
Abstract

LU, KAIFENG. Estimation of Regression Coefficients in the Competing Risks Model with

Missing Cause of Failure. (Under the direction of Dr. Anastasios A. Tsiatis.)

In many clinical studies, researchers are interested in the effects of a set of prognostic

factors on the hazard of death from a specific disease even though patients may die from

other competing causes. Often the time to relapse is right-censored for some individuals

due to incomplete follow-up. In some circumstances, it may also be the case that patients

are known to die but the cause of death is unavailable. When cause of failure is missing,

excluding the missing observations from the analysis or treating them as censored may yield

biased estimates and erroneous inferences. Under the assumption that cause of failure is

missing at random, we propose three approaches to estimate the regression coefficients.

The imputation approach is straightforward to implement and allows for the inclusion of

auxiliary covariates, which are not of inherent interest for modeling the cause-specific haz-

ard of interest but may be related to the missing data mechanism. The partial likelihood

approach we propose is semiparametric efficient and allows for more general relationships

between the two cause-specific hazards and more general missingness mechanism than the

partial likelihood approach used by others. The inverse probability weighting approach is

doubly robust and highly efficient and also allows for the incorporation of auxiliary covari-

ates. Using martingale theory and semiparametric theory for missing data problems, the

asymptotic properties of these estimators are developed and the semiparametric efficiency

of relevant estimators is proved. Simulation studies are carried out to assess the perfor-

mance of these estimators in finite samples. The approaches are also illustrated using the

data from a clinical trial in elderly women with stage II breast cancer. The inverse proba-

bility weighted doubly robust semiparametric estimator is recommended for its simplicity,

flexibility, robustness and high efficiency.

Key words: Cause-specific hazard; Doubly robust; Imputation; Influence function;

Inverse probability weighting; Locally efficient; Missing at random;

Partial likelihood; Proportional hazards model; Semiparametric model.
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Chapter 1

Multiple Imputation Approach

1.1 Introduction

In many clinical studies where time to failure is of primary interest, patients may fail or die

from one of many causes. For example, in a clinical trial that compares different therapies for

breast cancer, interest may focus on death from breast cancer even though patients may die

from other causes. A routine objective is to assess the effects of a set of prognostic covariates

on the hazard rate of time to failure due to the cause of interest. In many studies, the cause

of death information may be censored due to incomplete follow-up. In some circumstances,

it may also be the case that patients are known to die but the cause of death is unavailable,

e.g., whether death is attributable to the cause of interest or other causes may require

documentation with information that is not collected or lost or cause may be difficult for

investigators to determine for some patients (Andersen, Goetghebeur, and Ryan, 1996). If

there were no missing cause of failure, the standard proportional hazards model can be used

to model the cause-specific hazard of interest and the regression coefficients can be estimated

using maximum partial likelihood estimators (Cox, 1972, 1975). However, when cause of

failure is missing, excluding the missing observations from the analysis or treating them as

censored may yield biased estimates and erroneous inferences. With missing cause of failure,

Goetghebeur and Ryan (1995) proposed an approach by making assumptions directly on

the relationship between the cause-specific hazard of interest and that of competing causes;

these are assumed proportional, although this may be relaxed.

In this article, we use parametric models to model the probability that a missing cause

is that of interest while allowing the inclusion of additional auxiliary covariates and we use

multiple imputation procedures (e.g., Rubin, 1987, 1996; Wang and Robins, 1998) to impute

missing cause of failure. On the basis of each of several imputed data sets, maximum partial

likelihood estimators are computed and combined. In Section 1.2, we describe notation and

the assumption of missing at random. In Section 1.3, we outline the imputation procedure.
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In Section 1.4, we state asymptotic properties of imputation estimators with proofs sketched

out in the Appendix. In Section 1.5, we provide simulation results to show the relevance

of the theory in finite samples. In Section 1.6, we illustrate the results using data from a

clinical trial in stage II breast cancer. In Section 1.7, we give a brief discussion.

1.2 Notation and Assumptions

In this article, we will consider the situation where individuals may fail or die from one of

two specific causes, one of which is of interest. The cause of interest will be referred to

as cause 2 and all other causes of death will be combined and referred to as cause 1. If

there was no censoring, the cause of death data could be summarized as (T ∗,∆∗), where T ∗

denotes the time to death and ∆∗ denotes the cause of death, taking on values one or two.

A set of covariates X is also defined with the primary goal of modeling the cause-specific

hazard for the cause of interest to these covariates, namely

λ∗(t|x) = lim
h→0

h−1P (t ≤ T ∗ < t+ h,∆∗ = 2|T ∗ ≥ t,X = x).

A popular model for this relationship is the proportional hazards model, which assumes

that

λ∗(t|x) = λ(t)eβ
T x, (1.1)

where β is the q-dimensional vector of regression coefficients and λ(t) is the unspecified

baseline hazard for the cause of interest. For example, X may represent the indicator

variable for treatment assignment and other baseline characteristics.

Because of incomplete follow-up, cause of death data are often censored by a variable

C, in which case the data we observe can be summarized by the variables T = min(T ∗, C)

and ∆, which equals ∆∗ if T ∗ ≤ C and equals zero if T ∗ > C, i.e., T is the time to failure

or censoring and ∆ is the failure-censoring indicator taking on values zero, one, or two.

To avoid nonidentifiability problems, we assume that C is conditionally independent of

(T ∗,∆∗) given X, in which case the observable cause-specific hazards for causes 1 and 2, in

the presence of censoring, defined as

λd(t|x) = lim
h→0

h−1P (t ≤ T < t+ h,∆ = d|T ≥ t,X = x), d = 1, 2,

are the same as the cause-specific hazards of interest. In particular, λ(t|x) = λ∗(t|x). With

a sample of data (Ti,∆i, Xi), i = 1, . . . , n, the parameter β in the proportional hazards

model can be estimated using the maximum partial likelihood estimator after treating the

values Ti observed for individuals whose ∆i is equal to zero or one as censored times.

If an individual dies and cause of failure information is not collected, classification is

uncertain; hence, we define the missingness indicator Ri = 1 if ∆i is known and Ri = 0

2



otherwise. Assume that, if a subject is censored, this is known, so ∆i = 0 implies Ri = 1

and Ri = 0 implies ∆i = 1 or 2. Unlike previous methods, we may also define auxiliary

covariates Ai, which are not of inherent interest for modeling the cause-specific hazard

of interest but may be related to the missingness mechanism. For example, Ai may be

some post-treatment variable that may be related to the reason why the cause of death

information was not collected but that would not be included in the model because it may

affect the causal interpretation associated with the parameters for treatment effects. The

observed data are then Oi = (Ri, Ti,∆i, Xi, Ai) if Ri = 1 and Oi = (Ri, Ti, Xi, Ai) if Ri = 0,

independent across i.

The imputation procedure relies on the assumption of missing at random, or the prob-

ability that cause of failure is missing given ∆i(> 0) and Wi = (Ti, Xi, Ai) depends only on

Wi, the information always observed on all subjects, and not on the unobserved ∆i,

P (Ri = 0|Wi,∆i > 0,∆i) = P (Ri = 0|Wi,∆i > 0).

This assumption stipulates thatRi and ∆i are independent given {Wi, I(∆i > 0)}, expressed

equivalently as

P (∆i = 2|Wi,∆i > 0, Ri = 0) = P (∆i = 2|Wi,∆i > 0, Ri = 1)

= P (∆i = 2|Wi,∆i > 0). (1.2)

The proposed imputation method exploits (1.2) as discussed in the next section.

Ordinarily, if no causes of failure are missing, auxiliary covariates are not used in es-

timating β. When cause of failure is missing for some subjects, the assumption that it is

missing at random depending only on I(∆i > 0) and (Ti, Xi) may be untenable. However, it

may be possible to identify auxiliary covariates such that the missing at random assumption

is plausible if Ai is included as above. The proposed approach allows information from such

Ai to be exploited to impute missing causes.

1.3 Imputation Procedure

As is customary, to form a completed data set, missing Di = I(∆i = 2) values are imputed

from the distribution of Di conditional on the observed data. This distribution is Bernoulli

with success probability P (∆i = 2|Wi,∆i > 0, Ri = 0), which, by (1.2), equals P (∆i =

2|Wi,∆i > 0) = %(Wi), say. We will assume that %(Wi) may be specified as a parametric

model in terms of a few unknown parameters γ and %(Wi) = %(Wi, γ0), where γ0 is the true

value of γ. A natural choice is the logistic regression model, logit %(Wi, γ) = W T
i γ, but

we can make the model as flexible as necessary to give a reasonable fit to the true model

3



of %(Wi), induced above, by choosing a suitable parametric model. For example, we might

include higher order polynomials and interaction terms for %(Wi, γ).

From (1.2), the success probability for the imputation, which equals %(Wi, γ0), is identi-

cal to P (∆i = 2|Wi,∆i > 0, Ri = 1). This suggests that %(Wi, γ0), and hence the imputation

probability, may be deduced from the completed cases for whom (Ri = 1,∆i > 0). In par-

ticular, under the parametric model %(Wi, γ), the maximum likelihood estimator γ̂ of γ may

be obtained by fitting the model to the completed cases only, thus providing an estimate of

P (∆i = 2|Wi,∆i > 0, Ri = 0).

For given γ, let Dij(Ri, γ) be the imputation of Di from the jth imputed data set. If

cause of failure is known (Ri = 1), we take Dij(Ri, γ) to be Di. If cause of failure is missing

(Ri = 0), we randomly choose Dij(Ri, γ) to be one or zero with probabilities %(Wi, γ) and

{1 − %(Wi, γ)}, respectively.

The joint distribution of (Wi, Di) and {Wi, Dij(Ri, γ0)} may be seen to be the same.

When Ri = 1, Dij(Ri, γ0) = Di, and when Ri = 0, {Wi, I(∆i > 0)} arise from the distri-

bution of the observed data and Dij(Ri, γ0) from the conditional distribution of Di given

the observed data, so that Dij(Ri, γ0) is a draw from the joint distribution of the full data.

Therefore, if true parameters and a parametric model for % were known, then a single im-

putation of any missing data is as good as if you could conduct the experiment with no

missingness.

Since γ̂ is the maximum likelihood estimator for γ, then for a correctly specified model

%(Wi, γ), it is consistent and we can treat it as if it were the true parameter. Because we can

now generate data that are asymptotically as good as the original experiment, we can fit

the proportional hazards model to a completed data set. We can carry out the imputation

procedure multiple times and average the maximum partial likelihood estimators. The

resulting estimator is the multiple imputation estimator we propose. Because each estimate

is consistent, their average is also.

Although Rubin (1987) suggests a method for estimating the variance of the average

of quantities from m imputed data sets, it is not appropriate here; because we generate

imputations from the conditional distribution of missing data given the observed evaluated

at γ̂, where γ̂ is held fixed across j, our imputation is not proper in the sense of Rubin (1987).

Results of Wang and Robins (1998) indicate that under these conditions, which they refer

to as type B multiple imputation, Rubin’s variance expression will yield an inconsistent

estimator for the true sampling variance. Consequently, we derive a variance estimator

directly which accounts for all sources of variability, including the variability in γ̂.

We would like to make a few remarks regarding the probability model %(Wi, γ). It is

easy to show that %(Wi) = P (∆i = 2|Wi,∆i > 0) is related to the ratio of cause-specific
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hazards for the two failure types, conditional on (X,A) and with w = (t, x, a), by

λ(t|x, a)
λ1(t|x, a)

=

{

%(w)

1 − %(w)

}

. (1.3)

This implies that the functional relationship of %(Wi) to Wi is induced from the ratio of

cause-specific hazards. Note that the cause-specific hazards in (1.3) are conditional on both

the covariates of interest X and the auxiliary covariates A and may not necessarily be the

same as the cause-specific hazard of interest given in (1.1), which only conditions on X.

For convenience, we have used a parametric model to model a relationship which is of no

inherent interest to us and one which would be left arbitrary if there were no missing cause

of death information. Therefore, as pointed out by Satten, Datta, and Williamson (1998),

it will be important to examine the robustness of our estimator to misspecification of this

probability model. This issue, although difficult to establish theoretical properties for, will

be considered empirically in Section 5.

1.4 Asymptotic Properties

In establishing the consistency and asymptotic normality of imputation estimators, we

assume that both the proportional hazards model (1.1) and the model for the probability

that a missing cause is that of interest %(Wi, γ) are correctly specified. The results are listed

below while the proofs are outlined in Appendix A.

Let

µX(t) =
E{XeβT0 XI(T ≥ t)}
E{eβT0 XI(T ≥ t)}

.

Also denote %γ(W ) as the derivative of %(W,γ) with respect to γ evaluated at γ0, and

Iγ = E

[

{%γ(W )}⊗2P (R = 1,∆ > 0|W )

%(W ){1 − %(W )}

]

.

Proposition 1 Each single imputation estimator, β̂j(j = 1, . . . ,m), is consistent and

n1/2(β̂j−β0) is asymptotically normal with asymptotic variance equal to V −1
S VSIV

−1
S , where

VSI = VS + E[{X − µX(T )}P (∆ > 0|W )%Tγ (W )]I−1
γ

E[%γ(W )P (∆ > 0|W ){X − µX(T )}T ]

−E[{X − µX(T )}P (R = 1,∆ > 0|W )%Tγ (W )]I−1
γ

E[%γ(W )P (R = 1,∆ > 0|W ){X − µX(T )}T ],

and VS =
∫

E[{X − µX(t)}⊗2eβ
T
0
XI(T ≥ t)]λ(t)dt is the asymptotic variance of the score

in the absence of missing cause of failure.
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The variability of γ̂ plays a role in both the second term and the third term, while the

missingness contributes to their nonnegative difference. Without missing cause of failure,

the second term and the third term are identical and would vanish, leaving VSI = VS , which

leads to the familiar asymptotic results for partial likelihood estimators for the proportional

hazards model.

Proposition 2 The multiple imputation estimator, β̂, is consistent and n1/2(β̂ − β0) is

asymptotically normal with asymptotic variance equal to V −1
S VMIV

−1
S , where

VMI = VSI − (1 −m−1)E[{X − µX(T )}⊗2P (R = 0|W )%(W ){1 − %(W )}].

It is evident that the second term, which measures the reduction in variability of the

multiple imputation estimator over the single imputation estimator, is introduced through

imputing the missing data multiple times. The more imputation we use, the greater the

reduction in the asymptotic variance. The relative magnitude of VSI and the second term

will determine the number of imputations we might use.

Note that the estimate of the asymptotic variance can be obtained easily by manipulating

readily available statistical software output. For example, Îγ can be obtained by inverting

the variance estimate of γ̂ and dividing it by n; V̂S can be obtained by inverting the variance

estimates from the m imputed data sets, dividing them by n, and averaging them across the

m imputations; and all other quantities can be consistently estimated using their sample

analogs.

1.5 Simulation Study

Several simulations were carried out to evaluate the performance of imputation estimators.

We considered the case where the treatment indicator Xi is the only prognostic covariate

with P (Xi = 1) = P (Xi = 0) = 1/2, and we also considered a single auxiliary covariate

Ai, drawn from the standard normal distribution, independently of Xi. For each subject

i, we took Ti = min(T2i, T1i, Ci), where T2i, T1i, and Ci were generated independently,

conditional on (Xi, Ai), as described below; the resulting hazards for T2, T1, and C were thus

the same as the cause-specific hazards λj(t|x, a) for j = 2, 1, 0, respectively. Conditional

on (Xi = x,Ai = a), T2i was generated from the exponential distribution with hazard

function λ(t|x, a) = λ(t|x) = φeβx, where φ = 1, β = −0.2. Let logit %(Wi, γ) = γ1 +

γ2Ti + γ3Xi + γ4Ai, where γ = (1,−0.2, 0.5, 2). Then by (1.3), T1i follows the Gompertz

distribution with hazard function λ1(t|x, a) = α exp{−γ1 − γ2t− (γ3 −β)x− γ4a}. In order

to simplify the simulations, we let λ(t|x, a) = λ(t|x). However, we emphasize that our

interest focuses on the relationship λ(t|x), specifically, the parameter β, which, in general,

6



may not necessarily equal λ(t|x, a). The censoring time Ci was generated from the right-

truncated exponential distribution with hazard rate λC = 0.01 and truncating time L = 5,

independently of all other random variables. With such a choice of parameter values, we

will have, on average, 55% failures from the cause of interest, 30% failures from other

causes, and 15% censored observations. The missing data mechanism was determined by

logit P (Ri = 0|∆i > 0,Wi, ψ) = ψ1 + ψ2Ti + ψ3Xi + ψ4Ai, with different choices of ψ

corresponding to different scenarios of missingness.

For sample sizes n = 200, 500, we carried out 10,000 simulations to compare the multiple

imputation methods with m = 1 and m = 10 imputation and the complete case analysis.

The results are summarized in Tables 1.1 and 1.2, where SEE denotes the empirical Monte

Carlo average of our standard error estimates, SSE denotes the Monte Carlo standard error

of the parameter estimates, and CP denotes the empirical coverage probability of the 95%

confidence interval defined as β̂ ± 1.96SE(β̂).

The scenario where ψ = (−1, 0, 0, 0) corresponds to the case where the cause of death is

missing completely at random. For this scenario, all analyses gave similar results, although

the imputation methods were more efficient. When ψ = (−1, 1,−3, 2), approximately the

same proportion of missing observations were produced, but now the complete case analy-

sis yielded large bias and poor coverage which becomes worse as the sample size increases.

When ψ = (−1, 2,−3, 2), the proportion of missing observations increased from 23% to 28%

and the complete case analysis performed more poorly since it produced even larger biases

and lower coverage probabilities. In all cases, imputation estimators were asymptotically

unbiased, had the smallest standard errors, and achieved the nominal 95% coverage prob-

ability, with multiple imputation performing slightly better than single imputation. Also,

the average of standard errors was very close to the Monte Carlo standard error, justifying

our estimator of the asymptotic variance.

As pointed out in Satten et al. (1998), it is important to study robustness of parameter

estimates from a semi- or non-parametric procedure when it uses data that were imputed

using a parametric model. To investigate the robustness of the imputation procedure against

misspecification of the parametric model for %, we generated the survival times, T1i, due to

the competing causes, from gamma, log normal, log logistic as well as Weibull distributions.

