
ABSTRACT 

Jiang, Honghua. Age-Dependent Tag Return Models for Estimating Fishing Mortality, 

Natural Mortality and Selectivity (Under the direction of Kenneth H. Pollock and Cavell 

Brownie). 

          In Chapter 1, we extend the instantaneous rates formulation of fisheries tag return 

models to allow for age-dependence of fishing mortality rates. This is important in many 

applications where tagged fish vary over a large range of ages (and sizes). We focus on a 

model based on assuming selectivity by age is constant over years and that above a certain 

age selectivity is fixed at 1. We show that it is possible to allow natural mortality to vary by 

age and year, although in many applications we would use a constant natural mortality rate to 

keep the model as simple as possible to avoid parameter redundancy problems. We allow for 

incomplete mixing of tagged fish and for fisheries to be pulse, continuous or continuous over 

part of the year. We focus on the case where all or most age classes are tagged each year. We 

investigate model identifiability and how well parameters can be estimated using analytic and 

simulation methods. Results show that some models with the tag reporting rate estimated are 

singular or near-singular. 

                  We illustrate the methods using multiple age class tag return data on striped bass 

(Morone saxatilis) from the Maryland Department of Natural Resources (MDNR). We found 

that fishing mortality rates are underestimated in models where these rates are assumed to be 

age-independent, compared to models where fishing mortality rates are assumed to be age-

dependent. Results indicate an increase in fishing mortality after the relaxation of fishing 

regulations, and an increase in the natural mortality rate beginning in 1999, coinciding with 

observations of a bacterial disease in the fish. Estimates indicate that selectivity increases 



with age as expected and that fish of age 6 years and greater appear to be fully recruited to 

the fishery. With the assumptions that the reporting rate is 0.43 from a previous reward 

tagging study, that fishing mortality is constant from 1991 to 1994, and from 1995 to 2003, 

and that fishing mortality rate for the new releases  is different  from the others, the estimate 

of the natural mortality rate for young fish is 0.39 (SE=0.02) from 1991 to 1998, 0.84 

(SE=0.06) from 1999 to 2003, respectively, and for adults is 0.13 (SE=0.01) from 1991 to 

1998, 0.65 (SE=0.03) from 1999 to 2003, respectively. Estimates of fishing mortality rate 

range from 0.27 to 0.39. 

For a better understanding of the population dynamics of a fishery and for proper 

fisheries management, scientists have started to apply tag return models to estimate age- 

specific mortality rates. One challenge of this method is the correct specification of ages for 

tagged fish. The age-length key method commonly used for age specification may produce 

substantial errors in converting size to age, especially for the older fish. To reduce such 

errors, in Chapter 2 we propose two alternative sampling designs to the standard one of 

tagging all age classes: one where only age 1 fish (fish in the youngest year class that enter 

the fishery) are tagged, another where both age 1 and age 2 fish (fish in the two youngest 

year classes that enter the fishery) are tagged. Usually, the younger the fish, the less error 

there will be in converting size to age.  

 Model identifiability is assessed by calculating the smallest eigenvalue of the Fisher 

information matrix. If the smallest eigenvalue is zero, the Fisher information matrix is 

singular and the model is non-identifiable. For all of the models we consider, the smallest 

eigenvalues are nonzero, and the models are identifiable. However, in some cases, the 

smallest eigenvalue is close to zero, indicating that the information matrix is near singular 



and that some estimators will perform poorly. Near-singularity and poor estimator 

performance are noted for models which involve estimation of the reporting rate. Estimator 

properties are better for the design with tagging the two youngest year-classes than the single 

year class design, due to the parameter redundancy problems noted by others (Freeman and 

Morgan, 1992). For models where the tag reporting rate is estimated, estimator properties 

improve as the tag reporting rate increases.  

Simulation studies show similar results to those from analysis of the information 

matrix. Given the same total number of tagged fish each year, estimator bias and precision 

are worst for the design where all tagged fish are in age class 1, better when tagged fish are 

equally spread across age classes 1 and 2, and best when equal numbers are tagged in the 5 

age classes.  

 The two sampling designs are illustrated and compared with a third design involving 

tagging of 5 age classes using tag return data on striped bass from a study carried out by 

Maryland Department of Natural Resources from 1991 to 2003. We treat fish of age 3 years 

as the youngest age class, and fish of age 4 years as the second youngest age class. Unlike the 

simulations, the total number of striped bass tagged was not the same for the three designs, 

but numbered 2178 for age class 3 only, 6338 for age classes 3 and 4, and 24356 for all 5 age 

classes (Table A.1). When both age 3 and age 4 fish are tagged, we obtain precise estimates 

with the assumption that the tag reporting rate is 0.43 based on information from a previous 

reward tagging study. The design where only age 3 fish are tagged produces estimates with 

poor precision whether the tag reporting rate is estimated or treated as known. This is partly 

because of the smaller number of fish tagged in age class 3 (compared to tagging both ages 3 

and 4) and partly because of parameter redundancy issues. Improved precision resulting from 



tagging fish in multiple age-classes must be balanced against the bias introduced by errors 

that occur in aging fish.  

 Catch-and-release fisheries have become very important to the management of 

overexploited recreational fish stocks. Tag return studies where the tag is removed regardless 

of fish disposition have been used to assess the effectiveness of restoration efforts for these 

catch-and-release fisheries. In Chapter 3, we extend the instantaneous rate formulation of tag 

return models introduced in Chapter 1 to catch-and-release tagging studies. The key point of 

our methods is that, given an estimate of the tag reporting rate, the fishing mortality rate is 

separated into two components: mortality on harvested fish, and mortality on tags of fish 

released alive (because the tag is removed). Adjusting for hooking mortality suffered by fish 

released alive, total fishing mortality can be computed. Natural mortality rates can also be 

estimated. Both age-independent models and age-dependent models are constructed. 

Methods are illustrated by application to the Maryland striped bass data. By fitting models 

with limited age- and year- dependence of the natural mortality rate M, our analyses 

demonstrate a decrease in natural mortality rates as fish age, and, in addition, provide 

evidence of an increase in natural mortality beginning in about 1999. Results also indicate 

that fishing mortality is age-dependent, with selectivity increasing with age and up to age 6 

years when fish appear to be fully recruited to the fishery. 
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Chapter 1 

Age-Dependent Tag Return Models for Estimating Fishing  

Mortality, Natural Mortality and Selectivity 
 
1.1   Introduction 

 The use of tag return methods to obtain separate estimates of fishing and natural 

mortality rates has received much recent attention in fisheries research (Pollock et al. 

1991, Hoenig et al 1998a, 1998b, Hearn et al. 1998 and others). This work was built on 

the earlier work of Brownie et al. (1985) who focused on estimating only total survival 

and hence total mortality. Pollock et al. (1991) showed that one can determine both the 

instantaneous rates of fishing and natural mortality if the tag reporting rate is estimated 

either by conducting a reward tagging study or by a creel survey or by port sampling. The 

earlier estimates of total mortality of Brownie et al. (1985) did not require an independent 

estimate of the tag reporting rate. 

   Hoenig et al. (1998a) formulated a general theory for the instantaneous rates 

version of the tag return models. They also incorporated fishing effort into multi-year tag 

return studies to estimate natural mortality and fishing mortality if the tag reporting and 

initial retention-survival rates are known. The retention-survival rate was defined as the 

product of the initial survival caused by tagging and the short-term tag retention rate. 

They also showed how to estimate the fishing mortality rate, natural mortality rate, and 

the product of the tag reporting and retention-survival rates, if the reporting and retention-

survival rates are not known. In many applications the retention-survival rate is assumed 

to be 1 so that only the tag reporting rate needs to be considered. In this case they found 

that although they could estimate the tag reporting rate with the multi-year tag return 
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data, the estimates were not stable. Therefore effectively one needs to have an external 

estimate of tag reporting rate. 

 One assumption of most multi-year tag return studies is that after release, the 

newly tagged animals are completely mixed with, and have the same survival rates as, 

previously tagged animals. Hoenig et al. (1998b) built models that allow for incomplete 

mixing of newly tagged animals leading to estimates of different fishing mortality and 

natural mortality rates for newly tagged and previously tagged animals. Tag reporting 

rates were assumed to be known or well estimated from another study.  

Hearn et al. (1998) developed pre- and post-season tagging models that allow  

one to estimate reporting rates and fishing and natural mortality rates. Twice-a-year 

tagging for multiple years provides more information about the effects of exploitation so 

that reasonable estimates of tag reporting rates, and also estimates of fishing and natural 

mortality rates can be obtained. Pollock et al. (1991), and more recently Pollock et al. 

(2001, 2002) and Hearn et al. (2003), have made a systematic study of methods of 

estimating the tag reporting rate that are external to the tag return data (high reward 

tagging, planted tags, observers etc). 

All of the previous modeling efforts have assumed that fishing mortality does not 

vary by age. This is clearly not ideal for fisheries applications where biologists often tag 

fish of a wide age range with possibly quite different fishing mortality rates. Here we 

generalize the Hoenig et al. (1998a, b) models to multiple age classes with potentially 

different fishing mortality rates and also perhaps different natural mortality rates. In the 

next section we develop the theoretical foundations for our age-dependent models where 

multiple ages of fish are tagged each year. Hierarchical models with different parameter 
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structures are presented in Section 1.3 and parameter redundancy issues are addressed. 

This is followed by a simulation study to evaluate estimators under certain models. In 

Section 1.5 we consider an example based on a striped bass (Morone saxatilis) tagging 

study from Maryland. We conclude with a discussion and some suggestions for future 

research.  

 
1.2   Model Structures 
 
1.2.1 Continuous Fishery 

 We present a likelihood for data from multiple age tagging studies, where tagging 

and release occur at the beginning of the year and harvest occurs continuously during the 

entire year. Let ikN  be the number of  fish tagged at age k (k=1,2,…,K) and   released in 

year i ( i =1,2,…I). Let ijkR  be the number of fish tagged at age k and released in year i, 

then harvested and reported in year j, for j = i, i+1, i+2, …, J.  We assume that the 

instantaneous fishing mortality rate for fish of age k in year j is   

         jkjk FSelF = , 

where jF  is the instantaneous fishing mortality rate in year j for fully recruited fish, and  

kSel  is the selectivity coefficient for age k fish. Selectivity is assumed to be constant over 

years for each age, and is assumed to be 1 for fish of age cK  and greater 

( )1 ck kkforSel ≥≡ . 

Also let  

ijkP  be the probability that a fish tagged at age k and released in year i, is harvested and  

        returned in year j,  
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ijkS  be the conditional survival rate in year j for the fish tagged at age k in year i, and  

        alive at the beginning of year j, 

M   be the instantaneous natural mortality rate, 

 λ  be tag reporting rate, the probability that the tag is reported, given that a tagged fish is  

     caught.  

For simplicity we assume at first that M and λ are constant over year and age. It 

is possible to relax this assumption to construct more general models, and the 

performance of such models with M and λ age- and/or year- dependent are investigated 

in sections 1.3 and 1.5. 

For a fishery continuous over the whole year, the expected number of fish tagged 

at age k and released in year i, then harvested and returned in year j, is: 

           ijkikijk PNRE =][ , 

where 

       

1

(1 ) ( )

(1 ) ( ),

exp( ).

j
j k j i

ivk ijk
v i j k j i

ijk

j k
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j k

ijk j k j i

F Sel
S S when j i

F Sel M

P
F Sel

S when j i
F Sel M

S F Sel M

λ

λ

−
+ −

= + −

+ −

⎧⎛ ⎞
− >⎪⎜ ⎟ +⎝ ⎠⎪

⎪= ⎨
⎪
⎪ − =

+⎪⎩

= − −

∏

 

 Under the assumption that fish suffer independent fates, the number of fish tagged 

at age k and released in year i, then harvested and returned in year j follows the 

multinomial distribution. Therefore the full likelihood function is product multinomial 

following Hoenig et al. (1998a): 
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We can obtain maximum likelihood estimators (MLEs) to estimate jF  (j=1,2,…,J) , M , 

and kSel , if λ is known, or to estimate jF  (j=1,2,…,J), M , kSel  and λ, when λ is 

unknown. In many cases we constrain λ to some known value and only estimate the 

remaining parameters. 

 When independent external information about the reporting rate λ is available, we 

can incorporate this information into the tag return model and obtain a joint likelihood 

function. For instance, suppose we have information from a planted tag study with m tags 

planted in the catch from which v tags are reported. Then the likelihood function for the 

planted tag study is binomial: 

          2 (1 ) . (2 )v m vm
L

v
λ λ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

The joint likelihood for the planted tag data and tag return data is simply the product of 

the two likelihood functions: 

           1 2 .L L L= ×  

Including external information about λ via the joint likelihood function will result in 

increased precision of MLEs, compared to estimation when there is no additional 

information about λ  based on results in section 1.4. Including information from a high 

reward tagging study combined with regular tagging would follow the same principle. 
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There would be one likelihood for the high reward tag returns and one for the regular tag 

returns.  

1.2.2 Limited Fishery: 

        In defining mortality and survival rates above, we assume that fishing takes place 

throughout the year. But in many cases, for a particular fishery, the commercial fishing 

season is limited to part of the year only. If this is the case, we need to modify the 

definitions of jF , ijkS  and ijkP , as indicated below, though the model structure is 

otherwise unchanged. We assume that tagging and release occur at the beginning of the 

year and that harvest occurs immediately after release of the tagged fish but for only part 

of the year. Let T (0≤ T ≤ 1) be the proportion of year represented by the fishing season. 

Let ∆
jF  be the instantaneous fishing mortality rate during the fishing season for year j. 

The conditional exploitation rate for age k  fish in year j given that they are alive at the 

beginning of year j is: 

 

                    ( )1 ,j kT F Sel T M j k
j

j k

T F Sel
U e

T F Sel T M
∆

∆
− −

∆= −
+

 

and the conditional survival rate is  

                    .j kT F Sel M
jS e

∆− −=  

Now  if we let ∆= jj FTF , with other parameters as defined previously, we have   
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Note that if T  =1, then j jT F F∆ = , corresponding to a continuous fishery. If jj FFT →∆  

as T  → 0, we get a pulse fishery (Ricker 1975), and ijkP  simplifies to: 
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The form of the likelihood function for the limited fishing and pulse fishery models is 

exactly the same as the likelihood function ( 1L ) for the continuous fishery models. The 

likelihood function is used to obtain MLEs. 

1.2.3 Incomplete Mixing of Newly Tagged Fish: 

               
       We also extend the incomplete mixing model of Hoenig et al. (1998b) to the case of 

age-dependence. We assume that tagging and release occur at the beginning of the year 

and harvest occurs continuously during the year. We let *jF  be the fishing mortality for 
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the newly tagged animals that are fully recruited in year j, and let jF  be the fishing 

mortality rate for previously released animals that are fully recruited in year j. The 

definitions of other parameters are unchanged.  In the general case, if we tag multiple age 

fish each year, the expected number of the ikN fish tagged at age k and released in year i, 

that are harvested and reported in year j is: 

         [ ] ,ijk ik ijkE R N P=  

   where 

             

1
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 The likelihood function under incomplete mixing is the same as the likelihood function 

( 1L ) but with ijkP  and ijkS  as defined above. 

 Assumptions: 

      The following assumptions are needed for the likelihood 1L : 

(1)  There is no tag loss, and tag numbers are correctly reported. 

(2)  Tagging induced mortality is negligible. 

(3)  There is no emigration. 

(4)  All animals behave independently with respect to their mortality process. 
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(5)  Fishing and natural mortality forces are additive, and instantaneous rates are 

constant within a year (except for the case of a limited fishery where F  is 

constant during the fishery but 0 the rest of the year). 

(6) Selectivity for each age is the same for different years and selectivity is one above 

a certain age class. 

(7) Ages of individuals are correctly identified. 

(8) There is no heterogeneity in mortality between fish within a group. That is we 

assume that all fish within the same group (age and year) have the same fishing 

and natural mortality rates. 

1.3   Parameter Identification 

 The basic model described in Section 1.2 allows instantaneous fishing mortality 

rates to be year-specific and to depend on age through selectivity, while natural mortality 

rate, M, is assumed constant. Models which permit age- and year- dependence of M are 

of considerable biological interest, but raise questions about over parameterization. 

Whether a statistical model is parameter redundant or not is an important issue in the 

modeling of recapture data. The model is parameter redundant if it can be rewritten in 

terms of a smaller set of parameters. Catchpole and Morgan (1997) showed that 

parameter redundancy is equivalent to singularity of the information matrix for a general 

class of nonlinear models. Sometimes we may be interested in which and how many 

parameters can be estimated if the model is parameter redundant (Catchpole et al 1998). 

Models for mark-recapture and tag return data are usually of product multinomial form. 

The expected information matrix for a multinomial distribution (N, π1, π2, …, πι ), where 
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π1, π2, …, πι are probabilities that depend on some parameter vector θ = (θ1, θ2, …, θq)T,  

is given by Catchpole and Morgan (1997) as 

                                                    1 'I D D−= Π ,  

where Π is a diagonal matrix whose jth diagonal element is µj=Nπj and the (i, j)th element 

of D is dij = 
i

ju
θ∂
∂

. They also show that rank ( )I θ =rank ( )D θ . This general form of I  can 

be extended to the product-multinomial case in which the mean vector µ contains the 

mean values for all of the multinomials.  

 The symbolic algebra package MAPLE (Waterloo Maple Inc., Maple 9) can be 

used to calculate the derivative matrix D. For some models, especially if the number of 

parameters is large, it is difficult to determine the rank of D symbolically, and we 

determine the rank of the derivative matrix D (hence singularity of I ) numerically. Figure 

1.1 shows whether the information matrices are singular or not for a set of hierarchical 

models, based on a study with 3 years of tagging, 3 years of recoveries, and 3 age classes. 

