC priors for estimating the spatial marginal

variance � 2
� . The Vague prior has large MSE values but good coverage. The PC prior performs

better than the Vague prior when n = 100, but slightly worse when n = 200 in terms of MSE, and

consistently has the lowest coverage. Again, the R2D2 priors are similar in terms of both MSE

and coverage. Moreover for all methods, the MSE results do not decrease when n increases

to 200. As for estimating � , when n = 100, the Vague and R2D2 priors yield the lowest MSEs.

When n = 200, however, the R2D2 prior slightly outperforms both Vague and PC. Each method

yields slightly lower MSEs when n is larger. Finally, MSE and coverage are comparable across

methods for estimating R2
n .

3.5.5 Discussion

We close the simulation study section with a brief discussion. First, each method yields com-

parable results for estimating � . Since each of the prior frameworks focuses on the spatial

variance and range parameters, the similar results for estimating the �xed effects is to be

expected. The main focus of the simulation study, however, is comparing the estimates of the

spatial parameters. For � 2
� , the Vague prior distribution has non-trivial mass at large values,

which leads to overestimating � 2
� and thus high MSE. The PC and R2D2 priors, on the other

hand, explicitly shrink the estimates of � 2
� which generally leads to lower MSE values. It is

evident that the R2D2 prior has greater shrinkage as it has signi�cantly lower MSE values than

both Vague and PC. Across all setting, the Vague and R2D2 priors yield comparable MSE values
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Table 3.2: Simulation study results for n = 100 and � = 0.1. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.23 (0.01) 0.96 0.30 (0.08) 0.96 0.05 (0.01) 1.00 0.06 (0.01) 0.98

PC 0.23 (0.01) 0.95 0.25 (0.01) 0.34 0.08 (0.00) 0.74 0.06 (0.01) 0.80
R2D2 (1,1) 0.21 (0.01) 0.94 0.13 (0.01) 1.00 0.04 (0.01) 1.00 0.07 (0.01) 0.94
R2D2 (1,4) 0.22 (0.01) 0.93 0.14 (0.01) 0.92 0.05 (0.01) 1.00 0.09 (0.01) 0.86
R2D2 (4,1) 0.20 (0.01) 0.95 0.14 (0.02) 1.00 0.05 (0.01) 1.00 0.06 (0.01) 0.96

Table 3.3: Simulation study results for n = 100 and � = 0.2. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.22 (0.01) 0.96 0.30 (0.05) 1.00 0.09 (0.01) 1.00 0.06 (0.01) 0.94

PC 0.23 (0.01) 0.94 0.25 (0.00) 0.32 0.16 (0.00) 0.68 0.05 (0.01) 0.88
R2D2 (1,1) 0.21 (0.01) 0.95 0.10 (0.01) 1.00 0.07 (0.01) 1.00 0.04 (0.01) 0.98
R2D2 (1,4) 0.21 (0.01) 0.94 0.10 (0.01) 1.00 0.07 (0.01) 1.00 0.05 (0.01) 0.98
R2D2 (4,1) 0.20 (0.01) 0.95 0.12 (0.01) 1.00 0.08 (0.01) 1.00 0.04 (0.00) 1.00

and both outperform PC when estimating � . Since the PC prior forces the estimate of � ! 1 ,

this could be leading to a large, positive bias and thus, larger MSE. The R2D2 construction

only indirectly affects the prior distribution of � (since W 's prior distribution is conditional

on � ), so the similar estimation to the Vague prior is reasonable. Additionally, Zhang (2004)

proved that neither � 2
� nor � are consistently estimable under the in-�ll asymptotic setting.

This explains why the MSE values for � 2
� do not decrease with increasing n and while there

is only a small decrease for � . Finally, each method yields similar estimates of R2
n . Since this

is largely driven by estimates of the �xed effects � and response variance � 2, and these are

similar across models, this is a sensible result.

3.6 Marine protection area data analysis

3.6.1 Data and model

Marine Protection Areas (MPAs) have been established around the globe to preserve aquatic

biodiversity. Gill et al. (2017) collected data to understand the effects of these policies on
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Table 3.4: Simulation study results for n = 100 and � = 0.3. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.23 (0.01) 0.96 0.25 (0.04) 0.98 0.14 (0.01) 1.00 0.05 (0.01) 0.94

PC 0.24 (0.01) 0.95 0.23 (0.01) 0.44 0.24 (0.00) 0.58 0.04 (0.01) 0.86
R2D2 (1,1) 0.21 (0.01) 0.94 0.11 (0.01) 0.98 0.14 (0.01) 1.00 0.04 (0.01) 0.92
R2D2 (1,4) 0.21 (0.01) 0.93 0.11 (0.01) 0.96 0.13 (0.01) 1.00 0.05 (0.01) 0.94
R2D2 (4,1) 0.21 (0.01) 0.94 0.13 (0.02) 1.00 0.14 (0.01) 1.00 0.04 (0.01) 0.96

Table 3.5: Simulation study results for n = 200 and � = 0.1. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.16 (0.01) 0.94 0.23 (0.07) 0.98 0.06 (0.01) 1.00 0.04 (0.01) 0.94

PC 0.16 (0.01) 0.94 0.29 (0.05) 0.70 0.07 (0.00) 0.94 0.06 (0.01) 0.80
R2D2 (1,1) 0.15 (0.00) 0.94 0.13 (0.02) 0.94 0.05 (0.01) 1.00 0.04 (0.01) 0.94
R2D2 (1,4) 0.15 (0.00) 0.95 0.12 (0.01) 0.92 0.05 (0.01) 1.00 0.04 (0.00) 0.96
R2D2 (4,1) 0.15 (0.00) 0.94 0.14 (0.03) 0.98 0.05 (0.01) 1.00 0.04 (0.01) 0.96

Table 3.6: Simulation study results for n = 200 and � = 0.2. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.16 (0.01) 0.93 0.19 (0.03) 0.94 0.11 (0.01) 1.00 0.03 (0.00) 0.96

PC 0.16 (0.01) 0.94 0.21 (0.02) 0.84 0.12 (0.01) 0.96 0.03 (0.00) 0.98
R2D2 (1,1) 0.15 (0.01) 0.93 0.11 (0.01) 1.00 0.07 (0.01) 1.00 0.02 (0.00) 0.98
R2D2 (1,4) 0.16 (0.01) 0.92 0.11 (0.01) 1.00 0.07 (0.01) 1.00 0.03 (0.00) 0.96
R2D2 (4,1) 0.15 (0.01) 0.93 0.11 (0.01) 1.00 0.07 (0.01) 1.00 0.02 (0.00) 0.98
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Table 3.7: Simulation study results for n = 200 and � = 0.3. MSE is root mean squared error
loss with posterior median and Cov is frequentist coverage of 95% posterior credible interval.
Standard errors are in parentheses. The best values for each column are in bold .