None of these distributions will induce a simple linear logistic regression model for %. We

report on the case where we generated T1i from a Weibull distribution with shape parameter

0.5 and scale parameter exp[2{log(0.5)− log(φ)+ γ1 + γ2 +(γ3 −β)X + γ4A}]. In this case,

the true model for % is logit %(Wi) = γ1 + γ2 − (a− 1) log Ti + γ3Xi + γ4Ai, yet we imputed

missing cause of death fitting a simple linear logistic model. The results are included in

Table 1.3, where we considered the missingness scenario ψ = (−1, 2,−3, 2) for sample sizes

n = 200, 500. As can be seen from the table, there is no substantial bias or loss of efficiency
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resulting from the use of the misspecified model. Although, not presented here, for all other

distributions considered for T1i mentioned above, the estimates for β never showed any

appreciable bias and achieved the nominal coverage probability.

1.6 Breast Cancer Example

The data from a clinical trial in stage II breast cancer were analyzed to identify covariates

that were significantly associated with death due to breast cancer. There were 169 patients

enrolled in this study, among which 90 patients had censored death times. Among the 79

patients who died, 18 patients had cause of death unknown. For the remaining patients

with known cause of death, 44 died from breast cancer and the other 17 died of other

causes. Cummings et al. (1986) reported two covariates, presence of more than four positive

nodes and having an ER-negative primary, as being significantly associated with overall

survival. Goetghebeur and Ryan (1995) conducted a cause-specific survival analysis based

on a standard proportional hazards structure for both failure types. We summarize their

results in Table 1.4. Using the same data, we also derived the complete case estimator and

the multiple imputation estimator as we will now describe. First, we had to establish a

model for %(W ), i.e., the probability that a cause of death is breast cancer, as a function of

observed covariates W . For the covariates W , we considered ER-status, number of positive

nodes, tumor size, treatment assignment, and time of death. One complication that we came

across in analyzing the data is that, of the five patients who died and had ER-negative status,

all died from breast cancer. Therefore, we could not use a logistic regression model that

included ER-status as a covariate because the estimators would diverge. Since none of the

patients with unknown cause of death were ER-negative, we used a logistic regression model

for the subset of patients who were ER-positive. The logistic regression model considered all

the covariates except ER-status and was derived using the subset of patients who were ER-

positive with known cause of death. In conducting such an analysis, we found that, among

the subset of ER-positive patients, none of the covariates except the intercept term was

significant. Some minor adjustments to the theory developed in Section 1.4 were made to

obtain correct asymptotic variance of the imputation estimator to account for the subsetting.

The changes are minimal, basically inserting an ER-status indicator wherever necessary. It

can be seen from Table 1.4 that the complete case estimates were biased and had large

standard errors while the multiple imputation estimates were very close to those using

the method of Goetghebeur and Ryan (1995). Similar analyses for noncancer causes were

carried out and it turned out that none of the covariates were significantly associated with

noncancer death.
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1.7 Discussion

We have investigated a multiple imputation estimator for estimating regression coefficients

in the competing risks model when the classification of cause of failure is missing for some

individuals. The estimator and its asymptotic variance are easy to compute, lead to reliable

inferences, and offer the data analyst flexibility. Based on the multiple imputation estimator,

we can easily construct an estimator for the cumulative hazard function for time to failure

from the cause of interest.
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Table 1.1: Monte Carlo comparison of complete cases and imputation with sample size of
200

MI
ψ % miss. m = 1 m = 10 CC

(−1, 0, 0, 0) 22.86 Bias -0.0026 -0.0020 -0.0174
SEE 0.2084 0.2037 0.2295
SSE 0.2080 0.2040 0.2301
CP 0.9517 0.9519 0.9501

(−1, 1,−3, 2) 22.84 Bias -0.0007 -0.0009 0.1257
SEE 0.2066 0.2029 0.2603
SSE 0.2087 0.2056 0.2690
CP 0.9511 0.9504 0.9231

(−1, 2,−3, 2) 28.53 Bias 0.0028 0.0021 0.1662
SEE 0.2116 0.2070 0.2812
SSE 0.2144 0.2096 0.2944
CP 0.9516 0.9493 0.9104

Table 1.2: Monte Carlo comparison of complete cases and imputation with sample size of
500

MI
ψ % miss. m = 1 m = 10 CC

(−1, 0, 0, 0) 22.88 Bias -0.0001 -0.0006 -0.0161
SEE 0.1306 0.1275 0.1433
SSE 0.1310 0.1279 0.1443
CP 0.9482 0.9484 0.9468

(−1, 1,−3, 2) 22.76 Bias 0.0019 0.0020 0.1349
SEE 0.1291 0.1269 0.1623
SSE 0.1300 0.1278 0.1693
CP 0.9478 0.9482 0.8596

(−1, 2,−3, 2) 28.44 Bias 0.0001 0.0001 0.1744
SEE 0.1321 0.1292 0.1752
SSE 0.1319 0.1287 0.1820
CP 0.9561 0.9544 0.8291
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Table 1.3: Robustness of imputation against misspecification of the % model

MI
n m = 1 m = 10 CC

200 Bias 0.0016 0.0022 0.2910
SEE 0.2450 0.2389 0.3606
SSE 0.2456 0.2394 0.3842
CP 0.9509 0.9512 0.8812

500 Bias 0.0008 0.0009 0.2984
SEE 0.1518 0.1481 0.2225
SSE 0.1512 0.1473 0.2353
CP 0.9521 0.9529 0.7346

Table 1.4: Comparison of complete cases, Goetghebeur and Ryan, and imputation using
the breast cancer data

CC GR MIa

4+ nodes 0.71[0.3065] 0.57[0.2803] 0.60[0.2618]
ER-neg. 1.70[0.4861] 1.59[0.4822] 1.61[0.4794]

a
m = 10
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Chapter 2

Efficient Partial Likelihood

Approach

2.1 Introduction

In a typical survival data analysis, a group of individuals are observed from some entry time

until the occurrence of some particular event such as death. Often the observation of time to

occurrence of the event is right-censored for some individuals as a result of staggered entry,

finite study duration, withdrawal from the study, or loss to follow-up. Sometimes, the event

can be classified into one of several categories, typically causes of death or other failures.

For example, in a clinical trial that compares different therapies for breast cancer, interest

may focus on death from breast cancer even though patients may die from other causes. In

such cases, the theory of competing risks can be applied to assess the effects of covariates

on cause-specific hazards, e.g., perform a standard proportional hazards analysis treating

failure types which are not of interest as censored observations (Prentice and Kalbfleisch,

1978; Cox and Oakes, 1984; Goetghebeur and Ryan, 1995). In some circumstances, patients

are known to die but the cause of death is unavailable, e.g., whether death is attributable

to the cause of interest or other causes may require documentation with information that

is not collected or lost or cause may be difficult for investigators to determine for some

patients (Anderson, Goetghebeur, and Ryan, 1996). In such cases, excluding the missing

observations from the analysis or treating them as censored may yield biased estimates and

erroneous inferences. Under the assumption that the probability of having a missing cause

of death may depend on time but not on covariates and that the baseline cause-specific

hazards are proportional, Goetghebeur and Ryan (1995) proposed an approach that utilizes

two types of partial likelihood (Cox, 1972, 1975). One is based on a full partial likelihood

described in details in Section 2.3 (c.f., Holt, 1978; Kalbfleisch and Prentice, 1980; Dewanji,

1992). The other is a modified partial likelihood.
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We extend their ideas to the more general settings where the probability of having a

missing cause of death may depend on the covariates as well as time and where the ratio of

the two baseline cause-specific hazards may also depend on time. This is achieved through

the construction of an estimator using the full partial likelihood above. We show that the

resulting estimator is consistent, asymptotically normal, and semiparametric efficient, under

the more general missingness assumptions.

We introduce our notation and assumptions in Section 2.2. In Section 2.3, we propose the

estimator which arises as the solution to the estimating equation based on the informative

partial likelihood. Consistency and asymptotic normality of the resulting estimator will

then follow from the martingale theory. Semiparametric efficiency can be established using

semiparametric theory. Simulation results are also presented to compare the performance

of our estimator with that of the complete-case estimator and that of the Goetghebeur and

Ryan estimator. We conclude with an application followed by a brief discussion.

2.2 Notation and Assumptions

In this article, we consider a sample of n independent individuals, each of whom can die of

fail from one of two possible causes which we refer to as causes two and one, respectively, or

can be subject to a noninformative censoring mechanism. Typically, the data for individual

i are {Ti,∆i, Xi}, where Ti is the time to failure or censoring; ∆i is an indicator taking values

zero, one, or two, as the ith individual was censored, died from cause one, or died from cause

two, respectively; Xi denotes a vector of covariates. Let λδ(t|x), δ = 2, 1, 0 be the cause-

specific hazards for failure from cause two, failure from cause one, or censoring, respectively.

Suppose that the cause-specific hazards for causes two and one follow proportional hazards

relationships, namely,

λδ(t|x) = λ(t)rδ(t, x, β), δ = 1, 2, (2.1)

where β is an unknown q-dimensional vector of parameters and λ(t) is the common unspec-

ified baseline cause-specific hazard. No assumptions are made on the cause-specific hazard

of censoring, λ0(t|x), or the marginal distribution of X, pX(x).

Note that we allow the functions r1 and r2 to depend on time and the covariates through

a finite set of parameters. This is a generalization of the case where the ratio of the two

baseline cause-specific hazards is constant or piecewise constant over time. For example, if

given X = x, T2 follows an exponential distribution with constant hazard λ2(t|x) = φeβx

and T1 follows a Gompertz distribution with hazard function λ1(t|x) = eγ1t+γ2x, then the

ratio between the two baseline cause-specific hazards is equal to λ2(t)/λ1(t) = φe−γ1t,

which is not constant unless γ1 = 0. Note that, however, only parameters associated with

the covariates are of inherent interest. To avoid nonidentifiability problems, we also assume
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that all information about time that is common to the two cause-specific hazards has been

incorporated into the common baseline cause-specific hazard.

Also note that we could have formulated the model with separate regression parameter

vectors {β1, β2} for the two failure causes. There may be examples, however, where some

parameters are common to the two failure causes. Therefore, it is convenient to formulate

the model with one vector of parameters β which contains all the different parameters in

{β1, β2} (c.f., Andersen, Borgan, Gill, and Keiding, 1997, p. 478).

In some circumstances, cause of failure might be missing for some individuals, in which

case, we use Ri as the missingness indicator, taking values one or zero as the cause of

failure ∆i(> 0) is observed or missing. We assume that cause of failure is missing at

random (Rubin, 1976), in the sense that the probability of having a missing cause of failure

does not depend on the latent cause of failure, i.e.,

P (Ri = 1|Zi,∆i > 0) = π(Ti, Xi), (2.2)

where π is an unknown function of time and covariates, taking values in the unit interval.

Note that we allow the missingness probability to depend on both time and covariates,

whereas Goetghebeur and Ryan (1995) allows the missingness probability to depend on time

only. In the presence of missing cause of failure, the observed data for the ith individual

can be summarized as Oi = {Ri, Ti, I(∆i = 0), RiI(∆i = 1), RiI(∆i = 2), Xi}.

2.3 Parameter Estimation

For an uncensored individual, one of the following three types of events can occur at the

time of failure, i.e., failure from cause one, failure from cause two, or failure with unknown

cause. Let Ni(t) = {Ni1(t), Ni2(t), Niu(t)} be a multivariate counting process indicating

the failure type. Based on the assumptions (2.1) and (2.2), the corresponding intensity

processes are given by

λ∗i1(t,Xi) = Yi(t)π(t,Xi)r1(t,Xi, β0)λ(t),

λ∗i2(t,Xi) = Yi(t)π(t,Xi)r2(t,Xi, β0)λ(t),

λ∗iu(t,Xi) = Yi(t){1 − π(t,Xi)}r.(t,Xi, β0)λ(t),

respectively, where Yi(t) = I(Ti ≥ t) denotes whether individual i is at risk at time t,

r.(t, x, β) = r1(t, x, β) + r2(t, x, β), and β0 denotes the true value of β.

Under the missing-at-random assumption, we propose to use the full partial likelihood,

which is based on the conditional probabilities of an event of specified type, given that one
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event occurs, but without conditioning on the type of event, i.e.,

L(β) =
∏

t≥0

n
∏

i=1

[

r1(t,Xi, β)
∑n
j=1 r.(t,Xj , β)Yj(t)

]dNi1(t)

×
[

r2(t,Xi, β)
∑n
j=1 r.(t,Xj , β)Yj(t)

]dNi2(t)

×
[

r.(t,Xi, β)
∑n
j=1 r.(t,Xj , β)Yj(t)

]dNiu(t)

,

where
∏

t≥0 denotes product-integration (c.f., Gill and Johansen, 1990).

Let {r′d(t,Xi, β), r′′d(t,Xi, β)} denote the first two partial derivatives of rd(t,Xi, β) with

respect to β for d = 1, 2, and let

m(t, β) =

∑n
j=1 r

′
.(t,Xj , β)Yj(t)

∑n
j=1 r.(t,Xj , β)Yj(t)

,

v(t, β) =

∑n
j=1 r

′′
. (t,Xj , β)Yj(t)

∑n
j=1 r.(t,Xj , β)Yj(t)

,

then the corresponding score equation is U(β) = 0, where

U(β) =
n

∑

i=1

[
∫

r′1(t,Xi, β)

r1(t,Xi, β)
dNi1(t)

+

∫

r′2(t,Xi, β)

r2(t,Xi, β)
dNi2(t)

+

∫

r′.(t,Xi, β)

r.(t,Xi, β)
dNiu(t)

−
∫

m(t, β)dNi.(t)

]

,

and the observed information is

I(β) = −
n

∑

i=1

{

∫

[

r′′1(t,Xi, β)

r1(t,Xi, β)
−

{

r′1(t,Xi, β)

r1(t,Xi, β)

}⊗2
]

dNi1(t)

+

∫

[

r′′2(t,Xi, β)

r2(t,Xi, β)
−

{

r′2(t,Xi, β)

r2(t,Xi, β)

}⊗2
]

dNi2(t)

+

∫

[

r′′. (t,Xi, β)

r.(t,Xi, β)
−

{

r′.(t,Xi, β)

r.(t,Xi, β)

}⊗2
]

dNiu(t)

−
∫

[

v(t, β) − {m(t, β)}⊗2
]

dNi.(t)
}

,

where Ni. = Ni1 +Ni2 +Niu is the counting process of failure for the ith individual.
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Note that U(β0) is a martingale and hence the score equation can be used to obtain

a consistent estimator of β, say β̂n. In addition, it is straightforward to show that, when

evaluated at the truth, the observed information matrix I(β0) = −∂U(β)/∂β|β=β0
has the

same expectation as the covariation process of the score vector U(β0). Consistency and

asymptotic normality of β̂n follow from arguments similar to those used by Andersen and

Gill (1982) and the asymptotic variance can be consistently estimated by n−1{I(β̂n)}−1.

Using semiparametric theory (e.g., Newey, 1990; Bickel, Klaasen, Ritov, and Wellner,

1993; Robins, Rotnitzky, and Zhao, 1994), we show that the influence function of our

proposed estimator is the efficient influence function. The proof is outlined in Appendix B.

2.4 Simulation Study

Several simulations were carried out to evaluate the performance of different estimators.

We considered the situation where the treatment assignment Xi was the only covariate and

Xi ∼ Bernoulli(0.5). For each subject i, we took Ti = min(T2i, T1i, Ci), where T2i, T1i,

and Ci were generated independently, conditional on Xi, as described below; the resulting

hazards for T2, T1, and C0 were thus the same as the cause-specific hazards λδ(t|x) for

δ = 2, 1, 0, respectively. Conditional on Xi = x, T2i was generated from an exponential

distribution with constant hazard λ2(t|x) = φeβx, where φ = 0.8 and β = 0.5. Comparison

of different approaches was based on the estimation of β. In addition, T1i was generated

from a Gompertz distribution with hazard function λ1(t|x) = eγ1t+γ2x. Consequently, the

ratio between the two baseline cause-specific hazards was λ2(t)/λ1(t) = φ exp(−γ1t), which

is not constant over time unless γ1 = 0. However, as pointed out by Goetghebeur and Ryan

(1995), the efficient partial likelihood estimator is more sensitive than the Goetghebeur and

Ryan partial likelihood estimator to violations of the proportionality assumption relating

the two baseline cause-specific hazards. Therefore, we only need to consider the case when

γ1 = 0. Furthermore, the censoring time Ci was generated from an exponential distribution

with constant hazard λC = 0.4. Finally, the missingness indicator Ri was generated from a

Bernoulli distribution with success probability depending only on (Ti, Xi) to comply with

the MAR assumption. In particular, we let logit π(Ti, Xi) = ψ0+ψ1Ti+ψ2Xi, with different

values of ψ corresponding to different scenarios of missingness.

For sample sizes n = 200, 500, we carried out 1000 simulations to compare different

approaches. With such parameter values, we will have, on average, 34% to 46% failures

from cause two (∆i = 2), 36% to 52% failures from cause one (∆i = 1), and 14% to 18%

censored observations (∆i = 0). For all cases of missing data mechanism we considered, the

proportion of missing observations (Ri = 0) ranged between 17% and 29%. The results of

the comparison among the naive complete case analysis (CC), the Goetghebeur and Ryan
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partial likelihood approach (GR), and the efficient partial likelihood approach (EPL) are

summarized in terms of the sampling bias, the sampling standard error (SSE), the sampling

average of the standard error estimates (SEE), and the empirical coverage probability (CP)

of the asymptotic 95% confidence interval in Tables 2.1 and 2.2.

The scenario where ψ = (1, 0, 0) corresponds to the case where cause of failure is miss-

ing completely at random. For this scenario, all analyses give similar results although our

estimates are the most efficient. When ψ = (5,−8, 0), which corresponds to the case where

the probability of having a missing cause of failure depends on time only, the naive com-

plete case estimator is biased and has a coverage probability substantially lower than the

nominal level, but the Goetghebeur and Ryan estimator still performs well because their

missingness assumption is still met. For ψ = (1, 1,−1.5), in which case, the probability of

having a missing cause of failure depends on both time and covariate, the naive complete

case estimator is again biased as expected, so is the Goetghebeur and Ryan estimator. Fur-

thermore, the Goetghebeur and Ryan variance estimator underestimates the true sampling

variation, resulting in a further reduced coverage probability. In all cases, our efficient

likelihood approach performs well.