The models are represented by a list of parameters in parentheses. Subscript y indicates 

that the parameter is year specific, subscript a indicates that the parameter is age specific, 

and no subscript means that the parameter is constant over ages and years. For example, 

in the general model (F y, M y +a, Sela, λ y + a), the notation M y +a  indicates that natural 

mortality M is both year specific and age specific. The ‘+’ in the subscript indicates an 

additive model, with the property that there is a constant relationship between the age-

specific Mk no matter which year it is. For instance, we assume M2 = bM1 and M3 = cM1, 

where b and c are constants. Additive models are considered, because they provide a 

parsimonious way to include both age- and year- dependence.  
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 The general model with F and M both year- and age- specific is identifiable and if 

λ known. If λ is unknown, and assumed year- and age- specific, the general model is 

singular (Figure 1.1).  All submodels are identifiable if λ is known, and so we show 

results for two sets of submodels for the case where λ is unknown. We let M and/or λ be 

year specific but not age specific in one set (left  side of Figure 1.1), and M and/or λ be 

age specific but not year specific in the other set (right side of Figure 1.1). All submodels 

where M and/or λ are year specific but not age specific are nonsingular. The models (F, 

Ma, Sela, λ) and (F, M, Sela, λa), where M or λ is age specific but not year specific, are 

singular. Figure 1.1 displays the same phenomenon demonstrated by Catchpole et al. 

(2001) and Nasution et al. (2004) in that sometimes the more general model is 

nonsingular but the reduced model is singular. Models (Fy, Ma, Sela, λ), (Fy, M, Sela, λa) 

and (F y, M a, Sel a, λa) are nonsingular, but the constant F reduced models (F, Ma, Sela, λ) 

and (F, M, Sela, λa) are singular. We call (Fy, Ma, Sela, λ), (Fy, M , Sela, λa) and (Fy, Ma, 

Sela, λa) near-singular models in this case. Some estimators are expected to have poor 

precision in near-singular models.  The parameters that are poorly estimated in near-

singular models can be determined from the coefficients in the eigenvector corresponding 

to the smallest eigenvalue of I (θ) (Catchpole et al. 2001, Nasution et al. 2004). We use 

this approach for some of the models studied in Chapter 2. 
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Figure 1.1. Singularity determination for a set of hierarchical models for multiple age tag 

return data. (ns) means nonsingular and (s) means singular. 
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1.4   Simulations 

In the previous section we determined that although many models with year- or 

age- specific natural mortality rates are identifiable, there is evidence of near-singularity 

for models with λ unknown. Estimators obtained under such models may not have good 

properties in terms of bias and precision. We therefore carried out a simulation study to 

investigate the properties of some basic models that are of biological interest. We 

investigate the models (Fy, M, Sela1,a2,a3, λ) and (Fy, M, Sela1,a2,a3) where we assume that  

fishing mortality rate, F, is year- specific ( because F usually changes over years) and 
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age- specific through selectivity, and natural mortality rate, M, is constant (fishery 

biologists often make this assumption), with the reporting rate, λ, estimated or known, 

respectively. 

1.4.1 Methods 

          We used the new version of the SURVIV program (White 1983) modified by 

James Hines of Patuxent Wildlife Research Center to conduct simulations. The maximum 

likelihood method is used in SURVIV to estimate unknown parameters for complex 

product multinomial likelihoods like those presented in Section 1.2.  We assume that 500 

or 1000 fish are tagged for each age class in each year in a multiple age tag return study. 

Fish are tagged at the beginning of 5 consecutive years with 5 or 7 consecutive years of 

recoveries. We assume there are 4 different age classes: 1, 2, 3, and 4+ years.  We 

generate 500 replicate data sets for each case. We currently consider just one set of 

conditions where F1=0.2, F2=0.5, F3=0.3, F4=0.4, F5=0.6, F6=0.3, F7=0.4,  M =0.2, λ 

=0.3 and Sel = 0.6, 0.7, 0.9, and 1.0,  respectively,  for ages 1, 2,  3, and  4+. Here we 

assume that fish are fully recruited at age 4 and greater.  We use the same parameter 

values mentioned above for both continuous and pulse fishery models. (Note that the 

definition of Fi in the pulse fishery is different from that for a continuous fishery, and 

annual fishing mortality is 0.39 for the pulse fishery, and 0.24 for the continuous fishery, 

given F=0.3 and M=0.2.) For incomplete mixing models, we let the true parameter values 

be F1*=0.2, F2*=0.6, F3*=0.4, F4*=0.5, F5*=0.7, while other parameter values are the 

same as for the  continuous and pulse fishery models.  Keeping all other parameter values 

the same, we  investigate the properties of model (Fy, M, Sela1,a2,a3, λ) and model (Fy, M, 

Sela1,a2,a3) when the value of λ =0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. We also consider 
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the effect of adding 50 planted tags to provide  an external estimate of the reporting rate 

(Table 1.2). In all cases, the model used to obtain estimates is the same as the one used to 

generate the data. In other words, there is no model misspecification.  

1.4.2 Results 

       For continuous fisheries, the average estimates with standard errors in parentheses 

are included in Table 1.1 for the case where 500 or 1000 fish of each age class are tagged. 

Standard errors are the standard deviation among estimates from 500 Monte Carlo 

samples. When 500 fish are tagged, estimators under model (Fy, M, Sela1,a2,a3 ) have good 

properties with relative bias less than 2% and relative standard error less than 11%. For 

model (Fy, M, Sela1,a2,a3, λ), most estimators are unbiased, but the reporting rate estimator 

has some bias (relative bias = 9.6% for 5 years of recoveries, relative bias =  5.7% for 7 

years of recoveries). The precision of the parameter estimators is poor. For example, the 

relative standard error of  λ̂  is 42% for 5 years of recoveries, and 30% for 7 years of 

recoveries. The relative bias (RB) and relative standard error (RSE) of the reporting rate 

estimator, λ̂  are calculated using the following formulas: 

                                    

ˆˆ( ) 100%,

ˆ( )ˆ( ) 100%.

RB

SERSE

λ λλ
λ

λλ
λ

−
= ×

= ×

 

where λ̂  is the average estimate of  the parameter λ , and SE is the standard error of λ̂  

from the 500 Monte Carlo samples. RSE for M̂  is similar to RSE for λ̂ , though bias is 

smaller. 
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When 1000 fish are tagged, the precision of estimates for both models is much 

improved compared to that when 500 fish are tagged (relative standard errors of λ̂  and 

M̂  are 17% and 26%, respectively, compared to 30% and 38%, respectively, for 7 years 

of recoveries). The bias of the reporting rate estimate is reduced by including two 

additional years of recoveries (relative bias = 5.3% for 5 years of recoveries, relative bias 

= 3.3% for 7 years of recoveries). With the two additional years of recovery information, 

the 7 year tag return study results in better performance of estimators under model (Fy, M, 

Sela1,a2,a3, λ) compared to a study with 5 years of recovery data. The practical implication 

is that collecting recovery information for several years after tagging has ceased will lead 

to less biased and more precise parameter estimates. Another finding is that the 

selectivity estimates are essentially unbiased and precise regardless of whether the 

reporting rate is known or estimated.  

 

 

 

 

Table 1.1. Average estimates with standard errors in parentheses from fitting models (a) 

(Fy, M, Sela1,a2,a3) and (b) (Fy, M, Sela1,a2,a3, λ) to simulated data for a continuous complete 

mixing fishery, and a pulse fishery, assuming a tagging study with 5 years of tagging and 

either 5 or 7 years of recoveries. In each replicate, N=500 fish, or N=1000 fish are tagged 

for each of 5 age classes in each of 5 consecutive years. Results are based on 500 

replications. True parameter values are F1=0.2, F2=0.5, F3=0.3, F4=0.4, F5=0.6, F6=0.3, 

F7=0.4, M=0.2, λ =0.3, Sel1=0.6, Sel2=0.7 and Sel3=0.9.  
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                  5 Years of recoveries           7 Years of recoveries 
 
Parameter   (a) λ known    (b)λ estimated  (a) λ known    (b)λ estimated 
                  
                  Continuous complete mixing fishery with N=500 
 
F(1)      0.198 (0.021)  0.197 (0.054)  0.197 (0.021)  0.197 (0.044) 
F(2)      0.499 (0.033)  0.499 (0.136)  0.499 (0.032)  0.499 (0.109) 
F(3)      0.298 (0.022)  0.298 (0.084)  0.298 (0.021)  0.298 (0.066) 
F(4)      0.397 (0.026)  0.398 (0.111)  0.397 (0.024)  0.397 (0.087) 
F(5)      0.598 (0.044)  0.608 (0.189)  0.598 (0.038)  0.604 (0.148) 
F(6)                       0.299 (0.033)  0.306 (0.091) 
F(7)                       0.404 (0.062)  0.422 (0.149) 
  M       0.200 (0.017)  0.200 (0.088)  0.200 (0.014)  0.200 (0.075) 
    λ       0.300          0.329 (0.125)  0.300          0.317 (0.091) 
sel1       0.607 (0.063)  0.607 (0.063)  0.607 (0.061)  0.607 (0.062) 
sel2       0.704 (0.058)  0.704 (0.059)  0.704 (0.053)  0.704 (0.053) 
sel3       0.901 (0.061)  0.901 (0.062)  0.902 (0.055)  0.902 (0.056) 
 
                                     Continuous complete mixing fishery with N=1000 
 
F(1)      0.199 (0.015)  0.196 (0.040)  0.199 (0.015)  0.197 (0.033) 
F(2)      0.497 (0.024)  0.490 (0.097)  0.497 (0.023)  0.492 (0.076) 
F(3)      0.299 (0.015)  0.295 (0.058)  0.299 (0.014)  0.296 (0.046) 
F(4)      0.397 (0.018)  0.392 (0.077)  0.397 (0.017)  0.394 (0.060) 
F(5)      0.596 (0.032)  0.592 (0.134)  0.596 (0.028)  0.592 (0.102) 
F(6)                     0.299 (0.026)  0.298 (0.060) 
F(7)                     0.401 (0.047)  0.403 (0.098) 
  M       0.200 (0.013)  0.205 (0.061)  0.200 (0.011)  0.203 (0.051) 
    λ       0.300          0.316 (0.068)  0.300          0.310 (0.051) 
sel1       0.607 (0.044)  0.607 (0.044)  0.607 (0.042)  0.607 (0.042) 
sel2       0.704 (0.038)  0.705 (0.039)  0.704 (0.035)  0.705 (0.035) 
sel3       0.904 (0.046)  0.904 (0.046)  0.904 (0.041)  0.904 (0.041) 
   
                                                                Pulse fishery with N=500 
 
F(1)      0.197 (0.020)  0.196 (0.051)  0.197 (0.020)  0.198 (0.041) 
F(2)      0.500 (0.031)  0.498 (0.128)  0.500 (0.030)  0.502 (0.101) 
F(3)      0.297 (0.020)  0.296 (0.078)  0.297 (0.019)  0.298 (0.061) 
F(4)      0.397 (0.025)  0.397 (0.105)  0.398 (0.022)  0.399 (0.081) 
F(5)      0.598 (0.039)  0.605 (0.179)  0.599 (0.035)  0.606 (0.137) 
F(6)                    0.300 (0.030)  0.307 (0.084) 
F(7)                    0.402 (0.055)  0.419 (0.137) 
  M       0.200 (0.019)  0.201 (0.083)  0.200 (0.016)  0.199 (0.069) 
    λ       0.300          0.322 (0.097)  0.300          0.310 (0.062) 
sel1       0.606 (0.060)  0.607 (0.060)  0.605 (0.057)  0.606 (0.058) 
sel2       0.703 (0.056)  0.703 (0.058)  0.703 (0.052)  0.703 (0.052) 
sel3       0.902 (0.058)  0.902 (0.059)  0.902 (0.052)  0.902 (0.053) 
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Some results of parameter estimates and standard errors from fitting pulse fishery 

models (Fy, M, Sela1,a2,a3, λ) and (Fy, M, Sela1,a2,a3) are also presented in Table 1.1 for the 

situation where a pulse fishery occurs at the start of each year. With the same values for 

all parameters, the number of tag returns in a pulse fishery is greater than in a continuous 

fishery, because exploitation is concentrated in a short period immediately following 

release before any natural mortality occurs. As a result, the precision of fishing mortality 

and selectivity estimates is better under the pulse fishery models compared to the 

continuous fishery, and reporting rate estimates from model (Fy, M, Sela1,a2,a3, λ) are also 

somewhat improved in terms of bias and precision ( relative bias = 7.3%  compared to 

9.6% in continuous fishery, RSE= 32% compared to 42% in continuous fishery with 5 

years of recoveries;  relative bias = 3.3% compared to 5.7% in continuous fishery, 

RSE=21% compared to 30% in continuous fishery with 7 years of recoveries). However, 

there is little change in relative standard errors of the estimator, M̂ , in the pulse fishery 

compared to those in the continuous fishery. 

 Table 1.2 provides results on the effect of augmenting the hypothetical tag return 

study with a planted tag study with 50 tags planted in the catch to provide an independent 

estimate of the reporting rate.  With the additional information about the reporting rate 

from a planted tag study, all parameter estimates are unbiased. Relative bias of the 

reporting rate estimate is less than 2% for all cases. Though the precision of some 

estimators is still poor, it is improved much compared to models without a planted tag 

study. For instance, the relative standard errors of λ̂  and M̂  are 17% and 29% 

(compared to 42% and 44%, respectively, if there are no planted tags) with 5 years of 

recoveries when 500 fish are tagged in each age-class each year, and are 14% and 24% 
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(compared to 23% and 31%, respectively, if there are no planted tags) with 5 years of 

recoveries when 1000 fish are tagged in each cohort. This indicates that external 

information about the reporting rate results in substantial improvement in the 

performance of model (Fy, M, Sela1,a2,a3, λ).  

 

Table 1.2. Average estimates with standard errors in parentheses from fitting model (Fy, 

M, Sela1,a2,a3, λ) to simulated data for a continuous complete mixing fishery. In each 

replicate, N=500 fish or N=1000 fish are tagged for each of 5 age classes in each of 5 

consecutive years, and there are either 5 or 7 years of recoveries.  In addition we assume 

recoveries are augmented with data from a planted tag study with 50 tags planted in the  

catch. 

 

                 N=500                                 N=1000 
 
Parameter   5 Years         7 Years         5 Years           7 Years 
 
F(1)   0.201 (0.041)  0.198 (0.036)  0.200 (0.030)  0.199 (0.027)  
F(2)   0.502 (0.091)  0.495 (0.076)  0.502 (0.072)  0.499 (0.063) 
F(3)   0.303 (0.059)  0.299 (0.048)  0.301 (0.045)  0.299 (0.039) 
F(4)   0.402 (0.076)  0.396 (0.061)  0.402 (0.059)  0.400 (0.051) 
F(5)   0.609 (0.135)  0.596 (0.109)  0.607 (0.103)  0.602 (0.086) 
F(6)                 0.301 (0.069)            0.304 (0.053) 
F(7)                 0.412 (0.123)            0.410 (0.087) 
  M    0.195 (0.057)  0.200 (0.051)  0.198 (0.047)  0.199 (0.042) 
    λ    0.305 (0.052)  0.307 (0.046)  0.303 (0.043)  0.303 (0.038) 
sel1    0.608 (0.066)  0.610 (0.061)  0.605 (0.043)  0.605 (0.041) 
sel2    0.707 (0.058)  0.708 (0.054)  0.704 (0.040)  0.704 (0.037) 
sel3    0.907 (0.061)  0.907 (0.056)  0.907 (0.042)  0.906 (0.038) 
 
 

Note: Results are based on 500 replications. True parameter values are F1=0.2, F2=0.5, 

F3=0.3, F4=0.4, F5=0.6, F6=0.3, F7=0.4, M=0.2, λ =0.3, Sel1=0.6, Sel2=0.7 and Sel3=0.9. 

 We have many more parameters to estimate in incomplete mixing models than in 

continuous and pulse fishery mixed models. However, the simulation results (Table 1.3) 
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demonstrate that parameter estimates from fitting incomplete mixing models (Fy, F*y, M, 

Sela1,a2,a3) are essentially unbiased and reasonably precise; relative biases for all estimates 

are less than 2%, and relative standard errors for most estimates are less than 10%. 

However, comparing results for the incomplete and complete mixing cases (Tables 1.1 

and 1.3) we see that standard errors for ˆ , 2,...,5,iF i =  are considerably larger in the 

former case because of the larger number of parameters that are estimated. Model (Fy, 

F*y, M, Sela1,a2,a3, λ) produces essentially unbiased estimates (relative bias less than 5% 

for most estimates), but with poor precision, indicating this model is near-singular. For 

simulation studies where we allow *y yF F<  the precision will be much worse than for 

complete mixing models (Hoenig et al. 1998b). 
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Table 1.3. Average estimates with standard errors in parentheses from fitting incomplete 

mixing models (a) (Fy, F*y, M, Sela1,a2,a3) and (b) (Fy, F*y, M, Sela1,a2,a3, λ) using 

simulations where we assume that 500 fish are tagged for each of 5 age classes in each of 

5 consecutive years, and there are either 5 or 7 years of recoveries.  Results are based on 

500 replications. True parameter values are F2=0.5, F3=0.3, F4=0.4, F5=0.6, F6=0.3, 

F7=0.4, F1*=0.2, F2*=0.6, F3*=0.4, F4*=0.5, F5*=0.7, M=0.2, λ =0.3, Sel1=0.6, Sel2=0.7 

and Sel3=0.9.  