� � 2
� � R2

n
Method MSE Cov. MSE Cov. MSE Cov. MSE Cov.
Vague 0.15 (0.01) 0.97 0.15 (0.02) 0.98 0.12 (0.01) 1.00 0.04 (0.01) 0.90

PC 0.15 (0.01) 0.96 0.19 (0.01) 0.90 0.19 (0.01) 0.88 0.04 (0.00) 0.94
R2D2 (1,1) 0.14 (0.01) 0.96 0.11 (0.01) 0.98 0.11 (0.01) 1.00 0.03 (0.00) 0.94
R2D2 (1,4) 0.14 (0.01) 0.95 0.10 (0.01) 0.96 0.10 (0.01) 1.00 0.04 (0.00) 0.98
R2D2 (4,1) 0.14 (0.01) 0.96 0.11 (0.01) 1.00 0.10 (0.01) 0.98 0.03 (0.00) 0.94

conservation efforts. The response variable, Yi , is the logarithm of the biodiversity at site si

where a larger value of the response means greater biodiversity, a goal of conservationists and

scientists. For this analysis, we consider the observations around Australia, as seen in Figure

3.2. Australia is known for its vast and unique collection of species (e.g., Butler et al. 2010) as

well as being home to two biodiversity hotspots on the east and southwest coasts. Biodiversity

hotspots are geographical regions that are rich in species, particularly those that are endemic,

rare and/ or endangered (Myers 1988; Reid 1998).

The spatial locations of the n = 471 observations shifted and scaled to �t in the unit square.

We also selectp = 9 explanatory variables: multi-use (0) vs. no-take (1) regulation indicator;

depth (m); wave exposure (kW / m); distance to shoreline (km); distance to provincial capital

market (km); coastal population (within 100 km 2); minimum sea surface temperature (2002-

2009, � C); Chlorophyll-a (2002-2009, mg / m3); and reef area within 15 km. These explanatory

variables are centered and scaled to ensure each column has mean zero and variance one.

Of primary interest is the indicator variable for whether the sampled location was under a

multi-use (MU) or no-take (NT) restriction. MU regions have restrictions on �shing practices

but still allow for some �shing whereas NT zones have a total ban on �shing. One question is

whether there is a signi�cant difference in biodiversity between the MU and NT zones after

accounting for the other covariates.

In addition to these covariates and the spatial random effect, we also include a random

intercept for the MPA, which is straightforward to incorporate into our prior framework. The

model is then

Yi = � 0 + Xi � + Zi u + � i + " i

where Z i ` = 1 if site i corresponds with MPA region ` and 0 otherwise for ` 2 f 1, . . . ,L = 37g. For
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Figure 3.2: Logarithm of the biodiversity for locations around Australia.

the R2D2 prior, the full model speci�cation is

� j� 2, � 1,W � Normal(0p , 1
p � 2� 1W Ip ), u j� 2, � 2,W � Normal(0L , � 2� 2W I L ),

� j� 2, � 3,W,� � Normal(0n , � 2� 3W � ),  � Gamma(b ,1), W j� , � ,  � GBP(a , �  ,� ,1,(�  ,�  )� 1).

(3.11)

where � is modeled with an exponential correlation structure, i.e.,

� i j = e � d i j =�

where d i j = jjsi � sj jj2 is the distance between the sampling locations of observations i and j ,

and  = � is the spatial range parameter. The exponential model is a special case of the Matérn

correlation structure with smoothness parameter � = 1=2 (Stein 1999). To complete the prior

speci�cation, we let � 0 � Normal (0,100), � = (� 1, � 2, � 3) � Dirichlet(1,1,1), � 2 � IG(0.10,0.10)

and log(� ) � Normal(� 2,1). For computing the hyperparameters �  ,� and �  ,� , we have � S =

tr (A) and � 2
S = 2tr(A2) where

A = P( � 1
p XXT + � 2ZZT + � 3� ).
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We consider several version of the spatial R2D2 prior with (a ,b ) 2 f (0.5,0.5), (1,1), (4,1), (1,4)g

to understand the effects of the R2
n prior distribution on the results. We found that the results

were mostly insensitive to hyper-parameter choices and report a brief sensitivity analysis in

the Supplemental Materials.

For comparison, we also consider a vague prior and the penalized complexity (PC) prior

(Fuglstad et al. 2019). For the vague prior, we take

� � Normal(0p , � 2
� Ip ), u j� 2, � 2

u � Normal(0L , � 2� 2
u I L ),

� j� 2, � 2
� , � � Normal(0n , � 2� 2

� � ), � 2
u , � 2

� � IG(0.10,0.10)

where we �x � 2
� = 100 and the rest of the parameters have the same prior distribution as in the

spatial R2D2 prior. From Fuglstad et al. (2019), the PC prior is

� � Normal(0p , � 2
� Ip ), u j� 2, � 2

u � Normal(0L , � 2� 2
u I L ), � j� 2, � 2

� , � � Normal(0n , � 2� 2
� � ),

� 2
u � IG(0.10,0.10), � � � Exp(� log(� )=� 0), � � IG(1,� log(� )� 0)

where we set � = 0.05, � 0 = 10 and � 0 = 0.01 as per Fuglstad et al. (2019). Note that these hyper-

parameter choices ensure that P(� < � 0) = � and P(� � > � 0) = � . Again, all other parameters

have the same prior distributions as above. For all models, we take 10,000 MCMC samples as

burn-in, 100,000 to monitor convergence and thin the results by saving every �fth sample. To

allow for a fair comparison, we coded all methods by hand in R. The code for the R2D2 prior is

available at: https://github.com/eyanchenko/r2d2space .

3.6.2 Results

We report the posterior median and 95% credible interval for several parameters of interest

in Table 3.8 as well as plot the posterior distribution of R2
n and W in Figure 3.3. In the Supple-

mental Materials, we also report representative sample of trace plots in addition to results on

computation time and number of effective samples for each MCMC chain.

First, we notice that each spatial R2D2 prior yields a posterior median of R2
n around 0.42. This

means that approximately 42% of the variation in the response can be explained by variation

in the linear predictor. The posterior median of R2
n is larger for the (a ,b ) = (4,1) prior and

smaller for the (a ,b ) = (1,4) prior which re�ects their prior means. Interestingly, even though

the (a ,b ) = (1,1) and (a ,b ) = ( 1
2 , 1

2) priors have quite different prior shapes, they yield almost

identical posterior R2
n shapes, likely because they have the same prior mean R2

n . As expected,

these trends are similar for the posterior distribution of W becauseR2
n and W are positively
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Figure 3.3: Posterior distribution of R2
n and W for MPA �sheries data using R2D2 prior with

R2
n � Beta(a ,b ).

associated. The posterior of R2
n for the vague and PC priors, however, are slightly larger than

that of the spatial R2D2 priors. This is because these priors induce a prior distribution on R2
n

that is effectively a point mass at one, due to the large prior variance of the �xed effects.

Next, we consider the posterior distribution of � 1, the parameter that quanti�es the effect

of the NT and MU zones. All models yield a posterior median of � 1 greater than zero indicating

that there is greater biodiversity in the NT zones than in the MU zones. All of the credible

intervals contain zero, however, so this �nding is not statistically signi�cant. These conclusions

are similar to those found in Cui et al. (2022). We can also compute the posterior probability

of � 1 being positive as a measure of signi�cance for this explanatory variable. We �nd that

P(� 1 > 0jY) is 0.94 for the Vague and PC priors compared to 0.88, 0.88, 0.87 and 0.89 for the R2D2

prior with (a ,b ) equal (1,1), (1
2 , 1

2), (1,4) and (4,1), respectively. This provides moderately strong

evidence in favor of a statistically signi�cant effect with the vague and PC priors providing the

strongest evidence. Further investigation is needed to understand the practical signi�cance of

these zones.