2.5 Breast Cancer Example

The data from a clinical trial in elderly women with stage II breast cancer were analyzed to

identify covariates that were significantly associated with death due to breast cancer. There

were 169 eligible patients enrolled in this study, among which 90 patients had censored death

times. Among the 79 patients who died, 18 patients had cause of death unknown. For the

remaining patients with known cause of death, 44 died from breast cancer and the other

17 died of other causes. Cummings et al. (1986) reported two covariates, presence of 4-10

positive axillary lymph nodes and having an estrogen receptor (ER) negative primary tu-

mor, as being significantly associated with overall survival. Goetghebeur and Ryan (1995)

conducted a cause-specific survival analysis based on the standard proportional hazards

structure for both failure types. We summarize their results along with our efficient es-

timates in Table 2.3, where the numbers inside the brackets denote the standard errors

associated with the parameter estimates. It can be seen from the table that the hazard of

death from breast cancer is significantly associated with the ER-status, but no firm conclu-

sion can be drawn for the association of the hazard of death from breast cancer with the

number of positive axillary lymph nodes. In addition, our efficient estimates are closer to

the Goetghebeur and Ryan estimates than to the naive complete case estimates.
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2.6 Discussion

We have proposed an approach for estimating regression coefficients in the competing risks

model when the classification of cause of failure is missing for some individuals. The proce-

dure is applicable in many situations and the resulting estimator is semiparametric efficient.
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Table 2.1: Monte Carlo comparison of complete cases, Goetghebeur and Ryan, and efficient
likelihood approach with sample size of 200

ψ γ2 CC GR EPL

(1, 0, 0) 0.9 Bias 0.0162 -0.0123 -0.0157
SSE 0.3163 0.2986 0.2873
SEE 0.3055 0.2888 0.2792
CP 0.939 0.940 0.941

(5,−8, 0) 0.9 Bias -0.1666 -0.0094 -0.0115
SSE 0.2842 0.2819 0.2786
SEE 0.2839 0.2733 0.2701
CP 0.904 0.946 0.947

(1, 1,−1.5) −0.5 Bias -0.2115 0.1793 0.0097
SSE 0.2707 0.3070 0.2378
SEE 0.2738 0.2656 0.2381
CP 0.880 0.891 0.956

Table 2.2: Monte Carlo comparison of complete cases, Goetghebeur and Ryan, and efficient
likelihood approach with sample size of 500

ψ γ2 CC GR EPL

(1, 0, 0) 0.9 Bias 0.0249 -0.0044 -0.0050
SSE 0.1893 0.1829 0.1761
SEE 0.1900 0.1799 0.1743
CP 0.951 0.946 0.955

(5,−8, 0) 0.9 Bias -0.1637 -0.0028 -0.0035
SSE 0.1839 0.1751 0.1738
SEE 0.1772 0.1708 0.1689
CP 0.835 0.951 0.953

(1, 1,−1.5) −0.5 Bias -0.2133 0.1694 0.0027
SSE 0.1667 0.1893 0.1478
SEE 0.1708 0.1640 0.1494
CP 0.767 0.793 0.962

Table 2.3: Comparison of complete cases, Goetghebeur and Ryan, and efficient likelihood
approach using the breast cancer data

CC GR EPL

4+ nodes 0.66[0.3090] 0.57[0.2803] 0.57[0.2815]
ER-neg. 1.71[0.4865] 1.59[0.4822] 1.56[0.4770]
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Chapter 3

Inverse Probability Weighting

Approach

3.1 Introduction

In a typical clinical trial, researchers are interested in the effects of a set of prognostic factors

on the hazard of death or relapse from some specific disease of interest, even though patients

may die from other competing causes. For example, in a clinical trial that compares differ-

ent therapies for breast cancer in the population of elderly women, interest focuses on death

from breast cancer even though patients may die from cardiac or vascular disease. Often

the observation of time to failure is right-censored for some individuals due to incomplete

follow-up. In some circumstances, it may also be the case that patients are known to die

but the cause of death is unavailable, e.g., whether death is attributable to the cause of

interest or other causes may require documentation with information that is not collected

or lost or cause may be difficult for investigators to determine for some patients (Andersen,

Goetghebeur, and Ryan, 1996). If there were no missing cause of failure, the standard pro-

portional hazards model can be used to model the relationship of the cause-specific hazard

of interest with respect to the prognostic factors by treating deaths from competing causes

as censored observations, and the regression coefficients can be estimated by maximizing

the partial likelihood (Cox, 1972, 1975). However, when cause of failure is missing, exclud-

ing the observations with missing cause of failure from the analysis may yield inefficient or

even biased estimates if cause of failure is not missing completely at random. In addition,

treating missing observations as censored is certain to yield biased estimates if some of the

missing cause of death is the cause of interest. With missing cause of failure, Goetghebeur

and Ryan (1995) proposed an approach by making assumptions directly on the relationship

between the cause-specific hazard of interest and that of competing causes, i.e., the two

baseline cause-specific hazards are assumed proportional, although this may be relaxed.
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In some circumstances, it may also be the case that auxiliary covariates ,which are

not of inherent interest for modeling the cause-specific hazard of interest, but which may

be related to the missingness mechanism, are available. For example, we may be able to

identify some post-treatment variable which is related to the reason why the cause of death

information was not collected, but we would not include it in the proportional hazards

model because it may affect the causal interpretation associated with the parameters for

treatment effects. When the auxiliary covariates are included in the model of missingness

mechanism, it might be reasonable to assume that cause of failure is missing at random,

whereas the MAR assumption might not hold if the auxiliary covariates are not included.

In this article, we take a different approach by using two parametric models to model

the missingness probability and the probability that a missing cause is the cause of interest,

respectively, while allowing the inclusion of additional auxiliary covariates. Using semi-

parametric theory (e.g., Newey, 1990; Bickel, Klaasen, Ritov, and Wellner, 1993; Robins,

Rotnitzky, and Zhao, 1994), we identify various classes of inverse probability weighted

(IPW) semiparametric estimators. In Section 3.3, we obtain the space of all full data in-

fluence functions and the full data efficient score. In Section 3.4, we derive the space of

all observed data influence functions. In Section 3.5, we introduce a class of estimating

equations whose solutions correspond to all semiparametric estimators when the missing-

ness mechanism is not known but can be correctly specified through a parametric model. In

Section 3.6, we construct a class of estimating equations whose solutions define all doubly

robust semiparametric estimators when either of the two parametric models is correctly

specified. In Section 3.7, we identify the observed data efficient score and construct an esti-

mating equation based on the observed data efficient score. The solution to the estimating

equation is the locally semiparametric efficient estimator, which will be fully efficient if all

parametric models are correctly specified. Simulation results are then presented to compare

three IPW semiparametric estimators with the complete case estimator and the imputation

estimator, followed by a revisit of the breast cancer example using the doubly robust IPW

semiparametric estimator. A brief discussion is also provided to conclude this article.

3.2 Notation and Assumptions

We are going to use the theory for estimation in arbitrary semiparametric models with

missing data as developed by Robins, et al. (1994). Define a semiparametric estimator to

be one that is consistent and asymptotically normal under the restrictions imposed by the

model. To avoid super-efficiency, we will only consider regular estimators, for which the

convergence to their limiting distributions is locally uniform. Also, an estimator β̂n of β0 is
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asymptotically linear with influence function ϕ if

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

ϕi + op(1).

Consider the generic semiparametric model indexed by some finite, say q-dimensional pa-

rameter of interest β and the infinite dimensional nuisance parameter η. The Hilbert space

H consists of all q× 1 random vectors of mean zero and square integrable measurable func-

tions of Z equipped with covariance inner product. The nuisance tangent space Λ is defined

to be the mean square closure of the set of all random vectors BSγ , where Sγ is the score for

γ in some regular parametric submodel and B is a conformable constant matrix with q rows.

Also, Π[h|Λ] denotes the projection of any vector h ∈ H on a closed linear space such as Λ.

The semiparametric variance bound equals the inverse of the variance of Seff = Π[Sβ |Λ⊥],

where Sβ is the score for β and Seff is called the efficient score. In addition, we will use

the superscript “F” to distinguish the full data model from the observed data model. For

example, we let SFβ , ΛF , SFeff , and ΛF⊥
∗ be the full data score for β, the full data nuisance

tangent space, the full data efficient score, and the space of full data influence functions,

respectively.

The complete data for a single observation can be represented as Z = (T,∆, X,A),

where T is the observed time to failure or censoring, ∆ is an indicator taking values two,

one or zero as the individual failed from cause two, failed from cause one, or was censored,

respectively. Without loss of generality, assume cause two is the cause of interest and cause

one is the competing cause. In addition, X denotes the vector of covariates of interest, which

is assumed to be related to the cause-specific hazard of interest through the proportional

hazards model,

λ(t|X) = λ(t)eβ
TX , (3.1)

where β is the q-dimensional vector of regression coefficients and λ(t) is the unspecified

baseline cause-specific hazard. Also, A denotes auxiliary covariates which are not of in-

herent interest for modeling the cause-specific of interest but which may be related to the

missingness mechanism.

In certain instances, patients are known to die but the cause of death information is not

available, in which case, we use R as the complete case indicator taking values one or zero as

the cause of death is known or missing, so that the observed data for a typical observation

can be summarized as O = {R,GR(Z)} = {R, T,X,A, I(∆ = 0), RI(∆ = 1), RI(∆ = 2)}.
Write W = (T,X,A), then G1(Z) = Z = (W,∆). Also let Q = {W, I(∆ > 0)}, which

denotes variables that are always observed, then G0(Z) = Q. Furthermore, assume that

P (R = 1|W,∆,∆ > 0) = P (R = 1|W,∆ > 0), (3.2)
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then {R ⊥⊥ ∆|Q}, so that (3.2) implies that cause of failure is missing at random (Rubin,

1976). Write π(W ) = P (R = 1|W,∆ > 0) and assume π(W ) > ε > 0 with probability one

so that the probability of observing complete data is bounded away from zero.

3.3 Full Data Influence Functions

In the absence of missing data, the density for a typical observation can be factorized as

P (T = t,∆ = δ,X = x,A = a)

= pA|T,∆,X(a|t, δ, x)
× exp[−{Λ(t|x) + Λ1(t|x) + Λ0(t|x)}]
×λ(t|x)I(δ=2)λ1(t|x)I(δ=1)λ0(t|x)I(δ=0)

×pX(x),

where pA|T,∆,X is the conditional density of A given (T,∆, X), {λ1(t|x), λ0(t|x)} are the

conditional cause-specific hazard for failure from the competing cause and the conditional

cause-specific hazard for censoring, given X = x, respectively, {Λ(t|x), Λ1(t|x), Λ0(t|x)} are

the corresponding cumulative cause-specific hazards, and pX is the marginal density of X.

Therefore, the log-likelihood for a typical observation can be written as

`F (Z) = −Λ(T |X) + I(∆ = 2) log λ(T |X)

−Λ1(T |X) + I(∆ = 1) log λ1(T |X)

−Λ0(T |X) + I(∆ = 0) log λ0(T |X)

+ log pX(X)

+ log pA|T,∆,X(A|T,∆, X). (3.3)

Write Λ(t) =
∫ t
0 λ(s)ds, then, under assumption (3.1), (3.3) reduces to

`F (β, Z) = −Λ(T )eβ
TX + I(∆ = 2){log λ(T ) + βTX}

−Λ1(T |X) + I(∆ = 1) log λ1(T |X)

−Λ0(T |X) + I(∆ = 0) log λ0(T |X)

+ log pX(X)

+ log pA|T,∆,X(A|T,∆, X). (3.4)

Since the nuisance parameters {λ(t), λ1(t|x), λ0(t|x), pX(x), pA|T,∆,X(a|t, δ, x)} are func-

tionally independent and separate from each other in the log-likelihood (3.4), the full data

nuisance tangent space can be written as a direct sum of five orthogonal spaces,

ΛF = Λ1s + Λ2s + · · · + Λ5s,
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where Λ1s is associated with λ(t), Λ2s is associated with λ1(t|x), Λ3s is associated with

λ0(t|x), Λ4s is associated with pX , and Λ5s is associated with pA|T,∆,X , respectively.

It is straightforward to show that

Λ1s =

{
∫

α(t)dM(t) : ∀αq×1(t)

}

,

where dM(t) = dN(t) − λ(t)eβ
T
0
XI(T ≥ t)dt,N(t) = I(T ≤ t,∆ = 2).

On the other hand, had no restrictions been put on the form of the cause-specific hazard

of interest, the log-likelihood (3.3) would correspond to a saturated model, so that the entire

full data Hilbert space can be written as the direct sum of five orthogonal spaces,

HF = Λ∗
1s + Λ2s + · · · + Λ5s,

where Λ∗
1s is associated with λ(t|x).

It is straightforward to show that

Λ∗
1s =

{
∫

a(t,X)dM(t) : ∀aq×1(t,X)

}

.

Therefore, the space orthogonal to the full data nuisance tangent space, i.e. ΛF⊥, is the

subspace of Λ∗
1s that is orthogonal to Λ1s. By the projection theorem, it is straightforward

to show that

ΛF⊥ =

{
∫

{a(t,X) − µa(t)}dM(t) : ∀aq×1(t,X)

}

, (3.5)

where

µa(t) =
E{a(t,X)eβ

T
0
XI(T ≥ t)}

E{eβT0 XI(T ≥ t)}
.

For an element of ΛF⊥, say ϕF (Z), to be an influence function for a semiparametric

estimator for β, we must also have E{ϕF (Z)SFTβ (Z)} = Iq, where SFβ (Z) is the full data

score for β and Iq is the q × q identity matrix.

From (3.4),

SFβ (Z) =

∫

XdM(t). (3.6)

By standard properties for martingales (e.g., Fleming and Harrington, 1991),

E

[
∫

{a(t,X) − µa(t)}dM(t) SFβ (Z)

]

=

∫

E[{a(t,X) − µa(t)}{X − µX(t)}T eβT0 XI(T ≥ t)]λ(t)dt

≡ V (a,X),

where “≡” means “denoted as” and

µX(t) =
E{XeβT0 XI(T ≥ t)}
E{eβT0 XI(T ≥ t)}

.
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Therefore, the space of full data influence functions is given by

ΛF⊥
∗ =

{

V −1(a,X)

∫

{a(t,X) − µa(t)}dM(t) : ∀aq×1(t,X)

}

. (3.7)

In addition, by (3.5) and (3.6), the full data efficient score is given by

SFeff (Z) =

∫

{X − µX(t)}dM(t). (3.8)

3.4 Observed Data Influence Functions

First suppose that π(W ) is completely known as in a designed study, then

P (R = 1|Z) = π(W )I(∆ > 0) + I(∆ = 0) ≡ π(Q).

By Proposition 8.1 of Robins et al. (1994), the space of all observed data influence

functions is given by

Λ⊥
0∗ =

R

π(Q)
ΛF⊥

∗ + Λ2, (3.9)

where Λ2 = {L2(O) ∈ H : E{L2(O)|Z} = 0}.
Write

L2(O) = RL21(Z) + (1 −R)L20(Q), (3.10)

then

E{L2(O)|Z} = π(Q)L21(Z) + {1 − π(Q)}L20(Q).

Set E{L2(O)|Z)} = 0, we have L21(Z) = −{1−π(Q)}
π(Q) L20(Q). Substituting it into (3.10), a

typical element of Λ2 is given by

L2(O) = −{R− π(Q)}
π(Q)

L20(Q), (3.11)

where L20(Q) is an arbitrary q × 1 function of Q satisfying E{LT20(Q)L20(Q)} <∞.

By (3.7), (3.9), and (3.11), a typical element of Λ⊥
0∗ is given by

ϕ0(O) =
R

π(Q)
V −1(a,X)

∫

{a(t,X) − µa(t)}dM(t)

−{R− π(Q)}
π(Q)

L20(Q).

Now suppose that the missingness mechanism π(W ) is not known but we can correctly

specify a parametric model, say π(W ) = π(W,ψ), then

π(Q,ψ) = π(W,ψ)I(∆ > 0) + I(∆ = 0).
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By Proposition 8.1 of Robins et al. (1994), the space of all observed data influence

functions is given by

Λ⊥
∗ = Λ⊥

0∗ − Π[Λ⊥
0∗ |Λψ],

where Λψ is the nuisance tangent space for ψ. Therefore, a typical element of Λ⊥
∗ is given

by

ϕ(O) = ϕ0(O) − Π[ϕ0(O)|Λψ].

Note that the observed data likelihood for ψ is

n
∏

i=1

{π(Qi, ψ)}Ri{1 − π(Qi, ψ)}1−Ri .

Hence, the log-likelihood for ψ for a typical observation is

`(ψ,O) = R log π(Q,ψ) + (1 −R) log{1 − π(Q,ψ)}.

Consequently, the score vector for ψ is

Sψ(O) =
{R− π(Q)}πψ(Q)

π(Q){1 − π(Q)} , (3.12)

where πψ(Q) denotes the partial derivative of π(Q,ψ) with respect to ψ and evaluated at

ψ = ψ0. A typical element of Λψ is given by BSψ for some arbitrary conformable matrix B

with q rows. By (3.12) and (3.11), Λψ ⊂ Λ2.

3.5 Semiparametric Estimators

Assume that the parametric model for the missingness mechanism, π(W ) = π(W,ψ), is

correctly specified. Let ψ̂n be the MLE of ψ, and ψ0 be the true value of ψ, then ψ̂n
p→ ψ0.

It is shown in Section 3.4 that a typical element of Λ⊥
0∗ is given by

ϕ0(O) = V −1(a,X)ϕ∗
0(O),

where

ϕ∗
0(O) =

R

π(Q,ψ0)

∫

{a(t,X) − µa(t)}dM(t)

−{R− π(Q,ψ0)}
π(Q,ψ0)

L(Q)

=
R

π(Q,ψ0)

∫

{a(t,X) − µa(t)}dN(t)

−{R− π(Q,ψ0)}
π(Q,ψ0)

L(Q)

− R

π(Q,ψ0)

∫

{a(t,X) − µa(t)}λ(t)eβ
T
0
XI(T ≥ t)dt.
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Denote

ā(t, β, ψ) =

∑n
j=1

Rj
π(Qj ,ψ)a(t,Xj)e

βTXjI(Tj ≥ t)
∑n
j=1

Rj
π(Qj ,ψ)e

βTXjI(Tj ≥ t)
.