 

              5 Years of recoveries           7 Years of recoveries 
 

Parameter (a)λ  known   (b)λ  estimated   (a)λ  known    (b)λ  estimated 
 
F*(1)  0.198 (0.021)  0.194 (0.046)  0.197 (0.021)  0.196 (0.038) 
F*(2)  0.596 (0.046)  0.590 (0.146)  0.596 (0.044)  0.593 (0.117) 
F*(3)  0.397 (0.036)  0.393 (0.098)  0.397 (0.034)  0.395 (0.078) 
F*(4)  0.496 (0.042)  0.492 (0.126)  0.496 (0.039)  0.495 (0.101) 
F*(5)  0.698 (0.054)  0.695 (0.187)  0.697 (0.052)  0.698 (0.152) 
F(2)   0.500 (0.050)  0.492 (0.116)  0.500 (0.046)  0.496 (0.095) 
F(3)   0.297 (0.031)  0.294 (0.075)  0.297 (0.028)  0.295 (0.060) 
F(4)   0.398 (0.042)  0.394 (0.104)  0.397 (0.032)  0.395 (0.078) 
F(5)   0.600 (0.084)  0.605 (0.191)  0.597 (0.055)  0.599 (0.139) 
F(6)                 0.300 (0.037)  0.305 (0.085) 
F(7)                 0.403 (0.068)  0.417 (0.140) 
   M   0.199 (0.024)  0.203 (0.073)  0.200 (0.016)  0.201 (0.064) 
      λ   0.300          0.327 (0.114)  0.300          0.314 (0.072) 
sel1    0.606 (0.060)  0.607 (0.061)  0.606 (0.058)  0.607 (0.058) 
sel2    0.704 (0.058)  0.705 (0.059)  0.705 (0.053)  0.706 (0.053) 
sel3    0.901 (0.060)  0.901 (0.060)  0.902 (0.055)  0.902 (0.055) 
 
 
 

 It is of interest to examine how the performance of model (Fy, M, Sel1,2,3, λ) 

depends on the value of  the reporting rate λ . As an illustration, we consider the 

continuous fishery data with 5 years of tagging and either 5 or 7 years of recoveries. 

Figure 1.2 illustrates how the relative bias (RB) and relative standard error (RSE) of the 

reporting rate estimate ( λ̂ ) change as the true value of λ changes. We can see both RB 

and RSE of λ̂  drop dramatically as λ increases to about 0.25. Model (Fy, M, Sela1,a2,a3, λ) 
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performs quite well when λ is 0.5 (RB=5.2%, RSE=22%) and greater in 5 years of 

recoveries data. With 7 years of recovery data, results for model (Fy, M, Sela1,a2,a3, λ) are 

acceptable when  λ is 0.4 (RB=5.3%, RSE=25%) and greater. Similar trends are noted for 

estimation of M. 

 

Figure 1.2. Relative bias (RB) and Relative standard error (RSE) of the estimator λ̂  from 

fitting the complete mixing model (Fy, M, Sela1,a2,a3, λ) using simulations where we 

assume that 500 fish are tagged for each of 5 age classes in each of 5 consecutive years, 

followed by  either 5 or 7 years of recoveries. Results are based on 500 replications. True 

parameter values are F1=0.2, F2=0.5, F3=0.3, F4=0.4, F5=0.6, F6=0.3, F7=0.4, M=0.2, 

Sel1=0.6, Sel2=0.7 and Sel3=0.9.  
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1.5   Example 

1.5.1 Study Description 

 Seven age classes ( from age 2 to age 8+ years) of striped bass were tagged and 

released by Maryland Department of Natural Resources (MDNR) from 1991 to 2002 in 

the upper Chesapeake Bay to estimate the survival rates. Internal anchor tags were used 

and the length of each fish was measured. Age groups were classified with the age-length 

key method (Secor et al. 1995). We obtained this data from Brian Wells. We only analyze 

the data for fish tagged at age 3 and greater because of the small sample sizes for fish 

tagged at age 2. We group all ages above age 8 because of small sample sizes. Some 

recovered fish were harvested and some were released. The numbers of releases and tag 

returns for the striped bass are listed in Appendix A. Purely for illustration of our 

methodology, we assume that all recovered fish died which will result in overestimation 

of fishing mortality. We will present methods to account for live releases in Chapter 3. 

 Fishery biologists believe that striped bass of age 6 and greater are fully recruited. 

Thus we assume selectivity for striped bass of age 6 and greater is 1. We let Sel3, Sel4 and 

Sel5 represent the selectivities for striped bass  of  age 3, 4 and 5, respectively. We first 

consider the basic model (Fy, M, 3 4 5, ,Sel Sel Sel ) with fishing mortality rate, Fjk, age-

dependent through selectivity, and natural mortality rate, M, constant. We also assume 

that the newly released fish are able to completely mix with previously released fish in 

the first year, and that the tag reporting rate, λ, is known and equal to 0.43 (based on a 

previous reward tagging study, Brian Wells personal communication; Smith et al. 2000). 

We also fit corresponding model (Fy, M, 3 4 5, ,Sel Sel Sel , λ) with  λ estimated. Due to 

concerns that newly released fish do not have enough time to mix with others in the first 
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year, we investigate incomplete mixing models (Fy, F*y, M, 3 4 5, ,Sel Sel Sel ) and (Fy, F*y, 

M, 3 4 5, ,Sel Sel Sel , λ), allowing the newly released fish to have different fishing mortality 

rates from those of others. Based on near-singularity of models with M age-dependent 

(Figure 1.1), the models above make the strong assumption that the natural mortality rate, 

M, is constant across ages. To investigate this assumption, we consider models with a 

limited age-dependence of M, models (Fy, M3-5, M6+, 3 4 5, ,Sel Sel Sel ) and (Fy, M3-5, M6+ , 

3 4 5, ,Sel Sel Sel , λ) assuming a complete mixing fishery, and (Fy,F*y, M3-5, M6+, 

3 4 5, ,Sel Sel Sel ) and (Fy, F*y, M3-5, M6+, 3 4 5, ,Sel Sel Sel , λ) for the case of incomplete 

mixing. In these models, natural mortality for young fish (age 3, 4 and 5 years) is allowed 

to be different from the rate for adults (age 6 years and greater). 

 Some time in the late 1990s, a bacterial disease known as mycobacteriosis 

appeared in Chesapeake Bay striped bass (John Hoenig, personal communication). It is 

characterized by external lesions (open sores on the skin) and internal lesions that look 

like lumps in the pancreas and kidney. It is caused by bacteria in the genus 

Mycobacterium. There are about a dozen species of Mycobacteria in the striped bass and 

it is not known which one or ones are causing the disease or diseases. In late summer, the 

prevalence of mycobacteriosis in striped bass may be 60% or even higher in the 

Rappahannock River. To allow for an effect of disease on natural mortality while 

minimizing parameter redundancy problems, we fit two-period M models where we 

assume that M is different in years before and after disease effects began to be observed. 

In addition, we also consider models which incorporate both the limited age- and year- 

dependence described for M. We also consider reduced models with constant fishing 

mortality rate before and after the year 1995 to investigate the effects of a relaxation of 
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harvest regulations which began in 1995 (Richards and Rago, 1999). For models with the 

assumption that the tag reporting rate is known, we assume λ =0.43 (Wells, B.K personal 

communication; Smith et al. 2000). 

 We use Akaike’s information criterion ( AIC ) to choose between models because 

this method can compare multiple nested and nonnested models. AIC  is a statistic that 

deals with the tradeoff between reduced bias for a model with more parameters and 

smaller estimator variance for a model with fewer parameters (Burnham and Anderson 

2002). AIC  is computed as:      

                       ˆ2 log ( | ) 2AIC l y kθ⎡ ⎤=− +⎣ ⎦ , 

where ˆlog ( | )l yθ⎡ ⎤
⎣ ⎦  is the log likelihood function evaluated at the MLEs θ̂  given the 

data y, and k  is the number of parameters. The model with the minimum AIC  value is 

best. 

  A correction to AIC , to account for small sample size, yields AICc , that is, 

                    
1
)1(2

−−
+

+=
kn
kkAICAICc , 

where n is the sample size (total number of animals tagged). 

        Overdispersion in the data can result due to a lack of independence of capture and 

survival events, as fish travel in schools. If overdispersion is the reason for lack of fit in 

the models, a quasilikehood approach is recommended (Burham et al. 1987; Lebreton et 

al. 1992; Burnham and Anderson, 2002) to deal with the problem. The corresponding 

criterion is QAIC, defined as, 
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          ( ) kcylQAIC 2ˆ/]|ˆ[log2 +−= θ , 

where ĉ  is a variance inflation factor that can be calculated by, 

       2ˆ /c x df= ,           

where 2x  and df  correspond to the goodness-of-fit test of the most general model in the 

model set.  

  Again with small sample sizes, the corrected form of ,QAIC  QAICc  is considered, 

              ( )
1
12

−−
+

+=
kn
kkQAICQAICc , 

 where n is the sample size, and k  is the number of parameters.  

1.5.2 Results 

Table 1.4 displays the values of AIC, AIC∆ ( change in AIC compared to the 

lowest AIC value ) ,QAIC and QAIC∆ ( change in QAIC compared to the lowest QAIC 

value ) for models that assume that the tag reporting rate, λ, is known and equal to 0.43. 

We do not know exactly when the disease started to affect survival, we therefore tried a 

series of models, assuming the disease effects began in 1997, or 1998, or 1999, or 2000. 

Based on AIC and QAIC values (not shown), the models that assume an increase in 

natural mortality beginning in 1999 are the best ones. The model 

91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − − _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− − _ 99 03,AM − 3,Sel 4 5, )Sel Sel  

(model 2) which assumes F and *F  constant from 1991 to 1994, and from 1995 to 

2003, M both age- and period- specific, and incomplete mixing of the newly released 

fish, and the model _ 91 98 _ 99 03, _ 91 98( , , ,y Y Y AF M M M− − − _99 03 3 4 5, , , )AM Sel Sel Sel− (model 3), 
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which assumes year-specific F and complete mixing of the newly released fish, have the 

smallest AIC and QAIC values. These models assume that M is different for two age 

groups, young (from age 3 years to age 5 years) and adult (age 6 years and greater), and 

for two time periods, before and after the year 1999. Note that the subscript A_91-98 

indicates a rate for adult fish during 1991 to 1998, subscript Y_91-98 refers to young fish 

during 1991 to 1998, and so on. Based on AIC and QAIC values, it is difficult to decide 

whether there is evidence of incomplete mixing of the new releases  though AIC and 

QAIC values do tend to be lower for models that include F* (cf., models 2 and 4, 5 and 7, 

6 and 8, 10 and 12). Models which assume the fishing mortality rate is age-independent 

(10 and 12), fit poorly.  

  Evidence that fishing mortality is age-dependent, is based on noting that the AIC 

and QAIC values for the age-dependent models (Fy, F*y, M, 3 4 5, , )Sel Sel Sel  and 

( , ,yF M 3 4 5, , )Sel Sel Sel  are much smaller than for the corresponding models (Fy, F*y, 

M) and ( , )yF M , with age-independent fishing mortality. Estimates of fishing mortality 

rates obtained under age-independent models are lower than for models with age-

dependent fishing mortality, suggesting a negative bias in estimating F due to incorrectly 

assuming fish of all ages are fully recruited. We should keep in mind that 

underestimation of fishing mortality rates may lead to implementation of poor fisheries 

management policies. 
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Table 1.4. AIC values for models with F and *F  age-dependent through selectivity, M 

constant over years and ages, and with M age- and/or year- specific to a limited degree, 

where we assume λ =0.43. 

  
 Model    K   AIC        AIC∆    QAIC     QAIC∆    
 
   1      31   2097.94  16.39   1635.37  21.75       
   2      11   2081.55   0.00   1613.62   0.00         
   3      20   2087.48   5.93   1622.29   8.67       
   4       9   2120.87  39.32   1643.09  29.48       
   5      18   2229.58  148.03   1731.19 117.58       
   6      17   2383.46 301.91   1849.66 236.04       
   7      29   2087.75   6.20   1626.59  12.97       
   8      28   2207.30 125.75   1718.52 104.90       
   9      18   2228.40 146.85   1730.28 116.67       
   10     14   2462.71 381.16   1909.54 295.92       
   11     29   2181.12  99.57   1698.74  85.13       
   12     25   2311.76 230.21   1797.88 184.27  
  
 
Note: Values of AICc and QAICc are not presented because they are similar to values of 

AIC and QAIC, respectively. ˆ 1.29c = , based on model ( , * ,y yF F _ 91 98 ,YM −  

_ 99 03 _ 91 98, ,Y AM M− −   _ 99 03,AM − 3,Sel 4 5, )Sel Sel . K is the number of parameters. 

Models 

1:   ( , * ,y yF F   _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− − _ 99 03,AM − 3,Sel 4 5, )Sel Sel  
2:   91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − − _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− − _ 99 03,AM − 3,Sel 4 5, )Sel Sel  
3:   _ 91 98 _ 99 03,( , ,y Y YF M M− −  _ 91 98 ,AM − _99 03 3 4 5, , , )AM Sel Sel Sel−  
4:   91 94 95 03 _ 91 98 _ 99 03,( , , ,Y YF F M M− − − − _ 91 98 ,AM − _99 03 3 4 5, , , )AM Sel Sel Sel−  
5:   3 5 6( , , ,yF M M− + 3 4 5, , )Sel Sel Sel  
6.   ( , ,yF M 3 4 5, , )Sel Sel Sel  
7.   ( , * ,y yF F 3 5 6, ,M M− + 3,Sel 4 5, )Sel Sel  
8.   ( , * ,y yF F ,M 3,Sel 4 5, )Sel Sel  
9.   91 98 99 03,( , ,yF M M− − 3 4 5, , )Sel Sel Sel  
10. ( , )yF M  
11. 91 98 99 03,( , * , ,y yF F M M− − 3 4 5, , )Sel Sel Sel  
12. ( , * , )y yF F M  
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Estimates and their standard errors from fitting models 

91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − − _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− − _ 99 03,AM − 3,Sel 4 5, )Sel Sel  and 

_ 91 98 _ 99 03,( , ,y Y YF M M− −  _ 91 98 ,AM − _99 03 3 4 5, , , )AM Sel Sel Sel−  to the striped bass data are 

presented in Table 1.5. The estimates of standard errors are produced by SURVIV, based 

on the information matrix. Both models produce estimates with good precision; relative 

standard errors for most estimates are less than 10%. Estimates of selectivity have the 

expected trend under both models, with an estimate equal to 1 for fish of age 5 years. 

Under model _ 91 98 _ 99 03,( , ,y Y YF M M− −  _ 91 98 ,AM − _99 03 3 4 5, , , )AM Sel Sel Sel− , the estimated 

natural mortality for young fish is 0.42 (SE=0.02) from 1991 to 1998, which is smaller 

than that from 1999 to 2003, 0.78 (SE=0.06). The estimated natural mortality for adult 

fish is 0.15 (SE=0.09) from 1991 to 1998, which is smaller than that from 1999 to 2003, 

0.58 (SE=0.04). In both periods, 1991 to 1998, and 1999 to 2003, the estimated natural 

mortality rate for young striped bass is higher than that for the adults. We note that the 

estimate of M for adults in 1991 to 1998 agrees well with the value (0.15) assumed for 

striped bass by Smith et al. (2000). Estimates also indicate that fishing mortality 

increased after fishing regulations were relaxed in 1995. 
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Table 1.5. Parameter estimates with standard errors in parentheses from fitting two-age, 

two-period M models (a) 91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − − _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− −  

_ 99 03,AM − 3,Sel 4 5, )Sel Sel  and (b) _ 91 98 _ 99 03,( , ,y Y YF M M− − _ 91 98 ,AM − _ 99 03 3, ,AM Sel− 4 ,Sel  

5 )Sel  to the striped bass data. We assume that λ =0.43. 

 
 
Parameter      (a)             (b)              
  
 
F(92)     0.299  (0.015) 0.324  (0.021) 
F(93)     0.299  (0.015) 0.263  (0.015) 
F(94)     0.299  (0.015) 0.296  (0.016) 
F(95)     0.296  (0.012) 0.372  (0.018) 
F(96)     0.296  (0.012) 0.337  (0.017) 
F(97)     0.296  (0.012) 0.356  (0.020) 
F(98)     0.296  (0.012) 0.374  (0.024) 
F(99)     0.296  (0.012) 0.355  (0.024) 
F(00)     0.296  (0.012) 0.405  (0.024) 
F(01)     0.296  (0.012) 0.368  (0.025) 
F(02)     0.296  (0.012) 0.294  (0.020) 
F(03)     0.296  (0.012) 0.177  (0.024) 
Sel1     0.491  (0.046) 0.505  (0.047) 
Sel2     0.711  (0.043) 0.728  (0.044) 
Sel3     1.000  (0.048) 1.000  (0.048) 
F*(91)      0.269  (0.012) 0.251  (0.023) 
F*(92)      0.269  (0.012)    
F*(93)      0.269  (0.012)    
F*(94)      0.269  (0.012)    
F*(95)      0.388  (0.012)    
F*(96)      0.388  (0.012)    
F*(97)      0.388  (0.012)    
F*(98)      0.388  (0.012)    
F*(99)      0.388  (0.012)    
F*(00)      0.388  (0.012)    
F*(01)      0.388  (0.012)    
F*(02)      0.388  (0.012)    
M_Y_91_98   0.386  (0.022) 0.419  (0.021) 
M_Y_99_03   0.837  (0.057) 0.784  (0.061) 
M_A_91_98   0.134  (0.009) 0.152  (0.009) 
M_A_99_03   0.645  (0.028) 0.580  (0.036) 
 

 

 Models considered above assume that λ is constant and equal to 0.43. If the true 

value of λ is not 0.43, parameter estimates will be biased. Models with different values of 
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λ were also fitted, showing that larger values of λ are usually associated with smaller 

estimates of F and F*, and larger estimates of M. We also investigated a series of models 

91 98 99 03( , , )yF M M− − where tag reporting rates were constant from 1991 to 1998 ( 91 98λ − ), 

and constant from 1999 to 2003 ( 99 03λ − ). We found that when 91 98λ − =0.5, and 99 03λ − =0.2, 

estimates of M were 91 98M̂ − =0.25 and 99 03M̂ − =0.25. So an alternative to the conclusion 

that M increased in later years is that λ decreased in later years with no change in M. 

However, we do not believe that λ  changed that much. These analyses suggest the 

importance of accurate and year-specific information on the tag reporting rate for 

obtaining unbiased estimates of mortality rates. 

