
Abstract

EYCEÖZ, TUGAY. Deterministic Modeling and Long Range Prediction

of Fast Fading Channels with Applications to Mobile Radio Systems.

(Under the direction of Prof. Alexandra Duel-Hallen)

In wireless communication systems, the direct signal and the reflected signals form

an interference pattern resulting in a received signal given by the sum of these com-

ponents. They are distinguished by their Doppler shifts at the mobile. Since the

parameters associated with these components are slowly varying, the fading coeffi-

cients can be accurately predicted far ahead. We introduced a novel algorithm for

long range prediction of fading channels. This algorithm finds the linear Minimum

Mean Squared Error (MMSE) estimate of the future fading coefficients given a fixed

number of previous observations. We show that the superior performance of this

algorithm is due to its longer memory span achieved by using lower sampling rate

given fixed model order relative to the conventional (data rate) methods of fading

prediction. This long range prediction capability for fading channels would provide

enabling technology for accurate power control, reliable transmitter and/or receiver

diversity, more effective adaptive modulation and coding and improvements in many

other components of wireless systems. In this thesis, we demonstrate that large

improvements in the performance are possible for both flat and frequency-selective



rapidly varying fading channels when the proposed prediction method is used. We

illustrate the performance enhancements both at the transmitter and the receiver

with both theoretical and simulation results.
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Chapter 1

Introduction and Motivation

The first practical use of mobile radio communication was demonstrated in 1897

by Marchese Guglielmo Marconi, who is credited with first successfully establishing

radio transmission between a land-based station and a tugboat, over an 18 miles path.

Since then, the development of efficient wireless communication systems have been a

challenge for modern communication engineering toward the realization of universal

personal telecommunications which will offer access to all kinds of information services

at a reasonable cost at any place and time. Cellular and cordless telephony as well as

wireless data for wide or local area services can be considered as a first step in this

direction. Recent overviews of wireless personal communications are given in [1, 2].

Furthermore, an excellent in-depth treatment and overview of wireless communication

systems can be found in books such as [3, 4, 5, 6, 7, 8].

A deep knowledge of the radio propagation phenomena or the radio channel char-

acteristics is a prerequisite to achievement of the optimum system design. The per-

formance of wireless communication systems is limited by the intermittent power

losses, or ”deep fades”, associated with the fading channel [9, 10, 11, 12, 13]. The

transmission path between the transmitter and the receiver can include reflections

by terrain configuration and the man-made environment. Therefore, the fading sig-
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nal results from interference between several scattered signals and perhaps the direct

signal [3, 14, 15, 16]. Propagation studies in a variety of environments show that the

multipath signal consists primarily of a small number of discrete sinusoidal compo-

nents (often 10 or fewer). The superposition of these components changes rapidly

as the vehicle moves, producing the familiar fast-fading signal envelope observed in

practice. However, the amplitude, frequency and phase of each component change

on a much slower time scale, e.g. on the order of 100 times the coherence time of

the signal envelope. This variation is slow enough that the fading coefficient can be

predicted far beyond the coherence time. In particular, these estimates can be used

to forecast signal fades before they occur.

Consider a low-pass complex model of the received signal:

r(t) = c(t)s(t) + n(t), (1.1)

where c(t) is the flat fading coefficient (multiplicative), s(t) is the transmitted signal,

and n(t) is additive white Gaussian noise (AWGN).

Let the transmitted signal be s(t) =
∑

k bkg(t−kT ), where bk is the data sequence,

g(t) is the transmitter pulse shape, and T is the symbol delay. At the output of the

matched filter and sampler, the discrete-time system model is given by

yk = ckbk + zk, (1.2)

where ck is the fading signal c(t) sampled at the symbol rate, and zk is a complex

discrete AWGN process with variance N0/2. Usually, c(t) and ck are modeled as

correlated complex Gaussian random processes with Rayleigh distributed amplitudes

and uniform phases [5, 16]. The expressions for the autocorrelation function and

the power spectral density of the flat fading signal are also widely used in practice

[16, 17, 18].
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Several adaptive channel estimation methods have been developed by using this

statistical description to estimate rapidly varying fading coefficients (e.g. [19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]). For example, the minimum mean square

error (MMSE) estimate using the Kalman filter is usually found by constructing a

Gauss-Markov model of the fading [31]. In this model, the mean square error is

given by the variance of the excitation noise. This error grows as the Doppler shift

increases and limits the performance of the detector. Furthermore, the bit error rate

(BER) approaches the saturation level (error floor) as the signal-to-noise ratio (SNR)

increases. More recently, estimating the fading signal by decomposing it along a

deterministic basis was addressed in [32, 33, 34]. In addition, these algorithms do

not address the most serious limiting factor in communication over fading channels.

Although the estimation error causes performance degradation, it is not the most

serious limiting factor in communication over fading channels. The greatest BER

loss and the associated high power requirements result from ”deep fades” in the

fading signal. Therefore, it is desirable to predict deep fades, and, in general, fading

variations and compensate for the expected power loss at the transmitter. Therefore,

we address the long range prediction of the variations in ck [14, 15, 35, 36, 37, 38, 39].

By prediction we imply estimating an entire future block of coefficients ck based

on the observation of the received signal during an earlier time interval. This task

is not feasible with current Kalman filtering and other adaptive channel estimation

techniques, which can predict only one coefficient at a time, and require observation

of the received sample to produce this estimate. We describe the prediction algorithm

which characterizes the channel as an autoregressive model (AR) with low sampling

rate, and computes the MMSE estimate of the future fading coefficient sample based

on a number of past observations. This algorithm can reliably predict future fading
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coefficients far beyond the coherence time for a fading channel with an arbitrary

number of scatterers.

The other traditional approach to coping with fading is to use diversity (e.g., an-

tenna arrays, additional bandwidth, interleaving) to average signal power fluctuations

over space, time, or frequency [3, 4, 5, 7]. However, diversity gains come at the cost

of additional antenna elements, increased delay, or expanded bandwidth. Moreover,

because the channel changes rapidly, the transmitter and receiver are not generally

optimized for current channel conditions, and thus fail to exploit the full potential of

the wireless channel. The shorter wavelengths proposed for future mobile radio will

only serve to aggravate these problems. This research outlines a new approach to

communication over fast-fading channels. The unifying idea is to predict future fad-

ing conditions using the physics of mobile radio propagation prior to transmission and

to use these predictions as the basis for new communication techniques that adapt to

current conditions. In particular, the timing of future ”deep fades” would be revealed

and the variations in the received signal power could be compensated. This long

range prediction capability for fading channels would provide enabling technology for

accurate power control, reliable transmitter and/or receiver diversity, more effective

adaptive modulation and coding and improvements in many other components of

wireless systems. The ultimate goal of this work is to more fully exploit the potential

capacity of wireless communication channels, and in the process reduce the associ-

ated power and bandwidth requirements. Moreover, while this method is resulting

in accurate prediction of future channel coefficients, it does not introduce significant

complexity increase relative to present communication techniques for fading channels.

This thesis is organized as follows: The propagation models and fading in Wire-

less Communication Systems are explained in Chapter 2. The signaling effects on the

4



channel model is discussed with the emphasis on the both flat and frequency-selective

fading channels. The deterministic fading channel model used in this research is also

introduced in this Chapter. In Chapter 3, the techniques which are used to resolve

the interference pattern and to predict fading coefficients are developed for the flat

fading channels. The system model, both the analytical and the simulation results,

and the performance measures are discussed in this chapter. Then, in Chapter 4,

we extend our results for the frequency-selective case which introduces intersymbol

interference (ISI) to the system. The estimation of the channel impulse response is

investigated by using pilot signaling. Then, we demonstrated the feasibility of the

long range prediction of the channel impulse response of the frequency selective fading

channels by using these estimated channel impulse response coefficients. Two differ-

ent approaches used for the long range prediction are also discussed in this section.

Furthermore, in this Chapter, the theoretical matched filter bounds for the gener-

alized frequency selective fading channel with arbitrary path strengths and delays

are derived and used as a reference performance bound for the analysis. We also

demonstrated that how the novel long range prediction technique enables enhanced

adaptive equalization techniques to combat ISI both at the receiver and at the trans-

mitter. The antenna diversity systems are inseparable with the proposed research for

the optimum system performance. Therefore, we address antenna diversity both at

the transmitter and at the receiver in Chapter 5. Both theoretical and the practical

implementation issues are investigated. Application of the novel long range prediction

to the Selective Transmitter Diversity technique for future generation wireless system

is studied in this chapter. Finally, we complete the thesis by conclusions, impacts

and future direction of our research in Chapter 6.
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Chapter 2

Propagation Modeling and Fading

In this chapter, we will review characteristics of fading channel to understand the

terminology used in this thesis.

2.1 Long-term Fading vs Short-term Fading

It is common to observe significant variations in the amplitude and the phase of

the received signal, known as fading. Based on what we know about the cause of

signal fading, the Cellular Mobile Radio (CMR) channel is characterized either in

long-term or short-term statistics [3, 5, 6, 9, 11, 13].

Long-term propagation models focus on predicting the average received signal

strength at a given distance from the transmitter. Predicting the mean signal strength

for an arbitrary distance between the transmitter and the receiver is useful in esti-

mating the coverage area of a transmitter. (For example, long-term fading describes

signal strength variations which arise when the mobile is obscured by terrain config-

uration, such as hills and mountains.) This fading is rather slowly varying. Once

behind the mountain, the channel will not change much until the mobile leaves the

vicinity of the mountain. This typically takes several minutes.

On the other hand, short-term propagation models characterize the rapid fluctu-
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ations of the received signal strength over very short travel distances (a few wave-

lengths) or a short time durations (on the order of seconds). As a mobile moves over

very small distances, the instantaneous received signal strength fluctuates rapidly

causing short-term fading. The reason for this is that the received signal is a sum

of many contributions coming from different directions by local scatterers, such as

houses, buildings and cars surrounding a mobile unit.

The envelopes of the long-term and the short-term fading channels are usually

modeled by a log-normal distribution and a Rayleigh distribution (Rice distribution

if there exists a direct path between the base station and the mobile unit), respectively.

In this work, we only considered short-term fading. In the next section, we discuss

the parameter used to define the characteristics of short-term fading.

2.2 Fading Parameters

If a pulse is transmitted over a time-varying multipath channel, the received signal

might appear as a train of pulses. Hence, one characteristic of a multipath channel

is the time spread introduced in the received signal. A second characteristic is the

time variation of the multipath. Such time variations include changes in the values

of individual pulses, in the relative delays among the pulses, and in number of pulses

observed. Let’s consider the transmitted signal s(t) represented by

s(t) = Re[u(t)ej2πfct], (2.1)

where u(t) is the equivalent lowpass signal transmitted over the channel and fc is the

carrier frequency. Assuming N propagation paths with different propagation delays,

τn(t), and attenuation factors, αn(t), n = 1 · · ·N , the received bandpass signal is
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expressed in the form

x(t) =
N∑

n=1

αn(t)s(t− τn(t)) (2.2)

Substituting (2.1) into (2.2) yields the equivalent lowpass received signal [5]

r(t) =
N∑

n=1

αn(t)e
−j2πfcτn(t)u(t− τn(t)). (2.3)

Then the equivalent lowpass channel is described by the time-variant impulse response

c(τ ; t) =
N∑

n=1

αn(t)e
−j2πfcτn(t)δ(t− τn(t)) (2.4)

where c(τ ; t) represents the response of the channel at time t due to an impulse applied

at time t− τ .

When there are a large number of closely time-spaced propagation paths in the

medium, the time-variant impulse response c(τ ; t) can be modeled as a complex-

valued gaussian random process in the t variable. Then, by the central limit theorem,

the real and imaginary parts of c, cI and cQ, are independent, zero-mean Gaussian

random processes 1 [5, 7, 9, 16]

c = cI + jcQ = αejθ. (2.5)

The components cI and cQ are described by the bivariate Gaussian distribution with

probability density function (pdf) of

p(cI , cQ) =
1

2πσ2
e−

c2
I
+c2

Q

2σ2 (2.6)

1the time dependence of channel impulse response is implicit.
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where the mean power (or variance), σ2, of the channel impulse response is

σ2 =
1

2
E[|c|2] (2.7)

Moreover, it follows that the channel impulse response’s envelope, α, phase, θ, and

instantaneous power, |c|2 = α2, have Rayleigh, uniform and exponential distributions,

respectively

p(α) =
α

σ2
e−

α2

2σ2 , 0 ≤ α < ∞ (2.8)

p(θ) =
1

2π
, 0 ≤ θ ≤ 2π (2.9)

p(α2) = p(|c|2) = 1

2σ2
e−

|c|2
2σ2 , 0 ≤ |c|2 < ∞ (2.10)

In order to define the characteristics of fading multipath channels some special

correlation functions and power spectral density functions are used. The equivalent

lowpass impulse response c(τ ; t) is assumed to be complex-valued, zero mean, gaussian

random process in the t variable, and wide-sense-stationary. Letting t = 0, the

resulting autocorrelation function φc(τ ; 0) = φc(τ) is simply the average power output

of the channel as a function of time delay τ . For this reason, φc(τ) is called the

multipath intensity profile. The range of values of τ over which φc(τ) is essentially

nonzero is called the multipath spread, Tm, of the channel. The shape and duration of

the multipath intensity profile play an important role in determining the performance

of the signaling and detection schemes to be investigated.

Time-varying multipath channels are also characterized completely in the fre-

quency domain. By taking the Fourier Transform of c(τ) with respect to delay τ , we

obtain the time-variant transfer function C(f) = F [c(τ)]. Therefore, the correspond-
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ing autocorrelation function is defined as

φC(∆f) = F [φc(τ)]. (2.11)

Furthermore, the φC(∆f ; ∆t) is called spaced-frequency spaced-time correlation func-

tion of the channel [5]. Since φC(∆f) is an autocorrelation function in the frequency

variable, it provides us with a measure of the frequency coherence of the channel.

Hence, the reciprocal of the multipath spread, Tm, is a measure of the coherence

bandwidth of the channel:

(∆f)c ≈ 1

Tm

(2.12)

The time variations of the channel are also very important because they affect

the adaptive requirements and performance of any adaptive detection scheme. The

Doppler power spectrum is defined as [5]

SC(fd) = F [φC(∆t)]. (2.13)

The function SC(fd) gives the signal intensity as a function of Doppler frequency fd.

Note that, if the channel is time-invariant, i.e., φC(∆t) = 1 and SC(fd) = δ(fd), then

the signal will not experience any spectral broadening or Doppler shift.

The range of values of fd over which SC(fd) is essentially nonzero is called the

Doppler spread, Bd, of the channel. The reciprocal of Bd is a measure of the coherence

time of the channel. That is,

(∆t)c ≈ 1

Bd

(2.14)

where (∆t)c denotes the coherence time. A channel which changes slowly has a large

coherence time and, equivalently, a narrow Doppler spread. This situation is highly

desirable for adaptive receivers.
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2.2.1 Doppler Shift

For mobile communications case where the mobile receiver travels through the

standing wave propagation pattern of the channel, the fading nature of the received

signal at the mobile can be quantified by Doppler frequency [3, 6, 9, 16]

fd = fc(
v

c
) cosφ (2.15)

where fc is the carrier frequency, v is the speed of mobile, c is the speed of light, φ

is the incident angle of signal reception. Note that, Doppler frequency is maximum

when cosφ is +1 or −1. Signals arriving from the direction of motion will experience

a positive Doppler shift, while those arriving opposite from the direction of motion

will experience a negative Doppler shift. Consequently, multipath components which

arrive different directions contribute to Doppler spreading of the received signal, thus

increasing the signal bandwidth.

2.2.2 Flat vs Frequency Selective Fading

Let u(t) be the equivalent lowpass signal transmitted over the channel and let

U(f) denote its frequency content. The equivalent lowpass received signal, without

noise is given by [5]

r(t) =

∞∫
−∞

c(τ ; t)u(t− τ)dτ

= F−1[C(f ; t)U(f)] (2.16)

Suppose we are transmitting digital information at rate 1/T , where T is the sig-

naling interval. Clearly U(f) is distorted by C(f ; t). When the coherence bandwidth,

(∆f)c is small relative to the bandwidth of the transmitted signal, W, U(f) suffers
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Figure 2.1: Typical multipath environment

frequency selective distortion and the channel is said to be frequency selective. When

(∆f)c is large relative to the signal bandwidth, the channel is said to be flat fading

or frequency nonselective.

In other words, the multipath spread, Tm, is relatively small compared to the

signaling interval, T , the channel is considered flat fading. For example, in North

American Cellular System standards the signaling interval, T is 40 µsec. Assuming

the local scatterers around the mobile is in 1 mi radius, the corresponding multipath

Spread is around 4 µsec which is one tenth of the signaling interval. Therefore,

actual systems are mostly considered flat. However, there are sometimes very distance

scatterers, such as a mountain or a hill. These act as another transmitter and the

signal comes to the receiver with a delay, τ , comparable to symbol interval, T , as seen

in Figure 2.1. Therefore, the delayed received signal causes intersymbol interference

(ISI) and channel is considered frequency selective. On the other hand, we can use

the frequency selectivity of the channel into our advantage by using a matched filter
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(MF) utilizing the channel as a diversity channel as explained in Chapter 4. The MF

should be followed by an equalizer to combat ISI.

2.2.3 Fast vs Slow Fading

U(f) also suffers fading distortion because of the time variations in C(f ; t). De-

pending on how rapidly the transmitted signal as compared to the rate of change

of the channel, a channel may be classified either as a fast fading or slowly fad-

ing channel. If the signaling interval, T , is greater than the coherence time, (∆t)c,

the channel is said to be fast fading channel. That is the channel impulse response

changes rapidly within the symbol duration. This causes frequency dispersion (also

called time-selective fading) due to Doppler spreading, which leads to a signal distor-

tion. It should be noted when a channel is specified as a fast or slowly fading channel,

it does not specify whether the channel is fat fading or frequency selective in nature.

Fast fading only deals with the rate of change of the channel due to motion of the

mobile unit.

Otherwise, when (∆t)c is large relative to the signaling interval, the channel is

said to be a slowly fading channel. In this case the channel impulse response changes

at a rate much slower rate than the transmitted signal. Therefore, the channel may

be assumed to be static over one or several reciprocal bandwidth intervals. In the

frequency domain this implies that the Doppler spread of the channel is much less

than the bandwidth of the signal, W.

2.3 The Jakes Fading Channel Model

The Jakes fading model is a deterministic method for simulating time-correlated

Rayleigh fading wireless communication channels. The model was originally formu-
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lated by Jakes in 1974 [16] and is widely used today. The model has been slightly

reformulated in order to ensure multiple uncorrelated waveforms [17]. One of the

advantages of using Jake’s method is that the autocorrelation and, hence, the power

spectral density (psd) of the inphase and quadrature components of the received sig-

nal can be generated to reflect an isotropic scattering environment, with a simulator

of reasonable complexity [4].

The Original Jakes Model

Doppler fading occurs in Cellular Mobile Radio (CMR) communications due to

vehicular motion. Real and imaginary components of the channel impulse response

(CIR) are independent, zero-mean, Gaussian random processes. This corresponds

to a CIR whose envelope, phase, and instantaneous power have Rayleigh, uniform

and exponential distributions, respectively [7, 9, 16]. Moreover the CMR channel is

characterized at baseband by the autocorrelation function, r(∆t), and the baseband

power spectrum , S(fd), [16, 18]

r(∆t) ∝ J0(2πfdm∆t) (2.17)

S(fd) ∝
{

[1− ( fd

fdm
)2]−

1
2 |fd| ≤ fdm

0 |fd| > fdm
(2.18)

where J0() is the zeroth-order Bessel function of first kind, fd is the Doppler frequency,

fdm is the maximum Doppler frequency, and ∆t is the time difference.

The Jakes fading model uses a sum of weighted oscillators with discrete frequencies

spanning the Doppler spectrum. First, the model assumes there are N equal strength

rays arriving at a moving receiver with uniformly distributed arrival angles, αn. This

assumption places the arrival angles at
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αn =
2πn

N
, 1 ≤ n ≤ N (2.19)

The ray n would then experience a Doppler shift of

ωn = 2πfdm cos(αn) = ωdm cos(αn) (2.20)

where the maximum Doppler shift ωdm is given by

ωdm =
2πfcv

c
(2.21)

where fc is the carrier frequency, v is the vehicle speed, and c is the speed of light.

Note that using the definition for αn given above, the magnitudes of the Doppler

shifts possess quadrantal symmetry except at the angles 0 and π. Due to this quad-

rantal symmetry we see that we can model the fading waveform with N0 +1 complex

oscillators where

N0 =
N
2
− 1

2
(2.22)

The (N0 + 1)st complex oscillator has the frequency ωdm and is used for the purpose

of frequency shifting from the carrier.

The in-phase and quadrature components are derived from the oscillators by sum-

ming the outputs of the available individual oscillators multiplied by proper gain

factors. The in-phase and quadrature components appear as

Xi(t) = 2
N0∑
n=1

cos βn cosωnt+
√
2 cosα cosωdmt (2.23)

Xq(t) = 2
N0∑
n=1

sin βn cosωnt+
√
2 sinα cosωdmt (2.24)
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Consequently, we get the final output waveform to be of the form

C(t) = K


 1√

2
[cosα+ j sinα] cos(ωdmt+ θ0) +

N0∑
n=1

[cos βn + j sin βn] cos(ωnt+ θn)




(2.25)

Jakes selects α = 0 and chooses simple selections for βn and θn,j:

βn =
πn

N0 + 1
(2.26)

θn,j = βn +
2π(j − 1)

N0 + 1
, (2.27)

where j = 1 to N0 is the waveform number index.

With this model, the use of large number of weighted oscillators leads to a more

accurate Rayleigh fading model. It has been shown that Rayleigh fading can be

accurately simulated with this method using just nine (N0 = 8) discrete oscillators

[16, 18]. However, the autocorrelation tends to deviate from the desired values at

large lags. This can be improved upon by increasing the number of oscillators that

are used in the simulator [4].

The Modified Jakes Model

The original Jakes channel model is a good approximation of the nature of Rayleigh

fading channels. However, when the user attempts to generate multiple uncorrelated

waveforms, correlations between some of the generated waves can be significant. Dent,

Bottomley, and Croft proposed a remedy for this problem by a slight reformulation

of the original model [17].
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Figure 2.2: Arrival Angles at the Mobile Receiver

The modification of the model involves revisiting the original definition of the

uniformly distributed arrival angles, αn. Figure 2.2 shows the differences in the

arrival angles between the original model and the reformulation. The original Jakes

definition of αn was given by equation (2.19). The Jakes αn’s possessed quadrantal

symmetry except at the angles 0 and π. Dent, Bottomley, and Croft redefined αn

such that

αn =
2π(n− 0.5)

N
1 ≤ n ≤ N, (2.28)

thus providing quadrantal symmetry for all of the Doppler shifts. Following a deriva-

tion similar to Jakes, they arrived at a model of the form

C(t) =

√
2

N0

N0∑
n=1

[cos βn + j sin βn] cos(ωnt+ θn)] (2.29)
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This formulation of the model simplifies βn further to

βn =
πn

N0

(2.30)

These values for βn cause the real and imaginary parts of C(t) to be uncorrelated and

of equal power. The definition of θn has also been changed. Previously, it was given

by (2.27). In the reformulation θn is randomized in order to provide the different

waveform realizations. Note that the normalization factor has been selected to be√
2
N0

in order to obtain E[C(t)C∗(t)] = 1.

The next problem of interest was to provide the capability of simulating multiple

uncorrelated waveforms. This objective was achieved by multiplying the oscillator

coefficients by an orthogonal vector set such that the inner product terms became

zero. We now have a model that produces multiple uncorrelated waveforms with the

jth waveform given by

T (t) =

√
2

N0

N0∑
n=1

Aj(n)[cos βn + j sin βn] cos(ωnt+ θn)] (2.31)

Aj(n) represent the Walsh-Hadamard codewords that have ±1 values. The Walsh-

Hadamard transform was selected for this reformulation due to the relative ease of

generating these codewords through a Fast Walsh Transform [40].