By the WLLN and the LIE by conditioning on Z, we have that

n−1
n

∑

j=1

Rj

π(Qj , ψ̂n)
a(t,Xj)e

βT
0
XjI(Tj ≥ t)

p→ E

[

R

π(Q,ψ0)
a(t,X)eβ

T
0
XI(T ≥ t)

]

= E{a(t,X)eβ
T
0
XI(T ≥ t)}.

Similarly,

n−1
n

∑

j=1

Rj

π(Qj , ψ̂n)
eβ

T
0
XjI(Tj ≥ t)

p→ E{eβT0 XI(T ≥ t)}.

Therefore,

ā(t, β0, ψ̂n)
p→ µa(t).

On the other hand, it is straightforward to show that

n
∑

i=1

Ri
π(Qi, ψ)

∫

{a(t,Xi) − ā(t, β, ψ)}λ(t)eβ
TXiI(Ti ≥ t)dt = 0, ∀β, ∀ψ. (3.13)

Consequently, ϕ∗
0 suggests the following estimating equations for β,

0 =
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β, ψ̂n)}dNi(t)

− {Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi)

]

, ∀a(t,X), ∀L(Q). (3.14)

Alternatively, one can solve the following two sets of estimating equations jointly for β

and dΛ(t),

0 =
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

a(t,Xi)dMi(t, β) − {Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi)

]

,

0 =
n

∑

i=1

Ri

π(Qi, ψ̂n)
dMi(t, β),

where dM(t, β) = dN(t) − λ(t)eβ
TXI(T ≥ t)dt, so that dM(t) = dM(t, β0).

In addition to yielding (3.14), this also motivates an estimator for dΛ(t), i.e.,

dΛ̂(t) =

∑n
j=1

Rj

π(Qj ,ψ̂n)
dNj(t)

∑n
j=1

Rj

π(Qj ,ψ̂n)
eβ̂

T
nXjI(Tj ≥ t)

. (3.15)
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By (3.13), (3.14) is identical to

0 = n−1
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β, ψ̂n)}dMi(t, β)

− {Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi)

]

. (3.16)

When evaluated at β0, a typical summand of (3.16) is asymptotically equivalent to ϕ∗
0i

as expected. By the LIE and martingale properties, E(ϕ∗
0) = 0. Therefore, (3.14) is an

asymptotically unbiased estimating equation for β. Consequently, under certain regularity

conditions, the resulting estimator is consistent.

Denote

X̄(t, β, ψ) =

∑n
j=1

Rj
π(Qj ,ψ)Xje

βTXjI(Tj ≥ t)
∑n
j=1

Rj
π(Qj ,ψ)e

βTXjI(Tj ≥ t)
.

Then it is straightforward to show that

∂ā(t, β, ψ)

∂βT
=

∑n
j=1

Rj
π(Qj ,ψ){a(t,Xj) − ā(t, β, ψ)}{Xj − X̄(t, β, ψ)}T eβTXjI(Tj ≥ t)

∑n
j=1

Rj
π(Qj ,ψ)e

βTXjI(Tj ≥ t)

≡ Cn(a,X; t, β, ψ).

Expanding (3.14) about β0, while keeping ψ̂n fixed, yields

n1/2(β̂n − β0)

=

{

n−1
n

∑

i=1

Ri

π(Qi, ψ̂n)

∫

Cn(a,X; t, β∗
n, ψ̂n)dNi(t)

}−1

×n−1/2
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β0, ψ̂n)}dNi(t)

− {Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi)

]

, (3.17)

where β∗
n lies between β̂n and β0.

Since β̂n
p→ β0, β

∗
n

p→ β0. By the WLLN, ā(t, β∗
n, ψ̂n)

p→ µa(t), X̄(t, β∗
n, ψ̂n)

p→ µX(t). In

addition, by the LIE, Cn(a,X; t, β∗
n, ψ̂n)

p→ σ(a,X; t), where

σ(a,X; t) =
E[{a(t,X) − µa(t)}{X − µX(t)}T eβT0 XI(T ≥ t)]

E{eβT0 XI(T ≥ t)}
.

Therefore, by the LIE and martingale properties, the leading q×q matrix inside the bracket

on the RHS of (3.17) converges in probability to

E

[

R

π(Q,ψ0)

∫

σ(a,X; t)dN(t)

]

= V (a,X). (3.18)
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This suggests that we can estimate V (a,X) by

V̂ (a,X) = n−1
n

∑

i=1

Ri

π(Qi, ψ̂n)

∫

Cn(a,X; t, β̂n, ψ̂n)dNi(t).

On the other hand, by martingale properties and the LIE, it can be shown that

V (a,X) = E

[

R

π(Q,ψ0)

∫

{a(t,X) − µa(t)}{X − µX(t)}TdN(t)

]

.

Therefore, an alternative estimator for V (a,X) is provided by

Ṽ (a,X) = n−1
n

∑

i=1

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β̂n)}{Xi − X̄(t, β̂n)}TdNi(t).

Note that

∂ā(t, β, ψ)

∂ψT
=

∑n
j=1{a(t,Xj) − ā(t, β, ψ)}−Rjπ

T
ψ

(Qj ,ψ)

π2(Qj ,ψ)
eβ

TXjI(Tj ≥ t)
∑n
j=1

Rj
π(Qj ,ψ)e

βTXjI(Tj ≥ t)

≡ ξn(t, β, ψ).

Therefore, by (3.13) and by expanding about ψ0, the q × 1 vector on the RHS of (3.17) is

equal to

n−1/2
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β0, ψ̂n)}dMi(t)

− {Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi)

]

= n−1/2
n

∑

i=1

[

Ri
π(Qi, ψ0)

∫

{a(t,Xi) − ā(t, β0, ψ0)}dMi(t)

− {Ri − π(Qi, ψ0)}
π(Qi, ψ0)

L(Qi)

]

+

{

n−1
n

∑

i=1

[

− Ri
π(Qi, ψ∗

n)

∫

ξn(t, β0, ψ
∗
n)dMi(t)

−
∫

{a(t,Xi) − ā(t, β0, ψ
∗
n)}dMi(t)

Riπ
T
ψ (Qi, ψ

∗
n)

π2(Qi, ψ∗
n)

+ L(Qi)
Riπ

T
ψ (Qi, ψ

∗
n)

π2(Qi, ψ∗
n)

]}

n1/2(ψ̂n − ψ0), (3.19)

where ψ∗
n lies between ψ̂n and ψ0.

Similar to Tsiatis (1981), it can be shown that

n−1/2
n

∑

i=1

Ri
π(Qi, ψ0)

∫

{ā(t, β0, ψ0) − µa(t)}dMi(t) = op(1).
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Therefore,

n−1/2
n

∑

i=1

Ri
π(Qi, ψ0)

∫

{a(t,Xi) − ā(t, β0, ψ0)}dMi(t)

= n−1/2
n

∑

i=1

Ri
π(Qi, ψ0)

∫

{a(t,Xi) − µa(t)}dMi(t) + op(1).

Consequently, a typical summand of the first term on the RHS of (3.19) is asymptotically

equivalent to ϕ∗
0i.

Let us now consider the three matrices inside the bracket of the second term on the

RHS of (3.19). Since ψ̂n
p→ ψ0, ψ

∗
n

p→ ψ0. By the WLLN and the LIE, it is straightforward

to show that ā(t, β0, ψ
∗
n)

p→ µa(t), so that ξn(t, β0, ψ
∗
n)

p→ ξ(t), where

ξ(t) =
E

[

{a(t,X) − µa(t)}
−πT

ψ
(Q,ψ0)

π(Q,ψ0) eβ
T
0
XI(T ≥ t)

]

E{eβT0 XI(T ≥ t)}
.

Therefore, by the LIE and martingale properties, the first matrix converges in probability

to zero.

By the LIE and (3.12), the second matrix converges in probability to

−E
[

∫

{a(t,X) − µa(t)} dM(t)
RπTψ (Q,ψ0)

π2(Q,ψ0)

]

= −E
[

∫

{a(t,X) − µa(t)} dM(t)
πTψ (Q,ψ0)

π(Q,ψ0)

]

= −E
[

R

π(Q,ψ0)

∫

{a(t,X) − µa(t)} dM(t)STψ

]

.

Similarly, the third matrix converges in probability to

−E
[

−{R− π(Q,ψ0)}
π(Q,ψ0)

L(Q)STψ

]

.

Therefore, the matrix as sum of three matrices inside the bracket of the second term on

the RHS of (3.19) converges in probability to −E(ϕ∗
0S

T
ψ ).

On the other hand, since ψ̂n is the MLE of ψ, we have that

n1/2(ψ̂n − ψ0) = n−1/2
n

∑

i=1

I−1
ψ Sψi + op(1), (3.20)

where

Iψ = E(SψS
T
ψ ) = E

[

πψ(Q)πTψ (Q)

π(Q){1 − π(Q)}

]

.
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Consequently, (3.19) is equal to

n−1/2
n

∑

i=1

{ϕ∗
0i − E(ϕ∗

0S
T
ψ )I−1

ψ Sψi} + op(1)

= n−1/2
n

∑

i=1

{ϕ∗
0i − Π[ϕ∗

0i|Λψ]} + op(1).

Substituting into (3.17), we have that

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

{ϕ0i − Π[ϕ0i|Λψ]} + op(1).

Therefore, the influence function for β̂n is given by ϕ = ϕ0 − Π[ϕ0|Λψ].

By the CLT, n1/2(β̂n − β0)
d→ N(0,Σ), where Σ = E(ϕϕT ).

By the Pythagorean theorem,

Σ = E(ϕ0ϕ
T
0 ) − E(ϕ0S

T
ψ )I−1

ψ {E(ϕ0S
T
ψ )}T .

Since ϕ0 = V −1(a,X)ϕ∗
0, we have that

Σ = V −1(a,X)[E(ϕ∗
0ϕ

∗T
0 ) − E(ϕ∗

0S
T
ψ )I−1

ψ {E(ϕ∗
0S

T
ψ )}T ]V −T (a,X).

To construct an estimator for the asymptotic variance, we might first estimate the ith

influence function by plugging in all parameter estimates. For example, we might consider

ϕ̂∗
0i =

Ri

π(Qi, ψ̂n)

∫

{a(t,Xi) − ā(t, β̂n, ψ̂n)}{dNi(t) − eβ̂
T
nXiI(Ti ≥ t)dΛ̂(t)}

−{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

L(Qi),

where dΛ̂(t) is given by (3.15).

Then substitute the estimate for the ith influence function into the asymptotic variance.

For example, we might consider

Ê(ϕ∗
0ϕ

∗T
0 ) = n−1

n
∑

i=1

ϕ̂∗
0iϕ̂

∗T
0i ,

Ê(ϕ∗
0S

T
ψ ) = n−1

n
∑

i=1

ϕ̂∗
0i

πTψ (Qi, ψ̂n)

π(Qi, ψ̂n)
.

In addition, let Îψ = Â−1
ψ , where

Âψ = n−1
n

∑

i=1

πψ(Qi, ψ̂n)π
T
ψ (Qi, ψ̂n)

π(Qi, ψ̂n){1 − π(Qi, ψ̂n)}
.

Therefore, when the π model is correctly specified, we have

V̂ar(β̂n) = n−1V̂ −1(a,X)[Ê(ϕ∗
0ϕ

∗T
0 ) − Ê(ϕ∗

0S
T
ψ )Î−1

ψ {Ê(ϕ∗
0S

T
ψ )}T ]V̂ −T (a,X).
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3.6 Doubly Robust Semiparametric Estimators

In this section, we will fix some arbitrary full data influence function and search for the

element of Λ2 that gives rise to the most efficient observed data influence function associated

with the full data influence function. It is shown by Robins, Rotnitzky, and Scharfstein

(1999) that estimators with such influence functions are doubly robust. In a missing data

model, an estimator is said to be doubly robust if it remains consistent when either the

model for the missing data mechanism or the model for the distribution of the complete

data is correctly specified.

Let ϕF (Z) be the arbitrary full data influence function to be fixed throughout this

section. When the missingness mechanism is known, i.e., ψ0 fixed, the class of observed

data influence functions associated with ϕF is given by

ϕFΛ⊥
0∗ =

{

R

π(Q)
ϕF (Z) + L2(O) : ∀L2 ∈ Λ2

}

.

When the missingness mechanism is unknown, the space of observed data influence functions

associated with ϕF is given by

ϕFΛ⊥
∗ =ϕF Λ⊥

0∗ − Π
[

ϕFΛ⊥
0∗

∣

∣

∣ Λψ
]

.

Define

ϕ(O) =
R

π(Q)
ϕF (Z) − Π

[

R

π(Q)
ϕF (Z)

∣

∣

∣

∣

Λ2

]

.

Then, by the projection theorem, we have that

ϕ = argminh∈
ϕF

Λ⊥

0∗
‖h‖,

where ‖h‖2 = E{hT (O)h(O)}. Recall Λψ ⊂ Λ2, hence ϕ ∈ϕF Λ⊥
∗ ⊂ϕF Λ⊥

0∗ , so that

ϕ = argminh∈
ϕF

Λ⊥
∗
‖h‖.

Therefore, ϕ is the most efficient observed data influence function associated with the full

data influence function ϕF in the sense that it has the smallest variance.

By (3.11), we have that

Π

[

R

π(Q)
ϕF (Z)

∣

∣

∣

∣

Λ2

]

= −{R− π(Q)}
π(Q)

L∗(Q), (3.21)

for some q × 1 function of Q, L∗(Q) satisfying E{L∗T (Q)L∗(Q)} <∞.

By the projection theorem,

0 = E

{

[

R

π(Q)
ϕF (Z) +

{R− π(Q)}
π(Q)

L∗(Q)

]T

×
[

−{R− π(Q)}
π(Q)

L(Q)

]}

, ∀L(Q).
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By the LIE, this is equivalent to

0 = E

[

R{R− π(Q)}
π2(Q)

ϕFT (Z)L(Q)

]

+E

[

{R− π(Q)}2

π2(Q)
L∗T (Q)L(Q)

]

= E

[{1 − π(Q)}
π(Q)

ϕFT (Z)L(Q)

]

+E

[{1 − π(Q)}
π(Q)

L∗T (Q)L(Q)

]

= E

[{1 − π(Q)}
π(Q)

{ϕF (Z) + L∗(Q)}TL(Q)

]

= E

[{1 − π(Q)}
π(Q)

[E{ϕF (Z)|Q} + L∗(Q)]TL(Q)

]

, ∀L(Q). (3.22)

Let L(Q) = E{ϕF (Z)|Q} + L∗(Q), then (3.22) implies that

{1 − π(Q)}
π(Q)

[E{ϕF (Z)|Q} + L∗(Q)] = 0.

Equivalently, we have that

−{1 − π(Q)}
π(Q)

L∗(Q) =
{1 − π(Q)}

π(Q)
E{ϕF (Z)|Q}.

If {1 − π(Q)} > 0, then multiplying both sides by {R−π(Q)}
{1−π(Q)} yields

−{R− π(Q)}
π(Q)

L∗(Q) =
{R− π(Q)}

π(Q)
E{ϕF (Z)|Q}. (3.23)

If {1 − π(Q)} = 0, then R = π(Q) = 1, which would trivially imply (3.23).

Therefore, (3.23) is satisfied in all cases.

Substituting (3.23) into (3.21), we have that

Π

[

R

π(Q)
ϕF (Z)

∣

∣

∣

∣

Λ2

]

=
{R− π(Q)}

π(Q)
E{ϕF (Z)|Q}.

Consequently,

ϕ(O) =
R

π(Q)
ϕF (Z) − {R− π(Q)}

π(Q)
E{ϕF (Z)|Q}. (3.24)

On the other hand, by (3.7), we have that

ϕF (Z) = V −1(a,X)

∫

{a(t,X) − µa(t)}dM(t), (3.25)

for some q × 1 function a(t,X).
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Denote N∗(t) = I(T ≤ t), then N(t) = I(∆ = 2)N ∗(t). Therefore,

E

[
∫

{a(t,X) − µa(t)}dM(t)

∣

∣

∣

∣

Q

]

=

∫

{a(t,X) − µa(t)}E{dM(t)|Q}

=

∫

{a(t,X) − µa(t)}{%(Q)dN∗(t) − λ(t)eβ
T
0
XI(T ≥ t)dt}, (3.26)

where

%(Q) = P (∆ = 2|Q).

Write %(W ) = P (∆ = 2|W,∆ > 0), then %(Q) = %(W )I(∆ > 0). Suppose that we posit

a parametric model for %, say %(W ) = %(W,γ), then %(Q, γ) = %(W,γ)I(∆ > 0). Let γ̂n be

the MLE of γ, then γ̂n
p→ γ∗ for some γ∗. Similarly, assume that ψ̂n

p→ ψ∗ for some ψ∗.

Note that the π model describes the missingness mechanism and the % model describes

the distribution of the complete data. To gain double robustness, we further assume that

either the π model or the % model is correctly specified. Therefore, either ψ∗ = ψ0 or

γ∗ = γ0.

To simplify notation, write

Φ(R,Z;ψ, γ) =
R

π(Q,ψ)
I(∆ = 2) − {R− π(Q,ψ)}

π(Q,ψ)
%(Q, γ),

Ω(R,Z;ψ, γ) =
{R− π(Q,ψ)}

π(Q,ψ)
{I(∆ = 2) − %(Q, γ)}.

Then

Φ(R,Z;ψ, γ) = I(∆ = 2) + Ω(R,Z;ψ, γ). (3.27)

Notice, however, for fixed (ψ, γ), Φ(R,Z;ψ, γ) is a function of the observed data, while

Ω(R,Z;ψ, γ) involves not only the observed data, but also the cause of failure indicator,

I(∆ = 2), which might be missing for some individuals. Consequently, Φ(R,Z;ψ, γ) is

calculable on all subjects, while Ω(R,Z;ψ, γ) is not.

Now substituting (3.25) and (3.26) into (3.24), we have that

ϕ(O) = V −1(a,X)ϕ∗(O),

where

ϕ∗(O) =
R

π(Q)

∫

{a(t,X) − µa(t)}dM(t)

−{R− π(Q)}
π(Q)

∫

{a(t,X) − µa(t)}{%(Q)dN∗(t) − λ(t)eβ
T
0
XI(T ≥ t)dt}

= Φ(R,Z)

∫

{a(t,X) − µa(t)}dN∗(t)

−
∫

{a(t,X) − µa(t)}λ(t)eβ
T
0
XI(T ≥ t)dt.
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Denote

ā(t, β) =

∑n
j=1 a(t,Xj)e

βTXjI(Tj ≥ t)
∑n
j=1 e

βTXjI(Tj ≥ t)
.