We also investigated models where λ  is estimated. Estimates, with their standard 

errors in parentheses, from fitting models 91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − −  

_ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− − _ 99 03,AM − 3,Sel 4 5, , )Sel Sel λ  and _ 91 98 _ 99 03,( , ,y Y YF M M− −  

_ 91 98 ,AM −  _ 99 03 3 4 5, , , , )AM Sel Sel Sel λ−  to the striped bass data are displayed in Table 1.6. 

Both models produce poor precision with relatively high estimates of F and F*, and 

relatively low estimates of natural mortality compared with estimates obtained under the 

corresponding models where λ  is assumed equal to 0.43. The estimates of _ 91 98AM −  are 

close to 0 and not at all realistic.  It is worth noting that estimates of selectivity are 

reasonable with expected trend and high precision. The poor performance of the models 

with λ  estimated is not surprising given the indication of near-singularity for models in 

Figure 1.2. Again, we emphasize the importance of using external sources to obtain 

accurate information for λ  (Pollock et al. 1991, 2001, and 2002; Hearn et al. 2003). 
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Table 1.6. Parameter estimates with standard errors in parentheses from fitting two-age, 

two-period M models (a) 91 94 95 03 91 94 95 03( , , * , * ,F F F F− − − − _ 91 98 ,YM − _ 99 03 _ 91 98, ,Y AM M− −  

_ 99 03,AM − 3,Sel 4 5, , )Sel Sel λ  (b) _ 91 98 _ 99 03,( , ,y Y YF M M− − _ 91 98 ,AM − _ 99 03 3, ,AM Sel−  4 ,Sel  

5 ,Sel )λ  to the striped bass data. 

 
 
Parameter      (a)             (b)               
  
 
F(92)    0.435 (0.092)   0.462  (0.097) 
F(93)    0.435 (0.092)   0.379  (0.077) 
F(94)    0.435 (0.092)   0.419  (0.080) 
F(95)    0.439 (0.098)   0.529  (0.099) 
F(96)    0.439 (0.098)   0.484  (0.093) 
F(97)    0.439 (0.098)   0.514  (0.100) 
F(98)    0.439 (0.098)   0.557  (0.117) 
F(99)    0.439 (0.098)   0.523  (0.114) 
F(00)    0.439 (0.098)   0.599  (0.125) 
F(01)    0.439 (0.098)   0.535  (0.111) 
F(02)    0.439 (0.098)   0.417  (0.081) 
F(03)    0.439 (0.098)   0.230  (0.043) 
lambda    0.297 (0.061)   0.297  (0.058) 
Sel1    0.482 (0.046)   0.502  (0.047) 
Sel2    0.696 (0.044)   0.717  (0.044) 
Sel3    1.000 (0.047)   1.000  (0.047) 
F*(91)     0.392 (0.084)   0.366  (0.082) 
F*(92)    0.392 (0.084)    
F*(93)    0.392 (0.084)    
F*(94)    0.392 (0.084)    
F*(95)    0.572 (0.123)    
F*(96)    0.572 (0.123)    
F*(97)    0.572 (0.123)    
F*(98)    0.572 (0.123)    
F*(99)    0.572 (0.123)    
F*(00)    0.572 (0.123)    
F*(02)    0.572 (0.123)    
M_Y_91_98 0.283 (0.071)   0.305  (0.074) 
M_Y_99_03 0.714 (0.099)   0.641  (0.109) 
M_A_91_98 0.000 (0.091)   0.010  (0.090) 
M_A_99_03 0.489 (0.108)   0.396  (0.121) 
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1.6   Discussion 

 In this chapter, we have developed models incorporating age effects for tag return 

data where age at tagging is determined using length. Previous age-independent tag 

return models have a strong assumption that all fish have the same fishing mortality rates 

and the same natural mortality rate no matter what age they are. Our new age-dependent 

models allow fish of different ages to have different fishing mortality rates, and even 

different natural mortality rates. Our models can be adapted to allow both a continuous 

fishery and a pulse fishery. Our models can also allow for newly released fish to have 

different fishing mortality rates from previously released fish of the same age. Based on 

AIC, for the striped bass data, models with incomplete mixing tend to be better than 

models with complete mixing, suggesting that the newly released striped bass did not get 

well mixed with other tagged fish in the first year. Estimates of annual mortality were, 

however, similar under the complete mixing models and the incomplete mixing models. 

 Monte Carlo simulations for models with M and λ  constant, and F age- and year- 

specific demonstrate that with large sample sizes (numbers of fish tagged and released 

≥ 500 for each age class annually) and moderate levels of the reporting rate, all 

estimators have good properties if λ  is known. Simulation results (Table 1.2) also 

indicate that having external information about λ can greatly improve estimator precision. 

So we recommend incorporating the external information about λ (Pollock et al. 1991, 

2001, and 2002; Hearn et al. 2003) into the models on a routine basis. Reliable results are 

not likely otherwise. 

 The inclination to obtain as much information as possible from current data drives 

people to build more and more general models. Examining singularity of expected 
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information matrix for models with age-specific natural mortality or reporting rates 

indicates that parameter redundancy problems arise when the tag reporting rates are 

estimated. 

 Time variation in the reporting rate is an additional complication and can cause 

bias as typically we get a reporting rate estimate for one year (e.g. from reward tags) and 

apply this estimate to all years. Ideally one should get an estimate of the reporting rate 

every year. 

 In our age-dependent models we assume that all ages are correctly classified. In 

practice the age-length key method is the most commonly used method to identify the age 

of fish. Errors do exist in the process of identification of the ages with this method. We 

can consider this kind of errors as measurement errors. The effects of measurement error 

on parameter estimation have received increasing attention (Walters and Ludwig 1981; 

Stefanski 1985; Stefanski and Cook 1995; Gould et al. 1997). Modification of the age-

dependent models to incorporate effects of measurement errors would be an interesting 

topic for future research. Two sampling designs to reduce such measurement errors for 

tag return studies: one where only fish in the youngest year class are tagged, another 

where fish of the two youngest year classes are tagged, will be investigated in Chapter 2. 
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Chapter 2 
 
Sampling Designs for Age-Dependent Tag Return Models for 

Estimating Fishing Mortality, Natural Mortality and Selectivity 

2.1  Introduction 

 Tag-return methods have been widely used to estimate fishing and natural 

mortality rates (Pollock et al. 1991, Hoenig et al. 1998 a, 1998 b, Hearn et al. 1998, 

Pollock et al. 2004). Pollock et al.(1991) suggested conducting a reward tagging study or 

a creel survey or port sampling to first estimate the tag-reporting rate and then to 

determine the instantaneous fishing and natural mortality rates. Hoenig et al. (1998a) 

used multiyear tag-return studies to estimate instantaneous rates of fishing and natural 

mortality and tag-reporting rate by incorporating fishing effort into the models. But they 

found that the estimates of the tag-reporting rate were not stable. To relax the assumption 

that the newly tagged fish must have the same fishing rate as previously tagged fish, 

which is sometimes unrealistic, Hoenig et al. (1998b) developed models to allow for 

incomplete mixing of newly tagged fish with the previously tagged fish. With more 

information about the effects of exploitation, Hearn et al. (1998) built pre- and post-

season tagging models that allow one to estimate fishing and natural mortality rates and 

the tag-reporting rate. Pollock et al. (2004) presented models that combine tag-return data 

and radio-telemetry data to obtain more precise estimates of fishing and natural mortality 

rates and in addition an unbiased and precise tag reporting rate estimate. 

 One limitation of these models is that they assume all tagged fish are fully 

recruited and hence fishing mortality does not vary by age. But in many tagging studies 

fisheries biologists tag fish from a wide range of ages that might have very different 
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fishing mortality rates. Brownie et al. (1985) built a series of models for a multiyear 

tagging study to estimate age- and year- specific survival rates and tag recovery rates. 

Even though the methodology was primarily developed in the context of bird-banding 

studies, it is also applicable to fisheries tagging studies. But under Brownie models, only 

the finite total annual mortality rates are estimated instead of the separate components of 

mortality corresponding to exploitation and natural causes.  

 Chapter 1 re-parameterized the Brownie models and generalized the Hoenig et al. 

(1998a, b) models to estimate age- and year- specific instantaneous fishing mortality 

rates, age-specific instantaneous natural mortality rates and the tag-reporting rate. One 

challenge of this method is the correct specification of ages of tagged fish. One common 

approach that fisheries biologists use for age specification is the age-length key method 

(Secor et al. 1995). But there may be substantial errors in determining the ages by this 

age-length key approach.  

In general, the older the fish is, the more error in converting its size to its age 

(LeCren 1974, Lai and Gunderson 1987). To reduce errors for age specification from the 

age-length key method we propose two sampling designs for tag return studies: i) Only 

fish in the youngest age class are tagged; ii) Fish in the two youngest age classes are 

tagged. These designs also have the practical advantage that often fish in the younger age 

classes are caught in greater numbers and are more available for tagging than older fish. 

In Section 2.2 we describe the Brownie et al. (1985) models for two age classes and the 

detailed model structure for the two new sampling designs.  

One big concern of these new designs where only one or two age classes are 

tagged is model identifiability. With considerably less information for these new designs, 
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the question is whether the parameters of interest (age- and year- specific fishing 

mortality rates, natural mortality rate and tag-reporting rate) are still estimable.  

Catchpole and Morgan (1997, 2001) and Catchpole et al. (1996, 1998, 2001) presented 

methods for investigating model identifiability for tagging studies. They noted that the 

most obvious cause of non-identifiability is overparameterization, or parameter 

redundancy. For a general class of nonlinear models, they showed that parameter 

redundancy is equivalent to singularity of the information matrix of the corresponding 

likelihood, and also equivalent to rank-deficiency of the derivative matrix. In Section 2.3 

we investigate parameter redundancy of different models for the new designs. 

Section 2.4 describes the simulations conducted to compare the accuracy and 

precision of parameter estimation from different sampling designs. Section 2.5 illustrates 

the application of the different sampling designs using Chesapeake Bay striped bass 

(Morone saxatilis) data. A general discussion and suggestions for future research 

complete the paper. 

2.2  Model Structures 

2.2.1 The Brownie Models: 2 Age Classes, Young and Adults 

In this section we briefly present the Brownie et al. (1985) formulation for a two 

age class model. First we present the notation and then the model structure. 

Notation:  

ƒi : finite recovery rate for adults in year i. 

Si : survival rate for adults in year i. 

ƒi': finite recovery rate in year i for animals tagged and released as young in year i. 

Si': survival rate for year i for animals tagged and released as young in year i. 
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Table 2.1. Expected and observed number of tag recoveries for 3 years of release and 4 

years of recoveries when animals are recorded as young or adult at tagging, using the 

Brownie et al. (1985) formulation. 

                
                  No.                                  Year of recovery 
Year       tagged         1                  2                 3                       4 
 
Expected recoveries (Tagged as Adult) 
1               N1          N1ƒ1            N1S1ƒ2          N1S1S2ƒ3           N1S1S2S3ƒ4 
2               N2                              N2ƒ2             N2S2ƒ3               N2S2S3ƒ4 
3               N3                                                   N3ƒ3                  N3S3ƒ4 
Observed recoveries (Tagged as Adult) 
1               N1                r11                r12                 r13                      r14 
2               N2                               r22                 r23                     r24 
3               N3                                                    r33                     r34 
Expected recoveries (Tagged as Young) 
1               N1'          N1'ƒ1'           N1'S1'ƒ2         N1'S1'S2ƒ3         N1'S1'S2S3ƒ4 
2               N2'                              N2'ƒ2'             N2'S2'ƒ3            N2'S2'S3ƒ4 
3               N3'                                                    N3'ƒ3'                N3'S3'ƒ4 
Observed recoveries (Tagged as Young) 
1               N1'                r11'               r12'                 r13'                     r14' 
2               N2'                               r22'                 r23'                    r24' 
3               N3'                                                     r33'                    r34' 
 
 

 
 Note that “young” means “young of the year” or the 1-year age class, “adult” 

means all ages greater than young of the year. Assuming that young animals have 

different survival rates from adults, Brownie et al. (1985) developed models that 

incorporate different survival rates for these two age classes (young and adult). Suppose 

Ni adults and Ni' young animals (Table 2.1) are tagged in year i (i=1, 2, …, I). From these 

rij adults and rij' young animals are harvested and their tags reported in year j (j=i, i+1, …, 

J). The expected number of recovered tags from animals tagged as adults is: 

          ijiij PNrE =][ , 
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and 

ijP  is the probability that an adult tagged and released in year i, is then harvested and 

reported in year j. 

We assume that the number of animals harvested and reported for each cohort 

follows the multinomial distribution, and each cohort is independent of other cohorts. The 

likelihood function for animals tagged as adults is product multinomial: 
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For young animals: 
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and 

'ijP  is the probability that a young animal tagged and released in year i, is then harvested 

and returned in year j. Notice that after the first year, surviving animals are adults and 

hence subject to adult rates.  
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The likelihood function for animals tagged as young is product multinomial: 
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Under the assumption that animals tagged as young act independently from animals 

tagged as adult, we have a joint likelihood for a tagging study with two age classes: 

                 ya LLL ×= . 

Exact expressions for maximum likelihood estimators based on the joint likelihood 

function are presented in Brownie et al. (1985, p. 60-61).  

2.2.2 Models for Tagging Age 1 Fish Only  

Chapter 1 presented a general model structure for multiple age tagging studies 

that are appropriate for a continuous fishery, limited continuous fishery, pulse fishery and 

incomplete mixing fishery models, with the assumption that all age classes were tagged. 

Here, for simplicity, we only consider the continuous fishery, and focus on the design 

where only age 1 fish (fish in the youngest year class that enter the fishery) are tagged. 

Previous research (Brownie et al. 1985; Anderson et al. 1985) showed that with the finite 

mortality rates parameterization, it is impossible to estimate age- and year-specific 

survival rates for the young if only young are tagged. So sampling designs with only 

young animals tagged are generally considered impractical. However, with the 

instantaneous mortality rate parameterization, estimation of young and adult survival is 

possible when only young are tagged if certain rates are assumed constant across years; 

that is, if additional structure is imposed on the parameters. Accordingly, we assume a 

constant natural mortality rate, M, a constant tag reporting rate, λ, and multiplicative 

time- and age- dependent fishing mortality rates, F ( jkjk FSelF = ). 
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Following the structure of the likelihood of  Chapter 1, we let iN  be the number 

of  fish tagged at age 1 and released in year i ( i =1,2,…I), and let ijR  be the number of 

fish tagged at age 1 and released in year i, then harvested and reported in year j, for j = i, 

i+1, i+2, …, J. We assume that tagging and release happen at the beginning of the year 

and harvest occurs during the whole year. 

Also let 

ijP  be the probability that a fish tagged at age 1 and released in year i, is harvested and its  

      tag returned in year j,   

ijS  be the conditional survival rate in year j for fish tagged at age 1in year i and alive at   

       the beginning of year j (Each year fish are a year older and that has to be taken into 

       account), 

jF  be the instantaneous fishing mortality rate in year j for fully recruited fish,       

M  be the instantaneous annual natural mortality rate, 

λ   be tag-reporting rate, the probability that the tag is reported, given that a tagged fish  

       is caught, 

kSel be the selectivity for age k fish. Here we assume that all fish of age cK  and greater  

        are fully recruited ( kSel =1 for all K ≥ cK ). Selectivity is assumed to be constant  

        over years for each age. Therefore the fishing mortality rate for fish of age k in year 

         j is:    

        jkjk FSelF = . 

We assume M and λ are year and age independent to achieve parsimony. Models with 

M and λ dependent on year or age are discussed earlier in Chapter 1. 
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The expected number of fish tagged at age 1 and released in year i, then harvested 

and returned in year j is: 

                  ijiij PNRE =][ ,  

   where  
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The number of fish tagged at age 1 and released in year i, then harvested and 

returned in year j follows a multinomial distribution. Therefore the likelihood function is 

product multinomial, following Hoenig et al. (1998a):  
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        Maximum likelihood estimators (MLEs) do not have closed forms. We use the 

computer software SURVIV (White 1983) to estimate jF  (j=1,2,…,J) , M , and 

kSel (k=1, 2,…,Kc), if λ is known, or to estimate jF , M , kSel  and λ, when λ is 

unknown.   
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2.2.3 Models for Tagging Age 1 and Age 2 Fish  

Now we consider the case where age 1 and age 2 fish (fish in the youngest and 

second youngest year classes that enter the fishery) are tagged. Following the structure of 

the likelihood of Chapter 1, we let Ni and 'iN  be the number of fish tagged at age 1 and 

age 2, respectively, and released in year i ( i =1,2,…I). Then Rij and 'ijR  are the numbers 

of the Ni and 'iN  fish, respectively, that are subsequently harvested and reported in year 

j, for j = i, i+1, i+2, …, J. Let ijP  and ijS  be as defined in section 2.2.2 for fish tagged at 

age 1. Also let 'ijP  and 'ijS  be defined as indicated below for fish tagged at age 2. We 

assume that tagging and release occur at the beginning of the year and that harvest occurs 

continuously in the whole year. 

Let 

'ijP  be the probability of fish tagged at age 2 and released in year i, then harvested and  

       returned in year j.   

'ijS  be the conditional survival rate in year j for the fish tagged at age 2 in year i, and  

       alive at the beginning of year j. 

 

For a fishery continuous over the whole year, the expected number of the 'iN  fish tagged 

at age 2 and released in year i, that are harvested and returned in year j is: 

              '']'[ ijiij PNRE = , 

where 
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The likelihood function for the number of fish tagged at age 2 and released in year i, then 

harvested and returned in year j, has a multinomial form: 
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 The component of the likelihood for fish tagged at age 1 is exactly the same as 1L  

in section 2.2.2. Assuming that fish tagged at age 1 act independently from fish tagged at 

age 2, the joint likelihood function for the two-age-class tagging study is: 

  
 21 LLL ×= . 
 

Using this joint likelihood we can obtain MLEs of jF  (j=1,2,…,I) , M , and kSel , if λ is 

known, or of jF  (j=1,2,…,I), M , kSel and λ, when λ is unknown.  