2.4 The Deterministic Fading Channel Model

The fading signal results from interference between several scattered signals. Our

approach to prediction of future fading is based upon estimates of the important scat-

terers – their relative phases, direction and amplitudes. To understand the physical

origin of how one can predict the fading signal, we must look at the process from two
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different frames of reference [14, 15]. The first picture is from the point of view of the

ground. We will assume all scatterers are stationary and the receiver moves. Then,

all frequencies are the same (no Doppler shifts in this frame) and an interference

pattern results. The receiver passes through this interference pattern. The positions

of destructive interference are the deep fades. What we learn from this picture is the

expected length scale between the deep fades – on the order of the wavelength, and

therefore from the speed of the receiver the time between deep fades. We also can use

this picture to estimate the types of scatterers which will produce sufficient intensity

to create significant interference, and the spatial distribution of such interference. A

different physical picture of the interference pattern derives from the frame of refer-

ence of the mobile rather than the ground. From the point of view of the mobile, the

fading coefficient at the receiver is given by a sum of N Doppler shifted signals [16]

c(t) =
N∑

n=1

Ane
j(2πfnt+φn) (2.32)

where (for the nth scatterer) An is the amplitude, fn is the Doppler frequency, and

φn is the phase. As described earlier, the Doppler frequency is given by

fn = fc

(
v

c

)
cosαn (2.33)

where fc is the carrier frequency, v is the speed of mobile, c is the speed of light, and

αn is the incident angle relative to the mobile’s direction. Due to multiple scatterers,

the fading signal varies rapidly for large vehicle speeds and undergoes ”deep fades”

[3, 5]. In Figure 2.3, we can observe the time variations of the power of Rayleigh fad-

ing channel and the ”deep fades” for max Doppler frequency of 100 Hz. The complex

Gaussian distribution of the fading signal (the Rayleigh fading) is derived based on
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the assumption that the scattered signals are distributed uniformly around the mo-

bile, and that there is a continuum of scatterers [16]. Although the exact derivation of

the Rayleigh fading distribution requires this assumption, it has been demonstrated

that the Rayleigh fading signal can be closely approximated by a relatively small

number number of scatterers. For example, as explained earlier in the popular deter-

ministic Jakes model, as few as nine scatterers can be used to model Rayleigh fading

characteristics [16]. Physical evidence suggest that the actual number of significant

scattered signals is modest [15]. All significant scatterers must have an amplitude

similar to that of the most powerful signal, otherwise their interference effects will
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be negligible. Such signals will result from specular (mirror-like) scattering from the

ground, water, buildings or perhaps vehicles [3, 41, 42]. Trees and vegetation tends

to absorb the signal so they will not be important in this analysis [41, 42, 43]. Since

the specular reflection occurs close to a specific geometry and scattering efficiencies

are small enough [41, 44] that multiple scattering effects are greatly reduced, only

a few scatterers are expected, as confirmed by observations [45]. Propagation stud-

ies also show that the number of significant scatterers is modest, usually not more

than twenty [46, 47]. The use of model scatterers is justified by the application of

superposition. If we have a complicated scatterer, we can represent it as the sum

of simple ones. Therefore, we consider only simple scatterers in our examples. The

assumption of small number of scatterers was also made in promising work on fading

channel estimation presented in [27, 32, 33]. However, our prediction method is not

limited by the number of scatterers and it can handle up to thousands of significant

scatterers as explained in the next chapter. More on the physical modeling can be

found in [48, 49, 50, 51, 52]

In this research, we demonstrate the feasibility of long range prediction of the

rapidly varying fading signal, ck (1.2). If the parameters such as amplitude, An,

frequency, fn, and phase, φn, in (2.32) for each of the scatterers were known and re-

mained constant, the fading channel could be predicted indefinitely. In practice, they

vary much slower than the actual rapidly varying fading coefficient c(t) and are not

known a priori. Since we consider short term fading, the propagation characteristics

will not change significantly during any given block, and we can safely assume these

parameters are approximately constant or change very slowly for the duration of the

data block. These slow changes can easily be tracked adaptively both at the receiver

and the transmitter [36]. In the next chapter, the novel long range prediction tech-
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nique and its implementation enabled by lower sampling rate will be explained and

the performance results will be discussed for both the transmitter and the receiver.
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Chapter 3

Performance Results for Flat Fading

Channel

3.1 Prediction of the Flat Fading Channel

Consider a low-pass complex model of the received signal:

y(t) = c(t)s(t) + n(t), (3.1)

where c(t) is the flat fading coefficient (multiplicative), s(t) is the transmitted signal,

and n(t) is additive white Gaussian noise (AWGN).

Let the transmitted signal be s(t) =
∑

k bkg(t−kT ), where bk is the data sequence

(bk ∈ {+1,−1}), g(t) is the transmitter pulse shape, and T is the symbol delay. At

the output of the matched filter and sampler, the discrete-time system model is given

by

yk = ckbk + zk, (3.2)

where ck is the fading signal c(t) sampled at the symbol rate, E|ck|2 = 1, and zk

is a complex discrete AWGN process with variance N0/2. Usually, c(t) and ck are

modeled as correlated complex Gaussian random processes with Rayleigh distributed

amplitudes and uniform phases [5, 16]. Several adaptive channel estimation methods

have been developed by using this statistical description to estimate rapidly varying
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fading coefficients (e.g. [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]). However,

the performance of these methods degrades when the fading rate increases due to

large estimation error. More recently, estimating the fading signal by decomposing

it along a deterministic basis was addressed in [32, 33, 34]. In contrast, our work

focuses on predicting the future behavior of the fading coefficient, rather than esti-

mating its current value. Of course a current estimate of c(t) can serve to predict

its behavior over a time period sufficiently small such that c(t) is not expected to

change significantly. A common measure of this time period is the coherence time as

defined in Chapter 2. However, even prediction for this time interval is challenging

when previously proposed methods are used. The key novelty of our approach is to

accurately predict c(t) over a much longer time scale, by exploiting the fact that c(t)

consists of a small collection of sinusoidal components as explained in Section 2.4.

Recalling from that section, the fading coefficient at the receiver is given by a sum of

N Doppler shifted signals [16]

c(t) =
N∑

n=1

Ane
j(2πfnt+φn) (3.3)

where (for the nth scatterer) An is the amplitude, fn is the Doppler frequency, and

φn is the phase. Also, as described earlier, the Doppler frequency is given by

fn = fc

(
v

c

)
cosαn (3.4)

where fc is the carrier frequency, v is the speed of mobile, c is the speed of light, and

αn is the incident angle relative to the mobile’s direction. Note that, the Doppler fre-

quency is maximum when cos(αn) = 1 or −1, i.e., αn = 0 or π. For example, in North

American cellular system standards, the carrier frequency, fc = 900 MHz. Therefore,
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in this environment, a car traveling 80 mph experiences a maximum Doppler fre-

quency, fdm around 100 Hz.

In practice, the Doppler shifts are not known. Therefore, we address the determin-

istic prediction of the variations in ck. By prediction we imply estimating an entire

future block of coefficients ck based on the observation of the received signal during an

earlier time interval. To predict the fading signals (3.2) and (3.3), we employ linear

prediction followed by interpolation as explained below.

3.1.1 Linear Prediction and Performance Analysis

Estimation of the power spectral density of discretely sampled deterministic and

stochastic processes is usually based on procedures employing the Discrete Fourier

Transform (DFT) [53]. Although this technique for spectral estimation is compu-

tationally efficient, there are some performance limitations of this approach. The

most important limitation is that of frequency resolution. The frequency resolution

( ∆f = fs/K ) of the K-point DFT algorithm, where fs is the sampling frequency,

limits the accuracy of estimated parameters. These performance limitations cause

problems especially when analyzing short data records. Therefore, many alternative

Spectral Estimation Techniques have been proposed within the last three decades in

an attempt to alleviate the inherent limitations of the DFT technique [53, 54, 55].

Our linear prediction (LP) method is based on the Autoregressive (AR) channel

modeling. This method is also known as the All-poles Model and is widely used for

spectral estimation. The reason why we chose this technique is that the it has very

nice advantage of fitting sharp spectral features as we have in our fading channel due

to scatterers (3.3). Furthermore, it is closely tied to Linear Prediction (LP) which we

use to predict future channel coefficients. The frequency response of the AR channel
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modeled is given as:

H(z) =
1

1− ∑p
j=1 djz

−j
. (3.5)

where dj coefficients are obtained by minimizing mean squared error (MSE), min

E|ĉn−cn|2, and are provided by well-known Yule-Walker equations in the vector form

d = R−1r (3.6)

where R is the autocorrelation matrix of size p× p and with the elements defined as

Rij = E[cn−ic
∗
n−j]. Similarly, r is the autocorrelation vector of size p × 1 and with

the elements defined as rj = E[cnc
∗
n−j]. This model is obtained based on a block of

samples of the fading process. Note that the samples have to be taken at least at

the Nyquist rate which is twice the maximum Doppler frequency, fdm. Moreover, the

accuracy of the model depends on the number of samples in the given block which

limits the model order, p.

The dj coefficients in (3.5) are also the linear prediction coefficients. The estimates

of the future samples of the fading channel can be determined as:

ĉn =
p∑

j=1

djcn−j, (3.7)

Note that ĉn is a linear combination of the values of cn over the interval [n−p, n−1].

By Central Limit Theorem (CLT), since cn has complex Gaussian distribution, ĉn

has also complex Gaussian distribution. Furthermore, if ĉn is a unbiased estimate of

cn, i.e.,
∑p

j=1 dj = 1, then E(ĉn) = E(cn). Also note that the channel sampling rate

utilized for LP is much lower than the symbol rate, 1/T . Therefore, to predict the

fading coefficients, ck, from (3.2), associated with transmitted symbols, interpolation

is employed. Interpolation will be discussed later in this chapter. To date, most
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Figure 3.1: The theoretical autocorrelation function for the Rayleigh fading channel

investigations of fading channel modeling and estimation assume sampling at the

data rate (e.g., [20]). As a result, even with very accurate coefficient adjustment, it

is impossible to specify future channel coefficients from past observations - the filter

length is not long enough. This can be illustrated by considering the parameters

involved in the MMSE prediction.

We start with the case when N in (3.3) is infinite (Rayleigh fading), although

the discussion below also applies to the more practical case of a modest number of
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scatterers with the underlying channel parameters varying slowly. The channel is

modeled as the complex stationary Gaussian process with the normalized autocorre-

lation function

r(τ) = J0(2πfdmτ) (3.8)

where J0(.) is the zero-order Bessel function of the first kind [16]. The plot of this

function is shown in Figure 3.1. For illustration, let us fix the maximum Doppler

frequency at 100 Hz. Then the low sampling rate of 500 Hz would correspond to 5

samples/unit of the x−axis of Figure 3.1, whereas the data rate of 25 KHz results

in 250 samples/unit. When the model order p in (3.7) is fixed, the observation

samples taken at the low sampling rate span much larger time interval than the

samples at the data rate. This translates into exploitation of the sidelobes of the

autocorrelation function in the prediction [36, 37] and lower MMSE when low rate

sampling is employed.

This observation can be quantified by considering a general channel prediction

problem. For a given sampling rate 1/Ts, the objective is to find the LP filter co-

efficients dj which minimize the MSE, E[|e(τ)|2] =E[|c(τ) − ĉ(τ)|2], where τ is a

prediction range, and ĉ(τ) is an estimate of the future channel coefficient, c(τ), given

by the linear combination of p past samples c−j = c(−jTs) (0 is the reference time,

so the observations are taken for t ≤ 0):

ĉ(τ) =
p−1∑
j=0

djc−j (3.9)

Note that equation (3.7) applies prediction one sample ahead, whereas in (3.9) we

compute the predicted value of the future sample separated from the observations by

τ seconds. Thus, the coefficients dj are not the same in (3.7) and (3.9) unless τ is the
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sampling interval. The optimal coefficients dj are computed as

d = R−1r (3.10)

where d= (d0 . . . dp−1). R is the autocorrelation matrix (p×p) with coefficients Rij =

E[c−ic
∗
−j] and r is the autocorrelation vector (p× 1) with coefficients rj = E[c(τ)c∗−j].

Note that when noisy observation are used in (3.9) (e.g., as in (3.2 with bk = 1), the

effect of the noise is incorporated into R by adding (N0/2)I where I is the p × p

identity matrix. The resulting minimum MSE is given by

E[|e(τ)|2] = r(0)−
p−1∑
j=0

djr(τ + jTs), (3.11)

where r(τ) = E[c(t)c∗(t+ τ)] (see Figure 3.1).

The MMSE performance of the long range prediction with various sampling rates

is compared in Figure 3.2. A moderate model order, p = 20, and a very high SNR

= 140 dB are chosen to illustrate the performance comparison, although, later, the

results will be generalized for any p and SNR values. In this figure, the theoretical

MMSE curves (3.11) for a given prediction range are plotted. For example, assuming

fdm = 100 Hz, the range of 0.2 on the x−axis corresponds to 50 data points ahead

with the data rate of 25 kHz and 1 sampling point ahead with a lower sampling rate

of 500 Hz. As seen from the figure, the same future value can be predicted with much

greater accuracy by using the low sampling rates. Thus, when the sampling rate is

reduced greatly relative to the data rate, but the filter length p remains the same,

prediction much further ahead becomes feasible.

The effect of the sampling rate is explored further in Figure 3.3. In this figure, the

MMSE vs sampling rate, fs, is plotted for various model orders, p, at the prediction

range, fdmτ = 0.4. As seen from the figure, for each model order there is an optimal
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Figure 3.2: MMSE for long term prediction for different values of sampling rate, fs,
with the model order, p = 20, and SNR = 140 dB.

low sampling rate that minimizes the MMSE. This optimal rate is close to 1 KHz for

moderate to high p. These results are obtained for an infinite number of scatterers,

N . In this case, the lower sampling rate of 500 Hz is not the optimum rate. However,

as we will see later in this chapter, in the important practical case when the number

of effective scatterers is modest, the MMSE decreases with the sampling rate for a

fixed p, and the sampling rate of 500 Hz gives the best performance among the rates
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Figure 3.3: MMSE vs sampling rate, fs, for various model orders p; prediction range
τ = 4 ms, SNR = 140 dB and fdm = 100 Hz.

examined in Figure 3.3. Hence, we use fs = 500 Hz as a low sampling rate below to

illustrate the performance of the MMSE with respect to SNR and p. In Figure 3.4,

we demonstrate our MMSE results for different SNR values at the data rate of 25

KHz and at the low sampling rate of 500 Hz. Since the prediction range, fdmτ = 0.4

is chosen for these curves, for the data rate of 25 KHz, 100 bits ahead are predicted.

This range also corresponds to 2 low rate samples ahead. Since the sampling rate of
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KHz (dashed lines) and fs = 500 Hz (solid lines) for prediction range τ = 4 ms, fdm
= 100 Hz

500 Hz is not the optimal rate for Rayleigh fading, for some values of SNR and p,

high data rate might perform better. However, most of the time, the performance

of the lower sampling rate is better than that of the high sampling rate. For lower

sampling rates, we observe the saturation of the MMSE as the SNR increases. This

MMSE floor can be found from (3.11) for a given value of p by setting N0 = 0.

In Figure 3.5, the MMSE vs p is plotted in solid lines for fdmτ = 0.2 and the

sampling rate of 5fdm, for different values of SNR. As p increases the MMSE saturation
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level is approached. This MMSE floor corresponds to the prediction error given an

infinite number of past observations for the fading process sampled at 5fdm in the

presence of noise.

Given desired prediction range fdmτ , the MMSE solution is found by solving for

the filter taps in (3.32). However, in practice, this approach might be computationally

expensive if several future samples have to be predicted at once. Instead, we use the

one-step prediction at a given sampling rate (as in (3.7)) and then iterate equation
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(3.7) to predict more then one sample ahead by using previously predicted samples

or their estimates when the observations are not available. Obviously, the MSE of

this iterative prediction technique is lower bounded by (3.11).

So far, we investigated the case of the infinite number of scatterers in creating the

Rayleigh fading environment. In Figure 3.6, the theoretical autocorrelation functions

are plotted for the infinite number of oscillators, as well as for N = 3 and 9. For the

infinite number of oscillators, the autocorrelation function is given by (3.8), whereas

for finite N , the autocorrelation function is found as [16]:

r(τ) =
4

Na

N−1∑
n=1

cos
(
2πfdmτ cos

2πn

Na

)
+

2

Na

cos(2πfdmτ) (3.12)

where Na = 4N − 2. Note that the autocorrelation values for the finite values of

N initially approximate the autocorrelation values of the Rayleigh fading. For large

fdmτ , the autocorrelation functions diverge, and for finite N much larger sidelobes

are present. These larger sidelobes help to reduce the MMSE as illustrated in Figure

3.7. In this figure, the solid lines represent the MMSE curves using the theoretical

autocorrelation functions for different N values. These theoretical MMSE values are

closely approximated as the observation interval used to calculate the empirical au-

tocorrelation values (and the resulting linear predictor coefficients) increases. Figure

3.7 depicts these simulation results for different number of oscillators and observation

intervals. We have found that adaptive techniques can significantly improve predic-

tion accuracy shown in Figure 3.7 for short observation intervals. The MMSE values

in Figure 3.7 are high due to large additive noise in the observation. The effect of the

noise can be greatly reduced by using adaptive processing. The adaptive processing

and tracking issues will be addressed later in this chapter.

We mentioned earlier that the low sampling rate of 500 Hz (assuming fdm = 100
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Figure 3.6: Theoretical autocorrelation functions for the infinite number of oscillators
(Rayleigh fading) (solid line) and for a finite number of oscillators, N = 3 (+−−−+)
and N = 9 (o−−− o).

Hz) does not result in the best performance for the infinite number of oscillators.

However, when the number of oscillators is modest, the sampling rate of 500 Hz

results in the smallest MMSE among the rates considered in Figure 3.8. We limit

ourselves to lowest sampling rate of 500 Hz although we could decrease the sampling

rate to the Nyquist rate of 200 Hz that is twice the maximum Doppler frequency. In

practice, interpolation and adaptive tracking accuracy benefit from a higher sampling
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rate. These considerations need to be taken into account in selecting the optimal

sampling rate.

Both Figures 3.7 and 3.8 illustrate the fact that the advantages of using longer

memory in the prediction are more pronounced for smaller values of N . For a given

model order p and sampling rate, the total memory span is given by p/fs. For a
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fixed p, lower fs implies longer memory. Thus, as fs decreases, greater utilization of

the sidelobes of the autocorrelation function becomes possible. Since the sidelobes

are larger for smaller values of N , lower MMSE results when fs is low and p is

sufficiently large as N decreases. On the other hand, as fs increases for fixed p, the

prediction MMSE for any N converges to the MMSE of the Rayleigh fading. This

is due to the reduction of the memory span of the prediction to the region where

the autocorrelation functions are similar for all N (Figure 3.6). Similarly, for low
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model order p, the advantage in the MMSE due to the lower number of oscillators

diminishes. When short range prediction or channel estimation is the objective, short

memory span is sufficient to generate reliable estimates. Thus, the MMSE in this

case is not sensitive to the number of oscillators.

3.1.2 Experimental Results

Several numerical results presented below illustrate performance characteristics

of early development of our long range prediction technique. In the examples, we

assume that the maximum Doppler frequency is 100 Hz, and the data rate is 25

Kbps. Initially, we sample the channel at the rate of 250 Hz. Thus, there are 100

data points between adjacent sampling points. To determine the observations of the

fading coefficients, cn, at the sampling points, one can send training symbols bn at

the channel sampling rate of 250 Hz (see (3.2)). This overhead affects the throughput

only by 1%.

In order to give a better insight into the performance of this technique, we will

first demonstrate the case of three scatterers (N = 3 in (3.3)). In Figure 3.9, the pole-

zero plot of the frequency response of the channel is illustrated. Note that the three

poles corresponding to the three oscillators are placed very close to the unit circle.

The angles of these poles correspond to the oscillator frequencies. With the sampling

frequency, fs = 250 Hz, these three Doppler frequencies correspond to 100, 50, and

30 Hz. The plot of the envelope due to these scatterers is drawn in Figure 3.10. The

channel is observed for the first 25 samples. Then, by employing Linear Prediction,

the future values of the channel envelope are estimated and plotted using dotted lines

for the next 25 samples (roughly ten times the coherence time) in the figure. The

estimates agree with actual values and we can detect when the channel will enter
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Figure 3.9: Pole-zero locations of the frequency response of the channel for three
scatterers, fdm = 100 Hz

deep fades in the future. The same experiment is repeated in the presence of additive

white Gaussian noise and the result is plotted in Figure 3.11. Note that the predicted

values still follow very closely the actual channel envelope which is plotted in solid

lines.

We also performed simulations for a greater number of scatterers. In Figures 3.12

and 3.13, the original Jakes channel model with nine oscillators (scatterers) is exam-

ined [16]. In Figure 3.12, the pole-zero plot of the frequency response of the Jakes

channel model with a maximum Doppler frequency, fdm = 100 Hz, is illustrated. As

the number of oscillators increases, we need a greater number of poles. Note that the

poles corresponding to the oscillators are still very close to the unit circle. The chan-

nel is observed for the first 150 samples. We plotted the predicted channel envelope in
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Figure 3.10: Actual ( — ) and estimated ( ... ) fading channel envelopes for 3
scatterers, fdm = 100 Hz

dotted lines and the actual channel envelope in solid lines after the observation inter-

val in Figure 3.13. It can be seen that the predicted values still follow very closely the

actual channel envelope. However, since actual channel coefficients are not available

beyond the observation interval, the estimates (previously predicted values) ĉn−j were

used to form future predicted values ĉn in (3.7). Therefore, later in the prediction,

the accuracy decreases because of the cumulative effect of the LP error. This error

propagation problem can be solved by combining adaptive tracking at the receiver

with prediction as described later in Section 3.3. Using adaptive channel estimation

combined with transmitter pre-compensation (see Section 3.2) more reliable data-

aided estimates of fading coefficients can be obtained at the receiver, and fed back to

the transmitter at the channel sampling rate. Our results (section 3.3 and [36]) indi-
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Figure 3.11: Actual ( — ) and estimated ( ... ) fading channel envelopes for 3
scatterers in the presence of AWGN, SNR = 20 dB

cate that this technique significantly reduces error propagation, and that the channel

can be accurately forecasted for several hundred of future data symbols. Therefore,

for the rest of our performance analysis in this report we are assuming that perfect

estimates of fading coefficients cn−j are available in (3.7).

3.1.3 Interpolation

Since the sampling rate for the fading channel is much lower than the data rate,

we perform interpolation between predicted channel coefficients to forecast fading

coefficients for all data points [56, 57]. In this interpolation process, four consecu-

tively predicted channel coefficients are interpolated by a Raised Cosine (RC) filter

to generate estimates of the fading coefficients, ĉk, between two adjacent predicted

41



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y 
pa

rt
Poles of Jakes Model

Figure 3.12: Pole-zero locations of the frequency response of the Jakes channel model,
fdm = 100 Hz

samples at the data rate [58, 59]. We searched for the suitable channel sampling rate

for our system. Note that, initially, we used channel sampling rate, fs = 250 Hz.

Lets define normalized channel sampling rate as f ′
s = fs/(2fdm), where fdm is the

maximum Doppler frequency. In order to satisfy the Nyquist’s criteria fs’ should be

at least 1. However, it does not give the best performance for interpolation purposes

where we use only four fading coefficients at the low sampling rate. Figure 3.14 shows

interpolation MSE vs rolloff factor of the RC interpolator for f ′
s=1.25 (dashed line)

and for f ′
s=2.5 (solid line). MSE is defined by E|ĉn − cn|2 at data rate. Obviously

interpolator with rolloff factor of 0.64 at f ′
s=2.5 has the best performance and we

used these values for the rest of our analysis. In theory, optimum rolloff factor could

be found for a given fs as (1−1/f ′
s). The optimum rolloff value is 0.6 for f ′

s=2.5. The
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Figure 3.13: Actual ( — ) and estimated ( ... ) fading channel envelopes for the Jakes
channel model, fdm = 100 Hz

result we get by simulations, 0.64, is reasonable because ripple distortion at the edge

of passband requires more rolloff to smooth out. Although f ′
s=2.5 results in oversam-

pling, it produces much more accurate interpolated values than lower values of f ′
s.

Therefore, for the rest of our simulations we fixed the normalized channel sampling

rate, f ′
s, to 2.5 and used RC interpolator filter with rolloff factor of 0.64.

3.1.4 Dependency on the Observation Interval

In this section, we explore the sensitivity of our prediction method to the obser-

vation interval. We used channel sampling rate, fs = 500 Hz, and the number of

oscillators (scatterers), N = 9. When the observation interval is long enough, e.g.,

200 channel sampling points (0.4 sec), the predicted values are very close to the actual
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Figure 3.14: Interpolation MSE vs rolloff factor of the Raised Cosine interpolator for
normalized channel sampling rate, f ′

s, 1.25 (dashed line) and 2.5 (solid line)

values as seen in Figure 3.15. As we reduce the observation interval, the prediction

accuracy reduces gradually as illustrated in Figures 3.16, 3.17, 3.18 for the observation

intervals of 100 (0.2 sec), 50 (0.1 sec), 10 (0.02 sec) respectively. The model order,

p, is chosen 60 for the observation interval of 100 and 200 because of the complexity

constraints. But, there is not much improvement by choosing higher order, p. On

the other hand, the observation interval is the upper limit in determining the value

of p. Therefore, we chose the maximum values for the observation intervals of 50 and

10 as of 49 and 9 respectively. Moreover, the dependency on the observation interval

can be observed numerically in Figure 3.19 where the average MSE, E(|ĉn − cn|2),
between the predicted values and the actual values are illustrated for different ob-

servation intervals and number of oscillators (scatterers). For all the oscillators, the
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prediction accuracy reduces as the observation interval gets shorter. The dependency

of the number of oscillators will be explained in the next section. Furthermore, the

effect of the observation interval on the BER is discussed later in Section 3.2.1.
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Figure 3.15: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for observation interval of 200 channel sampling points (0.4 sec) with N= 9,
fdm = 100 Hz
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Figure 3.16: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for observation interval of 100 channel sampling points (0.2 sec) with N= 9,
fdm = 100 Hz
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Figure 3.17: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for observation interval of 50 channel sampling points (0.1 sec) with N= 9,
fdm = 100 Hz
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Figure 3.18: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for observation interval of 10 channel sampling points (0.02 sec) with N= 9,
fdm = 100 Hz
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3.1.5 Dependency on the Number of Oscillators (Scatterers)

In this section, we show the change in the prediction accuracy with increasing the

number of oscillators (scatterers). We fixed our observation interval to 100 channel

sampling point and the model order, p = 60, for the plots in this section. The actual

and the predicted values can be seen in Figures 3.20, 3.21, 3.22, 3.23 for the number

of oscillators, N = 3, 20, 100, 1000 respectively. As seen from the these figures, the

prediction accuracy decreases very little as N gets larger. However, note that our pre-

diction method can handle up to 1000 (or more) scatters with a reasonable accuracy.