By the WLLN, ā(t, β0)
p→ µa(t).

On the other hand, it is straightforward to show that

n
∑

i=1

∫

{a(t,Xi) − ā(t, β)}λ(t)eβ
TXiI(Ti ≥ t)dt = 0, ∀β. (3.28)

Consequently, ϕ∗ suggests the following estimating equations for β,

0 =
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β)}dN ∗
i (t), (3.29)

where a(t,X) is some arbitrary q × 1 function of t and X.

Alternatively, one can solve the following two sets of estimating equations jointly for β

and dΛ(t),

0 =
n

∑

i=1

[

Ri

π(Qi, ψ̂n)

∫

a(t,Xi)dMi(t, β)

−{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

∫

a(t,Xi){%(Qi, γ̂n)dN∗
i (t)

−λ(t)eβ
TXiI(Ti ≥ t)dt}

]

, (3.30)

0 =
n

∑

i=1

[

Ri

π(Qi, ψ̂n)
dMi(t, β)

−{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

{%(Qi, γ̂n)dN∗
i (t)

−λ(t)eβ
TXiI(Ti ≥ t)dt}

]

. (3.31)

In addition to yielding (3.29), (3.30) and (3.31) also motivates an estimator for dΛ(t),

i.e.,

dΛ̂(t) =

∑n
j=1 Φ(Rj , Zj ; ψ̂n, γ̂n)dN

∗
j (t)

∑n
j=1 e

β̂TnXjI(Tj ≥ t)
. (3.32)

By (3.27) and (3.28), (3.29) is identical to

0 = n−1
n

∑

i=1

[
∫

{a(t,Xi) − ā(t, β)}dMi(t, β)

+Ω(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β)}dN ∗
i (t)

]

. (3.33)
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When evaluated at β0, a typical summand of (3.33) is asymptotically equivalent to

ϕ∗
i = T1i + T2i, where

T1 =

∫

{a(t,X) − µa(t)}dM(t),

T2 = Ω(R,Z;ψ∗, γ∗)

∫

{a(t,X) − µa(t)}dN∗(t).

By martingale properties, E(T1) = 0. To show E(T2) = 0 when either of the two

parametric models is correctly specified, we will use the double robustness argument as we

will describe shortly. Similar arguments will be frequently used later on. We will generically

refer to this class of arguments as the DR argument.

If the π model is correctly specified, ψ∗ = ψ0, P (R = 1|Z) = π(Q,ψ0), hence

E{Ω(R,Z;ψ0, γ
∗)|Z} =

{P (R = 1|Z) − π(Q,ψ0)}
π(Q,ψ0)

{I(∆ = 2) − %(Q, γ∗)}

= 0. (3.34)

If the % model is correctly specified, γ∗ = γ0, P (∆ = 2|Q) = %(Q, γ0), hence, by the

MAR assumption, we have

E{Ω(R,Z;ψ∗, γ0)|R,Q} =
{R− π(Q,ψ∗)}

π(Q,ψ∗)
{P (∆ = 2|R,Q) − %(Q, γ0)}

=
{R− π(Q,ψ∗)}

π(Q,ψ∗)
{P (∆ = 2|Q) − %(Q, γ0)}

= 0. (3.35)

Now if the π model is correctly specified, then by the LIE and (3.34),

E(T2) = E{E(T2|Z)}

= E

[

E{Ω(R,Z;ψ0, γ
∗)|Z}

∫

{a(t,X) − µa(t)}dN∗(t)

]

= 0.

Similarly, if the % model is correctly specified, then by the LIE and (3.35),

E(T2) = E{E(T2|R,Q)}

= E

[

E{Ω(R,Z;ψ∗, γ0)|R,Q}
∫

{a(t,X) − µa(t)}dN∗(t)

]

= 0.

In summary, when either of the two parametric models is correctly specified, E(T2) = 0,

hence E(ϕ∗) = 0, so that (3.29) is an asymptotically unbiased estimating equation for β.

Consequently, under certain regularity conditions, the resulting estimator is consistent.
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Denote

X̄(t, β) =

∑n
j=1Xje

βTXjI(Tj ≥ t)
∑n
j=1 e

βTXjI(Tj ≥ t)
.

Then

∂ā(t, β)

∂βT
=

∑n
j=1{a(t,Xj) − ā(t, β)}{Xj − X̄(t, β)}T eβTXjI(Tj ≥ t)

∑n
j=1 e

βTXjI(Tj ≥ t)

≡ Dn(a,X; t, β).

Expanding (3.29) about β0 yields

n1/2(β̂n − β0)

=

{

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

Dn(a,X; t, β∗
n)dN

∗
i (t)

}−1

×n−1/2
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β0)}dN∗
i (t), (3.36)

where β∗
n lies between β̂n and β0.

Since β̂n
p→ β0, β

∗
n

p→ β0. By the WLLN, ā(t, β∗
n)

p→ µa(t), X̄(t, β∗
n)

p→ µX(t), so that

Dn(a,X; t, β∗
n)

p→ σ(a,X; t).

Now suppose that

n1/2(ψ̂n − ψ∗) = Op(1), n1/2(γ̂n − γ∗) = Op(1). (3.37)

By the DR argument, the leading matrix inside the bracket on the RHS of (3.36) con-

verges in probability to

E

[

Φ(R,Z;ψ∗, γ∗)

∫

σ(a,X; t)dN∗(t)

]

= E

[
∫

σ(a,X; t)dN(t)

]

= V (a,X).

This suggests the following doubly robust estimator for V (a,X),

V̂ (a,X) = n−1
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

Dn(a,X; t, β̂n)dN
∗
i (t).

On the other hand, by the DR argument,

V (a,X) = E

[

Φ(R,Z;ψ∗, γ∗)

∫

{a(t,X) − µa(t)}{X − µX(t)}TdN∗(t)

]

.

Therefore, an alternative estimator for V (a,X) is provided by

Ṽ (a,X) = n−1
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β̂n)}{Xi − X̄(t, β̂n)}TdN∗
i (t).
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By (3.27), (3.28), and by expanding about (ψ∗, γ∗), the q × 1 vector on the RHS of

(3.36) is equal to

n−1/2
n

∑

i=1

[
∫

{a(t,Xi) − ā(t, β0)}dMi(t)

+Ω(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β0)}dN∗
i (t)

]

= n−1/2
n

∑

i=1

[
∫

{a(t,Xi) − ā(t, β0)}dMi(t)

+Ω(Ri, Zi;ψ
∗, γ∗)

∫

{a(t,Xi) − ā(t, β0)}dN∗
i (t)

]

−
[

n−1
n

∑

i=1

∫

{a(t,Xi) − ā(t, β0)}dN∗
i (t)

×{I(∆i = 2) − %(Qi, γ
∗
n)}

Riπ
T
ψ (Qi, ψ

∗
n)

π2(Qi, ψ∗
n)

]

n1/2(ψ̂n − ψ∗)

−
[

n−1
n

∑

i=1

∫

{a(t,Xi) − ā(t, β0)}dN∗
i (t)

×{Ri − π(Qi, ψ
∗
n)}

π(Qi, ψ∗
n)

%Tγ (Qi, γ
∗
n)

]

n1/2(γ̂n − γ∗), (3.38)

where ψ∗
n lies between ψ̂n and ψ0, and γ∗n lies between γ̂n and γ0.

By martingale properties and the DR argument, when either of the two parametric

models is correctly specified, a typical summand of the first term on the RHS of (3.38) is

asymptotically equivalent to ϕ∗
i .

The leading matrix inside the bracket of the second term on the RHS of (3.38) converges

in probability to

Pψ = E

[

∫

{a(t,X) − µa(t)}dN∗(t){I(∆ = 2) − %(Q, γ∗)}
RπTψ (Q,ψ∗)

π2(Q,ψ∗)

]

.

The leading matrix inside the bracket of the third term on the RHS of (3.38) converges

in probability to

Pγ = E

[
∫

{a(t,X) − µa(t)}dN∗(t)
{R− π(Q,ψ∗)}

π(Q,ψ∗)
%Tγ (Q, γ∗)

]

.

Note that if the π model is correctly specified, then Pγ = 0, hence, by (3.37), the third

term on the RHS of (3.38) is negligible. Similarly, if the % model is correctly specified, then

Pψ = 0, hence, by (3.37), the second term on the RHS of (3.38) is negligible.

Therefore, in the ideal case when both parametric models are correctly specified, a

typical summand of the second vector on the RHS of (3.36) is asymptotically equivalent to
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ϕ∗
i . Consequently, by (3.36),

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

V −1(a,X)ϕ∗
i + op(1).

Therefore, the influence function for β̂n is given by ϕ = V −1(a,X)ϕ∗.

By the CLT, n1/2(β̂n − β0)
d→ N(0,Σ), where Σ = E(ϕϕT ).

By the LIE, when the π model is correctly specified, E(T1T
T
2 ) = 0. Therefore,

Σ = V −1(a,X){E(T1T
T
1 ) + E(T2T

T
2 )}V −T (a,X).

By martingale properties, we have that

E(T1T
T
1 ) = E

[
∫

{a(t,X) − µa(t)}⊗2λ(t)eβ
T
0
XI(T ≥ t)dt

]

=

∫

E[{a(t,X) − µa(t)}⊗2eβ
T
0
XI(T ≥ t)]λ(t)dt

≡ V (a, a).

Similar to the estimation of V (a,X), we have that

V̂ (a, a) = n−1
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

Dn(a, a; t, β̂n)dN
∗
i (t),

where

Dn(a, a; t, β) =

∑n
j=1{a(t,Xj) − ā(t, β)}⊗2eβ

TXjI(Tj ≥ t)
∑n
j=1 e

βTXjI(Tj ≥ t)
.

And an alternative estimator for V (a, a) is provided by

Ṽ (a, a) = n−1
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

{a(t,Xi) − ā(t, β̂n)}⊗2dN∗
i (t).

By the DR argument, it can be shown that

E(T2T
T
2 ) = E

[

{R− π(Q,ψ∗)}2

π2(Q,ψ∗)
{I(∆ = 2) − %(Q, γ∗)}2

×
∫

{a(t,X) − µa(t)}⊗2dN∗(t)

]

= E

{[

R{1 − π(Q,ψ∗)}
π2(Q,ψ∗)

{I(∆ = 2) − %(Q, γ∗)}2

−{R− π(Q,ψ∗)}
π(Q,ψ∗)

%(Q, γ∗){1 − %(Q, γ∗)}
]

×
∫

{a(t,X) − µa(t)}⊗2dN∗(t)

}

. (3.39)

39



In fact, if the π model is correctly specified, ψ∗ = ψ0, hence

E

[

R{1 − π(Q,ψ∗)}
π2(Q,ψ∗)

{I(∆ = 2) − %(Q, γ∗)}2

−{R− π(Q,ψ∗)}
π(Q,ψ∗)

%(Q, γ∗){1 − %(Q, γ∗)}
∣

∣

∣

∣

Z

]

=
{1 − π(Q,ψ∗)}

π(Q,ψ∗)
{I(∆ = 2) − %(Q, γ∗)}2

= E

[

{R− π(Q,ψ∗)}2

π2(Q,ψ∗)
{I(∆ = 2) − %(Q, γ∗)}2

∣

∣

∣

∣

∣

Z

]

.

Therefore, (3.39) follows from the LIE by conditioning on Z.

Similarly, if the % model is correctly specified, γ∗ = γ0, hence, by the MAR assumption,

E

[

R{1 − π(Q,ψ∗)}
π2(Q,ψ∗)

{I(∆ = 2) − %(Q, γ∗)}2

−{R− π(Q,ψ∗)}
π(Q,ψ∗)

%(Q, γ∗){1 − %(Q, γ∗)}
∣

∣

∣

∣

R,Q

]

=
R{1 − π(Q,ψ∗)}

π2(Q,ψ∗)
%(Q, γ∗){1 − %(Q, γ∗)}

−{R− π(Q,ψ∗)}
π(Q,ψ∗)

%(Q, γ∗){1 − %(Q, γ∗)}

=
{R− π(Q,ψ∗)}2

π2(Q,ψ∗)
%(Q, γ∗){1 − %(Q, γ∗)}

= E

[

{R− π(Q,ψ∗)}2

π2(Q,ψ∗)
{I(∆ = 2) − %(Q, γ∗)}2

∣

∣

∣

∣

∣

R,Q

]

.

Therefore, (3.39) follows from the LIE by conditioning on (R,Q).

This suggests the following doubly robust estimator for E(T2T
T
2 ),

Ê(T2T
T
2 ) = n−1

n
∑

i=1

[

Ri{1 − π(Qi, ψ̂n)}
π2(Qi, ψ̂n)

{I(∆i = 2) − %(Qi, γ̂n)}2

−{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

%(Qi, γ̂n){1 − %(Qi, γ̂n)}
]

×
∫

{a(t,Xi) − ā(t, β̂n)}⊗2dN∗
i (t).

Therefore, in the ideal case when both parametric models are correctly specified, we

have

V̂ar(β̂n) = n−1V̂ −1(a,X){V̂ (a, a) + Ê(T2T
T
2 )}V̂ −T (a,X).

Now suppose that the π model is correctly specified, but the % model might be misspec-

ified, in which case, ψ∗ = ψ0, γ
∗ 6= γ0. It has been shown previously that the third term
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on the RHS of (3.38) is negligible and that the leading matrix inside the bracket of the

second term on the RHS of (3.38) converges in probability to Pψ. By the LIE and (3.12),

Pψ reduces to

Pψ = E

[

∫

{a(t,X) − µa(t)}dN∗(t){I(∆ = 2) − %(Q, γ∗)}
πTψ (Q)

π(Q)

]

= E(T2S
T
ψ ).

On the other hand, by the LIE, it is straightforward to verify that

E(T1S
T
ψ ) = E

[
∫

{a(t,X) − µa(t)}dM(t)
{R− π(Q)}πψ(Q)

π(Q){1 − π(Q)}

]

= 0.

Therefore, the leading matrix inside the bracket of the second term on the RHS of (3.38)

converges in probability to Pψ = E(ψ∗STψ ).

Applying these results as well as (3.20) to (3.38), a typical summand of the q× 1 vector

on the RHS of (3.36) is asymptotically equivalent to {ϕ∗
i − Π[ϕ∗

i |Λψ]}. Consequently, by

(3.36),

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

V −1(a,X) {ϕ∗
i − Π[ϕ∗

i |Λψ]} + op(1).

Therefore, the influence function for β̂n is given by ϕ = V −1(a,X){ϕ∗ − Π[ϕ∗|Λψ]}.
By the CLT, n1/2(β̂n − β0)

d→ N(0,Σ), where Σ = E(ϕϕT ).

Note that Π[ϕ∗|Λψ] = PψI
−1
ψ Sψ. Also recall E(T1T

T
2 ) = 0, E(T1T

T
1 ) = V (a, a). There-

fore, by the Pythagorean theorem,

Σ = V −1(a,X){V (a, a) + E(T2T
T
2 ) − PψI

−1
ψ P Tψ }V −T (a,X).

By definition, a doubly robust estimator for Pψ is given by

P̂ψ = n−1
n

∑

i=1

∫

{a(t,Xi) − ā(t, β̂n)}dN∗
i (t){I(∆i = 2) − %(Qi, γ̂n)}

Riπ
T
ψ (Qi, ψ̂n)

π2(Qi, ψ̂n)
.

Finally, let Îψ = Â−1
ψ . Therefore, when the π model is correctly specified, we have

V̂ar(β̂n) = n−1V̂ −1(a,X){V̂ (a, a) + Ê(T2T
T
2 ) − P̂ψ Î

−1
ψ P̂ Tψ }V̂ −T (a,X).

Now suppose that the %model is correctly specified, but the π model may be misspecified,

in which case, γ∗ = γ0, ψ
∗ 6= ψ0. It has been shown previously that the second term on the

RHS of (3.38) is negligible and that the leading matrix inside the bracket of the third term

on the RHS of (3.38) converges in probability to Pγ .

Note that the observed data likelihood for γ is

n
∏

i=1

{%(Qi, γ)}I(∆i=2,Ri=1){1 − %(Qi, γ)}I(∆i=1,Ri=1).
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Therefore, the log-likelihood for γ for a typical observation is

`(γ,O) = R[I(∆ = 2) log %(Q, γ) + I(∆ = 1) log{1 − %(Q, γ)}].

Consequently, the score vector for γ is

Sγ(O) =
R{I(∆ = 2) − %(Q)}%γ(Q)

%(Q){1 − %(Q)} .

By the MAR assumption, the associated Fisher information matrix is

Iγ = E(SγS
T
γ ) = E

[

R%γ(Q)%Tγ (Q)

%(Q){1 − %(Q)}

]

.

It follows that

n1/2(γ̂n − γ0) = n−1/2
n

∑

i=1

I−1
γ Sγi + op(1).

Now a typical summand of the vector on the RHS of (3.36) is asymptotically equivalent

to {ϕ∗
i − PγI

−1
γ Sγi}. Consequently, by (3.36),

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

V −1(a,X){ϕ∗
i − PγI

−1
γ Sγi} + op(1).

Therefore, the influence function for β̂n is given by ϕ = V −1(a,X){ϕ∗ − PγI
−1
γ Sγ}.

By the CLT, n1/2(β̂n − β0)
d→ N(0,Σ), where Σ = E(ϕϕT ).

As we will see shortly, Pγ 6= E(ϕ∗STγ ), hence PγI
−1
γ Sγ 6= Π[ϕ∗|Λγ ]. Consequently, it

might be reasonable to suspect that ϕ can not be written in the generic form of a typical

element of Λ⊥
0∗ or Λ⊥

∗ . In fact, when the % model is correctly specified, the full data nuisance

tangent space and the observed data nuisance tangent space will change to account for the

finite-dimensional nuisance parameter γ, because there is an intrinsic relationship between

λ(t|x), λ1(t|x), pA|T,X,∆ and %(W ) given by (C.1). Nonetheless, we can still consistently

estimate the asymptotic variance matrix for β̂n from the observed data. As we will also see

shortly, E(T1T
T
2 ) = E(T2T

T
1 ). Recall E(T1T

T
1 ) = V (a, a). Therefore,

Σ = V −1(a,X)[V (a, a) + E(T2T
T
2 ) + 2E(T1T

T
2 ) + PγI

−1
γ P Tγ

−E(ϕ∗STγ )I−1
γ P Tγ − PγI

−1
γ {E(ϕ∗STγ )}T ]V −T (a,X).