2.3  Parameter Redundancy 

 Catchpole and Morgan (1997) described a method to determine parameter 

redundancy by checking the singularity of the information matrix for product 

multinomial models with complex cell probabilities, when it is impossible to check 
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parameter redundancy by inspection. For counts yi (i=1,...,n) from a multinomial 

distribution ( nppN ,...,, 1 ), where npp ,...,1  are functions of parameter vector θ=(θ1,…,θk), 

let µj=E(yj)=Npj, µ=( µ1,..., µn),  the model is parameter redundant if we can express µ in 

terms of a smaller parameter vector β = (β1,..., βq), where q < k. They showed that the 

information matrix can be written as 

            ,1 TDDI −Π=                                                                                (2.3.1) 

where Π is a diagonal matrix whose jth diagonal element is equal to µj = N pj. D is the 

derivative matrix with elements 

            Dij = ij θµ ∂∂ /  (j=1,...,n; i=1,...,k). 

For a simpler test of parameter redundancy, Catchpole and Morgan (1997) proved that 

rank ( )I θ = rank ( )D θ . So we can more easily check parameter redundancy by checking 

rank-deficiency of the derivative matrix. 

 Even if a model does not have parameter redundancy, estimators may still behave 

poorly. Catchpole et al. (2001) demonstrated that I (θ) may be non-singular for a given 

model, but if the smallest eigenvalue of I (θ) is close to 0, estimators may perform 

poorly. The parameters that are poorly estimated can be determined by checking the 

magnitudes of the coefficients of parameters in the eigenvector corresponding to the 

smallest eigenvalue of the information matrix. Generally, the bigger the absolute value of 

the coefficient of a parameter in the eigenvector, the lower the precision of the estimator.  

 We are interested in evaluating the performance of models (Fy, M, Sela1,a2,a3, λ) 

and (Fy, M, Sela1,a2,a3 ) for two designs, the first where only age 1 fish are tagged, and the 

second where both age 1 and age 2 fish are tagged. From Chapter 1, we know that when 

all age classes are tagged, this model performs well if the reporting rate is known. The 
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model (Fy, M, Sela1,a2,a3, λ) assumes that fishing mortality rates ( jF kSel ) are year specific 

and also age specific (because of the dependence on kSel ), that selectivity is 1 for fish of 

age 4 and greater, and that both the natural mortality rate (M) and tag reporting rate (λ) 

are constant over years and ages. The model (Fy, M, Sela1,a2,a3 ) is the same as model (Fy, 

M, Sela1,a2,a3, λ ) except that λ is assumed known from external sources without error. For 

illustration, we consider 5 years of tagging and releases with either 5 or 7 years of 

recoveries. When only age 1 fish are tagged, we assume that 2500 fish are tagged and 

released at the beginning of each year for 5 consecutive years. The true parameter values 

we chose are F1=0.2, F2=0.5, F3=0.3, F4=0.4, F5=0.6, M =0.2, λ =0.3, Sel1=0.6, Sel2=0.7 

and Sel3=0.9 for 5 years of recoveries. For 7 years of recoveries, the parameter values are 

the same as for 5 years of recoveries except that we let F6=0.3, F7=0.4. When both age 1 

and age 2 fish are tagged, for comparison, we assume that 1250 age 1 fish and 1250 age 2 

fish are tagged and released each year for 5 consecutive years. The true parameter values 

are the same as when only age 1 fish are tagged. The numbers of fish tagged here are 

large to ensure that variance calculation based on I (θ)-1 is accurate. Problems with 

estimator performance due to parameter redundancy will be worse when smaller numbers 

of fish are tagged. 

The information matrix I (θ) is calculated using equation (2.3.1). The  

eigenvalues of I (θ) and their eigenvectors, large-sample variance-covariance matrix 

1)( −=∑ θI  and correlation matrix ρ  are computed using program Maple (Waterloo 

Maple Inc., Maple 9). The correlation matrix ρ  is calculated with the following formula: 

  ( ) ( )1 11/ 2 1/ 2 ,V Vρ
− −

= ∑  
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where V  is a diagonal matrix with each of its elements equal to the corresponding 

diagonal element of  the variance-covariance matrix ∑ .  

The condition number, K( I (θ)), is used to provide a measure of the near-

singularity problem (Belsley, Kuh, and Welsh, 1980). It is defined as: 

1/ 2

max

min

( ( ))K I λθ
λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

where λmax and λmin are the largest and smallest eigenvalues of the information matrix 

I (θ) respectively. A condition number around 10 indicates weak near-singularity and 

possible problems with estimator properties, a condition number of 30 to 100 indicates 

moderate to strong near-singularity problems, and a condition number larger than 100 

indicates serious near-singularity problems (Belsley, Kuh, and Welsh, 1980). The 

condition number, K( I (θ)), of the information matrix, selected relative standard error 

(RSE) and correlations for models (Fy, M, Sela1,a2,a3, λ) and (Fy, M, Sela1,a2,a3 ) when only 

age 1 fish are tagged and when both age 1 and age 2 fish are tagged are displayed in 

Table 2.2. We let V(θ̂ ) be the  variance of estimator θ̂ , ( ) ( )
)ˆ()ˆ(

ˆ,ˆcovˆ,ˆ
21

21
21

θθ

θθ
θθ

VV
r = be the 

correlation between 1̂θ  and 2θ̂ , where ( )21
ˆ,ˆcov θθ  is the covariance of 1̂θ  and 2θ̂ , and  

RSE(θ̂ ) be relative standard error for θ̂ , 
ˆ( )ˆRSE( ) SE θθ

θ
= . 

 For model (Fy, M, Sela1,a2,a3 ) ,where λ  is assumed to be known without error, 

when only age 1 fish are tagged with 5 years of recoveries the condition number of the 

information matrix is larger than 30 and correlations between estimators M̂ , 1̂F  and 

2F̂ are high. All estimators are poorly behaved in this case. In contrast, with 7 years of 
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recoveries the condition number of the information matrix is smaller than 30, the 

correlations between estimators M̂ , 1̂F  and 2F̂ reduce to a moderate level, and the relative 

standard error of 2F̂ is much smaller than the value with 5 years of recoveries, indicating 

improved performance of the estimators in this case. The practical implication is that we 

should collect additional years of recoveries information beyond the last release of tagged 

fish. When both age 1 and age 2 fish are tagged, the condition numbers are all smaller 

than 30, relative standard errors of 2F̂  are small and correlations between estimators M̂ , 

1̂F  and 2F̂  are moderate ( 0.34 < r < 0.76) for both 5 and 7 years of recoveries. Assuming 

λ known, the design with tagging two age classes produces estimators with better 

properties than tagging age 1 fish only. 

 For model  (Fy, M, Sela1,a2,a3, λ), when only age 1 fish are tagged the condition 

numbers of the information matrix are larger than 100, relative standard errors of 2F̂  and 

λ̂  are large and correlations between estimators M̂ , λ̂ , 1̂F  and 2F̂  are strong ( |r| > 0.67) 

for both 5 years of recoveries and 7 years of recoveries (Table 2.2). When both age 1 and 

age 2 fish are tagged the condition numbers are smaller than 100 and relative standard 

errors of estimators 2F̂  and λ̂  are smaller than their counterparts when only age 1 fish 

are tagged (RSE( λ̂ )=0.37 compared to RSE( λ̂ )=0.59 for 5 years of recoveries, 

RSE( λ̂ )=0.28 compared to RSE( λ̂ )=0.53 for 7 years of recoveries). When λ must be 

estimated, tagging age 1 and age 2 fish, compared to age 1 fish only, produces some 

improvement in estimator properties, but RSE( λ̂ ) and RSE( 2̂F ) are large under both 

designs. We emphasize that these results are based on tagging a total of 2500 fish each 

year and therefore give an optimistic view of estimator performance for studies with 
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smaller sample sizes. If λ must be estimated, estimator properties will be poor under 

either design, for sample sizes likely to be met in practice. 

 

Table 2.2.  The condition number (K), relative standard error (RSE) and correlations (r) 

of estimators under the models (a) (Fy, M, Sela1,a2,a3 ) and (b) (Fy, M, Sela1,a2,a3, λ) for 

studies where 2500 age 1 fish, or  1250  age 1 and age 2 fish, are tagged and released for 

5 years, followed by 5  or  7 years of  recoveries. Parameter values assumed are given in 

Section 2.3. 

          
Recovery               (a) λ known                                  (b) λ estimated  
 
                                                Only age 1 fish are tagged 
 
                K    RSE( 2F̂ )  r( M̂ , 1̂F )  r( M̂ , 2F̂ )       K RSE( 2F̂ ) RSE( λ̂ ) r( M̂ , 1̂F )r( M̂ , 2F̂ ) r( M̂ , λ̂ )        
 
5 years    38.3    0.33    0.859       0.902             116.0   0.62      0.59    -0.678    -0.695      0.970 
 
7 years    24.2    0.11    0.460       0.562             120.1   0.44      0.53    -0.879    -0.909      0.994 
  
                                    Both age 1 and age 2 fish are tagged 
 
5 years    20.6    0.17     0.639     0.756               84.6     0.41      0.37    -0.786    -0.809     0.970 
 
7 years    17.3    0.11     0.339     0.481               77.0     0.28      0.28    -0.816    -0.870     0.985 
 

 According to methods of Catchpole et al. (2001), checking the coefficients of 

parameters in the eigenvector corresponding to the smallest eigenvalue of I (θ) can 

provide us important information about which parameters are nearly confounded and 

hence poorly estimated. As an example, for model (Fy, M, Sela1,a2,a3, λ), when λ=0.3 with 

tagging age 1 fish only for 5 years, and with 7 years of recoveries, the smallest 

eigenvalue is 3.3, with eigenvector  (0.212, 0.549, 0.333, 0.435, 0.731, 0.411, 0.574, -
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0.386, 0.085, 0.010, -0.044, -0.388), corresponding to parameters (F1, F2, F3, F4, F5, F6, 

F7, M, Sel1, Sel2, Sel3, λ). Sel1, Sel2 and Sel3 have the lowest weights, reflecting their 

relatively high precision. Other parameters have high weights, indicating confounding 

and poor precision of estimators. 

 It is of interest to see how parameter values affect the condition number of I (θ). 

For an illustration, we consider a study with 5 years of tagging and 7 years of recoveries 

as λ changes (Figure 2.1), keeping other parameter values as stated above. For model (Fy, 

M, Sela1,a2,a3 ), whether both age 1 and age 2 fish are tagged, or only age 1 fish are tagged,  

the condition numbers are quite stable as λ increases, with the condition numbers around 

17.3 when both age 1 and age 2 fish are tagged, around 24.2 when only age 1 fish are 

tagged, indicating weak near-singularity problems for this model (Figure 2.1b).  For 

model (Fy, M, Sela1,a2,a3, λ), the condition numbers decrease dramatically at the beginning 

as λ increases and then become stable at values of about 90 when only age 1 fish are 

tagged, and about 54 when both age 1 and age 2 fish are tagged, indicating near-

singularity problems for all plausible values of λ (Figure 2.1a). Again, these calculations 

are based on tagging 2500 fish annually, and suggest serious problems relating to 

parameter redundancy for more feasible tagging numbers. 
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Figure 2.1.  The condition number of the information matrix versus  λ,  (a) for model (Fy, 

M, Sela1,a2,a3, λ), and (b) for model   (Fy, M, Sela1,a2,a3 ),  with 5 years of tagging and 7 

years of recoveries. Solid lines are for the design where both age 1 and age 2 fish are 

tagged, dashed lines are for the design where only age 1 fish are tagged.                                                          

(a)     Model   (Fy, M, Sela1,a2,a3, λ)                           
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(b)   Model (Fy, M, Sela1,a2,a3)            

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lambda

C
on

di
tio

n 
N

um
be

r

Tagged at age 1

Tagged at ages 1 and 2

                                       



 54

2.4  Simulations 
 
2.4.1 Methods 
 
 We carried out Monte Carlo simulations to further investigate the performance of  

estimators under models (Fy, M, Sela1,a2,a3, λ) and  (Fy, M, Sela1,a2,a3 ). We use maximum 

likelihood to estimate parameters of interest and obtain standard errors, using the new 

version of program SURVIV (White 1983) modified by James Hines of Patuxent 

Wildlife Research Center. We assume that the numbers of tag returns for each cohort 

follow a multinomial distribution. The cell probability for each cohort is calculated using 

equations (2.2.1) or (2.2.2), and cohorts are assumed to be mutually independent. For 

comparison we consider the same data structure as described in section 2.3. We assume 

2500 fish are tagged and released in each cohort when only age 1 fish are tagged, while 

1250 fish of each age are tagged and released when both age 1 and age 2 fish are tagged. 

Fish are tagged and released at the beginning of 5 consecutive years with 5 or 7 

consecutive years of recoveries. The true parameter values are the same as specified for 

calculating the information matrix in Section 2.3. We carry out simulations using 500 

replicates for each run. We calculate relative bias and relative standard error of λ̂  using 

the follow formulas:
ˆˆ( ) 100%,RB λ λλ
λ
−

= ×  
ˆ( )ˆ( ) 100%SERSE λλ

λ
= × . 

2.4.2 Results 

 Estimator means and standard errors are presented in Table 2.3 for designs where  

only age 1 fish are tagged, and where both age 1 and age 2 fish are tagged. Results from 

Chapter 1 for tagging 500 fish in each of 5 age classes are included for comparison. 

Standard errors are the standard deviation for estimates from 500 Monte Carlo samples. 

When only age 1 fish are tagged, model (Fy, M, Sela1,a2,a3, λ) produces poor results with 5 
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years of tagging and 5 or 7 years of recoveries (Table 2.3). The estimator λ̂  is highly 

biased and has poor precision. Relative bias (RB) of λ̂  is 31% for 5 years of recoveries 

and 27% for 7 years of recoveries. Relative standard error (RSE) of λ̂  is 88% for 5 years 

of recoveries and 83% for 7 years of recoveries. Estimators under model (Fy, M, 

Sela1,a2,a3)  behave better than for model (Fy, M, Sela1,a2,a3, λ).  With 5 years of tagging and 

5 years of recoveries, estimators exhibit some bias and moderate precision (RB( 2̂F )=7%, 

RSE( 2̂F )=27%), but with 7 years of recoveries, under model (Fy, M, Sela1,a2,a3 ) all 

estimators are essentially unbiased and all relative standard errors are less than 18%. The 

improvement in estimator performance when λ is known, compared to when λ is 

estimated, agrees with results based on the information matrix in section 2.3.  

When both age 1 and age 2 fish are tagged, model (Fy, M, Sela1,a2,a3, λ) performs 

better (Table 2.4) than when only age 1 fish are tagged. However, estimator λ̂  is still 

biased with low precision. Relative bias (RB) of λ̂  is 21% for 5 years of recoveries and 

10% for 7 years of recoveries. Relative standard error of λ̂  is 66% for 5 years of 

recoveries and 46% for 7 years of recoveries. Estimators under model (Fy, M, Sela1,a2,a3 ) 

perform well for both 5 and 7 years of recoveries when both age 1 and age 2 fish are 

tagged. This agrees with the results from section 2.3. Model (Fy, M, Sela1,a2,a3, λ) produces 

biased estimators with low precision, especially for the tag reporting rate estimation. 

 Comparing results for the three tagging designs, we see that, with respect to 

precision, it is most efficient to tag 500 fish in each of the 5 age classes, and least 

efficient to tag 2500 fish in age class 1. For example, from the first column of Table 2.3, 

SE( M̂ ) is 147% and 200% greater for designs with tagging 2 age classes and 1 age class, 
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respectively, compared to tagging 500 in each of the 5 age classes. The greater theoretical 

efficiency of the multi-age class design must, however, be balanced against the practical 

difficulties associated with obtaining substantial numbers of older fish for tagging, and 

the unknown biases that may be introduced by incorrectly aging older fish.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3. Average estimates with standard errors in parentheses from fitting the models 

(a) (Fy, M, Sela1,a2,a3 ) and (b) (Fy, M, Sela1,a2,a3, λ) to simulated data for three tagging 

designs: 2500 age 1 fish, or 1250  age 1 and 2 fish, or 500 fish of all 5 ages, tagged in 

each of 5 consecutive years, followed by either 5 or 7 years of recoveries. True parameter 

values are F1=0.2, F2=0.5, F3=0.3, F4=0.4, F5=0.6, F6=0.3, F7=0.4, M=0.2, λ =0.3, 

Sel1=0.6, Sel2=0.7 and Sel3=0.9. Results are based on 500 replicates in each case. 