This number of scatterers dependency can also be observed from the Figure 3.19 for

different observation interval by reaching the same conclusion explained above.
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Figure 3.20: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for N= 3 oscillators (scatterers), and the observation interval of 100 channel
sampling points (0.2 sec) with fdm = 100 Hz
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Figure 3.21: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for N= 20 oscillators (scatterers), and the observation interval of 100 channel
sampling points (0.2 sec) with fdm = 100 Hz
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Figure 3.22: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel en-
velope for N= 100 oscillators (scatterers), and the observation interval of 100 channel
sampling points (0.2 sec) with fdm = 100 Hz
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Figure 3.23: First half: The actual channel envelope (solid line) is observed. Second
half: The actual future (solid line) and the predicted (dotted line) fading channel
envelope for N= 1000 oscillators (scatterers), and the observation interval of 100
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3.2 BER Analysis with Channel Inversion

As mentioned earlier, we propose to combine prediction with tracking and trans-

mitter optimization. To illustrate the potential of this approach, consider the follow-

ing communication system example. Note that, similar power control strategies have

been proposed in [60, 61, 62, 63, 64]. This power adjustment is not proposed as a

practical solution, since it will result in large transmitter power fluctuations. It is

considered here to illustrate the performance advantages of the proposed prediction

technique. In our simulations, we assumed coherent detection and used Binary Phase

Shift Keying (BPSK) modulation scheme. Given a binary signal bk and assuming

E(|ck|2) = 2σ2 = 1, the signal to noise ratio (SNR) is γb = E(b2k)/N0. The channel

samples taken at the receiver during the observation interval (e.g., using training) are

sent to the transmitter, which applies linear prediction and interpolates to produce

predicted fading values ĉk at the data rate for the next frame (a few hundred data

symbols). Note that we are assuming a reliable feedback path to the transmitter to

send back the predicted fading values. This is a valid assumption considering the base

station (transmitter), where more complex detection methods, diversity and antenna

array can be utilized because of the availability of more space and hardware com-

pared to the mobile unit. After receiving the predicted values, the transmitter uses

the following encoding algorithm: it interrupts the transmission if the power level,

|ĉk|2 is below a previously chosen threshold value, ρ. Furthermore, if |ĉk|2 is above

the threshold, the transmitter sends the data bits, bk, by multiplying them with the

inverse of the predicted ĉk values (3.7). That is, with the channel inversion, at the

output of the matched filter and sampler, the new modified discrete-time received
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signal is given by

yk =
ck
ĉk
bk + zk. (3.13)

where zk is discrete-time AWGN.

Now, lets investigate the theory and the limitations of this technique. Recalling

from chapter 2, when there are large number of closely time-spaced propagation

paths in the medium, the time-variant impulse response c(t) can be modeled as a

complex-valued gaussian random process. Then, by the central limit theorem, the real

and imaginary parts of c, cI and cQ, are independent, zero-mean Gaussian random

processes 1 [5, 7, 9, 16]

c = cI + jcQ = αejθ. (3.14)

The components cI and cQ each have the mean power (or variance), σ2 resulting in

E[|c|2] = 2σ2(= E[α2]). From the discussion in Appendix A, it follows that α = |c|
and has a Rayleigh probability density function (pdf):

p(α) =
α

σ2
e−

α2

2σ2 , 0 ≤ α < ∞ (3.15)

with E(α) =
√

π
2
σ and E(α2) = 2σ2. Moreover, the pdf of the power of fading

channel, α2 is given by an exponential distribution. (Appendix A)

p(α2) =
1

2σ2
e−

α2

2σ2 , 0 ≤ α2 < ∞ (3.16)

again with E(α2) = 2σ2.

Furthermore, when the channel inversion technique is applied as explained above,

we need to know the pdf of the inverted power to investigate the effect of power

1the time dependence of channel impulse response is implicit.
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inversion process. As calculated in Appendix A, the pdf of the inverted power is

given as

p
(
1

α2

)
=

α4

2σ2
e−

α2

2σ2 , 0 ≤ 1

α2
< ∞ (3.17)

However, E( 1
α2 ) = ∞ which makes channel inversion impossible to apply. In order

to overcome this limitation we introduce the concept of the threshold, ρ, in our

encoding algorithm described above. From now on we will assume average channel

power, E(α2) = 2σ2 = 1. With the given ρ, the new pdf of the inverted power

becomes

p

(
1

α2
| 1

α2
<

1

ρ

)
=

α4

e−ρ
e−α2

, 0 ≤ 1

α2
<

1

ρ
(3.18)

with the finite average power calculated as in Appendix A

E

(
1

α2
| 1

α2
<

1

ρ

)
=

1

e−ρ
Γinc(0, ρ) (3.19)

Where Γinc is the incomplete gamma function defined as Γinc(0, ρ) =
∫ 1/ρ
0

e−1/x

x
dx.

When neither threshold nor channel inversion is applied, the channel exhibits

Rayleigh fading characteristics, and the bit error rate (BER) is given by [5]

Pe =
1

2

(
1−

√
γb

1 + γb

)
(3.20)

where γb is the average signal to noise ratio (SNR). This Rayleigh BER which is the

upper bound corresponds to the top curve in Figure 3.24. In this figure we used an

observation interval of 100 and the model order, p = 60. When our prediction method

is applied and the channel inversion technique is utilized, we obtain the performance

results given in the same figure. By increasing the threshold from 0.1 to 0.6, we
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observe performance improvement. However, the spectral efficiency decreases with

the increasing thresholds (or equivalently, the bandwidth increases). The throughputs

are calculated for a given ρ as

Pr(|ck|2 > ρ) =
∫ ∞

ρ
e−ydy = e−ρ (3.21)

and confirmed by simulations. The spectral efficiencies and the average power of

inverted channel (also the power boost at the transmitter), E( 1
α2 | 1

α2 < 1
ρ
), are

summarized in Table 3.1 for different values of thresholds as follows:

Threshold, ρ Throughput E( 1
α2 | 1

α2 <
1
ρ
) (dB)

0.1 90.5% 3
0.2 82% 1.76
0.4 67% 0
0.6 55% -0.82

Table 3.1: Throughput and the average power of inverted channel values with corre-
sponding threshold values

In Figure 3.24, the simulation results slightly deviate from the theoretical values

due to the prediction and the interpolation errors. However, the agreement with the

theoretical results is very good, despite the fact that Rayleigh fading and perfect

prediction is assumed in power calculations, while the actual channel has only 9 oscil-

lators. Since the power of the transmitted signal is greater than E[b2k] for thresholds

ρ < 0.4, the BERs for these threshold values are above the AWGN channel BER. For

the threshold, ρ = 0.4, the transmitted power is equal to E[b2k], and the analytical

curve in this case is also the BER of the AWGN channel [5]

Pe = Q(
√
2γb) (3.22)
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where γb is the signal to noise (SNR) and Q(x) is defined as Q(x) = 1√
2π

∫ ∞
x e−t2/2dt.

Moreover, for thresholds greater than 0.4, the BER is lower than for the AWGN

channel. This is due to the fact that for these thresholds the most favorable channel

conditions are chosen for transmission, i.e., the data is sent only when the channel is

strong. Thus, by using the proposed prediction method, we were able to reduce the

BER to and beyond the level of the AWGN channel.

In Figure 3.24, performance of the channel inversion algorithm for threshold level

0.1 is also shown for the case when the channel coefficient cn is fed back to the

transmitter as the same sampling rate (500 Hz) and used as an estimate of the channel

coefficient ck (at the data rate) between the samples cn and cn+1. This estimate is

used to adjust the power for all data points on the interval [n, n + 1]. This method

was simulated for other thresholds, and the degradation relative to the results with

prediction is similar to the case shown. Note that the performance of the feedback

without prediction method is optimistic, since the delay is assumed to be zero. This

result illustrates the importance of long range prediction for reliable performance of

adaptive modulation and coding techniques.

Remember as mentioned at the end of the Section 3.1.1, we are assuming that

the perfect estimates of fading coefficients cn−j are available in (3.7). We will discuss

adaptive tracking which can approach such performance in Section 3.3. But before

that, we would like to examine more on our results in this section by exploring the

dependency of BER on the observation interval in the next section.
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Figure 3.24: Probability of bit error vs SNR for Rayleigh fading channel with no
threshold and no compensation at the transmitter (o——–o); channel inversion with
prediction for thresholds 0.1 (∗−−−∗), 0.2 (+−−−+), 0.4 (o −−− o) (also Gaussian
channel BER), and 0.6 (x −−− x). Channel inversion (thr. 0.1) for feedback without
prediction (� − − − �). The dashed lines are the simulations and the solid lines are
the theoretical results for the each threshold level.
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3.2.1 Effect of the Observation Interval on BER

The observation interval plays an important role in our analysis. As we reduce the

observation interval, the performance of our system deviates more from the theoreti-

cal curves for every threshold value as seen in Figure 3.25. Note that we eliminate the

deep fades by introducing thresholds. When we have higher threshold values, we ob-

serve less deep fades and consequently less abrupt changes in the fading channel. We

also observe that most of the interpolation error occurs in the deep fades. Therefore,

this explains the reason why there are more deviations for the lower threshold values.

From the figure, we can see that the observation interval of 100 channel sampling

points has very reasonable performance. The difference between theoretical curves

and the simulated curves can be reduced by incorporating an adaptive tracking of the

LP coefficients, d, as studied by a collegue working on the same project, Shengquan

Hu [36].
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Figure 3.25: Dependency of BER on the observation interval: Rayleigh fading channel
without feedback to transmitter (o——–o); Solid lines - theoretical and the dashed
lines - simulation results for each observation interval: (∗−−−∗) 50 points (0.1 sec),
(+−−−+) 100 points (0.2 sec), (x −−− x) 200 points (0.4 sec).
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3.3 Adaptive Tracking

(The adaptive tracking techniques described in this Section is jointly developed

and studied by Hu [36])

We described how channel parameters dj and future estimates ĉn are obtained from

the initial observations of the fading channel. We refer to the number of observation

samples as the observation interval. The main factors which affect the prediction

accuracy of this algorithm can be summarized as: (a) previously predicted values used

to predict the future fading coefficients (in (3.7), ĉn−j is used instead of cn−j later in

the prediction); (b) additive noise and decision - directed tracking. (c) limited number

of observations used in initial acquisition of the LP coefficients (short observation

interval); (d) limited order p of the AR model; (e) fixed LP coefficients dj used

throughout the entire future prediction block;

Factor (a) causes error propagation later in the prediction and often makes pre-

diction accuracy unacceptable as shown in Figure 3.13. In practice, it is not necessary

to predict ahead further than a few samples (several hundred of data bits). As new

actual observations are collected, they can be used in the LP equation. Moreover,

the additive noise and decision-directed tracking (b) result in poor prediction accu-

racy. Therefore, Least Mean Squares (LMS) adaptive tracking method is employed in

conjunction with the channel inversion algorithm to eliminate the error propagation

and to improve prediction accuracy. When the prediction and the channel inversion

techniques are employed at the transmitter, at the output of the matched filter and

sampler, the new modified discrete-time received signal is given by

yk =
ck
ĉk
bk + zk. (3.23)
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where zk is discrete-time AWGN.

Lets define prediction accuracy factor, ak
�
= ck/ĉk. When the prediction accuracy

gets better, the value of ak approaches 1. We use Least Mean Squares (LMS) adaptive

algorithm to track the variations in ak. Given the received signal (3.23), the LMS

algorithm is performed at the data rate at the receiver as

ãk+1 = ãk + µb̂k(yk − ỹk)
∗ (3.24)

where µ is the step size controlling the convergence rate, b̂k is the decision of bk, and

ỹk = ãkb̂k. Adaptive tracking of ak is beneficial when noise is non-negligible and/or

decision-directed operation is desired. Since variation of ak is not significant, the

convergence is better than for channels without inversion. The estimate ãk is used

for coherent detection. In addition, the updated factor ãn is sent back to transmitter

at the low sampling rate and used to update previously predicted fading channel

coefficient ĉn as

c̃n = ãnĉn. (3.25)

Since the transmitter uses this updated estimates in (3.7) to predict future fading

values, rather than relying on previous estimates, this adaptive algorithm enables us

to reduce the prediction error described earlier and to approximate the performance

of the theoretical curves.

In Section 3.2, it was shown that long range channel prediction benefits from

choosing lower sampling rate,fs, given model order p. When received samples are

corrupted by noise, prediction accuracy greatly decreases. In this case, noisy received

signals sampled at the high data rate can be used to reduce the noise effect in the

prediction, even if lower sampling rate is employed in the autoregressive filter. As

new received signals yk become available, we utilize them to update previously pre-
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Figure 3.26: Effective SNR comparison for different prediction approaches. o—o:
Wiener filtering; o - - - o: adaptive tracking of factor ak; *—*: ideal SNR using noisy
samples; * - - - *: measured SNR using noisy samples; prediction range of 2 ms,
fdm = 100 Hz.

dicted channel values ĉn. This update results in improved future predictions. In the

following discussion, we assume that the sampling rate fs is 500 Hz, the data rate is

25 Kbits/second and fdm = 100 Hz. Thus, there are 49 data bits between the two

adjacent low rate samples. Since we often refer to two different rates in this paper,

we use the index k for the samples at the data rate, and index n for the lower sam-

pling rate throughout. We utilize channel inversion with threshold, ρ, and assume

the average transmitter power is normalized to 1.

The MMSE estimate of the channel coefficient cn (at the lower sampling rate)

using Wiener filtering based on 50 previous noisy samples at the data rate results

in the minimum mean squared estimation error ξmin. This error can be viewed as
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Figure 3.27: MMSE performance comparison: o - - - o: adaptive tracking of factor
ak; * - - - *: using noisy samples.

the variance of the effective noise added to the actual channel sample to obtain the

estimate. Then, the effective SNR for the estimated channel samples is given by

E(|cn|2 | |cn|2 > ρ)/(2ξmin) = (1 + ρ)/(2ξmin). This effective SNR is shown by solid

curve (circles) in Figure 3.26 and can be viewed as an upper bound on the SNR

enhancement in the low rate samples using received signal sampled at the data rate.

When by adaptively tracking ak (3.24) with the step size, µ = 0.1, the effective SNR is

examined through simulation. We use the number of scatterersN = 9, the observation

interval of 100 samples, very low noise during the intitial observation interval, and

model order p = 60. The prediction range is 2 ms, and the SNR is computed using 50

low rate samples following the initial observation interval. Here we just consider the

updated channel coefficient c̃n (3.25) in the calculation of SNR, corresponding to the
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part of the channel above the threshold. The SNR is shown as dashed line (circles)

in Figure 3.26 and the corresponding prediction MSE is shown in Figure 3.27. The

performance of this method is very good for low-to-moderate SNR, but the effective

SNR and the MMSE saturate for high SNR. In practice, one will have to take into

account the effect of interrupted transmission (when the channel power is below the

threshold) on the performance of the adaptive algorithm and the issues associated

with the decision-directed tracking (e.g., phase ambiguity, propagation error, etc).

Furthermore, if we had just used noisy samples at low sampling rate without any

decision directed adaptation, our effective SNR would be the same as SNR (= 1/N0).

This is shown as a linear line (solid-stars) in Figure 3.26. The measured SNR (from

simulations) is lower due to prediction error and is shown as the dashed line (stars) in

the same figure. This approach gives poor prediction performance for moderate SNR,

and the performance degrades significantly when the SNR is less than 10 dB due to

the noise enhancement resulting from unacceptable prediction. The comparison of

the MSE for the second and third methods is shown in Figure 3.27.

In addition to the error propagation (a) and the additive noise (b) problems, short

observation interval and the time-variant channel model also significantly affect the

prediction accuracy (Factors (c),(d), and (e)). In particular, the constant parameter

assumption in the deterministic model, e.g., the incident angle of radio wave (and the

Doppler shift), are assumed constant during a data block) is not strictly true. For

example, as mentioned in [65], for the mobile moving at 30 m/s (≈ 67.5 miles/h),

the incidence angle changes at the rate of 4.2◦/sec (with respect to a base station 3

km away). Consequently, learning the fast fading channel using just the observation

samples is not sufficient. Therefore, slowly changing channel parameters, the limited

number of observations used in initial acquisition of the LP coefficients (short obser-
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vation interval), the limited order p of the AR model, and the fixing LP coefficients,

dj, used throughout the entire future prediction block affect the performance and are

needed to be considered. These factors are mainly reflected in the LP coefficients, dj,

in (3.7). This is investigated by implementing the LMS algorithm for updating the

LP coefficients, dj,

d(n+ 1) = d(n) + ηenc̃
∗
n (3.26)

where η is the step-size, d(n) = (d1(n), . . . , dp(n)) is the time-dependent vector of

channel model parameters (see (3.7)), c̃(n) = (cn−1, . . . , cn−p) is the vector of updated

channel estimates, and the error signal, en = c̃n − ĉn.

A combined improvement in prediction accuracy using joint adaptive tracking of

ak’s and dj’s enhances the proposed prediction method in combating the problems

described earlier. Simulation results show that the predicted values using adaptive

tracking method follow very closely the actual channel envelope [36]. Again, in prac-

tice, the parameters dj could be updated with a delay of several samples without

significantly degrading performance.

3.4 Prediction of Power in the Presence of Phase Ambiguity

The results we provided so far are based on several ideal assumptions. For exam-

ple, we used binary shift keying signaling (BPSK) and assumed the knowledge of the

phases of training bits. In practice, phase ambiguity necessitates the use of differen-

tial encoding [5]. In the presence of phase ambiguity, the prediction of power of the

fading coefficients, Ω(t) = |c(t)|2, without the phase information is one alternative.

The power is the most important parameter to predict, since it reveals the locations

of deep fades and other channel power variations. With our proposed technique, the
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power prediction is possible as illustrated in Figure 3.28. The actual channel power

(solid line) is observed for the first 100 channel sampling points. Then, we predicted

the fading channel power for the next 100 points. It can be seen that our predicted

values follow very closely the actual values. Here, we assumed maximum Doppler

frequency of 100 Hz and the total number of scatterers are 9. We used the channel

sampling rate, fs = 500 Hz. Although the fading signal, c(t), can be described by

9 oscillators, i.e., N= 9 in (3.3), the power of the fading signal can not be simply

defined by 9 oscillators. Since the power, Ω(t) = c(t)c∗(t), by simple arithmetic it can

be shown that Ω(t) consists of a DC term and the sum of the cosines of the pairwise

differences of all possible frequencies. Therefore, there exist a combination of

(
N
2

)

cosine terms. For example, for N = 9, the power, Ω(t), consists of

(
9
2

)
= 36 cosine

terms. This number can go up to thousands depending on the number of scatterers,

N. However, our simulation results show that our prediction method can handle even

the number of scatterers is on the order of thousands.

Now, we will present the theoretical analysis of the MMSE of long range prediction

of the power envelope as a function of several parameters such as: model order,

sampling rate, prediction range and the Signal-to-Noise ratio (SNR). We start with

the case when number of scatterrs, N , is infinite (Rayleigh fading). The channel is

modeled as the complex stationary Gaussian process. Assuming isotropic scattering,

the autocorrelation function of the power of the fading coefficient is given for the

noiseless observations [4],

r(τ) = E[Ω(t)Ω(t+ τ)] = (Ω0)
2 + (Ω0)

2J2
0 (2πfdmτ) (3.27)

where J0(.) is the zero-order Bessel function of the first kind and Ω0 = E[|c(t)|2] =
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Figure 3.28: First half: The actual channel power (solid line) is observed. Second
half: The actual (solid line) and the predicted (dotted line) fading channel power for
N= 9 and fdm = 100 Hz

E[Ω(t)]. However, the autocorrelation function including the noise terms can be

calculated as follows: Let the observed channel samples are c(t) + n(t), where n(t) is

AWGN. Therefore, by definition

r(τ) = E[Ω(t)Ω(t+ τ)] = E[|c(t) + n(t)|2|c(t+ τ) + n(t+ τ)|2] (3.28)

By writing right hand side more explicitely, and using E[c(t)] = 0; E[n(t)] = 0;
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c(t) and n(t) are uncorrelated therefore E[c(t)n(t)] = E[c(t)]E[n(t)]; E[|c(t)|2] =
E[|c(t + τ)|2] = Ω0; E[|n(t)|2] = E[|n(t + τ)|2] = N0/2; since n(t) has a complex

gaussian distribution with E[|n(t)|2] = N0/2, then E[|n(t)|4] = 2(N0/2)
2 = N2

0/2;

E[|c(t)|2|c(t+ τ)|2] = (Ω0)
2 + (Ω0)

2J2
0 (2πfdmτ); E[c(t)c

∗(t+ τ)] = (Ω0/2)J0(2πfdmτ);

equation (3.28) is given as:

r(τ) = (Ω2
0 +N0) + Ω2

0J
2
0 (2πfdmτ) +N0Ω0J0(2πfdmτ) + (N2

0/2)δ(τ) (3.29)

This autocorrelation function includes both dc and continuous components. The dc

component gives rise to the discrete spectral component. However, we are primarily

interested in the continuous portion which describes the variations in the channel.

Therefore, the autocovariance function will be used instead of the autocorrelation

function. As a convenience in notation, we will also refer to autocovariance function

with r(τ) which is given as:

r(τ) = Ω2
0J

2
0 (2πfdmτ) +N0Ω0J0(2πfdmτ) + (N2

0/2)δ(τ) (3.30)

Note that for low N0 values, the second term is negligible with respect to the

first term. The plot of the autocovariance is shown in Figure 3.29 for N0 = 0. For

illustration, let us fix the maximum Doppler frequency at 100 Hz. Then the low

sampling rate of 500 Hz would correspond to 5 samples/unit of the x−axis of Figure
3.29, whereas the data rate of 25 KHz results in 250 samples/unit. When the model

order p is fixed, the observation samples taken at the low sampling rate span much

larger time interval than the samples at the data rate. This translates into exploitation

of the sidelobes of the autocorrelation function in the prediction and lower MMSE

when low rate sampling is employed.
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Figure 3.29: The theoretical autocovariance function of the power of the fading coef-
ficient for the Rayleigh fading channel

This observation can be quantified by considering a general channel prediction

problem. For a given sampling rate 1/Ts, the objective is to find the LP filter co-

efficients dj which minimize the MSE, E[|e(τ)|2] =E[|Ω(τ) − Ω̂(τ)|2], where τ is a

prediction range, and Ω̂(τ) is an estimate of the future channel power, Ω(τ), given by

the linear combination of p past samples Ω−j = Ω(−jTs) (0 is the reference time, so
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the observations are taken for t ≤ 0):

Ω̂(τ) =
p−1∑
j=0

djΩ−j (3.31)

Using this formula, it is possible to predict the value of the future sample separated

from the observations by τ seconds. The optimal coefficients dj are computed as

d = R−1r (3.32)

where d= (d0 . . . dp−1). R is the autocorrelation matrix (p × p) with coefficients

Rij = E[Ω−iΩ
∗
−j] and r is the autocorrelation vector (p × 1) with coefficients rj =

E[Ω(τ)Ω∗
−j]. The resulting minimum MSE is given by

E[|e(τ)|2] = r(0)−
p−1∑
j=0

djr(τ + jTs), (3.33)

where r(τ) = E[Ω(t)Ω∗(t+ τ)] (see Equation (3.30)).

The MMSE performance of the long range prediction with various sampling rates

is compared in Figure 3.30. A moderate model order, p = 20, and a very high SNR

= 140 dB are chosen to illustrate the performance comparison, although, later, the

results will be generalized for any p and SNR values. In this figure, the theoretical

MMSE curves (3.33) for a given prediction range are plotted. For example, assuming

fdm = 100 Hz, the range of 0.2 on the x−axis corresponds to 50 data points ahead

with the data rate of 25 kHz and 2 sampling point ahead with a lower sampling rate

of 1 KHz. As seen from the figure, the same future value can be predicted with

much greater accuracy by using the low sampling rates (1 and 2 KHz). Thus, when

the sampling rate is reduced greatly relative to the data rate, but the filter length p

remains the same, prediction much further ahead becomes feasible.
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Figure 3.30: MMSE for long range prediction for different values of sampling rate,
fs, with the model order, p = 20, and SNR = 140 dB.

The effect of the sampling rate is explored further in Figure 3.31. In this figure, the

MMSE vs fs is plotted for various model orders, p, at the prediction range, fdmτ = 0.4.