We also report the posterior median and 95% credible intervals for the other �xed effects in

the Supplemental Materials. For example, sea temperature and measurement depth seem to

have the greatest effect on biodiversity whereas population and Chlorophyll-a concentration

have very little impact. In many cases, the posterior medians are larger in magnitude for the

vague and PC priors because the R2D2 priors are shrinking the �xed effects towards the base
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Table 3.8: Posterior median and 95% credible intervals for vague, penalized complexity and
R2D2 prior with R2

n � Beta(a ,b ) for the MPA �sheries data. Note that � 1 is the effect of NT
relative to MU; � 2

� is the variance of the spatial term, � (� 3W for the R2D2 priors); � is the
spatial range effect; and � 1, � 2 and � 3 are the proportion of variance allocated to the �xed,
random and spatial effects, respectively.

(a ,b ) R2
n � 1 W � 2

�

Vague 0.44 (0.37, 0.51) 0.11 (-0.03, 0.24) � 1.43 (0.36, 7.20)
PC 0.43 (0.36, 0.50) 0.10 (-0.03, 0.24) � 0.97 (0.25, 4.06)

(1,1) 0.42 (0.35, 0.50) 0.07 (-0.05, 0.20) 0.92 (0.48, 1.88) 0.56 (0.26, 1.30)
(1

2 , 1
2) 0.42 (0.35, 0.50) 0.07 (-0.05, 0.20) 0.90 (0.47, 1.93) 0.53 (0.23, 1.26)

(1,4) 0.41 (0.34, 0.48) 0.07 (-0.05, 0.19) 0.80 (0.42, 1.58) 0.47 (0.18, 1.07)
(4,1) 0.43 (0.35, 0.50) 0.07 (-0.05, 0.20) 1.05 (0.55, 2.10) 0.60 (0.26, 1.44)
(a ,b ) � � 1 � 2 � 3

Vague 0.23 (0.02, 1.20) � � �
PC 0.18 (0.06, 0.88) � � �

(1,1) 0.07 (0.01, 0.36) 0.17 (0.04, 0.44) 0.17 (0.04, 0.42) 0.63 (0.36, 0.86)
(1

2 , 1
2) 0.06 (0.01, 0.33) 0.18 (0.04, 0.50) 0.18 (0.04, 0.45) 0.61 (0.30, 0.85)

(1,4) 0.07 (0.01, 0.34) 0.17 (0.04, 0.44) 0.19 (0.04, 0.47) 0.61 (0.30, 0.85)
(4,1) 0.07 (0.01, 0.35) 0.19 (0.04, 0.49) 0.18 (0.04, 0.44) 0.60 (0.30, 0.86)

model while the prior variance is much larger in the other two models.

The prior distribution of R2
n has only a small effect on the posterior distribution of � since

these distributions are quite similar across different combinations of (a ,b ). This is sensible

because the R2
n metric is most directly related to the linear predictor, which these parameters

have minimal effect on. In particular, the spatial R2D2 prior with (a ,b ) = (1,4) yields a posterior

median of � = (0.17,0.19,0.61). Thus, the spatial random effect accounts for approximately

61% of the variation in the linear predictor, whereas the �xed effects and MPA region account

for about 20% each. The results are similar for the other R2D2 priors.

The difference among the prior frameworks is most pronounced for the spatial range and

variance parameters. For the spatial marginal variance � 2
� (� 3W for the R2D2 priors), the

Vague prior has the largest posterior median, followed by the PC prior, while the R2D2 priors

have the smallest. The Vague prior does not penalize this parameter which leads to the largest

values. Both the PC and R2D2 priors, however, explicitly shrink this parameter towards zero

(via W for R2D2), leading to the smaller posterior estimates. From this example, the R2D2 prior

corresponds to greater shrinkage. While the R2D2 priors all yield similar results for � , the PC

and vague priors have a posterior median that is approximately three times larger than that of

the R2D2 prior. We expect the PC prior to have a larger estimate for � because this framework

explicitly forces the estimate towards a base model of � ! 1 . The large estimate for the Vague
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prior could be owed to the strong correlation (0.68) between the posterior distributions of � 2
�

and � . Thus, the large values of � 2
� may also be increasing the estimates of � . The corresponding

correlation for the R2D2 (1,1) prior, on the other hand, is only 0.29.

Finally, in Figure 3.4, we plot the posterior median of � i at each location si . All spatial R2D2

priors gave similar results so we only plot the results for (a ,b ) = (1,1) and (1,4). From the

�gure, we notice that there is much greater spatial variability resulting from the vague prior as

compared to the R2D2 prior, with the PC prior in between.

3.7 Conclusion

In this work, we proposed a novel, principled framework for constructing prior distributions for

Gaussian process spatial regression models. The spatial R2D2 prior facilitates an intuitive and

interpretable way to incorporate prior information into the statistical model via the Bayesian

coef�cient of determination. In the absence of prior domain knowledge, we suggest the (a ,b ) =

(1,1) as a natural choice or (a ,b ) = (1,b ) for large b if it is believed that there is sparsity in the

�xed effects. Indeed, prior distributions with large mass near R2
n = 0 are sensible for variable

selection contexts (Zhang et al. 2022; Yanchenko et al. 2021) which highlights a key connection

between the spatial R2D2 prior construction and Fuglstad et al. (2019). Fuglstad et al. (2019)

shrink towards a “null model" with � ! 1 and � p +1W ! 0, using the notation of our paper.

On the other hand, we consider the intercept-only model with R2
n = 0 (W = 0) as the baseline

model. Thus, a large prior mass near R2
n = 0 shrinks towards the null model which is equivalent

to a large prior mass of W near zero. This also means that our null model shrinks the �xed

effects to zero in addition to the spatial effects.

We again stress that our prior construction is dependent on the explanatory variables

and spatial design. This means that if a new response is observed, then the prior distribution

for W would change, similar to Berger et al. (2001). The prior distribution in Fuglstad et al.

(2019), conversely, is independent of covariates and sampling. While it is important for the

practitioners to keep this in mind, from a Bayesian philosophical sense, this is not problematic

as results are always thought of as conditional on the observed data. Additionally, while the

proposed prior construction does not account for confounding between the covariates and

spatial effect, our method could be used in model-based spatial causal inference analyses,

such as those reviewed in Reich et al. (2021).
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Figure 3.4: Posterior median of latent spatial parameter � for various prior distributions.
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CHAPTER

4

A GENERALIZED HYPOTHESIS TEST FOR

COMMUNITY STRUCTURE IN NETWORKS

4.1 Introduction

As was alluded to in Chapter 1, many real-world networks have been observed to have com-

munity structure. While there are numerous community detection algorithms, less work has

studied whether these structures are statistically signi�cant. Developing such a test is the goal

of this chapter.