 



 57

               
           5 Years of recoveries           7 Years of recoveries 
 
Parameter  (a)λ known     (b)λ estimated   (a)λ known    (b)λ estimated 
 
                          Only age 1 fish tagged 
 
F(1)      0.212 (0.060)   0.207 (0.086)   0.200 (0.036)  0.199 (0.078) 
F(2)      0.537 (0.136)   0.527 (0.213)   0.506 (0.072)  0.506 (0.194) 
F(3)      0.320 (0.078)   0.315 (0.128)   0.302 (0.041)  0.303 (0.118) 
F(4)      0.425 (0.102)   0.419 (0.168)   0.402 (0.051)  0.403 (0.153) 
F(5)      0.643 (0.161)   0.646 (0.278)   0.605 (0.079)  0.621 (0.259) 
F(6)                              0.302 (0.046)  0.322 (0.151) 
F(7)                              0.408 (0.070)  0.454 (0.231) 
M      0.203 (0.034)   0.206 (0.148)   0.200 (0.017)  0.198 (0.143) 
λ                      0.392 (0.253)               0.386 (0.248) 
sel1      0.593 (0.132)   0.595 (0.141)   0.604 (0.074)  0.605 (0.088) 
sel2      0.688 (0.127)   0.689 (0.130)   0.702 (0.076)  0.703 (0.078) 
sel3      0.878 (0.112)   0.881 (0.112)   0.898 (0.076)  0.898 (0.075) 
 
                     Both age 1 and age 2 fish tagged 
 
F(1)      0.200 (0.036)   0.198 (0.076)   0.199 (0.030)  0.201 (0.059) 
F(2)      0.506 (0.079)   0.503 (0.188)   0.502 (0.055)  0.507 (0.146)  
F(3)      0.303 (0.046)   0.302 (0.115)   0.301 (0.032)  0.305 (0.089) 
F(4)      0.401 (0.059)   0.400 (0.148)   0.399 (0.038)  0.403 (0.114) 
F(5)      0.607 (0.096)   0.616 (0.250)   0.602 (0.058)  0.616 (0.191) 
F(6)                          0.300 (0.039)  0.314 (0.112) 
F(7)                          0.407 (0.065)  0.435 (0.173) 
M      0.200 (0.025)   0.201 (0.112)   0.200 (0.016)  0.196 (0.099) 
λ                      0.363 (0.199)              0.331 (0.138) 
sel1      0.607 (0.088)   0.608 (0.088)   0.604 (0.063)  0.606 (0.067) 
sel2      0.705 (0.089)   0.707 (0.089)   0.703 (0.062)  0.704 (0.063) 
sel3      0.900 (0.084)   0.902 (0.084)   0.901 (0.064)  0.901 (0.064) 
 
                          fish of all 5 ages tagged 
F(1)       0.198 (0.021)   0.197 (0.054)   0.197 (0.021)  0.197 (0.044) 
F(2)       0.499 (0.033)   0.499 (0.136)   0.499 (0.032)  0.499 (0.109) 
F(3)       0.298 (0.022)   0.298 (0.084)   0.298 (0.021)  0.298 (0.066) 
F(4)       0.397 (0.026)   0.398 (0.111)   0.397 (0.024)  0.397 (0.087) 
F(5)       0.598 (0.044)   0.608 (0.189)   0.598 (0.038)  0.604 (0.148) 
F(6)                          0.299 (0.033)  0.306 (0.091) 
F(7)                          0.404 (0.062)  0.422 (0.149) 
  M        0.200 (0.017)   0.200 (0.088)   0.200 (0.014)  0.200 (0.075) 
    λ                        0.329 (0.125)                  0.317 (0.091) 
sel1        0.607 (0.063)   0.607 (0.063)   0.607 (0.061)  0.607 (0.062) 
sel2        0.704 (0.058)   0.704 (0.059)   0.704 (0.053)  0.704 (0.053) 
sel3        0.901 (0.061)   0.901 (0.062)   0.902 (0.055)  0.902 (0.056) 
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2.5  Striped Bass Example 
 
2.5.1 Study Description 
 
 Striped bass is one of the most important recreational fisheries along the Atlantic 

Coast (Field 1997). The Roanoke, Delaware, Hudson rivers and the tributaries of the 

Chesapeake Bay are major producers. To estimate the fishing mortality rates of striped 

bass on the Chesapeake Bay stock, Maryland Department of Natural Resources (MDNR) 

tagged spawning fish from 1991 to 2002 in the upper Chesapeake Bay. The length of fish 

was measured to the nearest mm. An internal anchor tag was used. For better mixing with 

untagged fish, tagged fish were at large for more than one week. Reported tags were cut 

off from the recovered fish. Some of the recovered fish were harvested, some released. 

Here we assume that all recoveries are dead. If hooking mortality is known, we can 

correct the estimate of fishing mortality to allow for live releases. We will not consider 

catch-and-release fishing further here, but leave this to Chapter 3.  

An otolith-based age-length key was used to identify the ages of tagged striped 

bass (Secor et al. 1995). Seven age groups (from age 2 years to age 8+ years) were 

classified using the age-length key method. Since sample sizes for age 2 years are small, 

we consider fish of 3 years of age as the youngest age class and 4 years as the second 

youngest age class. The numbers of releases and tag returns for age 3 and age 4 fish are 

listed in Table 2.5.  Fishery biologists generally believe striped bass of 6 to 8+ years are 

fully recruited while ages 3, 4, and 5 are not. So we assume selectivity for age 6 and 

greater is 1. Age classes 3, 4 and 5 are partially recruited with selectivity Sel1, Sel2 and 

Sel3, respectively, to be estimated. For model (Fy, M, Sela1,a2,a3 ) we let λ = 0.43 (previous 

reward tagging study. Wells, B.K personal communication). This reporting rate was used 
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by the Atlantic States Marine Fisheries Commission. Also, Smith et al. (2000) obtained 

year-specific estimates of  λ  ranging from 0.38 to 0.48 for 1991-1998 in Chesapeake Bay 

for fully recruited fish. 

Table 2.4. Release and tag return data for fish tagged at age 3 and 4 from a study on 
striped bass carried out from 1991-2003 by Maryland Department of Natural Resources. 
 
 
Year of     Number        Number recaptured 
release      Tagged 
                                                                              

                                                             Age 3    
 
                                     1991   1992   1993   1994   1995  1996  1997  1998  1999   2000   2001  2002   2003  
                                      
1991           288               20          8       11      6        3         3        2       1        0         0         0        0         0       
1992           380                            21        5    12        6         6        1       2        0         0         0        0         0       
1993           159                                        5      6        7         1        2       0        0         0         0        0         0       
1994             92                                                3        6         3        0       0        0         0         0        0         0       
1995           221                                                         11      11        7       7        1         1         0        0         0       
1996           393                                                                   23      23     14        5         1         2        0         0 
1997             31                                                                               2       0        0         1         0        0         0       
1998           131                                                                                        6        1         0         0        1         0 
1999           178                                                                                                21         5         1        2         0 
2000           116                                                                                                            10        2        2         0 
2001           116                                                                                                                      11        3         1 
2002             73                                                                                                                                  4         4 
 
                                                                                 Age 4    
 
                                  1991   1992   1993   1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
1991           202            11        15         2      5        2         1        2       0        0         0         0        0         0 
1992           325                        24       19    13        6         4        2       1        0         0         0        0         0 
1993           721                                   32    41      27       14        9       4        3         0         0        0         0 
1994           333                                           18      22       11        3       4        0         0         1        0         0 
1995           112                                                       7         5        5       4        0         2         0        0         0 
1996           352                                                                36      18       8        1         2         0        0         0 
1997           372                                                                          18     22        0         7         2        1         0 
1998             72                                                                                     4        0         0         0        0         0 
1999           221                                                                                             15         7         4        3         0 
2000           596                                                                                                         57      14        6         2 
2001           412                                                                                                                   39      13         4 
2002           442                                                                                                                             39         3 
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2.5.2 Results 

 Parameter estimates, with standard errors in parentheses, from fitting the models 

(a) (Fy, M, Sela1,a2,a3 ) and (b) (Fy, M, Sela1,a2,a3, λ)  to different subsets of the striped bass 

data corresponding to designs where fish are tagged at age 3 years only, or at age 3 and 4 

years, or at all 5 ages, are presented in Table 2.5. Estimates of standard errors obtained 

with the program SURVIV are based on the estimated information matrix.  Model (Fy, M, 

Sela1,a2,a3, λ) produces poor results with an unrealistically small estimate of M  and large 

estimates of  F when one or two age classes are tagged . Model (Fy, M, Sela1,a2,a3 ) applied 

to data from only the fish tagged at age 3 years produces estimates with poor precision. 

For instance, the relative standard error (RSE) of fishing mortality rate in 1992 is 34%.  

When this model is applied to data from fish tagged at both age 3 and age 4, 

precision improves (e.g., %19)ˆ( 92 =FRSE ). The parameter estimates from fitting model 

(Fy, M, Sela1,a2,a3 ) to striped bass data when only fish tagged at age 3 are considered, and 

when fish tagged at both age 3  and age 4  are considered, are quite similar (Table 2.5). 

Given the relatively small sample sizes (numbers of fish tagged, Table 2.4), model (Fy, 

M, Sela1,a2,a3 ) produces good results for the striped bass data. Compared with the results 

when fish of all age classes are analyzed (Table 2.5), the parameter estimates obtained 

under model (Fy, M, Sela1,a2,a3 ) are very similar, but the precision is lower when fish of 

only age 3 years and age 4 years are analyzed. An interesting finding is that the estimate 

of M decreases as fish of more age classes are tagged, suggesting an age-dependence in 

M. This confirms results in Chapter 1 on age-dependence of M. If λ is estimated, results 

are not reliable under all three designs which agrees with the indications of parameter 

redundancy obtained from analyses of the information matrix in Section 2.3. 
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Table 2.5. Parameter estimates with standard errors in parentheses from fitting the models 

(a) (Fy, M, Sela1,a2,a3 ) and (b) (Fy, M, Sela1,a2,a3, λ) to subsets of the striped bass data 

created by using fish tagged at  age 3 years, or fish tagged at both age 3 and 4 years, or  

fish of all age are considered. 

                           
 
           Tagged at         Tagged at age     Tagged at   
 Parameter age 3 years       3 and 4 years     all 5 ages 
  
            Model (a) 
 
 F(91)    0.308 (0.118)     0.229 (0.055)    0.234 (0.022) 
 F(92)    0.242 (0.085)     0.239 (0.046)    0.305 (0.020) 
 F(93)    0.178 (0.065)     0.165 (0.030)    0.247 (0.015) 
 F(94)    0.268 (0.087)     0.255 (0.041)    0.278 (0.015) 
 F(95)    0.313 (0.095)     0.306 (0.047)    0.356 (0.018) 
 F(96)    0.343 (0.105)     0.328 (0.052)    0.338 (0.017) 
 F(97)    0.458 (0.150)     0.310 (0.053)    0.376 (0.021) 
 F(98)    0.456 (0.153)     0.389 (0.069)    0.423 (0.025) 
 F(99)    0.436 (0.147)     0.234 (0.046)    0.355 (0.023) 
 F(00)    0.315 (0.121)     0.315 (0.056)    0.321 (0.018) 
 F(01)    0.270 (0.105)     0.239 (0.044)    0.236 (0.014) 
 F(02)    0.229 (0.095)     0.218 (0.039)    0.175 (0.010) 
 F(03)    0.145 (0.079)     0.063 (0.019)    0.065 (0.007) 
 M     0.398 (0.035)     0.368 (0.021)    0.256 (0.007) 
 Sel3     0.637 (0.180)     0.727 (0.115)    0.517 (0.048) 
 Sel4     0.645 (0.173)     0.851 (0.115)    0.750 (0.043) 
 Sel5     0.969 (0.237)     1.000 (0.122)    0.994 (0.044) 
 
            Model (b)  
 
 F(91)    0.519 (0.216)     0.468 (0.134)   0.123 (0.050) 
 F(92)    0.467 (0.175)     0.516 (0.125)   0.161 (0.065) 
 F(93)    0.341 (0.127)     0.353 (0.079)   0.129 (0.051) 
 F(94)    0.509 (0.163)     0.523 (0.100)   0.145 (0.057) 
 F(95)    0.558 (0.160)     0.606 (0.106)   0.180 (0.071) 
 F(96)    0.583 (0.155)     0.666 (0.112)   0.166 (0.067) 
 F(97)    0.813 (0.216)     0.712 (0.119)   0.179 (0.073) 
 F(98)    1.000 (0.270)     1.000 (0.172)   0.189 (0.079) 
 F(99)    1.000 (0.295)     0.744 (0.146)   0.152 (0.063) 
 F(00)    0.996 (0.358)     1.000 (0.202)   0.140 (0.057) 
 F(01)    0.816 (0.365)     0.787 (0.194)   0.111 (0.044) 
 F(02)    0.662 (0.375)     0.672 (0.190)   0.087 (0.033) 
 F(03)    0.452 (0.368)     0.182 (0.072)   0.035 (0.013) 
    M     0.017 (0.129)     0.000 (0.089)   0.421 (0.060) 
lambda    0.157 (0.038)     0.164 (0.026)   0.915 (0.364) 
 Sel3      0.866 (0.161)     0.864 (0.105)   0.479 (0.045) 
 Sel4      0.797 (0.159)     0.894 (0.091)   0.693 (0.041) 
 Sel5      1.000 (0.209)     1.000 (0.105)   0.921 (0.041) 
 
 



 62

2.6  Discussion 

 We have proposed two important sampling designs for age-dependent tag return                               

models for estimating fishing and natural mortality rates and selectivities: i) Tagging only 

age 1 fish; ii) Tagging both age 1 and age 2 fish, and compared them to tagging all age 

classes. The age-length key method is a commonly used approach to classify the age of 

tagged fish, and there could be substantial errors in determining the age of fish using this 

method. Converting size to age usually has the fewest errors for the age 1 and age 2 fish. 

These two sampling designs have the advantage of reducing classification errors and for 

some species such as red drum (Sciaenops ocellatus) and pollock (Pollachius virens) are 

easier to accomplish, with less harm to the fish and with lower cost, than designs that 

require aging and tagging fish from a large number of age classes (Latour et al. 2001, 

Neilson et al. 2003), given that the youngest age classes are usually caught in greatest 

numbers.  In this chapter we assume that the age of individuals is correctly determined. 

Although in our sampling designs, tagging only age 1 and age 2 fish will reduce the 

measurement errors to some degree, this kind of measurement error may still exist. 

Incorporating the measurement errors into the models is an important and interesting 

topic for future research. 

 Some important assumptions are required by the models and theoretical analyses 

used here for the age-structured tag return data. They are: 1) the sample is representative 

of the target population; 2) age of individuals is correctly determined; 3) there is no tag 

loss; 4) tagging induced mortality is negligible; 5) the year of tag recovery is correctly 

tabulated; 6) all individuals behave independently; 7) all tagged fish of an identifiable age 

class have the same annual survival and recovery rates; 8) selectivity for each age class is 
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the same for different years; 9) natural mortality rate is constant over ages and years; 10) 

the tag reporting rate does not vary by age and year; and 11) tagging and release occur at 

the beginning of the year, and Sel, F and  M are constant within each year. Any violation 

of these assumptions may invalidate the calculations and analyses carried out.

 Sampling designs where only young animals are tagged are generally considered 

ineffective (Brownie et al. 1985; Anderson et al. 1985).  However, with the instantaneous 

mortality rate parameterization, and assuming constant natural mortality, as in our model 

structure, estimation of young and adult survival is possible when only young are tagged, 

provided that the reporting rate is known. For studies where only young-of-the year are 

tagged, others have obtained identifiability of annual rates by imposing other constraints 

(e.g. Seber 1981; Freeman and Morgan 1992). Seber (1981) built models which assume 

that the reporting rate is constant over years and that the probability of survival depends 

on the age of the bird rather than on the calendar year for analyzing recovery data from 

birds banded as nestlings. Freeman and Morgan (1992) investigated models which 

assumed either a constant reporting rate or constant first-year survival or constant adult 

survival. 

 For the situation where λ  is unknown, using methods of Catchpole et al. (2001) , 

we have found that model (Fy, M, Sela1,a2,a3, λ) has strong near-singularity problems when 

only age 1 fish are tagged, and moderate near-singularity problems when both age 1 and 

age 2 fish are tagged. So when λ must be estimated from the tag returns, we recommend 

tagging both age 1 and age 2 fish in order to obtain estimators with reasonable properties. 

But we recommend estimating λ from external sources (Pollock et al. 1991, 2001, and 
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2002; Hearn et al. 2003) whenever possible, because of the large increase in precision 

that is achieved.  

These results were supported by Monte Carlo simulations to investigate the 

performance of models (Fy, M, Sela1,a2,a3, λ) and  (Fy, M, Sela1,a2,a3 ). For a given sample 

size and true parameter values we can use Monte Carlo simulations to determine which 

parameter estimates are poor. This also provides us important information to determine 

the sample size for designing a study. An area for further research is to use the condition 

number of the expected information matrix to determine the sample size needed for our 

study design.  

 In our striped bass example, some recovered fish were harvested and some were 

released alive. We have assumed that all the recovered fish are dead. This assumption 

causes upwardly biased estimates for fishing mortality rates. In Chapter 3 we consider 

using an estimate of the hooking mortality rate to correct this bias.  
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Chapter 3 
 
Tag Return Models for Catch-and-Release Fisheries 
       
3.1   Introduction 
 
 In traditional tag return studies (e.g. Hoenig et al. 1998a, b), it is assumed that all 

caught fish are kept (harvested). In catch-and-release fisheries, only a fraction of the 

captured fish are harvested while the remainder are released alive. The goal is to provide 

fishing recreation, while conserving the stock. Catch-and-release fisheries have become 

very important to the management of overexploited recreational fish stocks. However, 

there has been little work done on how to estimate population demographic parameters 

(like fishing and natural mortality) for catch-and-release fisheries using tagging studies. 

Without these tagging studies on fish stocks subject to catch-and-release there will be no 

way to assess the effectiveness of restoration efforts. 

 For the released fish, there will be a probability of the tag being reported, which 

may possibly differ from the probability of the tag from harvested fish being reported. In 

some studies, the tag will be removed from the fish and then reported (the tag returned to 

the agency) while in other studies, the tag number will be recorded and reported to the 

agency without the tag being removed.  There are advantages and disadvantages to both 

approaches. If the tag is removed and returned to the agency, there should be few errors 

in recording tag numbers. However, no additional data can be obtained on that fish as it is 

now unmarked. If the tag number is recorded and the fish released with the tag intact, 

then the chance of recording errors could be substantial. On the other hand, the fish is still 

marked and could be recaptured multiple times, thus providing additional information on 
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survival. This can be viewed as a generalized type of Jolly-Seber model (Williams et al. 

2002). 

The method used to estimate the tag reporting rate may also affect the decision to 

remove the tag before releasing a fish. If a high reward tagging approach is used to 

estimate the regular tag reporting rate (Pollock et al. 2001), then we suspect that the high-

reward tags would need to be removed and returned because agencies would require the 

tag in hand in order to pay the reward. On the other hand, if the angler survey method is 

used to estimate the regular tag reporting rate (Pollock et al. 1991), then tags could either 

be cut off or left on the fish provided the agent got to see the tags. In this chapter, we 

focus on the situation where the tag is removed on capture whether the fish is kept or 

released, as this approach has been used in several studies on Atlantic striped bass 

(Morone saxatilis). 