As seen from the figure, for each model order there is an optimal low sampling rate

that minimizes the MMSE. This optimal rate is close to 1-2 KHz range for moderate

to high p. These results are obtained for an infinite number of scatterers, N . In this

case, the lower sampling rate of 500 Hz is not the optimum rate. Furthermore, in the
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Figure 3.31: MMSE vs sampling rate, fs, for various model orders p; prediction range
τ = 4 ms, SNR = 140 dB and fdm = 100 Hz.

practical case, when the number of effective scatterers, N , is low (less than 5), the

MMSE decreases with the sampling rate for a fixed p, and the sampling rate of 500

Hz gives the best performance among the rates as shown in Figure 3.32. However,

when the number of effective scatterers are greater than 5, the best performance is

obtained for the sampling rate around 1 KHz. Hence, we use fs = 1 KHz as a low

sampling rate below to illustrate the performance of the MMSE with respect to SNR
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Figure 3.32: MMSE vs fs for different values of N and for prediction range of 4 ms,
fdm = 100 Hz at SNR = 100 dB and p = 50.

and p. In Figure 3.33, we demonstrate our MMSE results for different SNR values at

the data rate of 25 KHz and at the low sampling rate of 1 KHz. Since the prediction

range, fdmτ = 0.4 is chosen for these curves, for the data rate of 25 KHz, 100 bits

ahead are predicted. This range also corresponds to 4 low rate samples ahead. It

can be seen from the figure that the performance of the lower sampling rate is better

than that of the high sampling rate for different values of model order, p. For lower
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Figure 3.33: MMSE vs SNR for different values of model order, p, at data rate of
25 KHz (dashed lines) and fs = 1 KHz (solid lines) for prediction range τ= 4 ms,
fdm = 100 Hz.

sampling rates, we observe the saturation of the MMSE as the SNR increases. This

MMSE floor can be found from (3.33) for a given value of p by setting N0 = 0. In

Figure 3.34, the MMSE vs p is plotted in solid lines for fdmτ = 0.1 and the sampling

rate of 10fdm, for different values of SNR. As p increases the MMSE saturation level

is approached. This MMSE floor corresponds to the prediction error given an infinite

number of past observations for the fading process sampled at 10fdm in the presence

of noise.
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Chapter 4

Performance Results in the Presence of ISI
- Frequency Selective Fading Channel

So far we examined the flat fading channel where the multipath spread, Tm, is

relatively small compared to the signaling interval, T . For example, in North Amer-

ican Cellular System standards the signaling interval, T , is 40 µsec. Assuming the

local scatterers around the mobile are in 1 mi radius, the corresponding multipath

spread is around 4 µsec which is one tenth of the signaling interval. Since this is

the common multipath spread observed in real environment, the actual systems are

mostly considered flat. However, there are sometimes very distant scatterers such as

a mountain, a hill or a large building. These scatterers act as an another transmitter

and the signal comes to the receiver with a delay, e.g., as seen in the Figure 4.1.

The delayed received signals cause intersymbol interference (ISI) and result in large

multipath spread which is comparable to T [66, 67], i.e., when the multipath delay

spread exceeds about 10 percent of the symbol duration, significant ISI can occur.

Therefore, channel is considered frequency selective. In this chapter, we will extend

our long range prediction technique and results to the frequency selective case. We

will show how to utilize the frequency selectivity of the channel into our advantage by

using a matched filter (MF) followed by an equalizer. Basically, an equalizer is used
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to compensate and reduce the ISI introduced by the frequency selective channels.

The combination of MF and an equalizer is a way to gain diversity.

In the next section, we first review the frequency selective channel model used in

our analysis. Then, we derive the Matched Filter Bounds (MFB) for the frequency

selective fading channels. First, we derive the MFB for 2-path frequency selective

channel model and analyze the dependency of the path delay on the MFB. Then, we

extend our MFB analysis for more general frequency selective channel with arbitrary

number of distinct paths, delays and path strengths. Once we find the MFB for

a given channel model, we use this MFB as a reference performance bound in our

analysis.

In Section 4.3, the estimation of the channel impulse response is investigated by

using pilot signaling. Then, we demonstrated the feasibility of the long range pre-

diction of the channel impulse response of the frequency selective fading channels

by using these estimated channel impulse response coefficients. Two different ap-

proaches used for the long range prediction are also discussed in this section. The

first approach is the optimal approach in the Minimum Mean Squared Error (MMSE)

sense. The second approach is a subobtimal approach but it has less computational

complexity than the first approach. Performance comparisons of both approaches are

also provided in this section.

The time-variant multipath propagation of the signal through the frequency se-

lective channel results in intersymbol interference (ISI). Therefore, the digital trans-

mission at a rate exceeding the coherence bandwidth of the frequency selective fading

channel requires equalization at the receiver to compensate and to reduce the ISI

[5, 68]. In most communication systems that employ equalizers, the channel char-

acteristics are unknown a priori. Furthermore, in many cases, the channel response
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is time-variant, as we experience in wireless communication channels. In that case,

the equalizers are designed to be adjustable to the channel response and, for time

variant channels, to be adaptive to the time variations in the channel response. The

adjustment of equalizer coefficients is usually performed adaptively during the trans-

mission of information by using the decisions at the output of the detector in forming

the error signal for the adaptation. Some of these decision directed adaptive tech-

niques, such as LMS, track the variations of the slowly varying channels efficiently,

but their performance reduces considerably under the rapidly varying fading con-

ditions. The RLS technique works better under rapidly varying channel conditions

but it introduces more computational complexity. Another Adaptive Equalization

technique, known as block adaptation scheme, is initially introduced by [69, 59] and

developed by [70, 71]. Originally, the start of each data frame contains a known

training sequence or pilot symbols which are used to estimate the channel impulse

response (CIR). Instead of explicitly tracking the time-varying CIR by using a contin-

uous, decision-directed adaptive algorithm like LMS or RLS, block-adaptive strategy

computes the time-varying CIR by interpolating a set of estimated CIR values. This

technique has been proven to work well under fast fading conditions for the frequency

selective channels. However, it has drawback of an inherent processing delay. There-

fore, In Section 4.4, we investigated how the novel long range prediction technique

enabled more efficient equalizer techniques at the receiver.

In Section 4.5, we expanded our research on how we utilize the prior knowledge

of the predicted channel impulse response at the transmitter. It has been shown that

there is a big potential for this technique to be used in more efficient transmitter

antenna diversity [38, 72, 73, 74], adaptive modulation and adaptive coding [63, 64,

75, 76, 77, 78, 79, 80, 81, 82] (and the references therein). Our work on the long range
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Figure 4.1: The frequency selective fading channel with L−paths

prediction of the generalized frequency selective channels provides more insights and

flexibility for these transmitter adaptive techniques. In this section, we concentrate on

a transmitter precoder (preequalizer) to combat the ISI at the transmitter [83, 84]. It

has been shown that the transmitter precoder works well under slowly varying fading

channel conditions [85, 86, 87, 88]. However, these transmitter precoder designs work

only with the slowly varying fading channels and they fail to track the variations

of the rapidly varying fading channels. In this thesis, we also demonstrate how our

novel long range prediction algorithm enables powerful transmitter precoders for the

rapidly varying fading channels as well. The new design of the transmitter precoder

with the long range prediction algorithm for the rapidly varying fading channels is

discussed in detail in Section 4.5.

4.1 Frequency Selective Fading Channel Model

As a frequency selective channel model, a general L−path model is considered as

seen in Figure 4.1. The first path is the main path (Path 1) to the local scatterers

83



c1

τ2

...
c2 c3 cL

τ1= 0 τLτ3

MPDP

Figure 4.2: Multipath Power Delay Profile (MPDP) of the L−path fading channel
model

around the mobile. The other paths that are due to the distant scatterers, e.g., a

mountain, a building or a large object, cause the signal to arrive to the vicinity of

the mobile with different delays, τi. Therefore, the impulse response of the channel

is given by

c(t) =
L∑

i=1

ci(t)δ(t− τi). (4.1)

The corresponding Multipath Power Delay Profile (MPDP) is illustrated in Figure

4.2. This channel model results in the received signal in the form of

r(t) =
L∑

i=1

ci(t)s(t− τi) + n(t), (4.2)

where s(t) is the transmitted signal, n(t) is additive white Gaussian noise (AWGN),

and the coefficients cis are independent identically distributed (iid) Rayleigh fading

coefficients 1. Furthermore, for the consistency in the BER calculations, the total

average power is set to be the same as in the flat fading case which is 2σ2. That is

1the time dependence is implicit.

84



∑L
i=1 E(|ci|2) = 2σ2. It follows that each path has envelope, αi, phase, θi, and in-

stantaneous power, |ci|2 = α2
i , with Rayleigh, uniform and exponential distributions,

respectively

p(αi) =
αi

σ2
i

e
− α2

i
2σ2

i , 0 ≤ αi < ∞ (4.3)

p(θi) =
1

2π
, 0 ≤ θi ≤ 2π (4.4)

p(α2
i ) = p(|ci|2) = 1

2σ2
i

e
− |ci|2

2σ2
i , 0 ≤ |ci|2 < ∞ (4.5)

4.2 Matched Filter Bounds (MFB)

In this section, we first derive the MFB for 2-path model and analyze the depen-

dency of the path delay on the MFB. Then, in the following section, we extend our

MFB analysis for more general frequency selective channel with arbitrary number of

distinct paths, delays and path strengths. Once the MFB is found for a given channel

model, this MFB is used as a reference performance bound in our analysis.

4.2.1 MFB for 2-path model

The matched filter bound (MFB) is a bound on the optimal performance over

a communication channel which assumes that the transmitted pulses are sufficiently

separated (or simply assume that one data pulse is transmitted) so that no intersym-

bol interference (ISI) occurs and the channel is perfectly known. The identification

of the best performance is generally accepted as being useful in setting a goal for the

practical realization of the communication system.

The exact MFB is evaluated for a channel modeled by the sum of two delayed
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and independently Rayleigh fading paths in [89] The two path-model is used as a

benchmark in the North American Digital Cellular standard IS−54 [90]. Therefore,

initially, we review the MFB for 2-path model to show the performance characteristics.

In the next section, we will discuss the general case for L−path frequency selective

fading channel.

The derivation of MFB for 2-path model is as follows. Let the differential delay

between two paths be τ . Recalling the equation (4.2), the received signal is given as

r(t) = c1(t)s(t) + c2(t)s(t− τ) + n(t), (4.6)

where s(t) is the transmitted signal, n(t) is additive white Gaussian noise (AWGN),

and the coefficients c1 and c2 are Rayleigh distributed fading coefficients with equal

average power for each path. Let the transmitted signal be s(t) =
∑

k bkg(t − kT ),

where bk is the data sequence, T is the symbol delay, and g(t) is the pulse shape of the

cascaded combination of the transmit and the receive filters. Having the transmit and

the receive filters with the Square Root Raised Cosine (SRRC) frequency responses,

the overall frequency response is given as the Raised Cosine (RC) response satisfying

Nyquist’s criterion for zero ISI. The corresponding impulse response of RC filter with

the unit energy is given as (see Figure 4.3)

g(t) =
sin(πt/T )

πt/T

cos(πβt/T )

1− 4β2t2/T 2
, (4.7)

where β is called the rolloff factor, and takes values in the range 0 ≤ β ≤ 1. Assuming

that the g(t) is sufficiently concentrated in time, and τ is sufficiently short, so that

the c1(t) and c2(t) can be regarded as constants c1 and c2 over a combined duration

of g(t) and g(t− τ). If we denote the Fourier transform of g(t) by G(ω), then, within
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Figure 4.3: Impulse response of a raised cosine (RC) filter

this approximation, the Fourier transform, Gr(ω) of the received pulse is

Gr(ω) = G(ω)[c1 + c2e−jωτ ]. (4.8)

The matched filter (MF) to be used for optimum reception has G∗
r(ω) for its fre-

quency characteristics. When the filter’s output is appropriately sampled, the signal

87



contribution to the sample value is the energy Er in the received pulse as

Er =
1

2π

∫ ∞

−∞
|Gr(ω)|2dω. (4.9)

Then, at the output of the MF, Er evaluates to

Er = |c1|2 + |c2|2 + 2Re[(c1)(c2)∗g(τ)]. (4.10)

Therefore, the corresponding BER which is also MFB in this case is given by [89]

Pe =
1

2


1− 1

d1 − d2


 √

γbd1√
γb +

1
d1

−
√
γbd2√

γb +
1
d2





 (4.11)

where γb is the average signal to noise ration (SNR), and the parameter di is defined

as

di =
1− (−1)ig(τ)

2
, i = 1, 2. (4.12)

The equation (4.11) is valid as long as d1 �= d2. The case d1 = d2 can only occur

when g(τ) = 0 , resulting in d1 = d2 =
1
2
. Then, we obtain

Pe =
1

2

[
1−

√
γb√

2 + γb
−

√
γb

(
√
2 + γb)3

]
. (4.13)

It is obvious from the equations (4.11)-(4.13) that the BER depends on the relative

delay τ . This dependency can be seen in Figure 4.4 for a fixed SNR= 10 dB. When

τ = 0, i.e, g(τ) = 1, the delayed path coincides with the main path and due to the

assumed independence of the fading process the path powers add, resulting in one

main path with power increased by a factor of 2. The corresponding d1 = 1 and

d2 = 0 for this case. Therefore, BER reduces to the case same as to the flat fading

channel (3.20). When τ = kT , i.e, g(τ) = 0, the MF detector is equivalent to optimal
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diversity combining. Explicitly, we could have used a received filter matched to the

undistorted pulse, g(t), and sampled the output both at t = 0 and t = τ . There would

be no interference between the signal components, and the two noise samples would

be independent. This is equivalent to two separate beams with independent noise

backgrounds. The corresponding d1 = 1/2 and d2 = 1/2 for this case. Therefore, the

BER is given by (4.13) which is the same as the equation given for two branch diversity

[5]. Figure 4.4 provides the MFB vs τ where we have taken g(τ) having a RC impulse
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response with β = 35% (however, it is noted in [89] that the bounds are insensitive

to the β.) The diversity like improvement is observed. The performance is very close

to the dual diversity case for τ > 0.8T . The probability of bit error is plotted with

respect to the SNR for τ = 0 and τ = T in Figure 4.5. When τ = 0, the performance

is the same as that of the Rayleigh fading channel (Flat fading). Whereas, when

τ = T , the performance is the same as the dual diversity performance. (Note that

when τ > 0.8T , the similar performance is observed as that of dual diversity case).
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4.2.2 MFB with Channel Inversion

In this section, we demonstrate how to obtain the new MFB with the channel in-

version methodology introduced in Chapter 3. Please note that the channel inversion

method might not be practical for some applications and is analyzed here to access

the performance advantages of the proposed technique. More practical implementa-

tions both at the receiver and at the transmitter for the general frequency selective

channels will be discussed in details in the next Section.

The derivation has been done for 2-path model. Using the same methodology,

it can easily be extended to the L−path model. We will also explore the MFB and

estimation of the L−path model with arbitrary delays later along with the long range

prediction and the equalization. When τ = T , g(τ) = 0, the output of the MF is

given by (4.10)

|cT |2 = |c1|2 + |c2|2. (4.14)

Assuming an equal power for each path 1 and 2, i.e., σ2
1 = σ2

2 = σ2
P , pdf of |cT |2 is

given by the convolution of the pdfs of the each path (4.5), A and B, and is found as

(Appendix B):

p(|cT |2) = 1

(2σ2
P )

2
|cT |2e−

|cT |2
2σ2

P , 0 ≤ |cT |2 < ∞ (4.15)

The expected value of |cT |2 is also calculated as (Appendix B), E(|cT |2) = 2(2σ2
P ).

Let the average power of each path be equal, i.e., 2σ2
1 = 2σ2

2 = σ2. Therefore,

E(|cT |2) = 2σ2 which is the same as flat fading case.

The channel inversion technique introduced in Chapter 3 for flat fading case. For

a frequency selective case, it is modified as follows: The transmitter interrupts the

transmission if the power level, |cT |2 is below a previously chosen threshold value, ρ.
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Furthermore, if |cT |2 is above the threshold, the transmitter sends the data bits, bk,

by multiplying them with the inverse of the |cT | values. Therefore, we need to know

the pdf of the inverted power, z = 1
|cT |2 , to investigate the effect of power inversion

process. As calculated in Appendix B, the pdf of the inverted power is given as

p(z) =
1

(2σ2
P )

2

1

z3
e
− 1

z2σ2
P , 0 ≤ z < ∞ (4.16)

or

p

(
1

|cT |2
)
=

1

(2σ2
P )

2
(|cT |2)3e−

|cT |2
2σ2

P , 0 ≤ 1

|cT |2 < ∞ (4.17)

with E( 1
|cT |2 ) =

1
2σ2

P
. When we normalize our channel to unit power, i.e., 2σ = 1 or

equivalently 2σP = 1/2, the average power of inverted channel becomes E( 1
|cT |2 ) = 2.

This translates to 3 dB power boost is introduced at the transmitter. However, this

value is obtained without the threshold unlike the flat fading case where this value

was infinity without the thresholds. We can improve the performance even more with

introducing the threshold, ρ, with the expense of throughput, i.e., the throughput

reduces with the increasing threshold (or equivalently, the bandwidth increases). The

throughputs are calculated for a given ρ as

Pr(|cT |2 > ρ) =
∫ ∞

ρ

1

(2σ2
P )

2
ye

− y

2σ2
P dy = e

− ρ

2σ2
P

(
1 +

ρ

2σ2
P

)
. (4.18)

Moreover, for a given ρ, the new pdf of the inverted power becomes:

p

(
1

|cT |2 | 1

|cT |2 <
1

ρ

)
=

1

(2σ2
P )

2
(|cT |2)3e−

|cT |2
2σ2

P
1

e
ρ

2σ2
P (1 + ρ

2σ2
P
)
, 0 ≤ 1

|cT |2 <
1

ρ

(4.19)
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with the average power given as

E

(
1

|cT |2 | 1

|cT |2 <
1

ρ

)
=

1

ρ+ 2σ2
P

. (4.20)

The spectral efficiencies and the the power of inverted channel, E( 1
|cT |2 | 1

|cT |2 <
1
ρ
),

are summarized in Table 4.1 for different values of thresholds. When we compare these

Threshold, ρ Throughput E( 1
|cT |2 | 1

|cT |2 <
1
ρ
) (dB)

0 100% 3
0.167 95.54% 1.76
0.5 73.6% 0

Table 4.1: Throughput and the average power of inverted channel values with corre-
sponding threshold values for 2-path model with relative delay τ = T

results for the frequency selective fading case with the Table 3.1 which reflects the

flat fading results, we observe the same level of performance can be obtained with

higher spectral efficiencies (throughputs) for the frequency selective fading case.

Furthermore, with the relative delay between two paths, τ = T , MFBs are plotted

with or without channel inversion for different threshold values in Figure 4.6. Solid

lines reflect the theoretical results assuming the perfect prediction of the channel. By

increasing the threshold from 0 to 0.5, we observe performance improvement. How-

ever, the spectral efficiency decreases with the increasing thresholds (or equivalently,

the bandwidth increases). Since the power of the transmitted signal is greater than

E(b2k) for thresholds ρ < 0.5, the BER for these threshold values are above the AWGN

channel BER. For the threshold, ρ = 0.5, the transmitted power is equal to E(b2k)
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Figure 4.6: MFBs for τ = T (Solid lines are theoretical; dashed lines are simulation
results for each threshold level)

and the analytical curve is also the BER of the AWGN channel given as [5]

Pe = Q(
√
2γb) (4.21)

where γb is the signal to noise (SNR) and Q(x) is defined as Q(x) = 1√
2π

∫ ∞
x e−t2/2dt.

In this figure, the simulation results with different observation intervals are also pre-

sented with dashed lines for each threshold level. Three sets of simulation are per-

formed with observation intervals of 50, 100, and 200 channel sampling points with
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low sampling rate of 500 Hz to predict the total power, |cT |2. These observation

intervals convert to time as 0.1, 0.2, and 0.4 sec respectively. As we reduce the ob-

servation interval, the performance of our system deviates more from the theoretical

curves for every threshold value as seen in the figure. The closest simulation curve

to the theoretical curve is the one with the longest observation interval, 200 channel

samples (or 0.4 sec) for each threshold level. On the other hand, the furthest simula-

tion curve to the theoretical curve is the one with the shortest observation interval,

50 channel samples (or 0.1 sec). Note that we eliminate the deep fades by introducing

thresholds. When we have higher threshold values, we observe less deep fades and

consequently less abrupt changes in the fading channel. We also observe that most

of the interpolation error occurs in the deep fades. Therefore, this explains the rea-

son why there are more deviations for the lower threshold values. Furthermore, the

difference between the theoretical curves and the simulated curves can be reduced by

incorporating an adaptive tracking of the LP coefficients, d, as explained in Chapter

3.

4.2.3 MFB for the general Frequency Selective Channels

The exact MFB is evaluated for a channel modeled by the sum of two delayed

and independently Rayleigh fading paths in the previous section. It has been shown

that if the delays are separated more than 0.8T where T is the symbol interval, dual-

diversity (or dual antenna diversity with flat fading) performance is observed. In

practical systems, there exists more than two paths with each path having its relative

strength and delay. Then, the multipath channel is given by

c(t) =
L∑

i=1

aici(t)δ(t− τi) (4.22)
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where L is the total number of paths, ci(t) complex Gaussian random process, and ai

and τi are the root mean square of the magnitude and the delay of the i−th path. Let
the baseband transmitted signal be a single pulse m(t)bk where m(t) is the shaping

pulse and the bk is a complex data symbol. In our analysis, we consider Square Root

Raised Cosine (SRRC) pulse shape for the transmitter pulse shape, m(t) [5]. When

the transmitted pulse passes through the multipath channel, (see Eq. (4.22)), the

received signal is found as

r(t) =
L∑

i=1

aici(t)m(t− τi)bk + n(t) (4.23)

where n(t) is zero mean, additive complex white Gaussian noise (AWGN) with a power

spectral density N0/2. We assume that ci(t) does not change within the duration of

the pulse, hence we can drop the time index t. On the other hand, over the total

ensemble, ci is complex Gaussian random variable. The Fourier transform of the

signal portion in r(t) is found as

Ms(ω) = M(ω)
L∑

i=1

aicie
−jωτi (4.24)

where M(ω) is the Fourier transform of transmitter pulse shape m(t). Then, the

corresponding frequency response of the matched filter for r(t) is given by

M∗
s (ω) = M∗(ω)

L∑
i=1

a∗i c
∗
i e

jωτi (4.25)

The Fourier transform of the received pulse at the matched filter output is given by

|Ms(ω)|2. Therefore, the total received signal power per bit at the output of the
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matched filter is calculated from

Es =
1

2π

∫ ∞

−∞
|Ms(ω)|2dω =

L∑
i=1

L∑
j=1

aia
∗
jcic

∗
jg(τi − τj) (4.26)

where g(t) is Raised Cosine (RC) pulse shape which is also the inverse Fourier trans-

form of |M(ω)|2 [5]. Es is also be represented in matrix form such that Es = cHGc

where c is a L−dimensional vector whose components are the random variables ci,

and the superscript H denotes Hermitian (complex conjugate transpose). G is L×L

matrix with {gij} = aia
∗
jg(τi−τj). Note that since Es is non-negative (see Eq. (4.26)),

G is a non-negative definite Hermitian matrix. Therefore, it can be shown that [91]

L∑
j=1

λi = Trace(G) = g(0)
L∑

j=1

|ai|2 = E[Es] (4.27)

where λi’s are the eigenvalues of G. Therefore, Es can be written as

Es =
L∑

j=1

λi|ci|2 (4.28)

Since ci’s are complex Gaussian random variables, λi|ci|2’s are Chi-Square distributed
with 2 degrees of freedom. Their characteristic functions are given as 1/(1 − jνλi)

[92]. Since the ci’s are independent, the characteristic function of Es is the product

E(ejνEs) =
L∏

i=1

1

jνλi

(4.29)

Therefore, the probability density function of Es can be found as

p(Es) =
L∑

i=1

si
e−Es/λi

λi

(4.30)
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Figure 4.7: Multipath Power Delay Profile (MPDP) of the sample frequency selective
channel model

where si =
∏L

j=1;j 	=i
1

1−λj/λi
.

The bit error probability for the matched filter output for BPSK signaling is given

as P (Es) = Q(
√
2Es/N0) where the Q(x) =

1√
2π

∫ ∞
x exp(−t2/2)dt [5]. Therefore, the

average bit error probability, Pe, for the general frequency selective channel can be

found by averaging P (Es) over all Es, i.e.,

Pe =
∫ ∞

0
Q(

√
2Es/N0)p(Es)dEs (4.31)

By substituting (4.30) in to (4.31), Pe can be evaluated as

Pe(γb) =
L∑

i=1

(si/2)[1− (λ̄iγb/(1 + λ̄iγb))
1/2] (4.32)

where γb is the average signal to noise ratio (SNR), γb = E[Es]/N0, and λ̄i’s are the

normalized eigenvalues, λ̄i = λi/
∑L

j=1 λj

For example, lets find the MFB of the multipath channel with Multipath Power

Delay Profile (MPDP) shown in Figure 4.7. The relative delays, τi’s, are 0, 0.4T , 0.8T ,

1.8T and 2T for first through fifth paths respectively where T is the symbol interval.
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In this example, we assume that all the paths have equal average power, a2
i . As a

transmitter filter, we used a square root raised cosine frequency response with excess

bandwidth β = 0.35. We also assume that the symbols are transmitted at 25 Kbps,

which corresponds to a symbol interval of T = 40 µsec. Therefore, the corresponding

normalized eigenvalues of matrix G are found as 0.16, 0.36, 0.46, 0.017, and 0.003.