While the conceptual understanding of community structure is clear, there is no universal

mathematical de�nition. Thus, we begin by de�ning a parameter and corresponding test statis-

tic to quantify community structure as the difference between the intra- and inter-community

edge probabilities. Intuitively, networks with many more intra-community edges as compared

to inter-community edges have a “stronger” community structure. We then leverage this mathe-

matical de�nition for the hypothesis testing framework. The roadmap for the rest of this chapter

is as follows: in Section 4.2 we propose the model parameter and corresponding estimator, as

well as present the �rst (asymptotic) hypothesis test. Section 4.3 discusses the baseline model

test with a bootstrap threshold. We apply the method to synthetic data in Section 4.4 and real

world datasets in Section 4.5. We close by discussing the method in Section 4.6.
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4.2 Model parameter and baseline-value testing framework

4.2.1 Notation

For this work, we will only consider simple, unweighted and undirected networks with no self

loops. Consider a network with n nodes and let A denote the n � n adjacency matrix where

Ai j = 1 if node i and node j have an edge, and 0 otherwise. We write A � P as shorthand

for Ai j � Bernoulli(Pi j ) for 1 � i < j � n and de�ne a community assignment to be a vector

c 2 f 1, . . . ,K gn such that ci = k means node i is assigned to community k 2 f 1, . . . ,K g. We

also introduce the following notation: for scalar sequences an and bn , an = O(bn ) means

that lim n !1 an =bn � M for some constant M (which could be 0) and an = o(bn ) means that

lim n !1 an =bn = 0. For a sequence of random variables, Xn = Op (Yn ) means that Xn =Yn ! P M

(which could be 0) and Xn = op (Yn ) means that Xn =Yn ! P 0.

4.2.2 Expected Edge Density Difference ( E2D2 ) parameter and estimator

The �rst step of the hypothesis test is to identify the model parameter. Here we want to use a

parameter that applies to any network model. Since there is no universal metric to quantify

community structure, we construct one from the �rst principles. For an observednetwork, a

natural global measure of the strength of the community structure is the difference between the

intra- and inter- community edge densities (see page 83-84 of Fortunato 2010). The larger this

difference, the more prominent the community structure is in the network. Now, this de�nition

makes sense at the sample level for a realized network, but we seek the model parameter at

the population level, or the parameter that generates this network. For this, we propose the

Expected Edge Density Difference(E2D2) parameter. Consider a network model P and let c be

a community assignment. De�ne

p̄i n (c ) =
1

P K
k =1

�
nk
2

�
X

i < j

Pi j 1(ci = c j ) and p̄o ut (c ) =
1

P
k > l nk n l

X

i < j

Pi j 1(ci 6= c j ), (4.1)

where 1(�) is the indicator function. Here, p̄i n (c ) and p̄o ut (c ) are the average expectedintra-

and inter- community edge densities, respectively, hence the name ExpectedEdge Density

Difference. This de�nition is sensible only when 1 < K < n for if K = 1, then p̄o ut (c ) is ill-

de�ned and the same is true for p̄i n (c ) if K = n . Intuitively, a data-generating mechanism

with large p̄i n (c ) � p̄o ut (c ) is likely to produce a network with a large difference in observed

intra- and inter- community edge density and, therefore, prominent community structure.

This difference, however, should be adjusted with respect to the overall sparsity of the network

and the number of groups each node can be assigned. So, we propose the E2D2parameter
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 (c ,P) as

 (c ,P) :=
1

K

p̄i n (c ) � p̄o ut (c )

p̄
, (4.2)

where p̄ =
P

i > j Pi j =
�
n
2

�
is the overall probability of an edge between nodes in the network. We

also de�ne

̃ (P) = max
c

f  (c ,P)g (4.3)

as the maximum value of the E2D2parameter where the maximization is taken over the candi-

date community assignments c . In the Supplemental Materials, we sketch a proof showing

that p̄i n (c ) � p̄o ut (c ) � p̄ K . Thus, the K � 1 term ensures that the E2D2parameter is always less

than one. Indeed,  (c ,P) = 1 if and only if p̄o ut = 0 and there are K equally-sized communities.

By construction, this parameter has a natural connection to the intuitive notion of community

structure since larger values correspond to more prominent levels of community structure in

the data-generating process. Additionally, it is general and model-agnostic in the sense that

the de�nition is not tied to any particular random graph model, meaning we can study its

behavior under many scenarios. Lastly, it depends on the data-generating matrix P, as well as

the particular community assignment through c and K .

The second ingredient in our hypothesis testing recipe is an estimator of the E2D2parameter.

Using the same notation as above, de�ne

p̂i n (c ) =
1

P K
k =1

�
nk
2

�
X

i < j

Ai j 1(ci = c j ) and p̂o ut (c ) =
1

P
k > l nk n l

X

i < j

Ai j 1(ci 6= c j ), (4.4)

Then we estimate  (c ,P) from (4.2) as

T (c ,A) :=
1

K

p̂i n (c ) � p̂o ut (c )

p̂
, (4.5)

where p̂ =
P

i > j Ai j =
�
n
2

�
and p̂i n (c ), p̂o ut (c ) and p̂ are the sample versions of p̄i n (c ), p̄o ut (c ) and p̄ ,

respectively. In other words, T (c ,A) is the observededge density difference, the sample version

of the E2D2parameter. Below we �nd the maximum of this test statistic over all possible

community labels c so we also introduce the notation

T̃ (A) = max
c

f T (c ,A)g. (4.6)

Since p̂ depends on A but not on c , T̃ (A) maximizes the intra-community edge probability

over the candidate values of c with a penalty for larger inter-community edge probability, akin
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to the objective function in Mancoridis et al. (1998).

This metric has a natural connection to the well-known Newman-Girvan modularity quan-

tity (Newman 2006). The modularity, Q(c ,A), of a network partition c is de�ned as

Q(c ,A) =
1

m

X

i < j

�

Ai j �
d i d j

2m

�

1(ci = c j ) (4.7)

where d i is the degree of node i and m is the total number of edges in the network. Rearranging

(4.7), we see that

Q(c ,A) =
1

m

X

i < j

Ai j 1(ci = c j ) �
1

2m 2

X

i < j

d i d j 1(ci = c j ). (4.8)

The connection is now immediate: the �rst term is the (scaled) number of intra-community

edges and has a one-to-one relationship with p̂i n (c ). The second term can be thought of as

the penalty term for the expected number of edges for a random network with given degree

sequence. In light of these similarities, the proposed estimator has a key advantage compared

to modularity. The penalty term for modularity assumes the con�guration model as the null

model, i.e., comparing the strength of the community structure against a random network with

identical degree sequence. The penalty term for the proposed method p̂o ut (c ), however, is not

model-dependent. This means that any model could be chosen as the null model, giving the

proposed estimator far greater �exibility than modularity. The numerator of T (c ,A) can also

be written in the general modularity formulation of Bickel and Chen (2009).

4.2.3 Algorithm for computing the E2D2 estimator

The E2D2estimator is also of independent interest as an objective function for community

detection. Finding the maximum of T (c ,A) is a combinatorial optimization problem with O(K n )

solutions. Thus, an exhaustive search is clearly infeasible for even moderate n so we propose

a greedy, label-switching algorithm to approximate T̃ (A). We brie�y explain the ideas here

and present the full algorithm in Algorithm 1. First, each node is initialized with a community

label ci 2 f 1, . . . ,K g. Then, for each node i , its community assignment is switched with all

neighboring communities. The new label of node i is whichever switch yielded the largest

value of the E2D2estimator (or it is kept in the original community if none of the swaps

increased T (c ,A)). This process repeats for all n nodes. The algorithm stops when all nodes

have been cycled through and no labels have changed. The current labels, c , are then returned.