 Smith et al. (2000) presented a method of accounting for catch-and-release fishing 

in the estimation of total and fishing mortality. Their likelihood was based on finite 

recovery and survival rates, in which the survival rate for tags was represented as survival 

for fish with an adjustment for catch-and-release fishing. This adjustment involved 

parameters for the short-term mortality after release (or hooking mortality) and the tag 

reporting rate λ . Assuming known values for the instantaneous natural mortality 

(M=0.15) and for hooking mortality (0.09), an iterative process was used to obtain λ̂  and 

to get estimates of fishing mortality and survival that accounted for catch-and-release 

fishing. We develop an alternative probability model and likelihood for the tag return 

data, and use the methodology developed to analyze data from a tagging study carried out 

by Maryland Department of Natural Resources. 
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3.2 Age-Independent Models 

3.2.1 Model Structure 

 The key point in modeling the tag returns from catch-and-release fishing is to note 

that removing tags from fish that are caught-and-released leads to an additional force of 

mortality on the tags that is not necessarily experienced by the fish. We assume that tag 

returns are recorded separately for fish that are harvested, and for fish that are caught-

and-released, and develop a generalization of the Hoenig et al. (1998a) instantaneous 

rates models for these data. We first consider the situation where tagged fish are assumed 

to be fully recruited and all rates can be considered age-independent. 

We define the following parameters: 

iN  is the number of adult fish tagged and released in year i (i=1,2,…I.), 

ijR  is the number of these iN  fish that are subsequently harvested and reported in year j, 

       for j = i, i+1, i+2, …, J,  

'ijR  is the number of these iN  fish that are caught, released (without a tag), and reported  

       in year j.  

jF   is the instantaneous  rate of  fishing mortality on harvested fish in year j, 

'jF  is the instantaneous rate of fishing mortality in year j on the tags taken from fish  

       that are caught and  released, 

M  is the instantaneous rate of natural mortality, 

ijP  is the probability that a fish tagged and released in year i, is harvested and  

        its tag reported in year j,  
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'ijP  is the probability that a fish tagged and released in year i, is caught and  

        released, and its tag reported, in year j,  

jS  is the conditional survival rate in year j for tags on fish alive at the beginning of year 

      j, 

λ  is the tag-reporting rate (the probability that the tag is reported), given that a tagged  

      fish is harvested, 

'λ  is the tag-reporting rate (the probability that the tag is reported), given  that a tagged  

      fish is recaptured and released alive. 

To avoid possible problems of non-identifiability (Chapter 1), we assume that the 

tag reporting rates λ and 'λ  are equal and constant over years. Similarly, in the basic 

model, the natural mortality rate M is assumed to be constant over years. Motivated by 

observations from fishery biologists, we also consider models where M is year-dependent 

to a limited extent. As noted above all parameters are age-independent, though extensions 

to multi-age models are presented in section 3.3. 

The expected number of tag returns from fish tagged and released in year i, then 

harvested in year j, is: 

           ijiij PNRE =][ , 

where 
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The expected number of tag returns from fish tagged and released in year i, then 

recaptured and released (without a tag) in year j, is: 
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 For the batch of iN  fish, tagged and released in year i, assuming independent 

fates, the tag returns in subsequent years, ijR  and 'ijR , follow a multinomial distribution. 

Therefore the full likelihood function is product multinomial following Hoenig et al. 

(1998a): 
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Maximum likelihood estimators of the instantaneous rates  jF  , 'jF  (j=1,2,…,J), 

and ,M  and the tag reporting rates λ and λ' can be obtained from this likelihood using 

software such as program SURVIV (White 1983). If reliable values of the tag reporting 

rates λ and λ' are available from other sources such as a reward tagging study, then these 

parameters are treated as known, and estimates are obtained for jF  , 'jF  (j=1,2,…,J) , 

and .M  If data for estimating the reporting rate are available (e.g. from a reward tagging 

study), then an additional component can be included in the likelihood and all 

parameters, including  λ and λ'  can be estimated. Estimates of the instantaneous rates are 

then used to compute the total annual mortality rates for fish. 

From (2), the total instantaneous mortality for tags, and the annual survival rate 

for tags, in year j, are: 

MFFZ jjtagsj ++= ',  

)'(exp, MFFS jjtagsj −−−= . 

Following the approach in Brooks et al. (1998), the total annual exploitation rate 

for tags, Uj,tags, has two components depending upon whether the fish is kept (i.e, 

harvested) or released. Thus  

, , ,( ) ( ),j tags j tags j tagsU U kept U rels= +  where 
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To obtain the corresponding rates for fish, we must know whether fish that are 

caught and released are subject to hooking mortality δ  (the mortality immediately 

following release due to hooking and other handling stresses). To account for hooking 

mortality on the fish, we let 'Fδ  represent the instantaneous force of mortality on catch-

and-release fish, where 0 ≤ δ ≤ 1, and the annual survival rate and total instantaneous 

mortality of fish are then: 
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If all the released fish die after release because of hooking mortality, then δ = 1, 

and survival and mortality rates for fish are the same as for tags:  
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At the other extreme, assuming none of the released fish die, then δ = 0, and  
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Diodati and Richards (1996) conducted an experiment to estimate hooking 

mortality on striped bass. They found that many factors influence the hooking mortality, 
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including hook penetration, gear type, and angler experiences. The water temperatures in 

their study did not exceed 25 C  and dissolved oxygen was above critical levels, so that 

they did not find significant effects of temperature on the hooking mortality. They 

reported that the estimated hooking mortality over about 2 months for the entire 

experimental group was 9% (SE =2%). This estimate of hooking mortality, ˆ 'δ , is a finite 

rate, but it can be used as an approximation to the hooking mortality rate, δ, in our 

instantaneous rates formulation.  The proof for this approximation is as follows.  

The annual exploitation rate for the fish, ( )fishU rels , should be approximately 

equal to  ' ( )tagsU relsδ , where 'δ  is the short-term finite hooking mortality rate. So we 

have, 

( ) ( )

' ( ) ( )

' '' 1 exp( ' ) 1 exp( ' ) .
' '

tags fishU rels U rels

F FF F M F F M
F F M F F M

δ

δδ δ
δ

⇒

− − − − − − − −
+ + + +

 

Making use of the approximation, 1 exp( )x x−  if x is small, we get 

' ' ' 'F Fδ δ δ δ⇒ . We therefore take δ̂ =0.09 to obtain adjusted total mortality rates 

and annual survival rates for the striped bass data.  

3.2.2 Example 

3.2.2.1 Study Description 

 Maryland Department of Natural Resources (MDNR) carried out a tag-return 

study from 1991 to 2002. Over 24533 striped bass were marked with an internal anchor 

tag and released in the upper Chesapeake Bay. An otolith-based age-length key method 

was used to identify the ages of the tagged fish (Secor et al. 1995), resulting in seven age 

groups (from age 2 years to age 8+ years). Fishery biologists generally consider striped 
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bass of ages 6 years and greater as fully recruited. Of the total of 24533 tagged striped 

bass, 12901 were classified as age 6 years and greater, and the age-independent models 

developed in section 3.2.1 were applied to the data from these fish. There were 2770 

(21%) recaptures, with tags cut off before reporting the tag number to the U.S. Fish and 

Wildlife Service. 1874 (68%) of the 2770 reported recaptures were harvested (killed) and 

896 (32%) were released alive after removing the tags. 

 A summary of the release and tag-recovery data is presented in Appendix A. A 

series of models, with different assumptions about year-specificity of F , 'F , and M was 

fit to the data. In describing the parameters used in different models, a parameter with a 

subscript y indicates that the parameter is year specific, and no subscript means that the 

parameter is constant. If the parameter list does not include λ and 'λ  then these are 

assumed known.  In this chapter, we assume a complete mixing fishery in our analysis to 

avoid parameter redundancy problems.  

A bacterial disease known as mycobacteriosis, caused by bacteria in the genus 

Mycobacterium, appeared in Chesapeake Bay striped bass in the late 1990s (John Hoenig 

personal communication). Symptoms include external lesions (open sores on the skin) 

and internal lesions that look like lumps in the pancreas and kidney. There are about a 

dozen species of Mycobacteria in the striped bass and it is not known which species 

cause the disease or diseases. The prevalence of mycobacteriosis in striped bass may be 

60% or even higher in the Rappahannock River in late summer (John Hoenig personal 

communication). To allow for change in natural mortality due to this disease, we fit 

models with a limited degree of year-specificity in M, represented 

as ( , ' , , )y y early laterF F M M , and ( , ' , ,y y earlyF F M ,laterM  , ')λ λ , where  earlyM  and 
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laterM represent the natural mortality rates in years before and after the disease started to 

affect survival. Harvest regulations were relaxed from 1995 (Richards and Rago 1999). 

We also fit reduced models with F and 'F  constant before, and after 1995, to investigate 

the effects of the change of harvest regulations. For models with the assumption that tag 

reporting rates are known, we assume λ = 'λ =0.43 (based on earlier reward tagging 

studies. Wells, B.K personal communication; Smith et al. 2000), though additional 

models were fit to examine sensitivity to this assumption. 

Results for models with the tag reporting rates assumed equal to 0.43 are 

discussed first. We use Akaike’s information criterion ( AIC ) to choose between models 

because this method is able to compare multiple nested and nonnested models. AIC  is a 

statistic that deals with the tradeoff between reduced bias associated with more 

parameters and smaller estimator variance associated with fewer parameters (Burnham 

and Anderson 2002). AIC  can be computed as:       

                       ˆ2 log ( | ) 2AIC l y kθ⎡ ⎤=− +⎣ ⎦ , 

where ˆlog ( | )l yθ⎡ ⎤
⎣ ⎦  is the log likelihood function evaluated at the MLEs θ̂  given the 

data y, and k  is the number of parameters. The model with the minimum AIC  value is 

selected. 

        Overdispersion in the data can result due to a lack of independence of capture and 

survival events, as fish travel in schools. If overdispersion is the reason for lack of fit in 

the models, a quasilikehood approach is recommended (Burham et al. 1987; Lebreton et 

al. 1992; Burnham and Anderson, 2002) to deal with the problem. The corresponding 

criterion is QAIC, defined as, 
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          ( ) kcylQAIC 2ˆ/]|ˆ[log2 +−= θ , 

where ĉ  is a variance inflation factor that can be calculated by, 

       2ˆ /c x df= ,           

where 2x  and df  correspond to the goodness-of-fit test of the most general model in the 

model set.  

3.2.2.2 Results 

Results of AIC, AIC∆ (change in AIC compared to the lowest AIC value), QAIC, 

and QAIC∆ (change of QAIC compared to the lowest QAIC value) of models where we 

assume that tag reporting rates are known and equal to 0.43 are displayed in Table 3.1. 

Since we do not know exactly when the disease effects first occurred, we tried a series of 

models, assuming the disease effects began in 1997, or 1998, or 1999, or 2000. Based on 

AIC and QAIC values (Table 3.1), the models that assume an increase in natural 

mortality beginning in 1999 or 2000 are the best ones (models 1, 2, 8). Note that the AIC 

value (1793.26) for model 91 99 00 03( , ' , , )y yF F M M− −  (model 1)  is much smaller than for 

model ( , ' , )y yF F M  (model 9) (1867.78) (Table 3.1), and a likelihood ratio test for the 

two models results in 2 215.8χ =  with 1 df , providing strong evidence that the natural 

mortality rate changed over years. 
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Table 3.1.  AIC values for models with M constant over all years or within two periods, 

where we assume λ = 'λ =0.43. 

  Model  K        AIC     AIC∆     QAIC    QAIC∆  
 
   
  1     28       1793.26   0.00   1601.60    0.74 
  2     17       1795.16   1.90   1600.87    0.00  
  3     17       1807.82  14.56   1612.13   11.26 
  4     16       1834.46  41.20   1635.61   34.74 
  5     16       1821.66  28.40   1624.22   23.36 
  6     28       1819.57  26.31   1625.01   24.14 
  7     28       1840.08  46.39   1643.26   42.39  
  8     28       1794.18   0.92   1602.42    1.56 
  9     27       1867.78  74.52   1667.68   66.82 
 
        
   
 

 Note: ĉ =1.124, based on model 91 99 00 03( , ' , , )y yF F M M− − , k is the number of parameters  
            in the model. 
 
  Model: 
  1:  91 99 00 03( , ' , , )y yF F M M− −                       
  2: 91 94 95 03 91 99 00 03( , , ' , , )yF F F M M− − − −        
  3:  91 94 95 03 91 99 00 03( , ' , ' , , )yF F F M M− − − −        
  4:  91 99 00 03( , ' , , )yF F M M− −                      
 5: 91 99 00 03( , ' , , )yF F M M− −                       
 6: 91 96 97 03( , ' , , )y yF F M M− −           

  7:  91 97 98 03( , ' , , )y yF F M M− −           

 8: 91 98 99 03( , ' , , )y yF F M M− −           

 9: ( , ' , )y yF F M             
 

 To assess the impact of changes in fishing regulations, we next consider the 

reduced model 91 94, 95 03 91 99 00 03( , ' , , )yF F F M M− − − − , where fishing mortality on harvested 

fish, F, is constant from 1991 to 1994 and constant from 1995 to 2003. Based on the AIC 

values and on a likelihood ratio test between this reduced model and the more general 

model 91 99 00 03( , ' , , )y yF F M M− −  which results in 2χ =23.9 with 11 degree of freedom, the 



 81

more general model is preferred. This suggests that variation in the fishing mortality on 

harvested fish is not explained entirely by a change in the regulation.  

Table 3.2. Parameter estimates with standard errors in parentheses from fitting two-

period M models (a) 91 99 00 03( , ' , , )y yF F M M− −  and (b) 91 94, 95 03 91 99 00 03( , ' , , )yF F F M M− − − − to 

adult (age 6+ years) striped bass data. 

                       
 
Parameter          (a)                            (b)                          
 
F(91)    0.129 (0.019)     0.163  (0.009)   
F(92)    0.175 (0.018)     0.163  (0.009)   
F(93)    0.175 (0.016)     0.163  (0.009)   
F(94)    0.159 (0.014)     0.163  (0.009)   
F(95)    0.236 (0.017)     0.241  (0.009)   
F(96)    0.206 (0.015)     0.241  (0.009)   
F(97)    0.271 (0.021)     0.241  (0.009)   
F(98)    0.297 (0.025)     0.241  (0.009)     
F(99)    0.275 (0.026)     0.241  (0.009)   
F(00)    0.213 (0.019)     0.241  (0.009)   
F(01)    0.269 (0.026)     0.241  (0.009)   
F(02)    0.204 (0.022)     0.241  (0.009)   
F(03)    0.182 (0.037)     0.241  (0.009)   
F’(91)   0.124 (0.019)     0.125  (0.019)   
F’(92)   0.170 (0.018)     0.170  (0.018)   
F’(93)   0.111 (0.012)     0.112  (0.012)   
F’(94)   0.123 (0.012)     0.122  (0.012)   
F’(95)   0.103 (0.011)     0.106  (0.011)   
F’(96)   0.121 (0.012)     0.119  (0.011)   
F’(97)   0.082 (0.011)     0.077  (0.010)   
F’(98)   0.081 (0.012)     0.078  (0.012)   
F’(99)   0.070 (0.012)     0.065  (0.011)   
F’(00)   0.122 (0.014)     0.119  (0.013)   
F’(01)   0.092 (0.013)     0.095  (0.013)   
F’(02)   0.065 (0.010)     0.078  (0.011)   
F’(03)   0.040 (0.013)     0.048  (0.015)   
M91-99      0.166 (0.009)     0.160  (0.009)   
M00-03      0.635 (0.058)     0.713  (0.038)   
 

 

Parameter estimates and their standard errors from fitting the model 

91 99 00 03( , ' , , )y yF F M M− − (model 1) and the reduced model 91 94, 95 03( , ' ,yF F F− −  

91 99 00 03, )M M− −  (model 2) are presented in Table 3.2. The estimates of standard errors, 
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produced by program SURVIV, are based on the estimated information matrix. Estimates 

obtained under model 91 99 00 03( , ' , , )y yF F M M− − have good precision. As expected, the 

natural mortality rate in later years (0.64, SE=0.06) is higher than in early years (0.17, 

SE=0.01), also, the estimate 91 99
ˆ 0.17M − =  agrees well with the value of 0.15 assumed by 

Smith et al. (2000) for a comparable period. Estimates under model 

91 94, 95 03 91 99 00 03( , ' , , )yF F F M M− − − −  are precise, with standard errors for fishing mortality 

rates on harvested fish noticeably smaller than those from 

model 91 99 00 03( , ' , , )y yF F M M− − . The estimate of the mortality rate on harvested fish for 

later years (from 1995 to 2003) is higher than that for earlier years (from 1991 to 1994), 

suggesting an increase in the fishing mortality rate on harvested fish after the relaxation 

of fishing regulations (see also Smith et al. 2000).. 

 Other reduced two-period M models were also fitted to the adult striped bass data, 

including models 91 99 00 03( , ' , , )yF F M M− − ( 41.20AIC∆ = ), and 91 99 00 03( , ' , , )yF F M M− −  

( 28.40AIC∆ = ), which assume, respectively, that fishing mortality on harvested fish  is 

constant, and that fishing mortality on tags of fish released alive is constant. According to 

AIC and QAIC values, neither of these models is better than model 

91 99 00 03( , ' , , )y yF F M M− −  or model 91 94, 95 03 91 99 00 03( , ' , , )yF F F M M− − − − , suggesting these 

mortality rates did vary over years. We also investigated 

model 91 94 95 03 91 99 00 03( , ' , ' , , )yF F F M M− − − − ( 14.56AIC∆ = ), but saw no reason to consider 

this model further. 
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 All of the results presented so far are based on the assumption that tag reporting 

rates are constant and equal to 0.43. Assuming a known value for λ and 'λ  has the 

advantage of avoiding serious problems related to parameter redundancy as demonstrated 

in Chapter 1, but at the cost of introducing possibly substantial biases in estimates. We 

address this problem in two ways, first by examining results from models where λ and 

'λ  are estimated, and by carrying out sensitivity analyses to see the impact of different 

values of λ and 'λ  on estimates.  