Note that there are only three significant eigenvalues at this symbol rate. The MFB

of this multipath channel on the average bit error probability is plotted in Figure 4.8

with the dashed lines. We observe that its performance is close to the 3-path diversity

(or 3 antenna diversity receiver with flat fading) performance [5]. Intuitively, based on

the study of [89] for 2 paths, we would expect this result. Basically, paths 1&2, path

3 and paths 4&5 result in the effect of 3-path diversity performance. Furthermore,

the AWGN channel performance is also plotted as a reference in the figure. It has

been shown that as the number of distinct paths (or number of antennas with flat

fading) increases the performance approaches the AWGN performance [93].

Therefore, the MFB can be found for any frequency selective multipath channel

as explained above. The MFB performance curve is mainly the function of average

strengths of the distinct paths and the relative delays of each path with respect to

the symbol interval, T . The MFB would be our lower performance bound for a given

frequency selective channel model and would be used as a reference performance

measure through this thesis.

4.3 Estimation and the Long Range prediction of the Fre-

quency Selective Fading Channel

In this section, we first discuss the estimation of the frequency selective fading

channel. The estimation is performed at the receiver by transmitting a pilot signal.
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Figure 4.8: (−−−) Matched Filter Bound (MFB) of the frequency selective multipath
channel given in Figure 4.7

Then, using these estimated values, we investigate the long range prediction of the

impulse response of the frequency selective fading channel far beyond its coherence

time. We explain how the prediction is feasible for the frequency selective multipath

channels. Then, we discuss two different approaches for the long range prediction of

the multipath channels. The first approach is the optimal approach in the MMSE

sense, and the second approach is the less complex but suboptimal approach. Both

approaches are investigated in details with comparisons of their theoretical and sim-
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Figure 4.9: Pilot signal including the impulse response of the transmit and receive
filters, g(t)

ulation performances below.

4.3.1 Estimation Using Pilot Signaling

In this scheme, a pilot signal is sent by the transmitter to capture the character-

istics of the frequency selective fading channel. We use the transmitter filter and the

receiver filter having SRRC characteristics with roll off factor of 0.35 as described

in the previous section. Consequently, the cascaded transmitter and receive filters,
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each having SRRC frequency response, result in overall filter having Raised Cosine

(RC) frequency response characteristics. A sample pilot signal including the impulse

response of the transmit and receive filters is shown in Figure 4.9. The corresponding

impulse response for the RC filter, g(t), is given as

g(t) =
sin(πt/T )

πt/T

cos(πβt/T )

1− 4β2t2/T 2
, (4.33)

where β is the roll off factor and T is the symbol interval. The duration of the pilot

interval including the transmitter and receiver filter responses is given by 2N times

the symbol interval, T , where N is an integer number. For example, N corresponds

to 4 in Figure 4.9. We normalize the energy per symbol period to provide consistent

SNR calculations. Therefore, the energy of the pulse is chosen as 2N times the data

symbol energy. The duration of the symbol interval should be chosen long enough

to capture the maximum path delay in the multipath channel and not to allow any

interference from the past and previous data symbols. Since the pilot symbol has

higher power level than the data symbols, our studies show that sufficiently large

interval (3 − 4 symbols) has very minimal interference from past and previous data

symbols. Therefore, in our analysis, this very small interference is considered a part of

the noise given below. Hence, the noise term in this section consists of the interference

as well as the thermal noise.

When a single pulse is transmitted as a pilot signal, the resulting channel impulse

response at the receiver is the convolution of g(t) and frequency selective channel,

c(t) (see Eq.(4.22)), plus the AWGN, n(t), i.e.,

h(t) = g(t) ∗ c(t) + n(t). (4.34)

Then, by substituting (4.22) into (4.34), we obtain the impulse response of the channel
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Figure 4.10: Impulse response, h(t), of the frequency selective channel given in Figure
4.7

as

h(t) =
L∑

i=1

aici(t)g(t− τi) + n(t) (4.35)

For example, for the 5−path channel model given in Figure 4.7, the corresponding

channel impulse response, h(t), is observed in Figure 4.10 with the same average

power levels for all the paths, (i.e., same |ai|2).
The channel impulse response, h(t), is estimated periodically with a given fre-
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quency of the pilot signal. Let the frequency of the pilot signal be fs = 1/Ts. This

means that the pilot signal is sent in every Ts second. Therefore, we would be able

to estimate the channel impulse response in every Ts seconds, h(kTs). During each

estimation process, we find M coefficients of the impulse response. The number of

estimated channel impulse response coefficients, M , for each pilot interval depends

on the filter sampling rate, pilot signal interval and the maximum observed in the

multipath channel. With fractionally spaced sampling (e.g., T/2), the total number

of M ’s are 4N + �2τmax/T � + 1 where τmax is the maximum delay observed by any

path in the multipath channel. For example for N = 4 and τmax = 2T , the number

of estimated coefficients in the channel impulse response is 21 for any kTs instant.

Therefore, each coefficient is denoted by hk,m = h(kTs +mT/2) and given as

hk,m =
L∑

i=1

ci(kTs +mT/2)g(kTs +mT/2− τi) + n(kTs +mT/2) (4.36)

Note that the symbol interval, T , is much smaller than sampling interval, Ts. Since

each ci(kTs + mT/2) coefficients shows very little variations in mT/2 interval, it

is assumed that ci(kTs + mT/2) = ci(kTs) for all m values. Therefore, we define

ci, k = ci(kTs). Furthermore, since the pilot symbol is sent in every Ts second and

the channel coefficients are calculated every Ts seconds, the g(kTs +mT/2− τi) can

be considered as periodic with Ts. Therefore, g(kTs+mT/2− τi) = g(mT/2− τi) for

all kTs channel sampling interval. Finally, hk,m = h(kTs +mT/2) is given as

hk,m =
L∑

i=1

ci,kg(mT/2− τi) + nk,m (4.37)

These coefficients are illustrated in Figure 4.11 for the channel impulse response, h(t),

given in Figure 4.10.
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These estimated channel impulse response coefficients are used in the design

of various adaptive equalizers at the receiver to combat Inter-Symbol Interference

(ISI) as we will discuss later. These coefficients could also be fed back to the

transmitter and could be utilized to reduce the effect of ISI and to gain diversity

from the frequency selectivity of the channel. Among its applications, these esti-

mated channel coefficients are also used as a channel side information for trans-

mitter antenna diversity [38, 72, 73, 74], adaptive modulation and adaptive coding
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[63, 64, 75, 76, 77, 78, 79, 80, 81] (and the references therein). However, using the

current estimates limits the performance of many adaptive techniques both at the

receiver and at the transmitter. Especially, for the fast fading conditions, implemen-

tation of these techniques and equalizers both at the receiver and at the transmitter

become unfeasible without performance degradation and the delay tolerance. In the

next Section, we will show that it is possible to predict the future channel impulse

response of the general frequency selective fast fading channels given present and

past estimated samples. Then, we will illustrate how this novel long range prediction

technique enables effective equalization techniques both at the receiver and at the

transmitter. Before we go into details of these equalizers, lets first discuss the feasi-

bility and the performance of the long range prediction technique for the frequency

selective multipath channels.

4.3.2 Long Range Prediction of the Frequency Selective Multipath Chan-

nels

The long range prediction capability for the complex valued fading channel was

demonstrated in the previous Chapter. In previous work, we concentrated on flat

fading channels, i.e., prediction of c(t) with single path, i.e., L = 1. Our linear

prediction (LP) method is based on the AR channel modeling. We demonstrated

that we were able to predict the flat fading channel far beyond its coherence time

by using our novel long range prediction technique in the previous chapter. In order

to enhance the transmitter antenna diversity techniques, we also applied our long

range prediction technique to some specific frequency selective channels [38]. These

frequency selective channels are modeled with L independently Rayleigh fading paths

and each path is separated from the previous one by exactly a chip interval, Tc.
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In [38], the objective was to predict total channel power at the transmitter. This

has been achieved in several ways, by either predicting individual paths’ powers and

summing them up or first by summing them up and then predicting the total power.

In this section, we did not limit the path delays to be exactly a chip interval, Tc. In

our analysis, we developed our novel long range technique further and applied for any

frequency selective channel with arbitrary delays.

In the previous Section, we explained the estimation of the channel impulse re-

sponse using the pilot signaling. These estimated coefficients are given in Eq. (4.37).

For our long range prediction purposes, the frequency of the pilot signaling should be

at least twice the maximum Doppler shift, fdm [16].

It is feasible to predict hk,m (see Eq. (4.37)) by utilizing the long range predic-

tion technique. From Eq. (4.37)), we observe that the coefficient hk,m is the linear

combination of ci,k’s with corresponding constant weighting g(mT/2− τi) for each m

coefficients. Since each ci,k is Raleigh distributed, we previously showed that they are

predictable by using our novel long range prediction technique. Therefore, it would

be possible to predict hk,m coefficients for any frequency selective multipath channels

with arbitrary path delays.

We developed two approaches below to perform the long range prediction of the

channel impulse response of the frequency selective channels. The first approach is

the optimal approach in the MMSE sense, and the second approach is the suboptimal

approach but less complex than the first approach. These approaches along with their

both theoretical and simulation performance results are discussed next.

Approach 1:

In this approach, the objective is to predict channel impulse response coefficients,

hk,m (see Eq. (4.37)). As explained in the previous section, there is m number of
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estimated channel coefficients for each estimation interval, kTs. In our analysis, we

used T/2−spaced sampling, therefore, the total number of estimated coefficients is

M = 4N + �2τmax/T �+1 where τmax is the maximum delay observed by any path in

the multipath channel.

For the optimal prediction performance in the minimum mean squared error

(MMSE) sense, each of m coefficients are predicted by using p previously observed

channel samples hk−1,m, hk−2,m, . . . , hk−p,m, (Note that the noise is already included

in Eq. (4.37))

ĥk,m =
p∑

j=1

dj,mhk−j,m (4.38)

where dj’s are the coefficients of the LP filter.

The optimal dj,m coefficients are computed for each m coefficient of the channel

impulse response as

d = R−1r (4.39)

where d= (d1,m . . . dp,m). R is the autocorrelation matrix (p × p) with coefficients

Rij,m = E[hn−i,mh
∗
n−j,m] and r is the autocorrelation vector (p × 1) with coefficients

rj,m = E[hn,mh
∗
n+j,m]. By using the Eq. (4.37), the autocorrelation function, rj,m, can

be calculated as

rj,m =
L∑

i=1

g2(mT/2− τi)J0(2πfdmjTs) + (N0/2)δ(j) (4.40)

where J0(.) is the zero-order Bessel function of the first kind. Therefore, the resulting

MMSE for each particular m coefficient is given by

ξk,m = E[|ek,m|2] = E[|hk,m − ĥk,m|2] (4.41)
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ξk,m = r0,m −
p∑

j=1

dj,mrj,m (4.42)

Approach 2:

In the first approach, in order to get the optimum performance for the long range

prediction, we calculated LP coefficients, dj,m, for each m coefficients separately.

Then, we applied to the LP as given in Eq. (4.38). Therefore, in Approach 1, for

optimal performance we are required to find dj,m coefficients for each channel impulse

response coefficients (total m) separately.

However, when we study each channel coefficients in details, we observe that each

coefficient, hk,m consists of all the independent paths, ci’s, in the channel response (see

Eq. (4.37)). The only difference for each channel coefficients, hk,m, is the weighting

factors, g(mT/2− τi). Due to the characteristics of the RC filter, g(t), and its overall

effects during the estimation interval. We would be able to sum all the hk,m coefficients

and we would be still able to preserve all the independent paths, ci’s, in the channel.

Therefore, let the sum of all estimated m coefficients be

hk,T =
M∑

m=1

hk,m (4.43)

where M = 4N + �2τmax/T � + 1 and hk,m as given in Eq. (4.37) (Note that the

noise is already included in hk,m.) In the sum above, we would still observe all the

individual paths and their corresponding oscillator frequencies (for each scatterer),

but this time, with different weighting constants. Substituting Eq. (4.37) into Eq.

(4.43), the corresponding autocorrelation function, rj,T for hk,T can be found as

rj,T = E[hn,Th
∗
n+j,T ] (4.44)

rj,T = K(N))J0(2πfdmjTs) + (MN0/2)δ(j) (4.45)
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where K(N) =
∑M

m=1

∑L
i=1 g

2(mT/2− τi).

Then, the dj,T coefficients are calculated once in every estimation interval and

found from:

d = R−1r (4.46)

where d= (d1,T . . . dp,T ). R is the autocorrelation matrix (p × p) with coefficients

Rij,T = E[hn−i,Th
∗
n−j,T ] and r is the autocorrelation vector (p × 1) with coefficients

rj,T = E[hn,Th
∗
n+j,T ] given in Eq. (4.45).

Note that since dj,T coefficients are calculated once in every estimation interval,

we will have lower computational complexity for this approach. Since dj,T reflects the

characteristics of the all independent paths in the channel, we can use the same dj,T

coefficients to predict each of m channel impulse response coefficients such that

ĥk,m =
p∑

j=1

dj,Thk−j,m (4.47)

Since dj,T is calculated with different weighting constants, the performance of the

Approach 2 will not be the same as performance of optimal Approach 1 with optimal

dj,m coefficients. Therefore, Approach 2 is a suboptimal approach. The advantage of

this approach is that it would have less computational complexity than approach 1,

because dj,T is calculated only once as opposed to m times in approach 1. Therefore,

the resulting average MSE (not optimum, therefore not Minimum MSE) for each m

is given by

ξ′k,m = E[|ek,m|2] = E[|hk,m − ĥk,m|2] (4.48)

ξ′k,m = E[(hk,m −
p∑

j=1

dj,Thk−j,m)(hk,m −
p∑

j=1

dj,Thk−j,m)
∗] (4.49)
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ξ′k,m = r0,m − 2
p∑

j=1

dj,T rj,m +
p∑

j=1

p∑
j′=1

dj,Tdj′,T r(j − j′) (4.50)

Note that the Eq. (4.42) can also be derived from Eq. (4.50). In Eq. (4.50), if d

coefficients were calculated from original rj,m then, we would have dj,m instead of dj,T .

Therefore, from orthogonality, d = R−1r, we would have
∑p

j=1

∑p
j′=1 dj,Tdj′,T r(j −

j′) =
∑p

j=1 dj,mrj,m. Then, as expected, ξ
′
k,m (see Eq. (4.50)) would be same as ξk,m

(see Eq. (4.42)).

Performance Comparisons of Approach 1 and 2:

In this section, we provide both theoretical and simulation performance results in

terms of average MSE with respect to various system parameters for Approach 1 and

Approach 2. The long range prediction technique can be generalized to predict any

time τ ahead, where τ is the prediction range. In (4.38) and (4.47), the prediction

is one step ahead, i.e. τ = Ts. In practical implementation, we iterate this one-

step prediction to forecast the channel further than one sampling interval ahead by

utilizing previously predicted samples instead of the observations. It was shown in

the previous chapter that the key to the long range prediction is the sufficiently long

memory span achieved for moderate model order p by selecting low sampling rate, fs

(much lower than the data rate). Later, depending on the application, interpolation

could be used to perform prediction at the data rate.

The MSE performance of the long range prediction is compared in Figure 4.12. A

model order, p = 20, SNR = 80 dB, sampling frequency, fs = 500 Hz, and maximum

Doppler frequency, fdm = 100 Hz, are chosen to illustrate the performance compari-

son. Both theoretical and simulation results for the average MSE of Approach 1 and

Approach 2, i.e., ξk,m and ξ′k,m are averaged over total number of m, are plotted in the

figure. For example, for fdm = 100 Hz, the range of 0.2 on the x−axis corresponds to
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Figure 4.12: MSE vs prediction range for sampling frequency, fs = 500 Hz ,
SNR = 80 dB, model order, p = 20 and fdm = 100 Hz.

50 data points ahead with the data rate of 25 kHz and 1 sampling point ahead with a

lower sampling rate of 500 Hz. As seen from the figure, future values can be predicted

with by using the low sampling rate. Approach 1 provides the optimal performance

while Approach 2 has performance degradation. Although Approach 2 has lower per-

formance, but it has less computational complexity as we explained in the previous

section. Although it is not an optimum performance, it also provides acceptable per-
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formance results which might be a favorable approach when the computational power

is limited. In Figure 4.12, we also show the simulation results. In our simulations, we

used a model similar to the Jakes model. In Jakes model, the oscillators are placed

around the mobile equally spaced on a circle, i.e., the spacing between the oscillators

are deterministic and given by 2p/N where N is the total number of oscillators [16].

However, in our simulation, we remove the deterministic spacing between the oscil-

lators. Instead, the oscillators are placed around the mobile randomly with uniform

random parameter. This randomness ensures that each multipath, with the same

number of oscillators, is generated with different uniformly distributed oscillator fre-

quencies. Our analysis also shows that this uniformly random distributed oscillators

still depict the characteristics of the Rayleigh fading channel. Therefore, this new

modified model enables us to compare the two approaches described earlier more

realistically. The simulation results for the new model with random oscillators are

given in Figure 6 for both Approaches. Due to the channel mismatch as explained in

chapter 3, simulations do not closely match theoretical results, but the performance

trends are the same with the theoretical results.

The effect of the sampling rate is explored further in Figure 4.13. In this figure,

the average MSE vs fs is plotted for Approaches 1 and 2 at the prediction range,

fdmτ = 0.2. As seen from the figure, for each model order there is an optimal low

sampling rate that minimizes the MSE. This optimal rate is between 500Hz - 1KHz for

model order p = 20. Similarly, Approach 2 has lower performance. But, since it has

less computational complexity, it might be preferable for some applications. Again,

the simulation results do not closely match theoretical results, but performance trends

are the same due to the channel mismatch.

Finally, in Figure 4.14, the average MSE vs model order, p, is plotted for fdmτ =
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Figure 4.13: MSE vs sampling rate, fs; prediction range τ = 2 ms, SNR = 80 dB,
model order, p = 20 and fdm = 100 Hz.

0.2, fdm = 100 Hz, fs = 500 Hz, and SNR = 80 dB, for both approaches. As p

increases the average MSE saturation level is approached. As expected, the optimal

Approach 1 performs better than the suboptimal but less complex approach 2. For

the theoretical curves, the average MSE floor corresponds to the prediction error

given an infinite number of past observations for the fading process sampled at 500

Hz. Due to observation interval and the channel mismatch as explained in chapter 3,
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Figure 4.14: MSE vs model order, p, for sampling frequency, fs = 500 Hz , SNR = 80
dB, prediction range τ = 2 ms and fdm = 100Hz

simulations do not closely match theoretical results, but performance trends are the

same.

Based on the analysis done above, we showed that the frequency selective mul-

tipath channels with arbitrary path delays could also be predicted using our novel

long range prediction technique. In the following two sections, we will illustrate how

to utilize the prior knowledge of the predicted channel impulse responses both at the

receiver and at the transmitter. Basically, this novel long range prediction technique
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enables more efficient adaptive equalizers at the receiver and transmitter precoder

(preequalizer) at the transmitter.

4.4 Performance Enhancements at the Receiver

The time-variant multipath propagation of the signal through the frequency se-

lective channel results in intersymbol interference (ISI). Therefore, the digital trans-

mission at a rate exceeding the coherence bandwidth of the frequency selective fading

channel requires equalization to compensate and the reduce the ISI. For bandlimited

signal transmission, the optimal equalizer should have infinite length to remove all

ISI. However, in practice, finite length equalizers spanning most of the energy of the

channel impulse response (CIR) are commonly used. Moreover, most practical equal-

izers are implemented as direct form finite-duration impulse response (FIR) filters

in the form of a tapped-delay-line (TDL). They are also known transversal filters

[5, 94]. There are two broad classes of equalizers, linear and non-linear. Lets first

briefly review the Equalizers:

Linear Equalizer (LE):

The linear equalizer (LE) is implemented as a finite-duration impulse response

(FIR) filter (also called a transversal filter) with adjustable coefficients as shown in

Figure 4.15. These filter structures have a computational complexity that is a linear

function of the channel dispersion length. LE tries to invert the folded spectrum of

the overall CIR, H(z), to satisfy the Nyquist criterion. Therefore, the equalizer in

frequency domain is found as [5]

U(z) =
1

H(z)
. (4.51)

Note that the equalizer, with transfer function, U(z), is simply the inverse of CIR.
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Figure 4.15: Linear Equalizer in the form of transversal filter

In other words, complete elimination of the ISI requires the use of an inverse filter

of H(z). These types of filters are called Zero-Forcing (ZF) filters. Furthermore, the

cascade of the noise whitening filter having the transfer function, 1/H∗(z−1) and the

zero-forcing equalizer having the transfer function, 1/H(z) results in an equivalent

zero-forcing equalizer having the transfer function

U(z) =
1

H(z)H∗(z−1)
=

1

X(z)
. (4.52)

However, if the channel contains a spectral null in its frequency response or takes on

small values as we have in wireless channel, the linear zero-forcing equalizer attempts

to compensate for this by introducing an infinite gain at that frequency. But this

compensates for the channel distortion at the expense of enhancing the additive noise.

Therefore, the performance of the equalizer is poor and it suffers from unacceptable

noise enhancement whenever folded spectral characteristics possesses nulls [5, 68,

94]. In order to overcome the noise enhancement problem of ZF criterion, we also
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investigate an alternative Mean Square Error (MSE) criterion. The MSE criterion

reduces noise enhancement by allowing residual ISI at the output and attempt to

minimize the sum of the ISI and noise. With the noise whitening filter incorporated

into U(z), The MSE equalizer has the corresponding transfer function [5]

U(z) =
1

H(z)H∗(z−1) +N0

=
1

X(z) +N0

(4.53)

where N0 is the noise spectral density factor. Note that this expression for MSE

criterion is similar to that of ZF criterion as N0 goes to zero, and they both yield the

same solution for tap weights. Consequently, when N0 = 0, the minimization of the

MSE results in complete elimination of the ISI. On the other hand, when N0 �= 0,

there are both residual ISI and additive noise at the output of the equalizer.

Since the linear equalizer does not perform well on channels with spectral nulls

in their frequency response characteristics, the nonlinear equalizers are used where

channel distortion is too severe for the linear equalizer to handle [5, 68, 95].

Nonlinear Equalizers:

There are three types of non-linear equalization schemes. The first one is a symbol-

by-symbol detection algorithm based on the maximum a posteriori (MAP) criterion

proposed by Abend and Fritchman [96]. The second one is a sequence detection al-

gorithm, based on the Maximum-likelihood Sequence Estimation (MLSE) criterion,

which is efficiently implemented by the Viterbi algorithm (VA) [97]. Although the

MLSE results in better performance results it has a computational complexity that

grows exponentially with the length of the channel time dispersion [5]. In most chan-

nels of practical interest, such a large computational complexity is very expensive to

implement. The third one is decision feedback equalization (DFE). When decision

error propagation is not severe, DFE receiver suffers only small theoretical perfor-
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Figure 4.16: Structure of a Decision Feedback Equalizer

mance degradation relative to the more complex nonlinear equalization methods such

as MLSE receiver. Another advantage of the DFE is that it has the same level of

complexity as LE and lower complexity than MLSE.

The DFE consists of a feedforward filter (FFF) and a feedback filter (FBF) as

illustrated in Figure 4.16. The FBF is driven by decisions at the output of the

detector and the coefficients are adjusted to cancel the ISI on the current symbol

that results from past detected symbols (postcursor). The FFF is identical to the

linear transversal equalizer described in the previous section. The FFF compensates

or removes the precursor ISI based on the criterions described in the previous section,

i.e., ZF and MSE criterions. As long as FFF spans at least the CIR length, the causal

FBF only needs to span at most the CIR length.

Adaptive Equalization:
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In the development of equalization methods described above, we implicitly as-

sumed that the channel characteristics, either the impulse response or the frequency

response, were known at the receiver. However, in most communication systems that

employ equalizers, the channel characteristics are unknown a priori. Furthermore,

in many cases, the channel response is time-variant, such as wireless communication

channels. In that case, the equalizers are designed to be adjustable to the channel

response and, for time variant channels, to be adaptive to the time variations in the

channel response. The adjustment of equalizer coefficients is usually performed adap-

tively during the transmission of information by using the decisions at the output of

the detector in forming the error signal for the adaptation.