The assumption that K is known is rather strong and unrealistic for most real-world networks.

We view it as reasonable here, however, since the goal of this work is not primarily to propose
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a new community detection algorithm. In practice, any off-the-shelf method can be used to

estimate K and then the proposed algorithm can be used.

Algorithm 1 Greedy
Result: Community labels c

Input: n � n adjacency matrix A, number of communities K

Initialize labels c 2 f 1, . . . ,K gn

r un = 1

while r un > 0 do
r un = 0

Randomly order nodes

for i in 1, . . . ,n do
Find neighboring communities, Ki , of node i : Ki = f k1, . . . ,k jKi jg

Swap label of node i with all k j 2 Ki : c �
j = c, (c �

j )i = k j

c � = argmax j f T (c �
j ,A)g

if T (c � ,A) > T (c ,A) then
c  � c �

r un = 1
end

end

end

4.2.4 Baseline-value test

We now leverage the E2D2parameter and estimator to formulate our �rst hypothesis test. Be-

cause this parameter is interpretable and meaningful as a descriptor of the network-generating

process, we consider the scenario where the researcher has a problem-speci�c benchmark

value of the E2D2parameter that she would like to test against. In other words, the baseline

value has domain-relevant meaning as “no community structure." Then we must determine

whether any assignment exceeds this threshold so the formal test is:

H0 : ̃ (P) �  0 v s. H1 : ̃ (P) >  0, (4.9)

for some  0 2 [0,1). Naturally, we reject H0 if

T̃ (A) = max
c

f T (c ,A)g> C (4.10)
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for some cutoff C that depends on the network size and null value  0.

Now, to obtain a test with level � , we should set C as the (1 � � ) quantile of the null distri-

bution of T̃ (A). But this is a dif�cult task since the test statistic is the maximum taken over

O(K n ) possible community assignments and these random variables are highly correlated. We

propose to sidestep this dif�cult theoretical problem with an asymptotic cutoff. We �rst make

the following two assumptions.

A1. For any candidate community assignment, at least two community sizes must grow linearly

with n.

A2. n1=2p̄ ! 1 as n ! 1 .

A1 lays down a basic requirement for any legitimate candidate community assignment, since

otherwise, one community will dominate the entire network. For A2, a typical sparsity as-

sumption is that p̄ = O(n � 1) such that the expected number of edges in the network grows

linearly with n . Our result requires a stronger condition which means we are in the semi-dense

regime. While this is not ideal, proofs in the denseregime (�xed p ) are common in the literature

(e.g., Bickel and Sarkar 2016). Our work, in fact, holds under less stringent conditions, i.e.,

n 1=2p̄ ! 1 but allows p̄ ! 0. The formal result is as follows.

Theorem 4.2.1. Let A � P and consider testing H0 : ̃ (P) �  0 as in (4.9). Let A1 and A2 be true

and consider the cutoff

C =
•
 0 +

kn

K p̂

‹
(1+ � ) (4.11)

where kn = f (log K )=n g1=2 and arbitrarily small � > 0 chosen by the user. Then when the null

hypothesis is true (̃ (P) �  0), the type-I error goes to 0, i.e., for any � > 0,

lim
n !1

Pf T̃ (A) > C j H0g � � .

If the alternative hypothesis is true (̃ (P) >  0), then the power goes to 1, i.e.,

lim
n !1

Pf T̃ (A) > C j H1g> 1 � � .

A proof of the theorem, as well as proofs of all subsequent theoretical results, are left to

the Supplemental Materials. The proof approximates the cutoff under the null hypothesis

using a union bound and then leverages Hoeffding's inequality to show that the probability of

failing to reject under the alternative hypothesis goes to 0. The cutoff depends on K and, for

theoretical purposes, we assume that K is �xed. In practice, we run a community detection

algorithm on the network (e.g., Fast Greedy algorithm of Clauset et al. 2004) and then use

the number of communities returned by this algorithm, K̂ , to �nd T̃ (A) and construct the

threshold. Additionally, A2 ensures that the kn =(K p̂ ) term converges to 0 such that C !  0 as
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n ! 1 . In practice, we con�rm the necessity of this assumption as this test has greater power

for denser networks (large p̂ ).

This test is fundamentally different from existing ones in the literature because the prac-

titioner chooses the value of  0 for her particular problem, inducing a model-agnostic test.

In other words, the null hypothesis is not a baseline model, but instead a baseline quantity

of community structure in the network-generating process. Since the E2D2parameter has

a natural connection to community structure, this test is also more easily interpretable with

respect to this feature. Indeed, rejecting the null hypothesis means that the data-generating

matrix for the observed network has greater community structure (as measured by the E2D2

parameter) than some baseline value (  0).

A natural question that arises is how to choose  0. We stress that this choice depends on

the domain and question of interest. There are some special cases, however, that yield insights

into selecting a meaningful value. For example, assume that the practitioner believes that

her network has two roughly-equally sized communities. Then setting  0 = (� � 1)=(� + 1) is

equivalent to testing whether the average intra-community edge density is more than � > 1

times larger than the average inter-community edge density, i.e., p̄i n � � p̄o ut .

The special case of  0 = 0 is also worthy of further discussion. It is trivial to show that if P is

from an Erd �os-Rényi (ER) model (Erd �os and Rényi 1959) where Pi j = p for all i , j , then ̃ (P) = 0.

We show in the Supplementary Materials, however, that the converse of this statement is also

true, i.e., ̃ (P) = 0 only if P is from an ER model. This means that setting  0 = 0 is equivalent to

testing against the null hypothesis that the network is generated from an ER model. In other

words, any other network model will reject this test when  0 = 0. But there are many models

(e.g., Chung-Lu (Chung and Lu 2002), small world (Watts and Strogatz 1998)) which may not

be ER but also do not intuitively have community structure. This connection between the

model-agnostic E2D2parameter and its behavior under certain model assumptions motivates

the test in the following section.

4.3 Baseline-model test

In the previous section, we derive a hypothesis test based on a user-de�ned benchmark value

that does not refer to a null model. There may be situations, however, where the practitioner

does not have a meaningful way to set the null parameter  0. In this case, we set the null

hypothesis in reference to a particular null model and / or model property. If P(� ) is the true

data-generating model for A de�ned by the parameters � , then instead of testing ̃ (P(� )) �  0,

the null hypothesis is now that ̃ (P(� )) is less than or equal to the largest value of the E2D2

parameter under the null model. Since the speci�c set of parameters for the null model is
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typically unknown, they are estimated from the observed network as �̂ . To �x ideas, we provide

the following two examples.

Erd �os-Rényi model: The simplest null model to consider is the ER model where Pi j = p

for all i , j . Thus, the value of p completely de�nes an ER model. We estimate p by taking

the average edge probability of the network, i.e., p̂ =
P

i < j Ai j =f n (n � 1)=2g. Then this test

determines whether the observed value of the E2D2estimator is greater than what could arise

if the network was generated from an ER model. Recall that this is equivalent to the test in (4.9)

setting  0 = 0.