By definition, a doubly robust estimator for Pγ is given by

P̂γ = n−1
n

∑

i=1

∫

{a(t,Xi) − ā(t, β̂n)}dN∗
i (t)

{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

%Tγ (Qi, γ̂n).

42



Let Îγ = Â−1
γ , where

Âγ = n−1
n

∑

i=1

Ri%γ(Qi, γ̂n)%
T
γ (Qi, γ̂n)

%(Qi, γ̂n){1 − %(Qi, γ̂n)}
,

By the LIE, it is straightforward to show that

E(T1T
T
2 ) = E

[{R− π(Q,ψ∗)}
π(Q,ψ∗)

%(Q, γ∗){1 − %(Q, γ∗)}

×
∫

{a(t,X) − µa(t)}⊗2dN∗(t)

]

.

Note that E(T1T
T
2 ) is symmetric. It can be consistently estimated by

Ê(T1T
T
2 ) = n−1

n
∑

i=1

{Ri − π(Qi, ψ̂n)}
π(Qi, ψ̂n)

%(Qi, γ̂n){1 − %(Qi, γ̂n)}

×
∫

{a(t,Xi) − ā(t, β̂n)}⊗2dN∗
i (t).

In addition,

E(ϕ∗STγ ) = E

[
∫

{a(t,X) − µa(t)}dN∗(t)
R

π(Q,ψ∗)
%Tγ (Q, γ∗)

]

.

Note that E(ϕ∗STγ ) 6= Pγ . It can be estimated by

Ê(ϕ∗STγ ) = n−1
n

∑

i=1

∫

{a(t,Xi) − ā(t, β̂n)}dN∗
i (t)

Ri

π(Qi, ψ̂n)
%Tγ (Qi, γ̂n).

Note that Ê(ϕ∗STγ ) is a consistent estimator for E(ϕ∗STγ ) only if the % model is correctly

specified. However, it does not matter because E(ϕ∗STγ ) appears only in product terms

along with Pγ , which vanishes when the π model is correctly specified, and because when

the % model is misspecified, the π model has to be correctly specified by assumption.

Therefore, when the % model is correctly specified, we have

V̂ar(β̂n) = n−1V̂ −1(a,X){V̂ (a, a) + Ê(T2T
T
2 ) + 2Ê(T1T

T
2 ) + P̂γ Î

−1
γ P̂ Tγ

−Ê(ϕ∗STγ )Î−1
γ P̂ Tγ − P̂γ Î

−1
γ [Ê(ϕ∗STγ )]T }V̂ −T (a,X).

In some circumstances, we know that one of the two parametric models is correctly

specified, but do not know which one it is. By (3.36) and (3.38),

n1/2(β̂n − β0) = n−1/2
n

∑

i=1

V −1(a,X){ϕ∗
i − PψI

−1
ψ Sψi − PγI

−1
γ Sγi} + op(1).

Therefore, the influence function for β̂n is given by ϕ = V −1(a,X){ϕ∗ − PψI
−1
ψ Sψ −

PγI
−1
γ Sγ}.
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By the CLT, n1/2(β̂n − β0)
d→ N(0,Σ), where Σ = E(ϕϕT ).

Note that Pγ = 0 if the π model is correctly specified, Pψ = 0 if the % model is correctly

specified. In addition, when the π model is correctly specified, E(ϕ∗STψ ) = Pψ. Also recall

E(T1T
T
1 ) = V (a, a), E(T1T

T
2 ) = E(T2T

T
1 ). Consequently,

Σ = V −1(a,X)[V (a, a) + E(T2T
T
2 ) + 2E(T1T

T
2 ) − PψI

−1
ψ P Tψ + PγI

−1
γ P Tγ

−E(ϕ∗STγ )I−1
γ P Tγ − PγI

−1
γ {E(ϕ∗STγ )}T ]V −T (a,X).

Therefore, when either of the two parametric models is correctly specified, we have

V̂ar(β̂n) = n−1V̂ −1(a,X)[V̂ (a, a) + Ê(T2T
T
2 ) + 2Ê(T1T

T
2 ) − P̂ψ Î

−1
ψ P̂ Tψ + P̂γ Î

−1
γ P̂ Tγ

−Ê(ϕ∗STγ )Î−1
γ P̂ Tγ − P̂γ Î

−1
γ {Ê(ϕ∗STγ )}T ]V̂ −T (a,X).

3.7 Locally Semiparametric Efficient Estimator

By results from the previous section, the search for the observed data efficient influence

function can be restricted to the following class of influence functions,
{

RϕF (Z)

π(Q)
− Π

[

RϕF (Z)

π(Q)

∣

∣

∣

∣

∣

Λ2

]

: ϕF ∈ ΛF⊥
∗

}

.

But since the observed data efficient score differs from the observed data efficient influence

function only by a proportionality constant matrix, and an element of ΛF⊥ differs from the

corresponding full data influence function only by a proportionality constant matrix, we

only need to identify BF
eff ∈ ΛF⊥, such that

Seff (O) =
RBF

eff (Z)

π(Q)
− Π

[

RBF
eff (Z)

π(Q)

∣

∣

∣

∣

∣

Λ2

]

. (3.40)

Let m(·) denote the linear operator mapping HF to HF as

m{hF (Z)} = E[E{hF (Z)|O}|Z],

then (i−m) is a contractor, where i is the identity operator. Therefore, m−1 exists and is

unique. Furthermore, by Proposition 8.1 of Robins, et al. (1994), (3.40) is equivalent to

Π[m−1{BF
eff (Z)}|ΛF⊥] = SFeff (Z). (3.41)

In addition, the solution in BF
eff (Z) ∈ ΛF⊥ exists and is unique.

It is straightforward to show that

m−1{BF
eff (Z)} = BF

eff (Z) +
{1 − π(Q)}

π(Q)
[BF

eff (Z) − E{BF
eff (Z)|Q}].
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On the other hand, by (3.5),

BF
eff (Z) =

∫

{a(t,X) − µa(t)}dM(t), (3.42)

for some q × 1 function a(t,X). Therefore,

m−1{BF
eff (Z)} =

∫

{a(t,X) − µa(t)}dM(t)

+
{1 − π(Q)}

π(Q)
{I(∆ = 2) − %(Q)}

∫

{a(t,X) − µa(t)}dN∗(t).(3.43)

By (3.41) and the projection theorem,

0 = E{[m−1{BF
eff (Z)} − SFeff (Z)]ThF (Z)}, ∀hF ∈ ΛF⊥.

Therefore, by (3.5), (3.8), (3.43), along with martingale properties and the LIE, we have

that

0 = E

{[
∫

{a(t,X) − µa(t)}dM(t)

+
{1 − π(Q)}

π(Q)
{I(∆ = 2) − %(Q)}

∫

{a(t,X) − µa(t)}dN∗(t)

−
∫

{X − µX(t)}dM(t)

]T

×
∫

{b(t,X) − µb(t)}dM(t)

}

= E

[
∫

({a(t,X) − µa(t)} − {X − µX(t)})T {b(t,X) − µb(t)}

×λ(t)eβ
T
0
XI(T ≥ t)dt

]

+E

[{1 − π(Q)}
π(Q)

%(Q){1 − %(Q)}

×{a(T,X) − µa(T )}T {b(T,X) − µb(T )}
]

, ∀b(t,X). (3.44)

By martingale properties and the LIE, the first term on the RHS of (3.44) is equal to

E

[
∫

({a(t,X) − µa(t)} − {X − µX(t)})T {b(t,X) − µb(t)}dN(t)

]

= E[%(Q)({a(T,X) − µa(T )} − {X − µX(T )})T {b(T,X) − µb(T )}]
= E[f∗(T,X)({a(T,X) − µa(T )} − {X − µX(T )})T {b(T,X) − µb(T )}], (3.45)

where

f∗(T,X) = E{%(Q)|T,X}.
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Similarly, by the LIE, the second term on the RHS of (3.44) is equal to

E[g∗(T,X){a(T,X) − µa(T )}T {b(T,X) − µb(T )}], (3.46)

where

g∗(T,X) = E

[ {1 − π(Q)}
π(Q)

%(Q){1 − %(Q)}
∣

∣

∣

∣

T,X

]

.

Substituting (3.45) and (3.46) into (3.44), we have that

0 = E[({f∗(T,X) + g∗(T,X)}{a(T,X) − µa(T )}
−f∗(T,X){X − µX(T )})T {b(T,X) − µb(T )}], ∀b(t,X). (3.47)

Assume that

P (∆ = 2|T,X,∆ > 0) > 0, P (∆ > 0|T,X) > 0.

Then by the LIE,

f∗(T,X) = P (∆ = 2|T,X)

= P (∆ = 2|T,X,∆ > 0) P (∆ > 0|T,X)

> 0.

Consequently, f∗(T,X) + g∗(T,X) > 0 because g∗(T,X) ≥ 0.

Let

a(t,X) − µa(t) = h(t,X){X − αh(t)}, (3.48)

where

h(t,X) =
f∗(t,X)

f∗(t,X) + g∗(t,X)
,

αh(t) =
E{h(t,X)Xeβ

T
0
XI(T ≥ t)}

E{h(t,X)eβ
T
0
XI(T ≥ t)}

.

Then, by arguments similar to those used in (3.45) except that we are now working in the

reverse direction, the RHS of (3.47) is equal to

E[(f∗(T,X){X − αh(T )} − f∗(T,X){X − µX(T )})T {b(T,X) − µb(T )}]
= E[f∗(T,X){µX(T ) − αh(T )}T {b(T,X) − µb(T )}]

= E

[
∫

{µX(t) − αh(t)}T {b(t,X) − µb(t)}dN(t)

]

=

∫

{µX(t) − αh(t)}TE[{b(t,X) − µb(t)}eβ
T
0
XI(T ≥ t)]λ(t)dt

= 0, ∀b(t,X).
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Therefore, by the uniqueness, we have identified the observed data efficient score defined

by (3.40), (3.42), and (3.48).

In addition, by results from the previous section, the observed data efficient score can

be written as

Seff (O) =

∫

h(t,X){X − αh(t)}dM(t)

+Ω(R,Z)

∫

h(t,X){X − αh(t)}dN∗(t)

= Φ(R,Z)

∫

h(t,X){X − αh(t)}dN∗(t)

−
∫

h(t,X){X − αh(t)}λ(t)eβ
T
0
XI(T ≥ t)dt,

where Ω(R,Z) = Ω(R,Z;ψ0, γ0).

In fact, the observed data efficient score can also be obtained directly by projecting the

observed data score for β onto the space orthogonal to the observed data nuisance tangent

space as we will now demonstrate.

By (3.6), the observed data score for β is given by

Sβ(O) = E{SFβ (Z)|O}

= E

[
∫

XdM(t)

∣

∣

∣

∣

O

]

= R

∫

XdM(t) + (1 −R)

∫

X{%(Q)dN∗(t) − λ(t)eβ
T
0
XI(T ≥ t)dt}

=

∫

XdM(t) − (1 −R){I(∆ = 2) − %(Q)}
∫

XdN∗(t).

Note that Λ = Λψ⊕Λη, where Λη = E{ΛF |O}, Λ⊥
η = R

π(Q)Λ
F⊥ +Λ2 = Λ⊥

0 . In addition,

Sβ ⊥ Λψ, hence Π[Sβ |Λψ] = 0. Consequently,

Seff = Π[Sβ |Λ⊥] = Π[Sβ |Λ⊥
η ].

Therefore, by the projection theorem, we have

0 = E

{([
∫

XdM(t) − (1 −R){I(∆ = 2) − %(Q)}
∫

XdN∗(t)

]

−
[
∫

{a(t,X) − µa(t)}dM(t)

+Ω(R,Z)

∫

{a(t,X) − µa(t)}dN∗(t)

])T

×
[

R

π(Q)

∫

{b(t,X) − µb(t)}dM(t)

−{R− π(Q)}
π(Q)

L(Q)

]}

, ∀b(t,X), ∀L(Q).
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Equivalently,

0 = E

{[
∫

{a(t,X) − µa(t) −X}dM(t)

+Ω(R,Z)

∫

{a(t,X) − µa(t)}dN∗(t)

+(1 −R){I(∆ = 2) − %(Q)}
∫

XdN∗(t)

]T

×
[

R

π(Q)

∫

{b(t,X) − µb(t)}dM(t)

−{R− π(Q)}
π(Q)

L(Q)

]}

, ∀b(t,X), ∀L(Q).

By martingale properties and the LIE, this reduces to

0 = E

[
∫

{a(t,X) − µa(t) −X}T {b(t,X) − µb(t)}

×λ(t)eβ
T
0
XI(T ≥ t)dt

]

+E

[{1 − π(Q)}
π(Q)

%(Q){1 − %(Q)}

×{a(T,X) − µa(T )}T {b(T,X) − µb(T )}
]

, ∀b(t,X). (3.49)

Arguments similar to those applied to (3.44) can be applied to (3.49) to show that the

observed data efficient score is given by (3.40), (3.42), and (3.48).

Denote

f(T,X) = E{%(W )|T,X,∆ > 0},

g(T,X) = E

[ {1 − π(W )}
π(W )

%(W ){1 − %(W )}
∣

∣

∣

∣

T,X,∆ > 0

]

,

By the LIE, we have that

f∗(T,X) = f(T,X)P (∆ > 0|T,X),

g∗(T,X) = g(T,X)P (∆ > 0|T,X).

Therefore,

h(t,X) =
f(t,X)

f(t,X) + g(t,X)
.

To construct estimating equations for β based on the observed data efficient score, we

need to estimate f(Ti, Xi) and g(Ti, Xi) for each individual, which may involve modeling the

conditional expectations, e.g., we may consider a logit model for f and a loglinear model for

g, respectively. Let θ denote the finite-dimensional parameters introduced in this modeling

process, and let θ̂n denote an estimator for θ satisfying

θ̂n
p→ θ∗, n1/2(θ̂n − θ∗) = Op(1). (3.50)

48



Then we can estimate f(Ti, Xi) and g(Ti, Xi) using f(Ti, Xi, θ̂n) and g(Ti, Xi, θ̂n), respec-

tively.

Let

h(t,Xi, θ) =
f(t,Xi, θ)

f(t,Xi, θ) + g(t,Xi, θ)
,

ᾱh(t, β, θ) =

∑n
j=1 h(t,Xj , θ)Xje

βTXjI(Tj ≥ t)
∑n
j=1 h(t,Xj , θ)eβ

TXjI(Tj ≥ t)
.

Then it is straightforward to show that

n
∑

i=1

∫

h(t,Xi, θ){Xi − ᾱh(t, β, θ)}λ(t)eβ
TXiI(Ti ≥ t)dt = 0, ∀β, ∀θ. (3.51)

Consequently, Seff suggests the following estimating equation for β,

0 =
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β, θ̂n)}dN∗
i (t). (3.52)

By (3.27) and (3.51), this is identical to

0 = n−1
n

∑

i=1

[
∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β, θ̂n)}dMi(t, β)

+Ω(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β, θ̂n)}dN∗
i (t)

]

. (3.53)

By the WLLN, ᾱh(t, β0, θ̂n)
p→ αh(t, θ

∗), where

αh(t, θ
∗) =

E{h(t,X, θ∗)XeβT0 XI(T ≥ t)}
E{h(t,X, θ∗)eβT0 XI(T ≥ t)}

.

Assume that ψ̂n
p→ ψ∗, γ̂n

p→ γ∗, and that either of the two parametric models is cor-

rectly specified, then, when evaluated at β0, a typical summand of (3.53) is asymptotically

equivalent to ϕ∗
i ≡ T1i + T2i, where

T1 =

∫

h(t,X, θ∗){X − αh(t, θ
∗)}dM(t),

T2 = Ω(R,Z;ψ∗, γ∗)

∫

h(t,X, θ∗){X − αh(t, θ
∗)}dN∗(t).

Note that had the parametric models for the conditional expectations involved in model-

ing f(t,X) and g(t,X) been correctly specified, we would have θ∗ = θ0. In addition, if both

the π model and the % model were also correctly specified, then we would have ϕ∗ = Seff

as expected.
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By martingale properties and the DR argument, E(ϕ∗) = 0. Therefore, (3.52) is an

asymptotically unbiased estimating equation for β. Consequently, under certain regularity

conditions, the resulting estimator is consistent.

By definition, we have that

∂ᾱh(t, β, θ)

∂βT
=

∑n
j=1 h(t,Xj , θ){Xj − ᾱh(t, β, θ)}⊗2eβ

TXjI(Tj ≥ t)
∑n
j=1 h(t,Xj , θ)eβ

TXjI(Tj ≥ t)

≡ Kn(h, αh; t, β, θ).

Expanding (3.52) about β0, we have that

n1/2(β̂n − β0)

=

{

n−1
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n)Kn(h, αh; t, β
∗
n, θ̂n)dN

∗
i (t)

}−1

×n−1/2
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β0, θ̂n)}dN∗
i (t), (3.54)

where β∗
n lies between β̂n and β0.

Since β̂n
p→ β0, β

∗
n

p→ β0. By the WLLN, ᾱh(t, β
∗
n, θ̂n)

p→ αh(t, θ
∗), so that

Kn(h, αh; t, β
∗
n, θ̂n)

p→ τ(h, αh; t, θ
∗), where

τ(h, αh; t, θ
∗) =

E[h(t,X, θ∗){X − αh(t, θ
∗)}⊗2eβ

T
0
XI(T ≥ t)]

E{h(t,X, θ∗)eβT0 XI(T ≥ t)}
.

Similar to the previous section, by the DR argument, the leading matrix inside the

bracket on the RHS of (3.54) converges in probability to

V (h, αh; θ
∗) =

∫

E[h(t,X, θ∗){X − αh(t, θ
∗)}⊗2eβ

T
0
XI(T ≥ t)]λ(t)dt.

This suggests that V (h, αh; θ
∗) can be estimated by

V̂ (h, αh; θ
∗) = n−1

n
∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n)Kn(h, αh; t, β̂n, θ̂n)dN
∗
i (t).