One of the adaptive equalizer technique is to calculate the equalizer coefficients

adaptively in decision directed mode [5, 68]. The most common decision directed

adaptive algorithms are Least Mean Square (LMS) algorithm and Recursive Least-

Squares (RLS) (also known as Kalman) Algorithm (RLS) [5, 68]. These adaptive

techniques are shown to work well in slowly fading channels. However, they fail

to track to variations of the fast fading channels. Another Adaptive Equalization

technique, known as block adaptation scheme, is initially introduced by [69, 59] and

developed by [70, 71]. Originally, the start of each data frame contains a known

training sequence or pilot symbols which are used to estimate the channel impulse

response (CIR). Instead of explicitly tracking the time-varying CIR by using a contin-

uous, decision-directed adaptive algorithm like LMS or RLS, block-adaptive strategy

computes the time-varying CIR by interpolating a set of estimated CIR values. Then,

it uses this interpolated CIR values to compute the receiver parameters to adapt it to

the fast fading channel [70]. However, when the data in this system is differentially

encoded, the successive CIR estimates have an inherent phase ambiguity. In order
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to the remove the phase ambiguity between the successive CIR estimates, a phase

alignment technique has been used as explained in Appendic C [98]. In this block

adaptive scheme, since coefficient computation is shared over all the symbols of a

block, per-symbol computational effort can be significantly less than that for decision

directed adaptive systems.

Extensive study has been done on the design of optimal block adaptive equaliza-

tion technique by Eyceoz et. al. [70, 71] and Lo et. al. [59]. This technique has been

proven to work well under fast fading conditions for the frequency selective channels.

However, this technique has an inherent processing delay since the interpolation has

been performed using past and future channel estimates. Therefore, we need to wait

for the future estimates to perform interpolation to find the channel impulse response

which is used in the design of the block adaptive equalizer. Let the pilot signal be

transmitted in every Ts interval to get the channel impulse response estimate and the

data rate be 25 kbps. For example, if the rate of pilot signaling is fs = (1/Ts) is 500

Hz, that means the channel estimation is performed in every 50 data symbols. With

the design proposed in [70, 71, 59] the processing delay is given as 2Ts , or 100 data

symbols. Some systems will not be able to tolerate this long delay.

The performance of the Block Adaptive Equalization scheme is illustrated in Fig-

ure 4.17 for the frequency selective channel given in Figure 4.7. When we tolerate 2Ts

delay in the system at the receiver, the performance of the equalizer is very effective.

If we only tolerate Ts delay in the system, the performance of the equalizer gets worse,

and finally without any delay tolerance, we get the worst performance. Without de-

lay tolerance means that receiver calculates equalizer coefficients at the beginning of

data block and uses the same equalizer coefficients through the all block without any

adaptation. For performance comparison, we also plotted the performance of decision
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Figure 4.17: Performance of the block adaptive equalization technique with or without
prediction.

directed equalizer employing LMS algorithm. But, it can be seen from the figure that

it fails to track the variations of the fast fading channels and the performance is far

from the matched filter bound (MFB).

In the previous section, we showed that we are able to predict the channel impulse

response of the frequency selective channels up to few low sampling interval, Ts, ahead

by using our novel long range prediction technique. The capability of predicting
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the channel impulse response accurately eliminates the need for the delay which is

a major drawback for block adaptive equalization schemes. We implemented our

long range prediction scheme at the receiver for the same channel model given in

Figure 4.7. In our analysis, we sample the channel and predict the channel impulse

response at the rate of 500 Hz. We also assume that the transmission data rate is

25 kbps and maximum Doppler frequency, fdm = 100 Hz. We predicted the future

channel impulse response coefficients at (k + 1)Ts and at (k + 2)Ts ahead in time.

Then, we used these predicted future values and the present estimate at kTs and

one past estimate at (k − 1)Ts to interpolate the future channel impulse response.

Then, we constructed our equalizer similar to the block adaptive equalizer to combat

the channel impairments. We predicted the future channel impulse responses by

using both optimal approach 1 and suboptimal approach 2. The BER performance

results with both approaches are plotted in Figure 4.17. It can be seen that the

performance of the equalizer which employed prediction with Approach 1 is very

close to the performance of the original Block Adaptive equalizer. The difference is

due to the prediction error. Note that when we employ long range prediction, we are

able to eliminate the delay which is a necessity and big drawback for original Block

Adaptive equalizer. Similarly, we repeated the experiment with the prediction using

Approach 2. As we studied earlier, Approach 2 is a subobtimal technique but it has

less computational complexity. Although Approach 2 has subobtimal performance

and, consequently, more prediction error, it still provides acceptable performance.

As seen from the figure, its performance is still better than decision directed LMS

equalizer and Block Adaptive Equalizer with Ts delay. Therefore, Approach 2 might

also find applications when the computational complexity is an issue. However, if the

computational complexity is not an issue, then Approach 1 should be preferred due
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to its superior performance.

Furthermore, in [99], the impact of the channel estimation errors on the perfor-

mance of the Decision Feedback Equalizer has been theoretically analyzed. Authors

in [99] also define the estimation error as e(m) = h(m) − ĥ(m) where h(m) is the

overall channel impulse response and ĥ(m) is the estimate of the h(m). They also

represent the channel as a Gaussian process, as it is the case for Raleigh fading, as

well as the estimation error. Defining

H(m′) = E{h(m)h∗(m−m′)} (4.54)

E(m′) = E{e(m)e∗(m−m′)} (4.55)

the autocorreletion function is given by [99]

R(m′) = E(0) + α
∑
m′<0

H(m′) + α
∑
m′>0

E(m′) +N0/2δ(m
′) (4.56)

where the scale factor α = 0.25 was found in [99] to give excellent results with respect

to theoretical results and measured data. The probability of error is also given in [99]

as

Pe =
∑

i:λi<0

Ai (4.57)

where Ai =
∏

j 	=i
1

1−λj/λi
where λi’s are the eigenvalues of the matrix A whose elements

are given as a function of H(m′), E(m′), and R(m′) as derived in [99]. In [99], authors

obtained the expression for the average probability of error in terms of the channel

estimation error autocorrelation function as given in Equation (4.57). In the previous

Section, we were able to find the autocorrelation functions for both Approach 1 and

Approach 2. In our analysis, these autocorrelation functions are utilized to find

the long range prediction performance in the minimum mean squared error (MMSE)
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sense. The resulting MMSE for Approach 1 and Approach 2 are given as ξk,m (see Eq.

(4.42)) and ξ′k,m (see Eq. (4.50)) respectively. Therefore, we used the autocorrelation

functions calculated in Section 3.2 and the results of [99] to find the theoretical lower

bound of the performance of the Decision Feedback Equalizer with a given prediction

error performance. These theoretical lower DFE performance bounds with prediction

error are also plotted in Figure 4.17 for both Approach 1 and Approach 2.

4.5 Performance Enhancements at the Transmitter

In the previous Section, we demonstrated how the long range prediction tech-

nique enables powerful adaptive equalizers at the receiver by removing their bottle-

necks, such as inherent processing delays. In this section, we will explore how we can

utilize our novel long range prediction technique at the transmitter. In our recent

work, we showed that long range prediction enables transmitter diversity techniques

[38]. This work could be also used to extend our results presented in [38] for any

multipath channel with arbitrary delays (previously the delays were considered only

a multiple of chip interval, Tc). The technique presented in this paper could also

help in development of more powerful adaptive modulation and coding techniques

[63, 64, 75, 76, 77, 78, 79, 80, 81] (and the references therein). In this research, we

investigate the performance improvements and the availability of the transmitter pre-

coder (preequalizer) for the rapidly varying fading channels. It has been shown that

the transmitter precoder works well under slowly varying fading channel conditions

[85, 86, 87, 88]. However, these implementations do not work under rapidly varying

channel conditions. They rely only the current knowledge of the channel information.

Therefore, our novel long range prediction capability enables powerful transmitter
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precoders for the rapidly varying fading channels as well.

The transmitter precoding (preequalizer) is also called Tomlinson-Harashima (TH)

Precoding, in honor of its coinventors [83, 84]. The idea of precoding is to move the

cancellation of the postcursor ISI to the transmitter, where the past transmitted sig-

nals are known without the possibility of errors. Therefore, the transmitter precoder

does not suffer from error propagation which is inherent to the DFE. Since no decision

feedback is necessary at the receiver when using the transmitter precoding, powerful

coding techniques with a Viterbi decoder or trellis precoding techniques [85, 86, 87, 88]

can be used in the system to further improve the transmission performance without

significantly increasing the complexity of the mobile unit.

In the previous section, we showed that the DFE can be implemented as shown

in Figure 4.18. The channel impulse response, hk, is referred to using the formal

D−transform
H(D) =

∑
k

hkD
k. (4.58)

Similarly, the feedforward and the feedback filters are indicated by F (D) and B(D)

respectively. The input sequence, bk, is filtered by the channel, H(D), and the Ad-

ditive White Gaussian Noise (AWGN), nk, is added producing the sequence seen at

the receiver.

TH precoding is originally proposed for Pulse Amplitude Modulation (PAM) sys-

tems [83, 84]. The postcursor ISI cancellation is done at the transmitter by imple-

menting the feedback filter at the transmitter as shown in Figure 4.19. It is assumed

that channel characteristics are known at the transmitter. In order to stabilize the

precoder, TH procoding uses a non-linear modulo-arithmetic operation before being

transmitted and being applied back to the feedback filter. Let the ΓM(.) operator
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Figure 4.18: System with Decision Feedback Equalizer

represent modulo−M operation. The ΓM(.) operator maps the real numbers onto

the interval (−M/2,M/2] according to ΓM(x) = x+mM where m is the integer for

which ΓM(x) ∈ (−M/2,M/2]. Typically for iid bk, xk will be approximately iid and

approximately uniformly distributed on (−M/2,M/2]. If bk is iid with uniform dis-

tribution on (−M/2,M/2], then xk will be exacly iid and uniform on (−M/2,M/2].

As studied by Mazo [100], when bk is a PAM signal, xk will have a slightly larger

power than bk. The desired signal bk is recovered at the receiver by applying the

same modulo−M operation [83, 84, 101].

Using theD−transform notation, the channel impulse response can be represented

by H(D). Similarly, the feedforward and the feedback filters are indicated by F (D)

and B(D) respectively. The input sequence, bk, is filtered by the channel, H(D), and

the Additive White Gaussian Noise (AWGN), nk, is added. In TH precoding, B(D)

must be causal and monic so that feedback filter 1 − B(D) in Figure 4.19 requires

only the previous values of xk. F (D) may be any linear FIR filter. The feedforward

filter (FFF), F (D), and the feedback filter (FBF), B(D), could be chosen to minimize
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zero-forcing (ZF) or minimum mean-square error (MSE) optimality criteria [102].

TH precoding was originally proposed for a wired communication system which

does not have the problem of channel fading. Therefore, TH precoding can not be

directly applied to time varying fading channels where amplitude fading causes severe

errors in retrieving the original amplitude information at the receiver, due to corre-

sponding modulo-arithmetic reduction. Phase modulation such as phase-shift keying

(PSK) is usually preferred to Pulse Amplitude Modulation (PAM) in wireless com-

munication systems due to its frequency spectral efficiency. Using PSK, it is desired

to have a constant precoded signal amplitude, even though in practice pulse shaping

is commonly used to meet out-of-band spectral emission requirements. Pulse shap-

ing after precoding results in fluctuations of the envelope of the transmitted signal.

When the time varying envelope of the precoded and filtered signal is amplified by a

nonlinear power-efficient output amplifier, signal distortions occur and transmission

performance degrades. If the precoder keeps a constant signal amplitude, then the
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envelope variations at the amplifier input are solely due to pulse shaping and therefore

are smaller than those when TH precoding is used (since TH precoding introduces

extra envelope variations). An adaptive channel precoding technique has been pro-

posed for phase modulation over a slowly fading channel [103]. An automatic gain

control (AGC) unit is used in the adaptive precoder to achieve a constant amplitude.

However, the AGC unit also introduces nonlinear distortion to the precoded signal

and results in channel equalization errors. In order to reduce the equalization er-

ror, another precoding method intended for M−ary PSK(MPSK) has been proposed

in [104], which establishes a relationship between the phase and amplitude of the

received signal by a spiral curve design, known as phase precoding. By adaptively

choosing the spiral curve according to channel fading status, the precoding method

can keep a constant transmitted signal amplitude, stabilize the precoder, and ensure

ISI-free transmission. Different from the approach given in [104], in [101] a different

channel precoding technique is proposed for a time-division multiple-access (TDMA)

indoor radio system operating in a time-division duplex (TDD) mode using quater-

nary PSK (QPSK). The precoding technique is developed based on a new dimension

partitioning technique. With this technique, only the carrier phase is pre- distorted so

that the precoded signal amplitude can be kept constant. As a result, this precoding

technique is claimed to overcome the drawbacks of TH precoding slowly time varying

channels by keeping the stability of the precoder.

These techniques described above are efficient methods to implement TH precod-

ing at the transmitter for slowly varying fading wireless channel only. They all fail

to track the variations of the fast fading channels. Therefore, the real challenge is

to develop a precoding system at the transmitter for the ”rapidly varying” fading

channels. Our novel approach to the long range prediction of the fast fading channels
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also enables us to implement TH precoder with some modifications for fast fading

frequency selective fading channels. Therefore, in this work, we propose a new mod-

ified TH precoder which is designed specifically for rapidly varying fading channels.

The key point in this design comes from our long range prediction capability. As we

discussed earlier, we are able to predict the impulse response of the frequency selec-

tive multipath channel far ahead before we transmit. We use this prior knowledge of

the channel impulse response to ensure both the stability of the TH precoder and the

design of the feedback filter at the transmitter.

In TH precoding, the feedback filter, B(D), is made available to the transmitter.

This can be accomplished in regular time interval, with the rate of our low sampling

rate, fs. Therefore, as explained earlier, pilot signal sent from transmitter to the

receiver, receiver measures the channel impulse response, h(t), then this information

is fed back to the transmitter. Then, the transmitter applies long range prediction

algorithm to predict the future values of the channel impulse response, and finally,

these predicted values are used to construct feedback filter, B(D). Since, in our long

range algorithm, we are able to predict several ms ahead the feedback delay can be

compensated by the long range prediction capability. This feedback filter is similar

to the one we used at the receiver in the previous section. Since we can not tolerate

any delay at the transmitter for the TH precoder, we were unable to implement Block

Adaptive Scheme at the transmitter without predicting the future channel impulse re-

sponse. Therefore, our novel long range prediction technique enables Block Adaptive

feedback filter at the transmitter for the rapidly varying fading channels. Filter coef-

ficients are updated similar to the original Block Adaptive Equalizer implementation

[70, 71, 59].

The operation of the precoder is described as follows. Let B(D) = 1 + B1D +
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B2D
2 + . . ., and denote the output of the precoder x(D) = x0 + x1D + x2D

2 + . . .

with the initial values xk = 0 for k < 0. Then, we can write xk as

xk = bk +
∑
j≥1

xk−jbj +Mzk (4.59)

where zk is integer chosen to minimize the absolute value of xk by Mod−M operation.

If the input sequence, bk is iid with uniform distribution on (−M/2,M/2], then the

precoder output, xk will be iid and uniform on (−M/2,M/2]. Furthermore, the total

channel power, Es (see Eq. (4.26)), is also predicted and the corresponding data bits

are multiplied by the inverse of the square-root of the total channel power before the

Mod−M operation to ensure the proper use of modulo-arithmetic in TH precoder.

We can also write Eq. (4.59) in D−transform domain as

x(D) = b(D) + x(D)[B(D)− 1]−Mz(D) (4.60)

and consequently,

x(D)B(D) = b(D)−Mz(D) (4.61)

In the receiver, after the feed forward filter, a sequence received samples v(D) =

v0 + v1D+ v2D
2 + . . . is generated at the symbol rate. This sequence can be written

in the form

v(D) = x(D)H(D)F (D)− n(D)F (D) (4.62)

v(D) = y(D)− w′(D) (4.63)

Note that the residual noise, w′(D) = n(D)F (D), is the same as the one obtained in

the conventional DFE. The error free received sequence, y(D) is given as

y(D) = x(D)B(D) (4.64)
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by substituting x(D) from Eq. (4.61) as x(D) = [b(D) − Mz(D)]/B(D) into Eq.

(4.64), we obtain

y(D) = b(D)−Mz(D) (4.65)

which has elements yk = bk −Mzk. Before making a decision. The samples yk are

reduced by Mod−M operation to he interval (−M/2,M/2] to obtain folded samples

of y′k as

y′k = bk − w′
k (4.66)

where the signal component of b′ks corresponds to the elements of the original infor-

mation sequence b(D).

The BER performance of the transmitter precoder with or without prediction is

illustrated in Figure 4.20 for the channel model given in Figure 4.7. In Figure 4.20,

MFB is plotted as a reference performance curve and it provides lower performance

bound. When the transmitter precoder is implemented without any prediction of

the future channel impulse response, it does not perform its complete functionality.

Therefore, original transmitter precoder does not work for the rapidly varying fading

frequency selective channel. However, when we employ long range prediction at the

transmitter to predict future channel impulse response coefficients, and apply them to

the transmitter precoder scheme, we observe significant performance improvement.

In our analysis, we sample the channel and predict the channel impulse response

at the rate of 500 Hz. We also assume that the transmission data rate is 25 kbps

and maximum Doppler frequency, fdm = 100 Hz. When the Approach 1 used in

the prediction, it provides very close performance to the performance of optimum

block adaptive equalizer implemented at the receiver with 2Ts delay. The slight

lower performance for the prediction with approach 1 is mainly due to the prediction
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Figure 4.20: Performance of the Transmitter Precoder technique with and without
prediction.

error and the nature the nature of the precoder [100] where the transmitted signal,

xk, has slightly larger power than the input signals, bk. The transmitter precoder

employing Approach 2 has lower performance than the Approach 1. This is expected

because Approach 2 is a subobtimal approach and it has higher prediction MSE

but lower computational complexity than Approach 1. Nonetheless, Approach 2 still

provides acceptable performance and it can be used in the mobile unit which requires
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lower computational complexity to extend its battery life. However, the Base Station

transmitter has high capability to perform intense computations. Therefore, applying

Approach 1 for prediction and getting higher performance could be preferred at the

Base Station transmitters.

In conclusion, in this section, we demonstrated that we can modify the TH pre-

coder by utilizing our novel long range prediction technique for the rapidly varying

fading channels. Therefore, for the first time in the literature, we were able to apply

this powerful precoding technique to the rapidly varying fading wireless communica-

tion systems. When the precoder is implemented at the Base Station transmitter,

we are able to reduce the load at the receiver on the mobile unit since no equalizer

is needed at the receiver once the preequalizer is implemented at the transmitter.

This means less processing and hence longer battery life for the mobile unit. More-

over, this modified precoder can be combined with the powerful coding techniques

[85, 86, 87, 88] to improve the system performance further. The strong coding tech-

niques are made possible with the preequalizers implemented at the transmitter while

it would not be possible with the conventional DFE implemented at the receiver.
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Chapter 5

Modeling and Performance with Antenna

Diversity

The diversity scheme is a very effective method that is used to utilize information

from several signals transmitted over independently fading paths [5, 7]. In a system

with diversity, several replicas of the same information signal transmitted over inde-

pendently fading channel are supplied to the receiver. Therefore, since deep fades

seldom occur simultaneously during the same time intervals on two or more paths,

the probability that all the signal components will fade simultaneously is reduced

considerably. For example, if p is the probability that any one signal will fade below

some critical value, then pL is the probability that all L independently fading replicas

of the same signal will fade below the critical value.

Frequency, time and antenna diversity are the three techniques in which L in-

dependently fading replicas of the same information signal can be provided to the

receiver.

In the frequency diversity technique, the same information signal is transmitted on

L carriers, where the separation between successive carriers equals or exceeds to the

coherence bandwidth, (∆f)c, of the channel [3, 5]. The frequency diversity technique

has the disadvantage of larger spectrum requirements.
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In the time diversity technique, transmitted signals are separated at time intervals

equal to or larger than the coherence time, (∆t)c, of the channel [3, 5]. One disadvan-

tage of time diversity technique is that it introduces time delay. When the Doppler

spread is very small (i.e. mobile is moving slowly, consequently coherence time is

very large), the separation in time is required to be very large which introduces larger

time delays. Therefore, the time diversity technique is not suitable for mobile radio

channels.

The antenna diversity can be achieved by space, angle, polarization and field diver-

sity techniques [7, 105]. Among these techniques, we concentrate on space diversity

where multiple antennas spaced sufficiently far apart so that their received signals

fade independently. Therefore, from now on, when we refer to the antenna diversity,

we mean space diversity only, and antenna diversity reflects the properties of space

diversity technique. Antenna diversity plays an increasingly important role in high-

speed wireless communications [13, 67, 106, 107, 108, 109]. It has been shown that

deploying multiple antennas at both the transmitter and receiver can offer enormous

gains in the capacity of wireless channels [110, 111, 112, 113]. In this chapter, we

will explain how we incorporate our novel long range prediction technique into the

antenna diversity systems. We will be addressing antenna diversity for both flat and

frequency selective channels and both at the transmitter and at the receiver. Then,

we will generalize the effect of the antenna diversity on both the transmitter and the

receiver and their combinations. We will also extend our discussions to the transmit-

ter antenna diversity schemes proposed for the 3rd generation (3G) Code Division

Multiple Access (CDMA) systems [114, 115, 72, 73, 74]. We will demonstrate how we

utilize the prediction to improve the performance of the selective transmitter diver-

sity (STD) systems proposed for the 3G CDMA systems. Three different approaches
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to the long range prediction of the total channel power, which is used for antenna

selection in STD, will be analyzed and performance results will be compared.

5.1 Antenna Diversity at the Receiver

If the receiver has multiple antennas, spaced sufficiently far apart so that their

received signals fade independently, then they can be used for diversity reception. In

the space diversity technique, the necessary space separation required to obtain two

or more uncorrelated signals (depending on number of antennas at the receiver) must

be determined. The correlation coefficient ρr(d) is defined as [7]

ρr(d) = J2
0 (βvτ) = J2

0 (βd) (5.1)

where J0(.) is the zero order Bessel function, τ is the time separation, v is the mobile

speed, and β = 2π/λ where λ is the wavelength.

For uniform angular distribution of wave arrivals, ρr(d) has its first null at d =

0.4λ. Theoretically, when the separation between two receiver antennas is around d =

10λ, the signals arriving these receiver antennas are considered almost uncorrelated.

However, in pactice due to the limited space at the receiver, a separation of d = λ/2

is used to obtain almost uncorrelated signals at the receiver using the fact that as

long as the correlation coefficient is less than 0.2, the two signal are considered to be

uncorrelated for most practical applications [7].

In order to maximize the output decision SNR, signals received from the L diver-

sity channels are combined. In general, the signal received by each diversity branch

is independently weighted. Then, their sum produces the output signal. There are

four different combining techniques. They are selective, switched, equal-gain and

maximal-ratio combining [5, 7, 16]. In selective diversity combining technique, the
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received signal from the diversity branch with the largest signal power is chosen. Se-

lective combining is very difficult to implement, because a floating threshold level is

needed. Therefore, switched combining is a practical alternative since it is based on

a fixed threshold level. In switched combining, the selected received signal branch re-

mains until its signal strength drops below a fixed threshold level. Then the combiner

switches to the branch signal with the highest signal strength when the current sig-

nal drops below a fixed threshold level. Hence, the switched-combined signal always

performs worse than the selectively combined signal [7]. In equal-gain combining, all

branch signals are summed with equal gain. In maximal-ratio combining, L signals

are weighted for optimum performance before being combined. Therefore, it provides

maximum SNR at the combiner output. The combiner weights are adaptively up-

dated by using channel impulse response (CIR) estimates to track the random time

variations in the channel.

When the maximal-ratio combining is used, the total channel envelope for L = 2

is given by

|cT |2 = |cA|2 + |cB|2. (5.2)

where cA and cB are Rayleigh distributed frequency non-selective (flat) fading channel

coefficients observed by each receiver antennas. Assuming an equal average power for

each path A and B, i.e., σ2
A = σ2

B = σ2
P , pdf of |cT |2 is given by the convolution of the

pdfs of the each path, A and B, and is found as (Appendix B):

p(|cT |2) = 1

(2σ2
P )

2
|cT |2e−

|cT |2
2σ2

P , 0 ≤ |cT |2 < ∞ (5.3)

Then, we can utilize our long range prediction technique to predict the total power,

|cT |2, at the transmitter. Once we predict accurately how the channel would fade the
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signal during the transmission, we can compensate the expected power loss at the

transmitter. For example, we can utilize the channel inversion technique here as well.

That is, the transmitter interrupts the transmission if the power level, |cT |2 is below
a previously chosen threshold value, ρ. Furthermore, if |cT |2 is above the threshold,

the transmitter sends the data bits, bk, by multiplying them with the inverse of the

|cT | values. The similar performance results apply here as we investigated in Chapter

4 for two path model.

Receiver antenna diversity system is also utilized for frequency selective chan-

nels. Using multiple antennas at the receiver providess additional diversity gain the

system along with the suitable combiner and equalizer [70, 116]. Note that, this addi-

tional performance improvement is directly related to the number of receiver antennas

used at the receiver. Further performance improvement is possible by predicting the

total channel power at the transmitter by using our novel long range prediction tech-

nique. This will enable accurate power control, more effective modulation and coding

schemes to be implemented at the transmitter.

5.2 Antenna Diversity at the Transmitter

Implementing multiple antennas at the receiver is a way to gain diversity. However,

it is desired to have simple receivers at the mobile units for several reasons. First of all,

the space is limited to put additional antennas on the mobile unit. Moreover, adding

more antennas causes more complex receivers and higher computational power that

reduces the battery life. Therefore, one solution is to implement antenna diversity at

the transmitter. Transmitter antenna diversity schemes are proposed for current and

future wireless communication system. In this section, we will discuss two different
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ways to get diversity effect at the transmitter. In the next section, we will explore

more on diversity schemes that has been proposed for the 3rd generation wireless

systems.