Chung-Lu model: Another sensible null model to consider is the Chung-Lu (CL) model

(Chung and Lu 2002) where Pi j = � i � j for some weight vector � = (� 1, . . . ,� n ) which uniquely

de�nes the model. This model is similar to the con�guration model except instead of preserving

the exact degree sequence, it preserves the expected degree sequence. We estimate � using the

rank 1 Adjacency Spectral Embedding (Sussman et al. 2012):

�̂ = j�̂ j1=2û (4.12)

where �̂ is the largest-magnitude eigenvalue of A and û is the corresponding eigenvector. Now

the test is whether the value of the E2D2estimator is greater than what likely would have been

observed if the CL model generated the observed network.

4.3.1 Bootstrap test

To carry out this test, we propose a bootstrap procedure. We describe the method for the CL null

but full details for the ER and CL null can be found in Algorithm 2. Additionally, the bootstrap

test can be trivially modi�ed to test against many other null models.

This approach directly estimates the 1 � � quantile of the null distribution of T̃ (A) with a

parametric bootstrap and then uses this quantity as the testing threshold. In particular, we �rst

compute the test statistic T̃ (A) as in (4.6). Since the null distribution of T̃ (A) is unknown, we

must simulate draws from this distribution in order to have a comparison with our observed

test statistic. So we next estimate � with the adjacency spectral embedding (ASE) as in (4.12).

Then, for b = 1, . . . ,B, we draw �̂
�

b = ( ˆ� �
b 1, . . . , ˆ� �

b n )T with replacement from �̂ = ( ˆ� 1, . . . , ˆ� n )T ,

generate a CL network A�
b with �̂

�

b and �nd T̃ �
b = maxc f T (A�

b ,cg. The empirical distribution of

63



f T̃ �
b gB

b =1 serves as a proxy for the null distribution of T̃ (A) so the p -value is

p � va l =
1

B

BX

b =1

1(T̃ �
b � T̃o b s) (4.13)

and we reject H0 if the p -value is less than a pre-speci�ed � .

Algorithm 2 Bootstrap hypothesis test
Result: p -value

Input: n � n adjacency matrix A, number of iterations B, null model M

Compute T̃o b s = maxc f T (A,c )gas in (4.6)

if M =ERthen
Compute p̂ =

P
i < j Ai j =f n (n � 1)=2g

end

if M =CL then

Compute �̂ = �̂ 1=2û as in (4.12)

end

for B times do

if M =ERthen
A�

b  ER network with p̂

end

if M =CL then

Draw �̂
�

b = ( ˆ� �
b 1, . . . , ˆ� �

b n )T with replacement from �̂ = ( ˆ� 1, . . . , ˆ� n )T (4.12)

A�
b  CL network with �̂

�

b

end

Compute T̃ �
b = maxc f T (A�

b ,c )g

end

p -val=
P

b 1(T̃ �
b � T̃o b s)=B

This test naturally �ts into the existing community detection testing literature as it considers

a speci�c null model. Nevertheless, the bootstrap method is more �exible in that it can easily

accommodate any null model. Additionally, it allows for more general inference as multiple,

realistic null distributions can be tested against, leading to a rich understanding of the network's

community structure. The bootstrap test also yields an insightful visual tool where the observed

value of the test statistic is plotted next to the bootstrap histogram. This tool helps in visualizing

how the strength of community structure observed in the network compares to benchmark
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networks with the same density, or with the same degree distribution, and so on. We study

these plots more in Section 4.5. Lastly, a fundamental challenge of bootstrapping networks is

that, in general, we only observe a single network. If we knew the model parameters (e.g., p or

� ) then it would be trivial to generate bootstrap replicates. Since the true model parameters

are unknown, we must �rst estimate them and then generate networks using the estimated

parameters. Thus, the quality of the bootstrap procedure depends on the quality of these

estimates. In the following sub-section, we formally prove certain properties of this procedure.

4.3.2 Bootstrap theory

We now turn our attention to theoretical properties of the bootstrap. We want to show that,

if A,H � P(� ) and Â� � P(�̂ ) where �̂ estimates � using A, then T̃ (Â� ) converges to T̃ (H ). To

have any hope of showing this result, Â� must be similar to A. We consider the Wasserstein

p-distance and adopt the notation of (Levin and Levina 2019). Let p � 1 and let A1,A2 be

adjacency matrices on n nodes. Let � (A1,A2) be the set of all couplings of A1 and A2. Then the

Wasserstein p -distance between A1 and A2 is

W p
p (A1,A2) = inf

� 2� (A1,A2)

Z

d p
G M (A1,A2)d � (4.14)

where

dG M (A1,A2) = min
Q2� n

�
n

2

� � 1
1

2
kA1 � QA2Q

0k1 (4.15)

where � n is the set of all n � n permutation matrices and kAk1 =
P

i , j jAi j j. The following results

show that Â� converges in distribution to A in the Wasserstein p -distance sense for both the

ER and CL null. For all results in this section, assume that model parameters do not depend on

n , i.e., pn = p 6! 0.

Lemma 4.3.1. Let A,H � E R(p ) and Â� � E R(p̂ ) where p̂ =
P

i , j Ai j =f n (n � 1)g. Then

W p
p (Â� ,H ) = O(n � 1).

Lemma 4.3.2. Let A,H � C L(� ) and Â� � C L(�̂ ) where � is found using (4.12). Then

W p
p (Â� ,H ) = O(n � 1=2 log n ).

Both proofs are based on Theorem 5 in Levin and Levina (2019). These results shows that for

large n , the networks generated from the bootstrap model are similar to the networks generated
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from the original model. Since there is only one parameter to estimate in the ER model but n

in the CL model, it is sensible that the rate of convergence is much faster for the former.

Next, we show that for a �xed c , the distribution of the bootstrapped test statistic converges

to the same distribution as the original test statistic. We only show this result for the ER null.

First, we introduce some useful notation. Let t (A,c )be the numerator of the E2D2test estimator,

i.e.,

t (A,c ) =
1

m i n

X

i < c

Ai j 1(ci = c j ) �
1

mo ut

X

i < c

Ai j 1(ci 6= c j ) :=
X

i < j

Ci j Ai j

where m i n and mo ut are the total possible number of intra- and inter- community edges,

respecitvely, and Ci j = m � 1
i n if ci = c j and m � 1

o u t otherwise. Additionally, let C1 =
P

i < j Ci j and

C2 =
P

i < j C 2
i j . Then we have the following result.

Lemma 4.3.3. Let A,H � E R(p ) and Â� � E R(p̂ ) where p̂ =
P

i < j Ai j =f n (n � 1)=2gand consider

a �xed c . Furthermore, let s 2
n = p (1 � p )C2. Then

1

sn
f T (H ,c ) �  (H ,c )g

d
! N(0,K 2p 2)

and
1

sn
f T (Â� ,c ) �  (H ,c )g

d
! N(0,K 2p 2)

The proof is a simple application of the non-identically distributed central limit theorem

and iterated expectations. This lemma implies that the E2D2estimator T (A,c ) consistently

estimates the E2D2model parameter  (A,c ) for a particular c . Additionally, the distribution of

the test statistic converges to the same normal distribution, whether the network was generated

from the original model or the bootstrap model. This result is more dif�cult to show for the

CL null model. We cannot use the ideas from the proof of Lemma 4.3.3 because �̂ has a more

complicated form and the bootstrap step is more involved than that of the ER null; nor can we

use the results in Levin and Levina (2019) because the E2D2estimator cannot be written as

U -statistic.