An alternative estimator of V (h, αh; θ
∗) is provided by

Ṽ (h, αh; θ
∗) = n−1

n
∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β̂n, θ̂n)}⊗2dN∗
i (t).

It is straightforward to show that

∂ᾱh(t, β, θ)

∂θT
=

∑n
j=1{Xj − ᾱh(t, β, θ)}hTθ (t,Xj , θ)e

βTXjI(Tj ≥ t)
∑n
j=1 h(t,Xj , θ)eβ

TXjI(Tj ≥ t)

≡ ζn(t, β, θ).
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Therefore,

∂h(t,X, θ){X − ᾱh(t, β, θ)}
∂θT

= {X − ᾱh(t, β, θ)}hTθ (t,X, θ)

−h(t,X, θ)ζn(t, β, θ).

By (3.27), (3.51), and by expanding about (ψ∗, γ∗, θ∗), the q × 1 vector on the RHS of

(3.54) is equal to

n−1/2
n

∑

i=1

[
∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β0, θ̂n)}dMi(t)

+Ω(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β0, θ̂n)}dN∗
i (t)

]

= n−1/2
n

∑

i=1

[
∫

h(t,Xi, θ
∗){Xi − ᾱh(t, β0, θ

∗)}dMi(t)

+Ω(Ri, Zi;ψ
∗, γ∗)

∫

h(t,Xi, θ
∗){Xi − ᾱh(t, β0, θ

∗)}dN∗
i (t)

]

−
[

n−1
n

∑

i=1

∫

h(t,Xi, θ
∗
n){Xi − ᾱh(t, β0, θ

∗
n)}dN∗

i (t)

×{I(∆i = 2) − %(Wi, γ
∗
n)}

Riπ
T
ψ (Qi, ψ

∗
n)

π2(Qi, ψ∗
n)

]

n1/2(ψ̂n − ψ∗)

−
[

n−1
n

∑

i=1

∫

h(t,Xi, θ
∗
n){Xi − ᾱh(t, β0, θ

∗
n)}dN∗

i (t)

×{Ri − π(Qi, ψ
∗
n)}

π(Qi, ψ∗
n)

%Tγ (Wi, γ
∗
n)

]

n1/2(γ̂n − γ∗)

+

[

n−1
n

∑

i=1

{
∫

[{Xi − ᾱh(t, β0, θ
∗
n)}hTθ (t,Xi, θ

∗
n)

− h(t,Xi, θ
∗
n)ζn(t, β0, θ

∗
n)]dMi(t)

+Ω(Ri, Zi;ψ
∗
n, γ

∗
n)

∫

[{Xi − ᾱh(t, β0, θ
∗
n)}hTθ (t,Xi, θ

∗
n)

− h(t,Xi, θ
∗
n)ζn(t, β0, θ

∗
n)]dN

∗
i (t)

}

]

n1/2(θ̂n − θ∗), (3.55)

where ψ∗
n lies between ψ̂n and ψ∗, γ∗n lies between γ̂n and γ∗, and θ∗n lies between θ̂n and θ∗.

Since ψ̂n
p→ ψ∗, γ̂n

p→ γ∗, θ̂n
p→ θ∗, we have ψ∗

n
p→ ψ∗, γ∗n

p→ γ∗, θ∗n
p→ θ∗. By the WLLN,

ᾱh(t, β0, θ
∗
n)

p→ αh(t, θ
∗), so that ζn(t, β0, θ

∗
n)

p→ ζ(t, θ∗), where

ζ(t, θ∗) =
E[{X − αh(t, θ

∗)}hTθ (t,X, θ∗)eβ
T
0
XI(T ≥ t)]

E[h(t,X, θ∗)eβ
T
0
XI(T ≥ t)]

.
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Therefore, the leading matrix inside the bracket of the fourth term of (3.55) converges

in probability to

E

[
∫

[{X − αh(t, θ
∗)}hTθ (t,X, θ∗) − h(t,X, θ∗)ζ(t, θ∗)]dM(t)

+Ω(R,Z;ψ∗, γ∗)

∫

[{X − αh(t, θ
∗)}hTθ (t,X, θ∗) − h(t,X, θ∗)ζ(t, θ∗)]dN∗(t)

]

.

By martingale properties and the DR argument, this is equal to zero. Consequently, by

(3.50), the fourth term on the RHS of (3.55), which measures the effect of the estimation

of θ on the estimation of β, is negligible.

Let

a(t,X) − µa(t) = h(t,X, θ∗){X − αh(t, θ
∗)}.

Then arguments similar to those used in the previous section can be applied to reach

almost identical conclusions. For instance, the influence function for β̂n is given by ϕ =

V −1(h, αh; θ
∗){ϕ∗ − P ∗

ψI
−1
ψ Sψ − PγI

−1
γ Sγ}. By the CLT, n1/2(β̂n − β0)

d→ N(0,Σ), where

Σ = V −1(h, αh; θ
∗)[V (h2, αh; θ

∗) + E(T2T
T
2 ) + 2E(T1T

T
2 ) − PψI

−1
ψ P Tψ + PγI

−1
γ P Tγ

−E(ϕ∗STγ )I−1
γ P Tγ − PγI

−1
γ {E(ϕ∗STγ )}T ]V −T (h, αh; θ

∗).

Similar estimators can be used by plugging in θ̂n for θ∗ with the only exception being

V̂ (h, αh; θ
∗) and V̂ (h2, αh; θ

∗), where

V̂ (h2, αh; θ
∗) = n−1

n
∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h2(t,Xi, θ̂n)Kn(h
2, αh; t, β̂n, θ̂n)dN

∗
i (t).

3.8 Simulation Study

We considered three IPW semiparametric estimators. The first one is the simple IPWCC

estimator with estimating equation given by

0 =
n

∑

i=1

Ri

π(Qi, ψ̂n)

∫

{Xi − X̄(t, β, ψ̂n)}dNi(t).

The second one is the IPWDR estimator which is guaranteed to have improvement on

robustness and efficiency over the IPWCC estimator. The estimating equation is given by

0 =
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

{Xi − X̄(t, β)}dN∗
i (t).

The third one is the IPWLE estimator with estimating equation given by

0 =
n

∑

i=1

Φ(Ri, Zi; ψ̂n, γ̂n)

∫

h(t,Xi, θ̂n){Xi − ᾱh(t, β, θ̂n)}dN∗
i (t).

52



We will fit a logit π model and a logit % model in the simulation study no matter

what the true models are. In addition, to obtain the IPWLE estimator, we will fit a logit

model to f and a loglinear model to g among those individuals who have failed. To avoid

nonconvergence, we will run a linear regression on the transformed scale of f and g, and

then transform the predictions back to the original scale.

For comparison purpose, we also considered the complete case estimator and the (single)

imputation estimator. In order to investigate the performance in terms of robustness of these

estimators, we considered two situations.

In the first situation, we generated a random treatment assignment Xi from a Bernoulli

distribution with success probability 0.5. Given Xi = x, we generated two failure times

{T2i, T1i} and a censoring time Ci, independently, as we will now describe. The failure

time due to the cause of interest, i.e., T2i, was generated from an exponential distribution

with hazard λ(t|x) = φeβx, where φ = 1 and β = 0.4. The failure time due to competing

causes, i.e., T1i, was generated from a Weibull distribution with hazard λ1(t|x) = tγ1−1eγ2x,

where γ1 = 1.4 and γ2 = 0.2. The censoring time Ci was generated from an exponential

distribution with hazard λ0(t|x) = λC = 0.3. Compute Ti = min{T2i, T1i, Ci}, and let

∆i = 2 if {T2i ≤ T1i, T2i ≤ Ci}, ∆i = 1 if {T1i < T2i, T1i ≤ Ci}, and ∆i = 0 if {Ci <
T2i, Ci < T1i}. Given {Ti = t,Xi = x,∆i = δ}, we generated an auxiliary covariate Ai from

an exponential distribution with hazard λ(a|t, x, δ) = ξ0 + ξ1δ, where ξ0 = 1 and ξ1 = 1.

Consequently,

logit %(t, x, a) = − log[(ξ0 + ξ1)/{φ(ξ0 + 2ξ1)}] − (γ1 − 1) log t− (γ2 − β)x− ξ1a.

Note that, without prior knowledge, we will fit a logit model linear in t instead of log t, i.e.,

logit %(t, x, a) = γ∗0+γ∗1t+γ
∗
2x+γ

∗
3a. To comply with the MAR assumption, we generated the

missingness indicator Ri from a Bernoulli distribution with success probability depending

only on (Ti, Xi, Ai). In particular, we let

logit π(t, x, a) = ψ0 + ψ1t+ ψ2x+ ψ3a,

where ψ0 = 1, ψ1 = 1, ψ2 = −2, ψ3 = 1. Therefore, this is the same π model as we will fit.

In the second situation, we changed the specification for the conditional distribution of

T1i given Xi, which now follows a Gompertz distribution with hazard λ1(t|x) = eγ1t+γ2x,

where γ1 = 0.5 and γ2 = −0.5, so that the true % model is now given by

logit %(t, x, a) = − log[(ξ0 + ξ1)/{φ(ξ0 + 2ξ1)}] − γ1t− (γ2 − β)x− ξ1a.

Note that this is the same % model as we will fit. In addition, we changed the specification

for the π model, which is now given by

logit π(t, x, a) = ψ0 + tψ1 + ψ2x+ ψ3a,
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where ψ0 = 1, ψ1 = 0.5, ψ2 = −2, ψ3 = 1. Note that, without prior knowledge, we will fit

a logit π model.

For each situation, 500 simulation data sets were generated for sample sizes n = 200, 500.

Because it is commonly believed that most IPW estimators and especially their variance

estimators are not stable when some of the probabilities of having a complete case are close

to zero, we also generated 200 bootstrap data sets for each simulation data set with the first

bootstrap data set being the simulation data set itself. For the two situations considered

above, there are about 52% to 55% failures from the cause of interest, 31% to 35% failures

from the competing causes, and 13% to 14% censored observations. The proportion of

missing cause of failure ranges from 28% to 30%. The results are summarized in Tables 3.1

and 3.2, where a “good” fit means that all variables in W are used in the logistic regression

model and a “poor” bit means that only the intercept term is used in the logistic regression

model and both refer to the fit of the misspecified model.

As can be seen from the two tables, the complete case estimator is biased in all cases,

which is expected because cause of failure is not missing completely at random. The im-

putation estimator behaves fairly well, even in the case when the % model is misspecified.

However, further research is needed to draw any confirmative conclusions about the robust-

ness of the imputation estimator against misspecification of the % model. When the π model

is correctly specified, the IPWCC estimator is unbiased but less efficient than the IPWDR

estimator in all cases. When the π model is misspecified, the IPWCC estimator is biased,

although the bias may not be pronounced if the modeling is carefully carried out so that

the fitted π model is close to the truth. Also notice that the variance estimator for IPWCC

overestimates the true sampling variation in all cases. However, this should not cause any

particular concern because the IPWDR estimator is almost always a better choice compared

to the IPWCC estimator. It is interesting to notice that the IPWDR estimator is very close

to the IPWLE estimator in terms of robustness and efficiency. This suggests that it is not

worth the effort to go through the complicated modeling processes for f(T,X) and g(T,X)

in an attempt to gain extra efficiency if any. The IPWDR estimator is recommended for its

simplicity.

3.9 Breast Cancer Example

The data from a clinical trial in elderly women with stage II breast cancer were analyzed to

identify covariates that were significantly associated with death due to breast cancer. There

were 169 eligible patients enrolled in this study, among which 90 patients had censored death

times. Of the 79 patients who died, 18 of them had incomplete cause-of-death information.

For the remaining patients with known cause of death, 44 died from breast cancer and the
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other 17 died of other causes. Cummings et al. (1986) reported two covariates, presence

of 1 to 3 positive axillary lymph nodes and having an ER-positive primary tumor, as be-

ing significantly associated with overall survival. Goetghebeur and Ryan (1995) conducted

a cause-specific survival analysis based on the standard proportional hazards structure for

both failure types. Lu & Tsiatis (2000) used the same data to illustrate multiple imputation

methods. We summarize their results in Table 3.3 along with the proposed IPWDR esti-

mator as we will now describe. First, we had to establish a model for π(W ) and %(W ). For

the covariates W , we considered ER-status, number of positive axillary lymph nodes, tumor

size, treatment assignment (Tamoxifen versus placebo), and time of relapse. As noted by

the latter two authors, because among the 6 patients with ER-negative status 5 had died

and all died from breast cancer, we can not use a logistic regression model that includes

ER-status as a covariate to fit the π model or the % model as the MLE does not exist. On

the other hand, since only patients with ER-positive status had unknown cause of death,

we can fit a logistic regression model for π using the subset of patients who died and were

ER-positive, and a logistic regression model for % using the subset of patients who died

with known cause of death and were ER-positive. It turned out that none of the covariates

except the intercept term was significant for both logistic regression models. The results

are shown in Table 3.3, where the numbers inside the brackets denote the standard errors

associated with the parameter estimates.

It can be seen from Table 3.3 that the hazard of death from breast cancer is significantly

associated with ER-status, but no firm conclusions can be reached regarding the effect of

number of positive axillary lymph nodes.

3.10 Discussion

We have investigated various inverse probability weighted semiparametric estimators which

allow the inclusion of additional auxiliary covariates. We recommend to use the IPWDR

estimator for its simplicity, flexibility, robustness and high efficiency.
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Table 3.1: Monte Carlo comparison of complete cases, imputation, and inverse probability
weighted estimators with sample size of 200

CC SI IPWCC IPWDR IPWLE

π model correctly specified, % model misspecified, good fit

Bias -0.2268 0.0030 -0.0001 -0.0017 -0.0453
SSE 0.2496 0.2239 0.2288 0.2148 0.2214
SEE 0.2574 0.2243 0.2978 0.2161 0.2164
CP 0.874 0.944 0.998 0.944 0.942
SEEBT − − 0.2346 0.2201 0.2282
CPBT − − 0.960 0.946 0.954

π model correctly specified, % model misspecified, poor fit

Bias ∗ -0.0532 ∗ -0.0007 -0.0846
SSE ∗ 0.1993 ∗ 0.2158 0.2232
SEE ∗ 0.1975 ∗ 0.2168 0.2178
CP ∗ 0.940 ∗ 0.940 0.922
SEEBT − − ∗ 0.2203 0.2286
CPBT − − ∗ 0.946 0.946

% model correctly specified, π model misspecified, good fit

Bias -0.2019 -0.0011 -0.0047 -0.0017 -0.0421
SSE 0.2529 0.2293 0.2374 0.2266 0.2362
SEE 0.2550 0.2284 0.3167 0.2210 0.2206
CP 0.8700 0.964 0.996 0.950 0.930
SEEBT − − 0.2385 0.2246 0.2346
CPBT − − 0.958 0.952 0.956

% model correctly specified, π model misspecified, poor fit

Bias ∗ ∗ -0.1799 -0.0019 -0.0083
SSE ∗ ∗ 0.2490 0.2236 0.2232
SEE ∗ ∗ 0.3652 0.2199 0.2198
CP ∗ ∗ 0.988 0.948 0.950
SEEBT − − 0.2533 0.2226 0.2220
CPBT − − 0.890 0.954 0.958
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Table 3.2: Monte Carlo comparison of complete cases, imputation, and inverse probability
weighted estimators with sample size of 500

CC SI IPWCC IPWDR IPWLE

π model correctly specified, % model misspecified, good fit

Bias -0.2257 -0.0002 -0.0039 -0.0006 -0.0417
SSE 0.1518 0.1357 0.1406 0.1299 0.1346
SEE 0.1604 0.1403 0.1869 0.1350 0.1352
CP 0.710 0.960 0.994 0.966 0.958
SEEBT − − 0.1457 0.1357 0.1404
CPBT − − 0.952 0.968 0.964

π model correctly specified, % model misspecified, poor fit

Bias ∗ -0.0571 ∗ 0.0005 -0.0796
SSE ∗ 0.1201 ∗ 0.1305 0.1343
SEE ∗ 0.1236 ∗ 0.1355 0.1361
CP ∗ 0.946 ∗ 0.960 0.918
SEEBT − − ∗ 0.1361 0.1412
CPBT − − ∗ 0.964 0.934

% model correctly specified, π model misspecified, good fit

Bias -0.1947 0.0021 -0.0041 0.0003 -0.0383
SSE 0.1493 0.1380 0.1400 0.1336 0.1390
SEE 0.1584 0.1426 0.1960 0.1377 0.1375
CP 0.768 0.970 0.996 0.962 0.946
SEEBT − − 0.1463 0.1385 0.1444
CPBT − − 0.962 0.964 0.960

% model correctly specified, π model misspecified, poor fit

Bias ∗ ∗ -0.1735 0.0004 -0.0035
SSE ∗ ∗ 0.1457 0.1323 0.1320
SEE ∗ ∗ 0.2267 0.1371 0.1370
CP ∗ ∗ 0.968 0.968 0.968
SEEBT − − 0.1554 0.1377 0.1373
CPBT − − 0.828 0.966 0.964

Table 3.3: Comparison of complete cases, Goetghebeur and Ryan, imputation, and doubly
robust estimator using the breast cancer data

CC GR MIa IPWDR

4+ nodes 0.71[0.3065] 0.57[0.2803] 0.60[0.2618] 0.53[0.2808]
ER-neg. 1.70[0.4861] 1.59[0.4822] 1.61[0.4794] 1.71[0.4809]

a
m = 10
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Chapter 4

Conclusions

In this chapter, we first summarize the results of comparison among different approaches in

terms of flexibility, robustness and efficiency. Based on these comparisons, we then make

some practical recommendations. Finally we will point out some directions in this area that

might be of interest for future research.

4.1 Comparison

First let us find out which of the three approaches allow us to exploit important information

contained in auxiliary covariates. Intuitively, the complete case approach does not make

use of auxiliary covariates. Neither of the two partial likelihood approaches allows auxiliary

covariates because each covariate is associated with either of the two cause-specific haz-

ards. However, the imputation approach and the three inverse probability weighting (IPW)

approaches treat one of the two causes as the cause of interest, and then posit and fit a

parametric model for the conditional probability of failing from the cause of interest given

that a failure has occurred. In addition, the three IPW approaches explicitly model the

missing data mechanism. The strategy of fitting the two parametric models necessitates

the discussion of auxiliary covariates. The results are summarized in Table 4.1.