The simplest transmitter diversity technique could be adapted for flat fading chan-

nels is as follows. At the transmitter, two antennas spaced sufficiently apart to ensure

independently fading paths are used. At the receiver, with single receiver antenna,

each path is resolved by the aid of pilot signal or training sequence and send back to

the transmitter. The transmitter predicts future fading coefficients for each path by

using the Linear Prediction technique introduced in Chapter 3. Then, the transmitter

selects the antenna which result in the larger gain at the receiver. This creates a sim-

ilar effect as using two receiver antennas and combining the signal based on selective

combining strategy as explained in the previous section. Furthermore, the channel

inversion technique is also applied for further performance improvement. Although

this techniques provides a performance improvement of selective diversity, it is not

the optimum way to combine as opposed to maximal ratio combining.

The second transmitter diversity technique is to provide diversity benefit to a

receiver in a flat fading environment [117]. In this transmitter diversity technique,

multiple antennas transmit delayed version of a signal to create frequency selective

fading at a single antenna at the receiver. Assuming the delay is equal the one

symbol duration, T , the dual transmitter diversity is the same as what we studied for

in Chapter 4 for the frequency selective case with 2-path channel model. Note that,

since this system would be equivalent to the frequency selective case, there will be

ISI in the system and a suitable equalizer would be implemented at the receiver to

mitigate the effect of ISI. This technique could be implemented for frequency selective

fading channels as well. However, for the frequency selective case, this delay should
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be chosen more carefully. The delay should be at least twice the multipath delay

spread in order to ensure further diversity. Moreover, as discussed previously, the

total channel power could be predicted by using long range prediction technique and

the prior knowledge of the channel characteristics could be utilized to improve the

performance further.

We have presented that using multiple antennas at the receiver provides diversity

effect in both flat and frequency selective channels. We also showed that the similar

diversity can be obtained at the transmitter by implementing the antennas at the

transmitter instead of at the receiver. We can also put multiple antennas both at the

transmitter and at the receiver at the same time. In this case, the total number of

independent fading diversity paths would be LTLR, where LT and LR are the number

of transmitter and receiver antennas, respectively.

5.3 Application of Long Range Prediction to the Selective

Transmitter Diversity (STD) for WCDMA

In this section, we will extend our results to the Direct Sequence Code Division

Multiple Access (DS/CDMA) channels. DS/CDMA technology is attractive for wire-

less access because of its numerous advantages over other multiple access techniques

such as Time Division Multiple Access and Frequency Division Multiple Access. Some

of the advantages of CDMA over other techniques are its ability to provide soft hand-

off, graceful degradation, exploitation of multipath fading through Rake combining,

and direct capacity increase by the use of cell sectorization. However the current

DS/CDMA is optimized for basic services only. Therefore, Wideband DS/CDMA

(WCDMA) has been developed as a predominant radio access technology for the next

141



generation global wireless standard [114, 115]. The proposed WCDMA offers signifi-

cant improvements over current CDMA system. These include support of higher rate

data services, improved coverage and capacity due to wider bandwidth and coherent

detection, fast and efficient packet acces control, capability to support multimedia

services. One of the novel features of WCDMA is support for transmitter antenna

diversity for the downlink [72, 73, 74].

Some of the proposed transmitter antenna diversity schemes are Orthogonal Trans-

mitter Diversity (OTD), Transmitter Adaptive Array (TxAA), Selective Transmitter

Diversity (STD), and Space Time Transmitter Diversity (STTD). TxAA and STD

can result in better performance than OTD and STTD, but require feedback of chan-

nel state information (CSI) from the mobile to the base station. In practice, the

performance of these schemes can be degraded due to imperfect and delayed CSI.

In particular, even small delay can result in significant degradation due to the time

varying nature of the fading channel.

In this section, we will present how to utilize the long range prediction technique

to improve the performance of transmitter diversity systems. In particular, we focus

on Selective Transmitter Diversity. Using the long range prediction technique, we

are able predict both flat and frequency selective fast fading channels accurately

far beyond the coherence time. This prior knowledge of the channel for the entire

duration of the next frame or slot provided by long range prediction would enable

more efficient antenna switching at the transmitter.

5.3.1 STD with Prediction in WCDMA Systems

WCDMA utilizes bandwidths of 5 MHz to 20 MHz. Because of these large trans-

mission bandwidths, the wireless radio channel is often frequency selective. There-
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Figure 5.1: Selective Transmitter Diversity System

fore, large diversity gain can be realized using the RAKE receiver. This gain can be

further enhanced by utilizing antenna (diversity) arrays. In practice, the mobile is

often limited to a single antenna, whereas the base station can employ several an-

tennas. Thus, transmitter antenna diversity techniques for downlink signaling have

been recently investigated by many researchers [72, 73, 74]. We consider a Selective

Transmitter Diversity (STD) system shown in Figure 5.1 for two antennas (it can be

easily extended to a greater number of antennas). For each antenna, the channel is

characterized as frequency selective Rayleigh fading with L paths. The signal of the

desired user is transmitted either from antenna A or from antenna B. All paths are
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i.i.d. and each channel has unit average power, i.e.,

E[|cAk |2] = E[|cBk |2] =
1

L
k = 1, . . . , L (5.4)

The total instantaneous powers associated with the channels of antennas A and B

are: ΩA =
∑L

k=1 |cAk |2 and ΩB =
∑L

k=1 |cBk |2, respectively. Both ΩA and ΩB are Chi-

Square distributed with 2L degrees of freedom. For an STD system, the transmission

antenna is selected based on the power comparison between ΩA and ΩB. The antenna

that results in a stronger signal at the receiver will be used as the transmission

antenna. Therefore, in the STD systems for WCDMA, we need to determine the

future total power for each antenna in order to decide which antenna will be selected

for transmission. However, in contrast to the channels with phase ambiguity, in the

proposed 3rd generation WCDMA systems, coherent channel estimates are available

at the receiver since the pilot channel is used. Therefore, complex fading coefficients

associated with different multipath components and transmitter antennas can serve

as observations. In the next section, we will analyze three approaches to long range

power prediction of the channel power for each transmitter antenna given a sequence

of channel observations associated with that antenna.

One of the key features that makes WCDMA feasible globally is its high car-

rier frequency of 2 GHz. However, this high carrier frequency results in very large

Doppler shifts at moderate vehicular speeds (e.g. 65 mi/h corresponds to fdm = 200

Hz.) These high Doppler shifts result in significant variations of the fading channel

coefficient over short time periods. Thus, outdated channel estimates fed back to the

transmitter become less useful for adaptive signaling application, and long range fad-

ing prediction capability becomes more important. Using accurately predicted future

channel power, the transmitter can appropriately select the signaling method for the

144



future frame even when channel varies rapidly due to fast fading.

We exploit three approaches to long range prediction of the channel power for each

transmitter antenna given a sequence of channel observations associated with that

antenna. This information about future channel power allows the mobile to make

a suitable selection of the base station antenna for the next transmission interval.

In this analysis, we assume that present and past samples of the i.i.d. Rayleigh

fading coefficients ck for L paths (k = 1, . . . , L) are observed at the mobile for each

transmitter antenna (i.e. samples of cAk (t) and c
B
k (t) are observed, but we suppress the

antenna (A or B) and time indices in the sequel). This analysis can be extended to

include noise present in the observations (e.g. noisy pilot symbols). In this work, we

restrict the derivation to the noiseless case to show the potential of long range power

prediction for the ideal Rayleigh fading channel. The noisy case can be examined

through simulation and the performance can be further improved by adaptive tracking

methods by reducing the effect of noise.

CASE 1:

In this approach, each future complex Gaussian fading coefficient ck(t) is pre-

dicted separately for each path and each antenna, and the total predicted power for

each antenna is calculated using these estimates. These future predicted samples are

denoted as ĉ1, ĉ2, . . . ĉL. The autocorrelation function of each component is [4]:

rj = (1/L)(Ω0/2)J0(2πfdmjTs) (5.5)

where E[|ci|2] = Ω0/L. The prediction MMSE per component is ξi = E[|ei|2], where
ei = ci− ĉi. Our purpose is to find the total power prediction mean squared error, ξT

ξT = E




∣∣∣∣∣
L∑

i=1

|ci|2 −
L∑

i=1

|ĉi|2
∣∣∣∣∣
2

 = E




∣∣∣∣∣
L∑

i=1

(|ci|2 − |ĉi|2)
∣∣∣∣∣
2

 (5.6)
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let e′i = |ci|2 − |ĉi|2, therefore,

ξT = E




∣∣∣∣∣
L∑

i=1

e′i

∣∣∣∣∣
2

 =

L∑
i=1

E[|e′i|2] +
∑
k 	=j

E[e′ke
′
j] (5.7)

In Appendix D, the right hand side of the equation has been analyzed carefully, and

the following result is obtained for the total power prediction mean squared error, ξT

ξT = L
(
4
Ω0

L
ξi − 2ξ2

i

)
+ (L2 − L)ξ2

i (5.8)

ξT = 4Ω0ξi + (L2 − 3L)ξ2
i (5.9)

Since ξi = ξflat/L, where ξflat is the MMSE of the complex fading coefficient predic-

tion for L = 1, the ξT is given as

ξT =
(
4
Ω0

L

)
ξflat +

(
1− 3

L

)
ξ2
flat (5.10)

CASE 2:

In this case, we apply linear MMSE prediction directly to the observations of

powers Ω1,Ω2, . . . ,ΩL, where Ωi = |ci|2 represents the power of the fading channel

associated with the i−th multipath component for a given antenna. The total pre-

dicted power will be computed using these individual estimates Ω̂i. This Case (and

Case 3) are particularly useful to investigate for channels with phase ambiguity since

they do not require the knowledge of the phases of the fading coefficients. Each Ωi

has the autocorrelation function [4]:

r(τ) = (Ω0/L)
2J2

0 (2πfdmτ) + (Ω0/L)
2 (5.11)

Our purpose is to find the total power prediction mean squared error, ξT given the
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powers of the fading channel associated with each multipath component such that

ξT = E




∣∣∣∣∣
L∑

i=1

Ωi −
L∑

i=1

Ω̂i

∣∣∣∣∣
2

 = E




∣∣∣∣∣
L∑

i=1

(Ωi − Ω̂i)

∣∣∣∣∣
2

 (5.12)

Let ei = Ωi − Ω̂i, therefore,

ξT = E




∣∣∣∣∣
L∑

i=1

ei

∣∣∣∣∣
2

 =

L∑
i=1

E[|ei|2] +
∑
k 	=j

E[ekej] (5.13)

Again, in Appendix D, the right hand side of the equation has been analyzed

carefully, and the following result is obtained for the total power prediction mean

squared error for this case, ξT

ξT =
Ω2

0

L


1− p∑

j=1

dj


+

Ω2
0

L


1− p∑

j=1

djJ
2
0 (2πfdmjTs)


+(L2−L)

(
Ω0

L

)2

1− p∑

j=1

dj




2

(5.14)

This can be simplified further and the total MMSE for Case 2 is given as:

ξT = Ω2
0


1− p∑

j=1

dj




2

+
Ω2

0

L


1− p∑

j=1

dj





 p∑

j=1

dj


 +

Ω2
0

L


1− p∑

j=1

djJ
2
0 (2πfdmjTs)




(5.15)

CASE 3:

In this approach, we form the linear MMSE prediction of the total power of the

fading channel for each antenna using previous total power samples observed at the

receiver. The total power is given as ΩT = Ω1 + Ω2 + . . . + ΩL. In Appendix D, we
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showed that the autocorrelation function of ΩT is

r(τ) =
Ω2

0

L
J2

0 (2πfdmτ) + Ω2
0 (5.16)

and the MMSE E[|ΩT − Ω̂T |2], for Case 3 can be expressed as (see Appendix 3 for

the derivation)

ξT = Ω2
0


1− p∑

j=1

dj


 +

(
Ω2

0

L

) 
1− p∑

j=1

djJ
2
0 (2πfdmjTs)


 (5.17)

Performance Comparisons of 3 Cases:

In this section, MSEs of the three approaches derived above for the noiseless

case are compared. In our analysis, the total channel power for each antenna is

normalized to 1. To make system parameters consistent with the third-generation

WCDMA system, we assume the carrier frequency is 2 GHz and fdm = 200 Hz.

In the theoretical calculation of the model coefficients, it is required to invert the

autocorrelation matrices obtained from sampling (5.5), (5.11) and (5.16) for Cases

1, 2, and 3, respectively. We found that higher sampling rates fs (e.g., 1.6KHz)

cause matrix singularities when the model p is large. This is due to oversampling

the channel relative to the Nyquist rate of 400 Hz. When we sample the channel by

the rate higher than the Nyquist rate and at the same time use large model order, p,

the matrix becomes over-determined and the solution for LP coefficients dj’s are not

unique. If the sampling rate is chosen closer to 400 Hz, the matrix does not become

singular for large p. In practice, additive noise and the finite observation interval

result in a non-singular matrix. In this comparison of the ideal noiseless MSEs, we

concentrate on cases when the matrix is not singular. This is assured by choosing

sufficiently low fs for a given value of p.
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Figure 5.2: Theoretical prediction MMSE of the total multipath channel power for
model order, p = 50, the channel sampling rate, fs = 500 Hz, and the prediction
range, τ = 2 ms

In Figure 5.2 and Figure 5.3, we fix the prediction range τ = 2 ms, and exam-

ine two choices of prediction parameters. The first selection (p = 50, fs = 500 Hz

in Figure 5.2) corresponds to much larger memory span p/fs than the second set

(p = 15, fs = 1 KHz in Figure 5.3). However, the second selection results in much

lower MSE for Case 1, suggesting that it is beneficial to sample recent observation

at sufficiently high rate (of course 1 KHz is still much lower than the data rate). We
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Figure 5.3: Theoretical prediction MMSE of the total multipath channel power for
model order, p = 15, the channel sampling rate, fs = 1000 Hz, and the prediction
range, τ = 2 ms

find that the total MSEs for all 3 cases decrease as L grows and approach the satu-

ration values that can be determined from (5.10), (5.15), and (5.17). The theoretical

MSEs of cases 2 and 3 for both choices are close enough to be considered as same. In

general, these cases perform much poorer than Case 1 for realistic prediction ranges

and number of paths. However, Case 3 requires only one predictor per antenna, so its

complexity is lower than that of Cases 1 and 2, which require L predictors for each

150



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

10
−8

10
−6

10
−4

10
−2

10
0

M
M

S
E

Prediction Range, τ (ms)

Case 1
Case 2
Case 3
L = 1 
L = 10

Figure 5.4: Theoretical prediction MMSE vs. the prediction range, τ

antenna. Of course, in the presence of phase ambiguity Case 1 is not feasible, and

Case 3 is the better choice.

In Figure 5.4, we consider the MSE performance versus the prediction range for the

sampling rate, fs = 1.6 KHz, and p = 10. We observe that Cases 2 and 3 outperform

Case 1 for sufficiently large prediction range. We also found that as L increases and

fs decreases, this cross-over occurs for a lower value of the prediction range. Thus,

when prediction far ahead is desired, Case 1 is not always the best choice, considering
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its high complexity. However, for most practical applications Case 1 would result in

the best performance.

5.4 Practical Issues - Level Crossing Rates and Average Fade

Durations

In the final section in this thesis, we would like to discuss some practical issues

we would experience in real life. Changing the power level for every symbol interval

might not be very practical from the implementation point of view because of the

limitations on the nonlinear power amplifiers. Therefore, instead of inverting the

channel for every bit, we could just ”invert” the channel once every 50 to 100 bits

depending on the average channel statistics. Two of the most important ones for the

mobile communications are the Level Crossing Rate (LCR) and the Average Fade

Duration (AFD) of the fading channel envelope [4, 7]. These second order statistics

were first introduced by Lee [118] and they are defined as follows.

The envelope LCR, Lρ, is a measure of how often the envelope crosses a specified

level (threshold), ρ. It is defined as a rate at which the envelope crosses level ρ in the

negative (or positive) direction. For the Rayleigh fading channel, the LCR is found

as for a given level, ρ and the maximum Doppler frequency, fdm

Lρ =
√
2πfdm

√
ρe−ρ (5.18)

The AFD, tρ, is a measure of how long the envelope remains below a specified

level, ρ. Similarly, for the Rayleigh fading channel, the AFD can be calculated as

tρ =
eρ − 1√
2πfdm

√
ρ

(5.19)

Note that Lρtρ is the cumulative distribution function (cdf) of α2-power (3.16)
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calculated at a specified level, ρ, i.e.,

Lρtρ = Fα(ρ) = 1− e−ρ (5.20)

For example, for the maximum Doppler frequency, fdm = 100 Hz and the thresh-

old, ρ = 0.1, the corresponding LCR is, Lρ = 72 fades/sec, and the AFD is , tρ = 1.327

msec. In North American Cellular System Standards the symbol interval is, T = 40

µsec. Therefore, the AFD would be, tρ/T = 33 symbols on the average. These statis-

tics can be utilized as follows. If the AFD is 33 symbols for a given Doppler frequency

and a threshold, that means once the signal level is under that threshold the following

33 symbols on the average would be below that threshold value as well. Therefore,

we would rather not to send the whole frame of 50 symbols between the two channel

samples at the low channel sampling rate of 500 Hz when it is predicted to be under

that threshold. These statistics could also be useful from practical point of view when

incorporated into power control schemes, adaptive modulation and coding algorithms

along with the our proposed novel long range prediction technique.
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Chapter 6

Conclusions

This research is an interdisciplinary effort in communication theory, physics, and

signal processing that encompasses novel physical models for multipath fading, chan-

nel prediction and tracking methods, adaptive equalization and power-control algo-

rithms, and the receiver and the transmitter diversity techniques for the current and

evolved wireless communication systems.

In this work, we propose a novel long range fading prediction method by utilizing

the physics of the fast fading channel. We explain the parameters that characterize

the fading channel in Mobile Radio Systems. We give an insight to the fading channel

in terms of important scatterers which allows us a new view to look at the fading

channel deterministically. We describe the prediction algorithm which characterizes

the channel as an autoregressive model (AR) with low sampling rate, and computes

the MMSE estimate of the future fading coefficient sample based on a number of

past observations. Then, we interpolate to get the predicted channel coefficients at

data rate. This algorithm can reliably predict future fading coefficients far beyond

the coherence time for a fading channel with an arbitrary number of scatterers. The

superior performance of our long range prediction method comes from its lower chan-

nel sampling rate (on the order of twice the Doppler shift) unlike the conventional
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methods which assume sampling at data rate for channel modeling and estimation.

The lower rate utilizes the large sidelobes of the autocorrelation function of the fading

process, permitting prediction further in to the future. By using conventional meth-

ods, even with a very accurate coefficient adjustment, it is impossible to specify future

channel coefficients from past observations - the filter length is not long enough. The

potential of long range prediction for fading channels and the performance of the

algorithm are illustrated by considering the parameters involved in the MMSE pre-

diction. We investigate the effect of the sampling rate, prediction range, number of

scaterers, filter length and the SNR on the MMSE of the long range prediction.

The main factors that affect the prediction accuracy of this algorithm are error

propagation (since the previously predicted values used to predict the future fading

coefficients), additive noise and decision - directed tracking, limited number of obser-

vations used in initial acquisition of the LP coefficients (short observation interval),

and limited order p of the AR model. Therefore, Least Mean Squares (LMS) adaptive

tracking method is employed in conjunction with the channel inversion algorithm to

eliminate the error propagation and to mitigate the effect of noisy observations and

other limitations. When the transmitter uses the updated estimates of the adaptive

tracking to predict future fading values, rather than relying on previous estimates, a

considerable improvement is observed in the performance. This adaptive algorithm

enables us to approximate the performance of the theoretical curves.

As well as investigating the long range prediction of the fading channel based on

the observation of the complex valued channel coefficients, we examine the long range

prediction of the fading channel power using the observed power samples. This predic-

tion approach is very useful especially when there is a phase ambiguity in the received

signal and absolute phases are not available. For example, in decision directed chan-
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nel estimation, phase ambiguity requires differential encoding, and absolute phases

are not available. The potential of long range power prediction for fading channels

and the performance of the algorithm are illustrated by considering the parameters

involved in the MMSE prediction. We investigate the effect of the sampling rate,

prediction range, number of scaterers, filter length and the SNR on the MMSE of the

long range power prediction.

This technique is initially developed for flat fading channels. We demonstrated

that how he novel long range prediction provides enabling technology for powerful

techniques both at the transmitter and at the receiver to combat fast fading chan-

nels. Then, we extend the proposed long range prediction technique to the frequency

selective fast fading channels which introduces ISI and large multipath delay spread

to the system. We discuss how to utilize the frequency selectivity of the channel into

our advantage by using a matched filter (MF) followed by an equalizer. Basically, an

equalizer is used to compensate and reduce the ISI introduced by the frequency se-

lective channels. The combination of MF and an equalizer is a way to gain diversity.

The Matched Filter Bounds (MFB) are derived for the general frequency selective

fading channels with arbitrary number of distinct paths, delays and path strengths.

Then, we use this MFB as a reference performance bound in our analysis.

We investigated the estimation of the channel impulse response by using pilot

signaling. Then, we demonstrated the feasibility of the long range prediction of the

channel impulse response of the frequency selective fading channels by using these

estimated channel impulse response coefficients. Two different approaches used for

the long range prediction are introduced and performance comparisons are provided.

The time-variant multipath propagation of the signal through the frequency se-

lective channel results in intersymbol interference (ISI). Therefore, the digital trans-
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mission at a rate exceeding the coherence bandwidth of the frequency selective fading

channel requires equalization at the receiver to compensate and to reduce the ISI. In

most communication systems that employ equalizers, the channel characteristics are

unknown a priori. Furthermore, in many cases, the channel response is time-variant,

as we experience in wireless communication channels. In that case, the equalizers

are designed to be adjustable to the channel response and, for time variant channels,

to be adaptive to the time variations in the channel response. The adjustment of

equalizer coefficients is usually performed adaptively during the transmission of in-

formation by using the decisions at the output of the detector in forming the error

signal for the adaptation. However, these decision directed adaptive techniques fail

to track the variations of the fast fading channels. In this thesis, we investigated how

the novel long range prediction technique enabled more efficient equalizer techniques

at the receiver.

We expanded our research on how we utilize the prior knowledge of the predicted

channel impulse response at the transmitter. It has been shown that there is a big

potential for this technique to be used in more efficient transmitter antenna diversity,

adaptive modulation and adaptive coding. Our work on the long range prediction

of the generalized frequency selective channels provides more insights and flexibility

for these transmitter adaptive techniques. We investigated the transmitter precoder

(preequalizer) to combat the ISI at the transmitter. TH precoding was originally

proposed for a wired communication that does not have a problem of time varying

channel fading observed in wireless communication systems. It also requires the per-

fect knowledge of impulse response of the channel at the transmitter. TH precoder at

the transmitter has the same ISI compensation and the noise suppression advantages

as using a decision feedback equalizer in the receiver, but without its disadvantages
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of error propagation. Since the feedback part is implemented at the transmitter, the

complexity of receiver at the mobile unit is reduced. TH precoders have a further

advantage of interworking easily with power-efficient and bandwith-efficient coded

modulation techniques. Our novel long range prediction capability enabled powerful

transmitter precoders for the fast fading channels as well. New design of the trans-

mitter precoder with the help of long range prediction for the fast fading channels is

discussed in the thesis.

We also studied the effect of our long term prediction and channel inversion tech-

niques on the antenna diversity systems. We address antenna diversity for both flat

and frequency selective channels both at the transmitter and at the receiver. We

show that the further performance improvement is possible when the long rang pre-

diction is implemented. We also extend our results to the Direct Sequence Code

Division Multiple Access (DS/CDMA) channels. DS/CDMA technology is attrac-

tive for wireless access because of its numerous advantages over other multiple access

techniques such as Time Division Multiple Access and Frequency Division Multiple

Access. The proposed WCDMA offers significant improvements over current CDMA

system. These include support of higher rate data services, improved coverage and

capacity due to wider bandwidth and coherent detection, fast and efficient packet ac-

cess control, capability to support multimedia services. One of the novel features of

WCDMA is support for transmitter antenna diversity for the downlink. We present

how to utilize the long range prediction technique to improve the performance of

transmitter diversity systems. In particular, we focus on Selective Transmitter Di-

versity (STD). Using the long range prediction technique, we are able predict both

flat and frequency selective fast fading channels accurately far beyond the coherence

time. This prior knowledge of the channel for the entire duration of the next frame or
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slot provided by long range prediction enable more efficient antenna switching at the

transmitter. In the STD systems for WCDMA, we determine the future total power

for each antenna in order to decide which antenna will be selected for transmission.

However, in contrast to the channels with phase ambiguity, in the proposed 3rd gen-

eration WCDMA systems, coherent channel estimates are available at the receiver

since the pilot channel is used. Therefore, complex fading coefficients associated with

different multipath components and transmitter antennas can serve as observations.