Ideally, we would like to show that this result also holds when using the community assign-

ment which maximizes the E2D2estimator. Unfortunately, showing this convergence for arbi-

trary statistics is dif�cult (e.g., Levin and Levina 2019). This is challenging in our particular case

for several reasons. First, the E2D2estimator T̃ (A) is the maximum of O(en ) statistics T (A,c i ),

meaning the maximum is taken over a set of random variables which goes to in�nity. Addi-

tionally, these variables are non-trivially correlated since they depend on the same adjacency

matrix. Another angle to view the dif�culty of this problem is that, for c � = argmaxc f T (A,cg,

C �
i j is now dependent on Ai j . Even computing the mean and variance of this estimator becomes
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dif�cult. Bootstrap theoretical results for the maximum of the test statistic is an important

avenue for future work.

4.4 Hypothesis Testing Simulations

4.4.1 Settings

We now study the performance of the proposed method on synthetic data. Our primary metric

of interest is the rejection rate of the test under different settings. We consider two settings

for the baseline-value test as well as settings for the baseline-model test with both the ER

and CL nulls. In each setting, we �rst �x ̃ (P) and increase the number of nodes n . Then we

�x n and increase ̃ (P) and, in both cases, we expect an increasing rejection rate. We run 50

Monte Carlo simulations and compute the fraction of rejections. Our bootstrap method uses

B = 200bootstrap samples and we �x the level of the test at � = 0.05. We chose the two Spectral

methods proposed in Bickel and Sarkar (2016) as benchmarks since these are leading and

well-established methods with formal guarantees. Even though the authors suggest only using

the adjusted method, we will still compare both since, similar to our proposed framework, the

authors propose a version of the test with an asymptotic threshold and an adjusted version of

the test with a bootstrap correction.

4.4.2 Test against baseline value

First, we consider the baseline-value test using Theorem 4.2.1, i.e., we reject H0 if

T̃ (A) >
•
 0 +

kn

K p̂

‹
(1+ � )

where kn = f (log K )=n g1=2 and small � > 0. We let n = 500,1000, . . . ,2500and generate networks

with K = 4 communities where 40%, 20%, 20% and 20% of the nodes are in each community,

respectively. The edge probabilities Pi j are distributed such that

Pi j
indep.

� 1(c �
i = c �

j )Uniform(0.125,0.175) + 1(c �
i 6= c �

j )Uniform(0.0325,0.1250)

where c � correspond to the true community labels. This data-generating model has a block

structure but with heterogeneous edge probabilities. We �nd that Ef ̃ (P)g= 0.14and test against

the null hypothesis H0 : ̃ (P) �  0 = 0.10. The results are in Figure 4.1(a). Since Ef ̃ (P)g>  0, the

test should reject. However, the cutoff is asymptotic so the test has low power for n = 500,1000.

For n � 1500, the test has a high power as n is large enough for the asymptotic results to apply.

67



For the next setting, we �x n = 5000 and keep the same number of communities and

proportion of nodes in each. The edge probabilities Pi j are now distributed such that

Pi j
indep.

� 1(c �
i = c �

j )Uniform(0.125,0.175) + 1(c �
i 6= c �

j )Uniform(a ,0.125)

where a = 0.1000,0.0775, . . . ,0.0100. We �nd that Ef ̃ (P)g= 0.08,0.11,0.14,0.18,0.23 for differ-

ent values of a and test against the null hypothesis H0 : ̃ (P) �  0 = 0.10. The results are in Figure

4.1(b). When a = 0.1000, ̃ (P) = 0.08 <  0 = 0.10 so we would expect the test to fail to reject

which it does. The test should have a high rejection rate when a = 0.0775since ̃ (P) = 0.11>  0.

The power of the test, however, does not increase to one until ̃ (P) = 0.14. This small discrep-

ancy is due to the fact that it is an asymptotic cut off and we are generating networks with a

�nite number of nodes. When ̃ (P) � 0.14, the test consistently rejects as expected.

4.4.3 Test against ER null

Next, we study the baseline-model test using the bootstrap procedure described in Algorithm

2. First we test against the null hypothesis that the network was generated from the ER model.

We showed that this test is also equivalent to the asymptotic test with  0 = 0 so we can also

compare the rejection threshold from Theorem 4.2.1. A natural alternative model to the ER is

the stochastic block model (SBM) (Holland et al. 1983a) where Pi j = Bci ,c j
and c corresponds

to the true community labels. We let n = 250,500,1000,2000and generate networks from an

SBM with K = 2 communities consisting of 60%and 40%of the nodes. The intra-community

edge probability is B11 = B22 = 0.05 and inter-community edge probability is B12 = 0.025 which

results in ̃ (P) = 0.33. The results are in Figure 4.1 (c). Since the network is generated from

an SBM and we are comparing with an ER null, we expect the test to yield a large rejection

rate. We can see that both Spectral methods and the proposed bootstrap approach having

an increasing rejection rate with increasing n and where the Spectral methods have a larger

power. The asymptotic method has a large rejection rate for n = 250 but then drops to zero for

n = 500,1000before increasing again at n = 2000. The reasons for this is that for n = 250, the

number of communities K is being overestimated. This causes the test statistic to in�ate more

than the cutoff, leading to a large rejection rate. For n � 500, K is more accurately estimated so

we see trends that are expected.

In the second scenario, we �x n = 1000. Now, the intra-community edge probability is

B11 = B22 = 0.05 and inter-community edge probability is B12 = 0.05,0.04, . . . ,0.01. This means

that ̃ (P) = 0, 0.11, 0.25, 0.42, 0.65. The results are in Figure 4.1 (d). When ̃ (P) = 0, the network

is generated from an ER model meaning the null hypothesis is true so we expect a low rejection

rate. The unadjusted Spectral method has large Type I error and the bootstrap method rejects
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slightly more than the � level of the test. When ̃ (P) > 0, the null hypothesis is false so we expect

a large rejection rate. Both Spectral methods reach a power of one by ̃ (P) = 0.25 while the

bootstrap method does not reach this power until ̃ (P) = 0.42. The asymptotic test, as expected,

is the most conservative test. While the Spectral methods outperform the bootstrap test in both

scenarios, this is to be expected because these methods were designed for this exact scenario

and null. The proposed test is more general so it can be applied to many more settings, but is

unlikely to beat a method designed for a speci�c scenario.

4.4.4 Test against CL null

Lastly, we study the baseline-model test where now the CL model functions as the null, again

using Algorithm 2. We drop both Spectral methods for these simulations as the ER null is hard-

coded into them, thus making these methods inapplicable for testing against the CL null. We

also drop the asymptotic test from the comparison because it is unclear how to set  0 for this null

model. In fact, �nding a closed-form expression for the rejection threshold for the CL null is an

interesting avenue of future work. For the alternative model, we consider the degree corrected

block model (DCBM) (Karrer and Newman 2011) where Pi j = � i � j Bci ,c j
and � i are node speci�c

degree parameters. We generate networks from a DCBM with n = 250,500, . . . ,1000and K = 4

communities where 40%, 20%, 20% and 20% of the nodes are in each community. The degree

parameters are generated � i
iid
� Uniform(0.2,0.3) and Bi i = 1, Bi j = 0.4. Thus, ̃ (P) = 0.26. The

results are in Figure 4.1(e). Since the networks are generated from a DCBM, we expect a large

rejection rate. We see that that rejection rate increases monotonically with n , reaching a power

near one by n = 1000.