Now let us take a look at the corresponding missing data mechanism that is needed to

warrant the validity of each approach. For the complete case approach, we need to assume

that cause of failure is missing completely at random. For the Goetghebeur and Ryan partial

likelihood approach, we need to assume that the missingness probability may depend on

time, but not on covariates. For the imputation approach, the efficient partial likelihood

approach, and the three IPW approaches, we only need to assume that the missingness

probability may depend on both time and covariates, but not on cause of failure that might

be missing. When the missingness probability may depend on the missing data, none of the

approaches are expected to work. The results are summarized in Table 4.2.

58



In order to assess the robustness of the approaches, we consider two cases where the

missingness probability depends on both time and covariates and where both the complete

case estimator and the Goetghebeur and Ryan estimator are biased. In the fist case, the

parametric model for the missing data mechanism is correctly specified, but the parametric

model for the distribution of the complete data is misspecified, i.e., the π model is correctly

specified, but the % model is misspecified. For this case, the efficient partial likelihood

estimator does not perform well as confirmed by simulation. The imputation estimator is

not expected to perform well in theory, but it is surprisingly good in simulation. All IPW

estimators perform well as confirmed by simulation. In the second case, the π model is

misspecified, but the % model is correctly specified. For this case, the inverse probability

weighted complete case (IPWCC) estimator does not perform well because it relies critically

on the modeling of the π model, but both the imputation estimator and the efficient partial

likelihood estimator do not model the missing data mechanism at all, hence are valid,

and the IPW doubly robust (IPWDR) estimator and the IPW locally efficient (IPWLE)

estimator are doubly robust, hence are also valid. The results are summarized in Table 4.3.

To compare efficiency, we must assume that all approaches are valid. For example, to

compare the efficiency of the complete case estimator and the imputation estimator, we need

the missing-completely-at-random (MCAR) assumption and the specification of the % model

to be correct. Because both the imputation estimator and the IPWCC estimator exploit

additional information from the competing cause, they are more efficient than the complete

case estimator. The Goetghebeur and Ryan partial likelihood estimator is more efficient

and the efficient partial likelihood estimator is most efficient. The IPWDR estimator gains

significant efficiency over the IPWCC estimator and the IPWLE estimator should be more

efficient than the IPWDR estimator had the h model been correctly specified, but the

efficiency gain is minimal because the true h model is not known in practice. The results

are summarized in Table 4.4.

Based on the above discussion, the IPWDR estimator allows for inclusion of auxiliary

covariates, is valid under the general missing at random assumption, is doubly robust against

misspecification of either the π model or the %model, has satisfactory efficiency performance,

and has the appeal of easy implementation, therefore we recommend it to be used in practice.

4.2 Future Research

It is not clear why the imputation estimator performs so well in simulation studies when

the % model is misspecified. In addition, we have not discussed the situation when the

missingness probability may depend on the unobserved data, and we have not investigated

the sensitivity of these estimators for very small sample sizes.

59



Table 4.1: Inclusion of Auxiliary Covariates

CC MI GR EPL IPW

× √ × × √

Table 4.2: Missing Data Mechanism

CC MI GR EPL IPW

MCAR
√ √ √ √ √

RMAR × √ √ √ √

MAR × √ × √ √

NINR × × × × ×

Table 4.3: Robustness

(π, %) CC MI GR EPL IPWCC IPWDR IPWLE

(1,0)a × ×[
√

]b × × √ √ √

(0,1) × √ × √ × √ √

a1 = correctly specified, 0 = misspecified
bstatements inside brackets are simulation properties

Table 4.4: Efficiency

CC MI GR EPL IPWCC IPWDR IPWLE

poor good excellent best good excellent best[excellent]
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A Asymptotic Properties of Imputation Estimators

Consider the contribution from the jth imputed data set. Define the counting process

Nij(Ri, γ, t) = I{Ti ≤ t,Dij(Ri, γ) = 1}.

Then the log partial likelihood function can be written as

logLj(γ̂, β) =
n

∑

i=1

∫

[

βTXi − log

{

n
∑

k=1

eβ
TXkI(Tk ≥ t)

}]

dNij(Ri, γ̂, t).

Let β̂j be the MPLE, then it maximizes the above log partial likelihood, or, equivalently,

solves the corresponding score equation Sj(γ̂, β) = 0, where

Sj(γ̂, β) =
n

∑

i=1

∫

{Xi − X̄(t, β)}dNij(Ri, γ̂, t),

X̄(t, β) =

∑n
k=1Xke

βTXkI(Tk ≥ t)
∑n
k=1 e

βTXkI(Tk ≥ t)
.

The concave function arguments in Andersen and Gill (1982) can be used to establish

the consistency of β̂j .

Let

dMij(Ri, γ̂, t, β) = dNij(Ri, γ̂, t) − λ(t)eβ
TXiI(Ti ≥ t)dt.

Then

Sj(γ̂, β) =
n

∑

i=1

∫

{Xi − X̄(t, β)}dMij(Ri, γ̂, t, β).

By the WLLN, X̄(t, β0)
p→ µX(t). Similar to Tsiatis (1981), it can be shown that

n−1/2
n

∑

i=1

∫

{X̄(t, β0) − µX(t)}dMij(Ri, γ̂, t, β0)
p→ 0;

hence,

n−1/2Sj(γ̂, β0) = n−1/2
n

∑

i=1

Ψij(γ̂, β0) + op(1),

where Ψij(γ, β0) =
∫

{Xi − µX(t)}dMij(Ri, γ, t, β0). Let µΨ,β0
(γ) = E{Ψij(γ, β0)}, define

Hj(γ, β0) =
n

∑

i=1

{Ψij(γ, β0) − µΨ(γ, β0)} .

Then it can be shown using the theory of empirical processes (van der Vaart, 2000) that

n−1/2 {Hj(γ̂, β0) −Hj(γ0, β0)}
p→ 0;
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hence,

n−1/2Sj(γ̂, β0) = n−1/2
n

∑

i=1

Ψij(γ0, β0) +

{

∂µΨ(γ0, β0)

∂γT

}

n1/2(γ̂ − γ0) + op(1). (A.1)

We have shown that {Dij(Ri, γ0),Wi} has the same joint distribution as (Di,Wi); hence,

Ψij(γ0, β0) has the same distribution as
∫

{Xi − µX(t)}dMi(t), where dMi(t) = dNi(t) −
λ(t)eβ

T
0
XiI(Ti ≥ t)dt, Ni(t) = I(Ti ≤ t,Di = 1). Note that dMi(t) is the increment of a

martingale process; hence, µΨ(γ0, β0) = 0. In general, it can be shown that

µΨ(γ, β0) = E [{X − µX(T )}P (R = 0|W ){%(W,γ) − %(W,γ0)}] ;

hence,
∂µΨ(γ0, β0)

∂γT
= E[{X − µX(T )}P (R = 0|W )%Tγ (W )]. (A.2)

Because γ̂ is the maximum likelihood estimator of γ based on complete cases,

n1/2(γ̂ − γ0) = n−1/2
n

∑

i=1

φ(Oi, γ0) + op(1), (A.3)

where

φ(O, γ0) = I−1
γ %γ(W )

[

RI(∆ > 0){D − %(W )}
%(W ){1 − %(W )}

]

.

Substituting (A.2) and (A.3) into (A.1), we see that n−1/2Sj(γ̂, β0) is asymptotically

equivalent to

n−1/2
n

∑

i=1

{Ψij(γ0, β0) + E[{X − µX(T )}P (R = 0|W )%Tγ (W )]φ(Oi, γ0)}.

Because this is a normalized sum of i.i.d. mean zero random variables, asymptotic normality

follows from the usual central limit theorem and the asymptotic variance is given by the

variance of a single summand, or VSI . Mean value expansion of Sj(γ̂, β̂j) = 0 can then be

used to prove Proposition 1.

The consistency of the multiple imputation estimator, β̂, follows from the consistency of

single imputation estimators. In addition, n1/2(β̂ − β0) = V −1
S n−1/2S(γ̂, β0) + op(1), where

n−1/2S(γ̂, β0) is asymptotically equivalent to

n−1/2
n

∑

i=1

{Ψ̄i·(γ0, β0) + E[{X − µX(T )}P (R = 0|W )%Tγ (W )]φ(Oi, γ0)}.

Because this is a normalized sum of i.i.d. mean zero random variables, asymptotic normality

follows from the usual central limit theorem and the asymptotic variance is given by the

variance of a single summand, or VMI , which leads to Proposition 2.
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B Semiparametric Efficiency of Partial Likelihood Estimator

Appendix

Proof of Semiparametric Efficiency. The model is characterized by the q×1 parameter

of interest β and the infinite dimensional nuisance parameters {λ(t), λ0(t|x), pX(x), π(t, x)}.
Similar to Newey (1990), Bickel et al. (1993), and Robins et al. (1994), we consider the

Hilbert space H of all q-dimensional mean zero and square-integrable measurable functions

of the observed data O = {R, T, I(∆ = 0), RI(∆ = 1), RI(∆ = 2), X}. The nuisance tan-

gent space Λ is the linear subspace of H spanned by the scores for the nuisance parameters

of all parametric submodels and their mean-square closure. It follows from the semipara-

metric theory that the solution to the estimating equation based on the efficient score is

most efficient among all semiparametric estimators, where the efficient score is defined as

the residual of the score vector for β after being projected onto the nuisance tangent space,

Seff = Sβ − Π(Sβ |Λ). To establish the semiparametric efficiency, we only need to identify

the score vector Sβ and the nuisance tangent space Λ, carry out the projection, and verify

the asymptotic equivalency of the estimating equation based on the efficient score and the

estimating equation we have used to obtain the EPL estimator.

It is straightforward to show that the log likelihood for a single observation is given by

`(β,O) = I(R = 1) log π(T,X)

+I(R = 0) log{1 − π(T,X)}
+I(∆ = 0) log λ0(T |X) − Λ0(T |X)

+I(∆ > 0) log λ(T ) −
∫

λ(t)r.(t,X, β)Y (t)dt

+I(R = 1,∆ = 1) log r1(T,X, β)

+I(R = 1,∆ = 2) log r2(T,X, β)

+I(R = 0) log r.(T,X, β)

+ log pX(X),

where {Λδ(t|x), δ = 2, 1, 0} are the cumulative cause-specific hazards.

Since the nuisance parameters are functionally independent and separate from each

other in the log likelihood, the nuisance tangent space can be written as a direct sum of

four orthogonal spaces,

Λ = Λ1s ⊕ Λ2s ⊕ Λ3s ⊕ Λ4s,

where Λ1s is associated with λ(t), Λ2s is associated with λ0(t|x), Λ3s is associated with

pX(x), and Λ4s is associated with π(t, x).
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Let dMδ(t) = dNδ(t) − λ∗δ(t|X)dt be the martingale increments for the corresponding

counting processes, then standard techniques of semiparametric theory can be used to show

that a typical element of Λ1s is given by
∫

a(t)dM.(t),

where M. = M1 +M2 +Mu, and a(·) is some arbitrary q × 1 function of t.

To simplify notation, write rδ(t, x) = rδ(t, x, β0), then the score vector for β evaluated

at the truth is given by

Sβ(O) =

∫

r′1(t,X)

r1(t,X)
dM1(t)

+

∫

r′2(t,X)

r2(t,X)
dM2(t)

+

∫

r′.(t,X)

r.(t,X)
dMu(t).

Note that this is orthogonal to Λ2s,Λ3s and Λ4s. Therefore, using the projection theo-

rem, the efficient score, derived as the residual after projecting Sβ onto Λ, or in this case,

Λ1s, is given by

Seff (O) =

∫

r′1(t,X)

r1(t,X)
dM1(t)

+

∫

r′2(t,X)

r2(t,X)
dM2(t)

+

∫

r′.(t,X)

r.(t,X)
dMu(t)

−
∫

a∗(t)dM.(t),

where

a∗(t) =
E{r′.(t,X)Y (t)}
E{r.(t,X)Y (t)} .

The corresponding estimating equation is asymptotically equivalent to U(β) = 0, so that

the EPL estimator is semiparametric efficient.

C Notion of Auxiliary Covariates

First let us explain why auxiliary covariates should be introduced. For simplicity, let us

only consider {∆ = 2, 1}. In some circumstances, there exist covariates which are not

of inherent interest for modeling the cause-specific hazard of interest, but which may be

related to the missingness mechanism. For example, we may be able to identify some post-

treatment variable which is related to the reason why the cause of death information was
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not collected, but we would not include it in the proportional hazards model because it may

affect the causal interpretation associated with the parameters for treatment effects. Sup-

pose that cause of failure is missing at random when the auxiliary covariates are included.

For example, P (R = 1|T = t,X = x,A = a,∆ = δ) = e−a. In addition, assume that the

auxiliary covariates are involved in the relationship between the two causes of death so that

the conditional independence, {A ⊥⊥ ∆|T,X}, does not hold. For example, A follows an

exponential distribution with hazard λ(a|t, x, δ) = δ. Then by the LIE, we have

P (R = 1|t, x, δ) =

∫ ∞

0
P (R = 1|t, x, a, δ)f(a|t, x, δ)da

=

∫ ∞

0
e−aδe−δada

= δ/(1 + δ).

Therefore, the MAR assumption will be violated if we exclude the auxiliary covariates from

the data. On the other hand, if the auxiliary covariates are not related to the two causes

of death so that {A ⊥⊥ ∆|T,X}, then by the LIE, we have

P (R = 1|t, x, δ) =

∫

P (R = 1|t, x, a, δ)f(a|t, x, δ)da

=

∫

P (R = 1|t, x, a)f(a|t, x)da

= P (R = 1|t, x).

Therefore, the MAR assumption will still hold even if the auxiliary covariates are excluded

from the data.

Now let us see how the % model is related to the conditional distribution of the auxiliary

covariates. Using Bayes’ rule, we have

%(w) = P (∆ = 2|t, x, a)

=
f(t,∆ = 2|x)f(a|t, x, δ = 2)

f(t,∆ = 2|x)f(a|t, x, δ = 2) + f(t,∆ = 1|x)f(a|t, x, δ = 1)

= 1/

{

1 +
f(t,∆ = 1|x)
f(t,∆ = 2|x)

f(a|t, x, δ = 1)

f(a|t, x, δ = 2)

}

= 1/

{

1 +
λ1(t|x)
λ(t|x)

f(a|t, x, δ = 1)

f(a|t, x, δ = 2)

}

, (C.1)

where the last equation follows from

f(t,∆ = δ|x) = λδ(t|x)e−{Λ(t|x)+Λ1(t|x)}, δ = 1, 2. (C.2)

In particular, if f(a|t, x, δ = 1) = f(a|t, x, δ = 2), then

%(w) = 1/

{

1 +
λ1(t|x)
λ(t|x)

}

= %(t, x).
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The converse is also true. In fact, they are two equivalent ways to indicate the conditional

independence, {A ⊥⊥ ∆|T,X}.
Finally, let us investigate the effects of auxiliary covariates A on the relationship of the

cause-specific hazard of interest with respect to the covariates of interest X. By definition,

λ(t|x, a) = lim
h→0

h−1P (t ≤ T < t+ h,∆ = 2|T ≥ t, x, a)

= lim
h→0

h−1P (t ≤ T < t+ h,∆ = 2, a|x)
P (T ≥ t, a|x)

= lim
h→0

h−1 f(a|t ≤ T < t+ h, x, δ = 2)P (t ≤ T < t+ h,∆ = 2|x)
f(a|T ≥ t, x)P (T ≥ t|x)

=
f(a|t, x, δ = 2)

f(a|T ≥ t, x)
lim
h→0

h−1P (t ≤ T < t+ h,∆ = 2|x)
P (T ≥ t|x)

=
f(a|t, x, δ = 2)

f(a|T ≥ t, x)
λ(t|x). (C.3)

Consequently, if {A ⊥⊥ (T,∆)|X}, then λ(t|x, a) = λ(t|x). Otherwise, λ(t|x, a) may not

even retain the proportional structure of λ(t|x), let alone having same parameter values

associated with x. For example, if λ(t|x) = ex, λ1(t|x) = e2x, and λ(a|t, x, δ) = δ, then it is

straightforward to show that λ(t|x, a) = ex(1 + ex)/{1 + 0.5ea+x}.

D Bias of Complete Case Estimator

For the complete case estimator to be unbiased, it must satisfy

λ(t|x = 1, r = 1)

λ(t|x = 0, r = 1)
=
λ(t|x = 1)

λ(t|x = 0)
. (D.1)

Similar to (C.3), we have that

λ(t|x, r = 1) =
P (R = 1|t, x, δ = 2)

P (R = 1|T ≥ t, x)
λ(t|x). (D.2)

By the LIE and the MAR assumption,

P (R = 1|t, δ, x) =

∫

π(t, x, a)f(a|t, x, δ)da, δ = 1, 2. (D.3)

On the other hand,

P (R = 1|T ≥ t, x) =
P (R = 1, T ≥ t|x)

P (T ≥ t|x) . (D.4)

Denote ΛT (t|x) = Λ(t|x) + Λ1(t|x), then P (T ≥ t|x) = e−ΛT (t|x). Moreover,

P (R = 1, T ≥ t|x) =

∫ ∞

t
P (R = 1, u|x)du. (D.5)
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Using Bayes’ rule, we have

P (R = 1, t|x) =
2

∑

δ=1

P (R = 1|t, δ, x)f(t,∆ = δ|x). (D.6)

Now substituting (C.2) and (D.3) into (D.6), then into (D.5), then into (D.4), then into

(D.2), we have that

λ(t|x, r = 1)

λ(t|x) =

∫

π(t, x, a)f(a|t, x, δ = 2)da e−ΛT (t|x)

∫ ∞
t

∑2
δ=1

∫

π(u, x, a)f(a|u, x, δ)da λδ(u|x)e−ΛT (u|x)du
.

Denote this ratio as κ(t, x), then compute φ(t) = κ(t, 1)/κ(t, 0). By (D.1), if the complete

case estimator is unbiased, then φ(t) = 1. For example, if cause of failure is missing

completely at random, then π(t, x, a) = π is a constant, hence κ(t, x) = 1, φ(t) = 1.

Therefore, we can plot φ(t) versus t to assess the bias of the complete case estimator based

on the level of deviation of φ(t) from one.
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