We study the performance of the three approaches to long range power prediction of

the channel power for each transmitter antenna given a sequence of channel obser-

vations associated with that antenna. This information of the future channel power

allows the mobile to make a suitable selection of the base station antenna for the next

transmission interval.

6.1 Impact of the Proposed Research and Future Directions

This research contribute to the theory and practice of wireless communications in

several important ways. The ability to accurately forecast signal fading far beyond

the coherence time opens up a host of new ways to cope with multipath fading.

The new physical models for fading will serve to identify the important scatterers

in various environments and provide insight on how they evolve with time. These

insights can be used to better predict future channel conditions. The novel long range

prediction capability provides enabling technology for more efficient techniques both

at the receiver and at the transmitter to combat both flat and frequency selective

fading channel impairments. The development of mobile communication systems

that can accurately predict and adapt to changing fading conditions would have a

substantial impact on communication technology. This method could provide the
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basis for communication systems that more fully exploit the potential capacity of the

mobile radio channel, and in the process achieve higher spectral efficiency and lower

power requirements. In cellular telephony, a substantial increase in spectral efficiency

would permit more mobile units to access the same base station in a given bandwidth.

Lower power requirements would translate into longer talk time and reduced battery

size.

160



Appendix A

Probability Densities for Flat Fading

When there are large number of closely time-spaced propagation paths in the

medium the time-variant impulse response c(t) can be modeled as a complex-valued

gaussian random process in the t variable. Then, by the central limit theorem, the real

and imaginary parts of c, cI and cQ
1, are independent, zero-mean Gaussian random

processes each having a variance σ2 [5, 7, 9, 16].

c = cI + jcQ = αejθ. (A.1)

The components cI and cQ are described by the bivariate Gaussian distribution with

probability density function (pdf) of

p(cI , cQ) =
1

2πσ2
e−

c2
I
+c2

Q

2σ2 . (A.2)

Then, using the bivariate transformation of random variables, i.e.,

cI = α cos θ

cQ = α sin θ

It follows that

1the time dependence of channel impulse response is implicit.
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α =
√
c2I + c2Q

θ = tan−1(
cQ

cI
)

and the corresponding bivariate transformation of (A.2) in terms of random variables

α and θ is

p(α, θ) =
α

2πσ2
e−

α2

2σ2 . (A.3)

Therefore, the marginal pdf of α, p(α), which is found by calculating the integral∫ 2π
0 p(α, θ)dθ, is given as

p(α) =
α

σ2
e−

α2

2σ2 , 0 ≤ α < ∞ (A.4)

with the corresponding cumulative density function (cdf)

F (α) = 1− e−
α2

2σ2 , 0 ≤ α < ∞. (A.5)

and the first and second moments

E(α) =
∫ ∞
−∞ αp(α)dα =

√
π
2
σ

E(α2) =
∫ ∞
−∞ α2p(α)dα = 2σ2.

The pdf of the power of fading channel, p(α2), can be found by defining g(x) =

y = α2, and applying appropriate transformation [92]

p(y) =
1

2σ2
e−

y

2σ2 , 0 ≤ y < ∞ (A.6)

Therefore, pdf of the power of fading channel, α2, is given by an exponential distri-

bution

p(α2) =
1

2σ2
e−

α2

2σ2 , 0 ≤ α2 < ∞ (A.7)
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with E(α2) = 2σ2.

Furthermore, when the channel inversion technique is applied as explained in

chapter 3, we need to know the pdf of the inverted power to investigate the effect of

power inversion process. Let z = 1/y where p(y) is given in (A.6). Therefore, the pdf

of z is found as

p(z) =
1

z2

1

2σ2
e−

1
z2σ2 , 0 ≤ z < ∞ (A.8)

Or equivalently, the pdf of inverted power, p( 1
α2 ) is given as

p
(
1

α2

)
=

α4

2σ2
e−

α2

2σ2 , 0 ≤ 1

α2
< ∞ (A.9)

However, E( 1
α2 ) =

∫ ∞
−∞ zp(z)dz = ∞ which makes channel inversion impossible to

apply. In order to overcome this limitation we introduce the concept of the threshold,

ρ, in our encoding algorithm described in chapter 3. From now on we will assume

average channel power, E(α2) = 2σ2 = 1. With the given ρ, the conditional pdf of z

is found as

p(z | z > ρ) =
1

e−ρ

1

z2
e−

1
z , ρ ≤ z < ∞ (A.10)

In other words, the new conditional pdf of the inverted power is found as

p

(
1

α2
| 1

α2
<

1

ρ

)
=

α4

e−ρ
e−α2

, 0 ≤ 1

α2
<

1

ρ
. (A.11)

Then, the corresponding the finite average power calculated as

E

(
1

α2
| 1

α2
<

1

ρ

)
=

1

e−ρ
Γinc(0, ρ) (A.12)
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where Γinc is the incomplete gamma function defined as Γinc(0, ρ) =
∫ 1/ρ
0

e−1/x

x
dx [119].

For any given ρ, Γinc(0, ρ) can be calculated numerically or using the standard tables

for Γinc. (Note that, limρ→0 Γinc(0, ρ) → ∞.)
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Appendix B

Probability Densities for Frequency

Selective Fading

We will derive the probability densities for frequency selective channel used in

this report. The results are given for 2-path model (path A) and (path B) with

relative delay τ = T (Figure 4.1). As derived in Appendix A. each path (A and B)

has envelope, α, phase, θ, and instantaneous power, |c|2 = α2, have Rayleigh, uniform

and exponential distributions, respectively

p(αA) =
αA

σ2
A

e
− α2

A
2σ2

A , 0 ≤ αA < ∞ (B.1)

p(θA) =
1

2π
, 0 ≤ θA ≤ 2π (B.2)

p(α2
A) = p(|cA|2) = 1

2σ2
A

e
− |cA|2

2σ2
A , 0 ≤ |cA|2 < ∞ (B.3)

Similarly, the distributions for Path B can be obtained simply changing the index A

to B.

At the receiver, the output of the MF is given by

|cT |2 = |cA|2 + |cB|2. (B.4)
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Assuming an equal power for each path A and B, i.e., σ2
A = σ2

B = σ2
P , pdf of |cT |2 is

given by the convolution of the pdfs of the each path (B.3), A and B,

p(|cT |2) = p(|cA|2) ∗ p(|cB|2)

=
∫ |cT |2

0

1

2σ2
P

e
− x

2σ2
P

1

2σ2
P

e
− |cT |2−x

2σ2
P dx

Calculating the integral above, it can be found that

p(|cT |2) = 1

(2σ2
P )

2
|cT |2e−

|cT |2
2σ2

P , 0 ≤ |cT |2 < ∞. (B.5)

The expected value of |cT |2 is also calculated as letting y = |cT |2

E(|cT |2) =
∫ ∞

−∞
yp(y)dy = 2(2σ2

P ) (B.6)

Moreover, when the channel inversion technique is applied as explained in chapter

4, we need to know the pdf of the inverted power to investigate the effect of power

inversion process. Let z = 1
|cT |2 where p(|cT |2) is given in (B.5). By applying the

appropriate transformation [92], the pdf of z is found as

p(z) =
1

(2σ2
P )

2

1

z3
e
− 1

z2σ2
P , 0 ≤ z < ∞ (B.7)

or

p

(
1

|cT |2
)
=

1

(2σ2
P )

2
(|cT |2)3e−

|cT |2
2σ2

P , 0 ≤ 1

|cT |2 < ∞ (B.8)

with E( 1
|cT |2 ) =

1
2σ2

P
.

Furthermore, when we introduce threshold, ρ, the new pdf of the inverted power
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for a given ρ is found as

p

(
1

|cT |2 | 1

|cT |2 <
1

ρ

)
=

1

(2σ2
P )

2
(|cT |2)3e−

|cT |2
2σ2

P
1

e
ρ

2σ2
P (1 + ρ

2σ2
P
)
, 0 ≤ 1

|cT |2 <
1

ρ

(B.9)

with the average power given as

E

(
1

|cT |2 | 1

|cT |2 <
1

ρ

)
=

1

ρ+ 2σ2
P

. (B.10)
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Appendix C

Phase Alignment Technique

In block adaptation scheme, the start of each data frame contains a known training

sequence or pilot symbols which are used to estimate the channel impulse response

(CIR). An interpolation technique is used to obtain the CIR variations between suc-

cessive CIR estimates. When the data in this system is differentially encoded, the

successive CIR estimates have an inherent phase ambiguity. In order to the remove

the phase ambiguity between the successive CIR estimates, a phase alignment tech-

nique has been developed as follows:

The method we used is to do phase interpolation. Suppose there are three chan-

nel estimates c1, c2, and c3. On account of the differential encoding, there is a

phase ambiguity with each of the estimates having one of the following four values,

{π/4, 3π/4,−π/4,−3π/4}. The goal is to eliminate phase ambiguity between the

three channel estimates (and not to find the true phase). This can be done in the

following manner:

- Assume c1 as the reference.

- Using c1 and c3e
jkπ/4, where k = {1,−1, 3,−3}, use interpolation to estimate c′2

and compare with the four possible orientations c2e
jmπ/4, where m = {1,−1, 3,−3}.

The value of k, m that produce the best fit is the most likely values to produce the
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desired phase alignment.

- Alternatively, one can use c1 and c2 and extrapolate to obtain c3, thereby achiev-

ing the same desired effect.
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Appendix D

Analysis of Three Different Approaches to

the Prediction of the Total Channel Power

In this Appendix, three approaches to the long range prediction of the total chan-

nel power for each transmitter antenna are exploited given a sequence of past channel

observations associated with that antenna. We start with some background infor-

mation for the MMSE of the Linear Prediction. Given a sequence of past channel

observations, c(n− k), k = 1, . . . , p, we predict the future channel coefficient, ĉ(n) as

ĉ(n) =
p∑

k=1

d(k)c(n− k) (D.1)

We are required to find Linear Prediction (LP) Filter coefficients, d(k), that minimizes

the mean squared error (MSE), ξ, such that

ξ = E[|e(n)|2] = E[|c(n)− ĉ(n)|2] (D.2)

In order to find a set of filter coefficients to minimize ξ, it is necessary and sufficient

that the derivative of ξ with respect to d∗(k) be equal to zero for k = 1, . . . , p, i.e.,

δξ

δd∗(k)
=

δ

δd∗(k)
E[e(n)e∗(n)] = E

[
e(n)

δe∗(n)
δd∗(k)

]
= 0 (D.3)

170



Substituting e(n) = c(n)− ∑p
k=1 d(k)c(n− k), it follows that

δe∗(n)
δd∗(k)

= −c∗(n− k) (D.4)

and Eqn. (D.3) becomes

E[e(n)c∗(n− k)] = 0, k = 1, . . . , p (D.5)

This equation is also known as orthogonality principle. Therefore, minimum MSE

(MMSE)of the prediction of c(n) is evaluated as follows: First, we write the Eqn.

(D.2) more explicitely such that

ξ = E[|e(n)|2] = E

[
e(n)

(
c(n)−

p∑
k=1

d(k)c(n− k)

)∗]

= E[e(n)c∗(n)]−
p∑

k=1

d(k)E[e(n)c∗(n− k)]

Recall that if d(k) is the solution of the Weiner-Hoph equations, then from the or-

thogonality principle (see Eqn. (D.5)), the MMSE is given as

ξmin = E[e(n)c∗(n)] (D.6)

Futhermore, writing Eqn (D.6) more explicitely, we obtain

ξmin = E

[(
c(n)−

p∑
k=1

d(k)c(n− k)

)
c∗(n)

]

= E[c(n)c∗(n)]−
p∑

k=1

d(k)E[c(n− k)c∗(n)]

= r(0)−
p∑

k=1

d(k)r(k)
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where r(k) = E[c(n − k)c∗(n)] is the autocorrelation function. Now, after review-

ing the fundementals of the MMSE, we analyze three approaches to the long range

prediction of the total channel power:

CASE 1:

In this approach, each future complex Gaussian fading coefficient ck(t) is pre-

dicted separately for each path and each antenna, and the total predicted power for

each antenna is calculated using these estimates. These future predicted samples are

denoted as ĉ1, ĉ2, . . . ĉL. The autocorrelation function of each component is [4]:

rj = (1/L)(Ω0/2)J0(2πfdmjTs) (D.7)

where E[|ci|2] = Ω0/L. The prediction MMSE per component is ξi = E[|ei|2], where
ei = ci − ĉi. Now, we will explain the steps to find the total power prediction mean

squared error, ξT . The total power prediction mean squared error is defined as

ξT = E




∣∣∣∣∣
L∑

i=1

|ci|2 −
L∑

i=1

|ĉi|2
∣∣∣∣∣
2

 = E




∣∣∣∣∣
L∑

i=1

(|ci|2 − |ĉi|2)
∣∣∣∣∣
2

 (D.8)

let e′i = |ci|2 − |ĉi|2, therefore,

ξT = E




∣∣∣∣∣
L∑

i=1

e′i

∣∣∣∣∣
2

 =

L∑
i=1

E[|e′i|2] +
∑
k 	=j

E[e′ke
′
j] (D.9)

Now, we will calculate each component individually to find final ξT . We will examine

the first term in Step 1 and the second term in Step 2.

Step 1: Express

ξ′i = E[|e′i|2] = E[|ci|4] + E[|ĉi|4]− 2E[|ci|2|ĉi|2] (D.10)

Again, the first, the second and the third terms will be calculated individually in Step

1.1, Step 1.2, and Step 1.3 respectively.
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Step 1.1: For the Rayleigh fading channel, ci has complex Gaussian distribution

with E[|ci|2] = Ω0/L. Therefore, the forth order statistics for the Gaussian distribu-

tion is given as

E[|ci|4] = 2
(
Ω0

L

)2

(D.11)

Step 1.2: From Eqn. (D.1), it is observed that ĉi is a linear combination of ci.

Since ci has complex Gaussian distribution, ĉi also has complex Gaussian distribution.

By definition

ξi = E[|ei|2] = E[|ci − ĉi|2]

= E[|ci|2] + E[|ĉi|2]− E[ciĉ
∗
i ]− E[c∗i ĉi]

Moreover, using Eqn. (D.6), i.e., ξi = E[eic
∗
i ], we can calculate

E[ciĉ
∗] = E[c∗i ĉ] = E[|ci|2]− E[eic

∗
i ] = E[|ci|2]− ξi (D.12)

Therefore,

ξi = E[|ci|2] + E[|ĉi|2]− 2(E[|ci|2]− ξi) (D.13)

ξi = E[|ci|2]− E[|ĉi|2] (D.14)

Consequently, E[|ĉi|2] = E[|ci|2] − ξi = Ω0/L − ξi. Since ĉi has complex Gaussian

distribution with E[|ĉi|2] = Ω0/L − ξi, the forth order statistics for the Gaussian

distribution is given as

E[|ĉi|4] = 2
(
Ω0

L
− ξi

)2

(D.15)

Step 1.3: Given e′i = |ci|2 − |ĉi|2 and ξ′i = E[|e′i|2], ξ′i can also be represented by

using Eqn. (D.6) as ξ′i = E[|ci|2e′i]. Therefore,

E[|ci|2|ĉi|2] = E[|ci|2(|ci|2 − e′i)] = E[|ci|4]− E[|ci|2e′i] (D.16)
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E[|ci|2|ĉi|2] = E[|ci|4]− ξ′i (D.17)

Therefore, combining steps 1.1, 1.2, and 1.3, we obtain the result the result of

step 1 for Eqn. (D.10) such that

ξ′i = E[|ci|4] + E[|ĉi|4]− 2(E[|ci|4]− ξ′i) (D.18)

ξ′i = E[|ci|4]− E[|ĉi|4] (D.19)

ξ′i = 2
(
Ω0

L

)2

− 2
(
Ω0

L
− ξi

)2

(D.20)

ξ′i = 4
Ω0

L
ξi − 2ξ2

i (D.21)

Step 2: Sice ci are iid, ĉi are also iid. Similarly, |ci|2 and |ĉi|2 are also iid. Therefore,
e′i = |ci|2 − |ĉi|2 are iid. Consequently, E[e′ke′j] = E[e′k]E[e

′
j]. Moreover,

E[e′i] = E[|ci|2 − |ĉi|2] = E[|ci|2]− E[|ĉi|2] = ξi (D.22)

Then, we obtain

E[e′ke
′
j] = ξ2

i (D.23)

Then, we will combine the results of step 1 (Eqn. (D.21)) and step 2 (Eqn.

(D.23))to obtain ξT . Therefore, Eqn. (D.9) is found as

ξT = L
(
4
Ω0

L
ξi − 2ξ2

i

)
+ (L2 − L)ξ2

i (D.24)

ξT = 4Ω0ξi + (L2 − 3L)ξ2
i (D.25)

Finally, since ξi = ξflat/L, where ξflat is the MMSE of the complex fading coefficient

prediction for L = 1, the ξT is given as

ξT =
(
4
Ω0

L

)
ξflat +

(
1− 3

L

)
ξ2
flat (D.26)
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CASE 2:

In this case, we apply linear MMSE prediction directly to the observations of

powers Ω1,Ω2, . . . ,ΩL, where Ωi = |ci|2 represents the power of the fading channel

associated with the i−th multipath component for a given antenna. The total pre-

dicted power will be computed using these individual estimates Ω̂i. Each Ωi has the

autocorrelation function [4]:

r(τ) = (Ω0/L)
2J2

0 (2πfdmτ) + (Ω0/L)
2 (D.27)

The total prediction MMSE is

ξT = E




∣∣∣∣∣
L∑

i=1

Ωi −
L∑

i=1

Ω̂i

∣∣∣∣∣
2

 = E




∣∣∣∣∣
L∑

i=1

(Ωi − Ω̂i)

∣∣∣∣∣
2

 (D.28)

Let ei = Ωi − Ω̂i, therefore,

ξT = E




∣∣∣∣∣
L∑

i=1

ei

∣∣∣∣∣
2

 =

L∑
i=1

E[|ei|2] +
∑
k 	=j

E[ekej] (D.29)

Since ei are iid,

ξT = (L)E[|ei|2] + (L2 − L)E[ek]E[ej] (D.30)

Furthermore,

E[|ei|2] = r0 −
p∑

j=1

djrj (D.31)

E[|ei|2] =
(
Ω0

L

)2

−
p∑

j=1

dj

[(
Ω0

L

)2

J2
0 (2πfdmjTs) +

(
Ω0

L

)2
]

(D.32)

E[|ei|2] =
(
Ω0

L

)2

1− p∑

j=1

dj


 +

(
Ω0

L

)2

1− p∑

j=1

djJ
2
0 (2πfdmjTs)


 (D.33)
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Moreover, E[ei] can be found as

E[ei] = E[Ωi]− E[Ω̂i] (D.34)

E[ei] = E[Ωi]−
p∑

k=j

djE[Ωi] (D.35)

E[ei] =
(
Ω0

L

) 
1− p∑

j=1

dj


 (D.36)

Then incorporating Eqn. (D.33) and Eqn. (D.36) into Eqn. (D.30), we obtain

ξT =
Ω2

0

L


1− p∑

j=1

dj


+

Ω2
0

L
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j=1

djJ
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dj
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(D.37)

Finally, Eqn. (D.37) can be simplified further and the total MMSE for Case 2 is given

as:

ξT = Ω2
0
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j=1

dj




2

+
Ω2

0

L


1− p∑

j=1

dj





 p∑

j=1

dj


 +

Ω2
0

L


1− p∑

j=1

djJ
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(D.38)

CASE 3:

In this approach, we form the linear MMSE prediction of the total power of the

fading channel for each antenna using previous total power samples observed at the

receiver. The total power is given as ΩT = Ω1 + Ω2 + . . . + ΩL. First, we find the

autocorrelation function of ΩT which is defined as

r(τ) = E[ΩT (t)ΩT (t+ τ)] (D.39)

r(τ) = E[(Ω1(t)+Ω2(t)+ . . .+ΩL(t))((Ω1(t+τ)+Ω2(t+τ)+ . . .+ΩL(t+τ))] (D.40)
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r(τ) =
L∑

i=1

E[Ωi(t)Ωi(t+ τ)] +
∑
k 	=j

E[Ωk(t)Ωj(t+ τ)] (D.41)

Furthermore, since Ωk and Ωj are iid, for k �= j

E[Ωk(t)Ωj(t+ τ)] = E[Ωk(t)]E[Ωj(t+ τ)] =
(
Ω0

L

)2

(D.42)

And, E[Ωi(t)Ωi(t+ τ)] is given as

E[Ωi(t)Ωi(t+ τ)] =
(
Ω0

L

)2

J2
0 (2πfdmτ) +

(
Ω0

L

)2

(D.43)

Therefore, the autocorrelation function of ΩT is found as

r(τ) = L
(
Ω0

L

)2

J2
0 (2πfdmτ) + L

(
Ω0

L

)2

+ (L2 − L)
(
Ω0

L

)2

(D.44)

r(τ) =
Ω2

0

L
J2

0 (2πfdmτ) + Ω2
0 (D.45)

Finally, the MMSE, E[|ΩT − Ω̂T |2], for Case 3 can be found as

ξT = r0 −
p∑

j=1

djrj (D.46)
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(D.47)

ξT = Ω2
0
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 (D.48)
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[15] T. Eyceöz, A. Duel-Hallen, and H. Hallen. ”Using the Physics of the Fast
Fading to Improve Performance for Mobile Radio Channels”. Proceedings of
the IEEE International Symposium on Information Theory, page 159, 1998.

[16] W. C. Jakes. Microwave Mobile Communications. John Wiley and Sons, New
York, 1993.

[17] P. Dent, G. E. Bottomley, and T. Croft. ”Jakes Fading Model Revisited”.
Electronics Letters, 29(13):1162–1163, June 1993.

[18] E. F. Casas and C. Leung. ”A Simple Digital Fading Simulator for Mobile
Radio”. In Proceedings of VTC, pages 212–217, Sept. 1988.

[19] J. Lin, J. G. Proakis, F. Ling, and H. Lev-Ari. ”Optimal Tracking of Time-
Varying Channels: A Frequency Domain Approach for Known and New Algo-
rithms”. IEEE Transactions on Selected Areas in Communications, 13(1):141–
154, January 1995.

[20] R. Haeb and H. Mayr. ”A Systematic Approach to Carrier Recovery and Detec-
tion of Digitally Phase Modulated Signals on Fading Channels”. IEEE Trans-
actions on Communications, 37(7):748–754, July 1989.

[21] L. Lindbom. ”Simplified Kalman Estimation of Fading Mobile Radio Chan-
nels: High Performance at LMS Computational Load”. Proceedings of IEEE
ICASSP, 3:352–355, April 1993.

[22] Z. Zvonar and M. Stanjovic. ”Performance of Antenna Diversity Multiuser
Receivers in CDMA Channels with Imperfect Channel Estimation”. Wireless
Personal Communications Journal, pages 91–110, July 1996.

[23] H. Y. Wu and A. Duel-Hallen. ”Performance Comparison of Multiuser De-
tectors with Channel Estimation for Flat Raleigh Fading CDMA Channels”.
Special Issue on Interference in Mobile Wireless Systems, Wireless Personal
Communications Journal, 6(12):137–160, January 1998.

[24] H. Y. Wu. ”Multiuser Detection and Channel Estimation for Flat Raleigh Fad-
ing CDMA Channels”. PhD thesis, North Carolina State Univ., December
1996.

179



[25] R. A. Iltis. ”Joint estimation of PN code delay and multipath using extended
Kalman filter”. IEEE Trans. Commun., 38(10):1677–1685, October 1990.

[26] S. Vasudevan and M. Varanasi. ”Receivers for CDMA communication over
time-varying Rayleigh fading channel”. Proc. CTMC’93, Globecom’93, Hous-
ton, TX,, pages 60–64, Nov. 29-Dec. 2 1993.

[27] M. K. Tsatsanis, G. B. Giannakis, and G. Zhou. ”Estimation and equalization
of fading channels with random coefficients”. Signal Processing, 53(2-3):211–
229, September 1996.

[28] Y. Liu and S. D. Blostein. ”Identification of frequency non-selective fading
channels using decision feedback and adaptive linear prediction”. IEEE Trans.
Commun., 43(2-3-4):1484–1491, Feb/March/April 1994.

[29] A. N. A’Andrea, A. Diglio, and U. Mengali. ”Symbol-aided channel estima-
tion with nonselective Rayleigh fading channels”. IEEE Trans. Veh. Technol.,
44(1):41–49, Feb. 1995.

[30] G. Colman, S. Blostein, and N. Beaulieu. ””An ARMA multipath fading sim-
ulator”. Wireless Personal Communications, pages 37–48, 1997.

[31] B. D. O. Anderson and J. R. Moore. Optimal Filtering. Prentice-Hall, 1979.

[32] M. K. Tsatsanis and G. B. Giannakis. ”Modeling and equalization of rapidly
fading channels”. Int. J. Adaptive Control and Signal Processing, 10(2-3):159–
176, March 1996.

[33] M. K. Tsatsanis and G. B. Giannakis. ”Equalization of rapidly fading channels:
Self-recovering methods”. IEEE Trans. Commun., 44(5):619–630, May 1996.

[34] L. Lindbom. ””Adaptive equalization for fading mobile radio channels”. Mas-
ter’s thesis, Uppsala University, Sweden,, 1992.
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