For the second scenario, all settings are the same except now the number of nodes is �xed at

n = 1000and Bi i = 1, Bi j = 1, 0.8, . . ., 0.2 for i 6= j = 1, . . . ,4. Thus, ̃ (P) = 0.05,0.06,0.14,0.26,0.47.

The results are in Figure 4.1(f ). When B12 = 1 (̃ (P) = 0.03), the networks are generated from the

CL (null) model so we expect a low rejection rate and the bootstrap test has a low Type I error.

When B12 < 1 (̃ (P) > 0.03), the null hypothesis is false so we expect a large rejection rate. The

bootstrap reaches a power of one by ̃ (P) = 0.26.

4.5 Real data analysis

We now study the proposed method on two networks: DBLP and hospital interactions. The

DBLP is a computer science bibliography website and this network was extracted by Gao et al.

(2009) and Ji et al. (2010). Here, each node represents an author and an edge signi�es that

the two authors attended the same conference. Additionally, we only consider two author's
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Figure 4.1: Rejection rates from simulation study. See Section 4.4 for complete details. (a)
baseline-value null with �xed ̃ (P); (b) baseline-value null with �xed n ; (c) Erd �os-Rényi null
with �xed ̃ (P); (d) Erd �os-Rényi null with �xed n ; (e) Chung-Lu null with �xed ̃ (P); (f ) Chung-
Lu null with �xed n
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research areas, databases and information retrieval. The hospital network (Vanhems et al. 2013)

captures the interacts between patients and healthcare providers at a hospital in France. Each

person is represented by a node and an edge signi�es that they were in close proximity.

For each data set, we consider several metrics. First, we compute T̃ (A) and �nd the largest

value of  0 such that the test in (4.9) is still rejected. We also compute the p -value and �nd

the bootstrap histogram of the test statistic for the ER and CL null models (with B = 1,000).

Considering both null hypotheses together allows us to gain a richer understanding of the

network. We compare the proposed method to the p -value from the adjusted Spectral method

(Bickel and Sarkar 2016). See Table 4.1 for numeric results and Figure 4.2 for histograms from the

bootstrap method. While Table 4.1 provides a succinct summary, the plots in Figure 4.2 provide

more details and insights. In these plots, the observed test statistic computed from the dataset

is plotted as a vertical line along with histograms representing bootstrap distributions from

various benchmark models. These simple but informative plots give practitioners a reference

of how the observed community structure compares to the range of community structure in

various benchmarks.

Table 4.1: The number of nodes n and edges m for real-world networks. T̃ (A) is the observed
value of the E2D2parameter and  0 is the largest null value such that the baseline-value test
would be rejected. Additionally, we report the p -values for the adjusted Spectral method and
Bootstrap method against different null hypotheses (ER =Erd �os-Rényi, CL=Chung-Lu).

Spectral Adj. Bootstrap
Network n m T̃ (A)  0 ER ER CL
DBLP 2,203 1,148,044 0.75 0.73 < 0.001 0.000 0.000
Hospital 75 1,139 0.32 0.22 < 0.001 0.000 0.104

For the DBLP network, since we only selected two research areas, we set K = 2 to �nd

T̃ (A). The observed value of T̃ (A) = 0.75 is quite large and, due to the network's size and

density, would reject the base-line value test up to  0 = 0.73. This means that if P generated

this network, then we can assert that ̃ (P) � 0.73. Additionally, all p -values for the model-based

tests are effectively zero and, moreover, the observed test statistic is in the far right tail of

both bootstrap null distributions. Since both tests are rejected, then it is very unlikely that

the network was generated from an ER or CL model and, instead, implies that there is highly

signi�cant community structure in this network. This �nding accords with existing literature

(e.g., Sengupta and Chen 2018).

For the Hospital network, the test of H0 :  0 = 0 is rejected, as are both tests with ER null.

This is a sensible result since we showed that  0 = 0 is equivalent to testing against the ER
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(a) DBLP (b) Hospital Encounters

Figure 4.2: Histograms of bootstrap samples from the proposed method for the two real data
sets. The orange histogram is with Erd �os-Rényi null, and the blue histogram is with Chung-Lu
null.

null. The p -value for the CL null, however, is not signi�cant at the � = 0.05 level, meaning

that this network does not have more community structure than we would expect to occur

from a CL network by chance. So while there is strong evidence that the network diverges

from an ER model, these �ndings indicate that perhaps the low ER-null p -values are due to

degree heterogeneity rather than community structure. Indeed, the histogram shows how the

test statistic is very unlikely to have been drawn from the ER distribution, but is reasonably

likely to have come from the CL distribution since this distribution has a greater mean and

variance. Using an ER null alone would have led to the conclusion that there is community

structure in this network. By using multiple nulls together with the proposed method, however,

we gain a fuller understanding of the network by concluding that degree heterogeneity may be

masquerading as community structure.

4.6 Discussion

In this work, we proposed two methods to test for community structure in networks. These

tests are rooted in a formal and general de�nition of the E2D2parameter. This metric is simple,

�exible, and well-connected to the conceptual notion of community structure which we argue

makes it a more principled approach. In fact, the test statistic can even be used as a descriptive

statistic to quantify the strength of community structure in a network. Existing methods are

based on speci�c random graph models, such as the ER model, which are implicitly presumed

to be the only models that do not have community structure. While our second testing approach

�ts into this framework as well, the general nature of the E2D2parameter means that we can
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test against nearly any null model to obtain a richer set of practical insights compared to

existing methods. Given a network, we recommend that practitioners �rst carry out the test

against the ER null. If this test is rejected, further tests should be carried out to check whether

the it could be due to some other network feature like degree heterogeneity. Thus, the method

not only helps decide whether there is any community structure in the network, but also helps

understand the source of this community structure.

There are several future research directions. First, the proposed E2D2parameter is limited

to quantifying assortative community structure. Extending the method to handle disassortative

and/ or bi-partite networks would be a interesting contribution. Next, while the asymptotic

test is more adept to scale to large networks, the bootstrap test is limited to networks of up

to (roughly) n = 10,000 nodes. There are also open theoretical questions including a more

precise asymptotic cutoff that accounts for correlation between the random variables as well

as bootstrap theory for the maximum test statistic. Additionally, the ideas from this work could

be extended to test for other network properties like core-periphery structure ( ?).
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CHAPTER

5

CORE-PERIPHERY STRUCTURE IN

NETWORKS: A REVIEW AND ALGORITHM

FOR LARGE NETWORKS

In this penultimate chapter, our focus turns to core-periphery (CP) structure, a related but

distinct concept of community structure. The �rst part of the chapter reviews CP structure

from a statistical lens (Yanchenko and Sengupta 2023), while the second part introduces an

algorithm for identifying a CP structure in large networks (Yanchenko 2022).

5.1 Core-periphery structure in networks: a statistical exposi-

tion

5.1.1 Introduction

Background and motivation

We saw in Chapter 1 how core-periphery (CP) is an important feature observed in many real-

wolrd networks, i.e., airport networks (Figure 5.1). The �rst goal of this chapter is the review
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