Estimates, with their standard errors in parentheses, from fitting the model 

91 99( , ' , ,y yF F M − 00 03, , ')M λ λ−  and the reduced model 91 94, 95 03( , ' ,yF F F− − 91 99 ,M −  

00 03,M − , ')λ λ  to the adult striped bass data are displayed in Table 3.3. We assume that 

the change in natural mortality begins in the year 2000, and that F is constant from 1991 

to 1994 and constant from 1995 to 2003 in the reduced model. Estimates under model 

91 99 00 03( , ' , , , , ')y yF F M M λ λ− − have poor precision with relatively high fishing mortality 

rate estimates and relatively low natural mortality rate estimates. In addition, estimates 

are sensitive to the initial values supplied to the iterative optimization process in 

SURVIV. Estimates under model 91 94, 95 03 91 99 00 03( , ' , , , , ')yF F F M M λ λ− − − − have large 

standard errors, estimates of  , 'λ λ  and M are suspiciously high and estimates of F  and 

'F are suspiciously low. The poor results of the models where λ and 'λ  are estimated  are 

related to the problems of over-parameterization noted in Chapter 1, and to the small 

sample sizes for the striped bass data. The poor performance of the models when 

λ and 'λ  are estimated also emphasizes the importance of obtaining good estimates of 

λ and 'λ  using external sources (Pollock et al. 1991, 2001, and 2002; Hearn et al. 2003). 
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It is worth noting that estimates of λ and 'λ  under model 91 99( , ' , ,y yF F M −  

00 03, , ')M λ λ−  are reasonably close to the value of 0.43, whereas estimates under model 

91 94, 95 03 91 99 00 03( , ' , , , , ')yF F F M M λ λ− − − − are unrealistic. 

Table 3.3. Parameter estimates, with standard errors in parentheses, for the adult (age 6+ 

years) striped bass data, for two-period M models (a) 91 99 00 03( , ' , , ,y yF F M M− −  , ')λ λ ,  

and  (b)  91 94 95 03( , , ' ,yF F F− − 91 99 00 03, , , ')M M λ λ− − , in which reporting rates are estimated.  

 
Parameter          (a)                                      (b)                          
 
F(91)       0.182  (0.096)    0.083  (0.128) 
F(92)       0.234  (0.124)    0.083  (0.128) 
F(93)       0.233  (0.127)    0.083  (0.128) 
F(94)       0.207  (0.108)    0.083  (0.128) 
F(95)       0.318  (0.162)    0.120  (0.186) 
F(96)       0.280  (0.144)    0.120  (0.186) 
F(97)       0.362  (0.186)    0.120  (0.186) 
F(98)       0.405  (0.212)    0.120  (0.186)   
F(99)       0.388  (0.208)    0.120  (0.186) 
F(00)       0.291  (0.154)    0.120  (0.186) 
F(01)       0.363  (0.191)    0.120  (0.186) 
F(02)       0.269  (0.131)    0.120  (0.186) 
F(03)       0.221  (0.088)    0.120  (0.186) 
F’(91)      0.127  (0.181)    0.064  (0.137) 
F’(92)      0.176  (0.255)    0.086  (0.186) 
F’(93)      0.115  (0.167)    0.056  (0.121) 
F’(94)      0.122  (0.176)    0.063  (0.134) 
F’(95)      0.108  (0.154)    0.054  (0.115) 
F’(96)      0.121  (0.174)    0.059  (0.127) 
F’(97)      0.080  (0.116)    0.038  (0.082) 
F’(98)      0.084  (0.122)    0.038  (0.081) 
F’(99)      0.072  (0.104)    0.031  (0.067) 
F’(00)      0.123  (0.178)    0.059  (0.126) 
F’(01)      0.092  (0.133)    0.047  (0.101) 
F’(02)      0.070  (0.099)    0.039  (0.084) 
F’(03)      0.036  (0.047)    0.024  (0.052) 
M91-99         0.092  (0.303)    0.318  (0.271) 
M00-03         0.534  (0.324)    0.877  (0.275) 
λ           0.318  (0.165)    0.859  (1.326) 
λ’          0.420  (0.603)    0.863  (1.845) 
 

For several models, we also performed sensitivity analysis of the effects of 

different values of tag reporting rates,λ and 'λ , on the parameter estimates. In general, as 
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the values of λ and 'λ  increase the estimates of fishing mortality rates on harvested fish 

and on tags of fish released alive decrease, and the estimates of natural mortality rate, M, 

increase. For example, under model ( , ' , )y yF F M , we obtain 91
ˆ 0.18F =  (SE=0.03), 

ˆ 0.05M =  (SE=0.01) for λ = 'λ =0.30, and 91
ˆ 0.11F =  (SE=0.02), ˆ 0.24M = (SE=0.01) 

forλ = 'λ =0.50. So it is essential to obtain accurate information about λ and 'λ  to 

provide unbiased parameter estimates. If we are not certain about the values of λ and 'λ  

we should try different, plausible values of λ and 'λ , and obtain a range of the estimates 

of other parameters of interest.  

Difficulties associated with estimating λ and 'λ  also raise questions about the 

conclusion that natural mortality has increased. For example, is a model with constant M 

and year-dependent λ and 'λ  equally plausible? This led to fitting a series of 

models 91 99 00 03( , ' , , )y yF F M M− −  in which the reporting rates are constant from 1991 to 

1999 ( 91 99λ − = 91 99'λ − ) and constant from 2000 to 2003 ( 00 03λ − = 00 03'λ − ). Results (Figure 

3.1) show that if we keep 91 99λ − = 91 99'λ − =0.43, and allow 00 03λ −  and 00 03'λ − to decrease, the 

estimate of 91 99M − is stable and the estimate of 00 03M − decreases, and approaches the value 

of 91 99M̂ − . Eventually, when 00 03λ − = 00 03'λ − =0.18 the estimates of 91 99M − and 00 03M −  are 

approximately equal with a value 0.18. So an alternative to the conclusion of an increase 

of M in later years is that there was a decrease of λ and 'λ  in later years with no change 

in M. We can not be certain which interpretation is correct unless we have accurate 

information about λ and 'λ . We suspect that the alternative explanation is not correct 

because 00 03λ − = 00 03'λ − =0.18 is too low in practice, and because fishery biologists have 

seen evidence of disease beginning in the late 1990’s. 
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Figure 3.1. Sensitivity analysis of the effects of different values of λ and 'λ  on the 

estimates of  M for 1991-1999 (early years) and 2000-2003 (late years). 
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Note: we assume that 00 03λ − = 00 03'λ − . We keep 91 99λ − = 91 99'λ − =0.43. 

 Estimates obtained under model 91 94 95 03 91 99 00 03( , , ' , , )yF F F M M− − − − were used to 

calculate total mortality rates ( ˆ
fishZ ) and annual survival rates ( ˆ

fishS ) for fish. Hooking 

mortality was accounted for as explained in Section 3.2.1 and assuming δ =0.09. 

Estimates of total mortality rates and annual survival rates for tags and fish are presented 

in Table 3.4. ˆ
fishZ  increases and ˆ

fishS  decreases after 1995, reflecting the effects of  

relaxation of harvest regulations on the mortality rate and annual survival rate of fish. 

ˆ
fishS is bigger than ˆ

tagS , reflecting additional survival of the fish released alive after 

experiencing hooking mortality. We note that our estimates ˆ
fishS  and ˆ

tagS  are similar to 

those obtained by Smith et al. (2000) for a comparable period.  

We can use delta method to compute the variances of these estimators. For 

example, to compute the variance of ˆ
fishS , we can let  
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        ( )ˆ exp ( ' ) ( )fishS F F M fδ θ= − + + = ,  

where  θ  is a vector of parameters F, 'F , M, and δ . We can obtain the estimated 

covariance matrix for F̂ , ˆ 'F  and M̂  from SURVIV. We assume that hooking mortality, 

δ , is estimated independently of the other three parameters. So we are able to obtain the 

covariance matrix for θ , ( )θΣ . According to delta method, the estimates of variance of 

ˆ
fishS , ˆ( )fishV S , can be computed as, 

       ( ) ( )ˆ( ) ( ) ( )T
fish

f fV S θ θθ
θ θ

∂ ∂
= Σ

∂ ∂
, 

where ( )f θ
θ

∂
∂

 is the vector of first derivatives: 

' ' ' '( ) [ , , ' , ]F F M F F M F F M F F M Tf e e F e eδ δ δ δθ δ
θ

− − − − − − − − − − − −∂
= − − − −

∂
. 
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Table 3.4. Total mortality on tags ( ˆ
tagZ ) and fish ( ˆ

fishZ ), and survival rates for tags ( ˆ
tagS ) 

and for fish ( ˆ
fishS ) based on the estimates from model 

91 94 95 03 91 99 00 03( , , ' , , )yF F F M M− − − − where we assume that λ = 'λ =0.43, and δ =0.09. 
 
 
Year           ˆ

tagZ   ˆ
fishZ        ˆ

tagS               ˆ
fishS  

 
1991    0.45 0.34  0.64 0.71 
1992    0.50 0.34  0.61 0.71 
1993    0.44 0.34  0.64 0.71 
1994    0.45 0.34  0.64 0.71 
1995    0.51 0.42  0.60 0.66 
1996    0.53 0.42  0.59 0.66 
1997    0.48 0.41  0.62 0.66 
1998    0.49 0.41  0.62 0.66 
1999    0.47 0.41  0.62 0.66 
2000    1.00 0.89  0.37 0.41 
2001    0.97 0.88  0.38 0.41 
2002    0.95 0.88  0.39 0.41 
2003    0.92 0.88  0.40 0.41 
 
 

3.3 Age-Dependent Models 

3.3.1 Model Structure 

 In chapter 1 we presented a likelihood for data from traditional multiple age 

tagging studies, where all the recaptured fish were harvested. Following the same spirit, 

here we present a likelihood for data from catch-and-release multiple age tagging studies. 

Let ikN  be the number of fish tagged at age k (k=1, 2, …, K) and released in year i (i=1, 

2, …, I). Let ijkR  be the number of these ikN  fish that are subsequently harvested and 

reported in year j, and 'ijkR  be the number of these ikN  fish that are caught, released 

(without a tag), and reported in year j, for j = i, i+1, i+2, …, J. We assume that the 

components of fishing mortality on tags attached to fish of age k in year j are: 
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         ,jk k jF Sel F= and 

               ' ',jk k jF Sel F=  

where jF   is the instantaneous  rate of fishing mortality for fully recruited fish that are 

harvested, 'jF  is the instantaneous rate of fishing mortality on the tags for fully recruited 

fish that are released alive, and  kSel  is the selectivity coefficient for age k fish. 

Selectivity is assumed to be constant over years for each age, and is assumed to be 1 for 

fish of age cK and greater ( )1 ck kkforSel ≥≡ . 

Other parameters are defined as: 

ijkP  is the probability that a fish tagged at age k and released in year i, is harvested and  

       the tag  returned in year j,  

'ijkP  is the probability that a fish tagged at age k and released in year i, is recaptured and  

        released, and its tag removed and reported, in year j,  

ijkS  is the conditional survival rate in year j for fish tagged at age k in year i, and  

        alive, still carrying the tag, at the beginning of year j, 

M   is the instantaneous natural mortality rate, 

λ is the tag-reporting rate (the probability that the tag is reported), 

       given that a tagged fish is harvested, 

'λ   is the tag-reporting rate (the probability that the tag is reported), given  that a tagged  

       fish is recaptured and released alive. 

We assume that the tag reporting rates λ and 'λ  are constant over years and ages. 

In the basic model, we assume that the natural mortality rate M is constant over ages and 



 90

years. We also investigate models where M is year-and/or age-dependent, but only to a 

limited extent in order to avoid parameter redundancy problems (Chapter 1).  

The expected number of tag returns from fish tagged at age k and released in year 

i, then harvested in year j, is: 

           ijkikijk PNRE =][ , 

where 
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The expected number of tag returns from fish tagged at age k and released in year i, then 

recaptured and released (without a tag) in year j, is: 

           ']'[ ijkikijk PNRE = , 
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For those ikN  fish that are tagged at age k and released in year i, the tag returns in 

subsequent years, ijkR  and 'ijkR , follow a multinomial distribution. The full likelihood 

function is product multinomial: 
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We use maximum likelihood  to estimate  jF  , 'jF  (j=1, 2, …, J) , M , 

selectivities kSel (k=1 ,…, Kc), and the tag reporting rates λ and λ'. If the tag reporting 

rates λ and λ' are known, estimates are obtained for jF  , 'jF  (j=1, 2, …, J) , M , and 

selectivities kSel (k=1, …, Kc). To address questions of biological interest while avoiding 

non-identifiability problems (Chapter 1), models in which M has a limited degree of age- 

and/or year-dependence are also examined. 

3.3.2 Example 

3.3.2.1 Study Description 

 We use the Maryland striped bass data (Appendix A) to illustrate the analysis of 

tag-return data from an age-dependent catch-and-release study. Of the total 24533 

marked striped bass released in the upper Chesapeake Bay, 24356 were classified as age 

3 years and greater, using the age-length method. We only analyze the data for striped 
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bass marked at age 3 years and greater, because the sample sizes for those marked at age 

2 years are too small. From those 24356 striped bass marked at age 3 years and greater, a 

total of 4593 tags were returned to fishery agencies. Of those 4593 recaptured and 

reported striped bass, 2960 (64%) were harvested (killed) and 1633 (36%) were released 

alive after the tag was removed. 

 Striped bass of age 6 years and older are considered to be fully recruited. Age 

effects on fishing mortality on harvested fish, F, and on tags of fish, 'F ,  that are caught 

and released, are incorporated through selectivity. Sel3, Sel4, and Sel5 represent the 

selectivity coefficients for striped bass of age 3, 4 and 5 years respectively. Selectivity is 

assumed to be 1 for age 6 years and older. To analyze the Maryland striped bass data for 

all fish tagged at age 3 years and greater, we investigate a series of models with different 

assumptions about the natural mortality rate, M. We consider the basic model 

3 4 5( , ' , , , , )y yF F M Sel Sel Sel with F and 'F  age-dependent through selectivity, M 

constant over years and ages, and λ and 'λ  assumed equal to 0.43. We also fit the 

corresponding model 3 4 5( , ' , , , , , , ')y yF F M Sel Sel Sel λ λ  where λ  and 'λ  are estimated.

 To investigate the assumption that natural mortality is constant over ages we fitted 

model 3 4 5( , ' , , , , , )y y Y AF F M M Sel Sel Sel  where we assume that young (Y) fish of age 3, 

4 and 5 years have a common natural mortality rate, different from that of adult (A) fish 

of 6 years and greater. We also fitted model 3 4 5 3 4 5( , ' , , , , , , , )y y AF F M M M M Sel Sel Sel  

that allows fish of age 3, 4, and 5 years to each have a different natural mortality rate. 

The corresponding models with λ  and 'λ  estimated were also investigated.  

 It is of special interest to investigate models that allow the natural mortality rate to 

differ with time because of disease effects, as mentioned in section 3.2. Due to concerns 
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about parameter redundancy problems (Chapter 1), we assume that natural mortality was 

constant in the years before the disease effects occurred and constant after the disease 

effects began. Finally, reduced models that reflect the effects of the relaxation of fishing 

regulations on fishing mortality are also investigated. AIC criteria, which deal with the 

tradeoff between reduced bias and smaller estimator variance, are used for model 

selection. 

3.3.2.2 Results 

All models with tag reporting rates fixed atλ  = 'λ =0.43 produce parameter 

estimates with high precision. AIC and QAIC values for models where we assume λ  

and 'λ  are known are presented in Table 3.5. According to the AIC and QAIC values, the 

model _ 91 98 _ 99 03, _91 98( , ' , , ,y y Y Y AF F M M M− − −  _99 03 3 4 5, , , )AM Sel Sel Sel− where we assume 

natural mortality rate, M, is both age- and year-specific, and the reduced model 

91 94, 95 03 _ 91 98 _ 99 03 _ 91 98( , ' , , , ,y Y Y AF F F M M M− − − − −  _ 99 03,AM − 3,Sel 4 5, )Sel Sel where we 

assume that F is constant from 1991 to 1994 and constant from 1995 to 2003 are the best. 

These models assume that M is different for two age groups, young (from age 3 years to 

age 5 years) and adult (from age 6 years and greater), and for two time periods, from year 

1991 to 1998 and from year 1999 to 2003. In combination, we have four different natural 

mortality rates to estimate. Note that the subscript Y_91-98 indicates a rate for young fish 

during year 1991 to 1998, subscript A_91-98 refers to adult fish during year 1991 to 

1998, and so on.  
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Table 3.5. AIC values for models with F and 'F  age-dependent through selectivity, M 

constant or with some age- and/or year- specificity, and assuming λ = 'λ =0.43. 

  
 Model   K    AIC         AIC∆       QAIC     QAIC∆    
   1     30   3637.18     249.66     3040.98   210.72         
   2     31   3528.01     140.49     2950.34   120.08           
   3     33   3546.80     159.28     2966.67   136.40         
   4     31   3502.25     114.73     2928.88    98.61         
   5     31   3542.58     155.06     2962.48   132.22         
   6     31   3511.79     124.27     2936.83   106.56         
   7     31   3551.56     164.04     2969.97   139.70         
   8     33   3395.87       8.35     2840.89    10.63         
   9     22   3387.52       0.00     2830.27     0.00         
   10    21   3464.59      77.07     2894.16    63.89         
   11    21   3432.84      45.32     2867.70    37.43         
 
 
Note: ˆ 1.197c = , based on the model _ 91 98 _ 99 03, _ 91 98 _ 99 03( , ' , , , ,y y Y Y A AF F M M M M− − − −   
         3 4 5, , )Sel Sel Sel . k is the number of parameters in the model. 
Model  
1:   3 4 5( , ' , , , , )y yF F M Sel Sel Sel  
2:   3 4 5( , ' , , , , , )y y Y AF F M M Sel Sel Sel  
3:   3 4 5 6 3 4 5( , ' , , , , , , , )y yF F M M M M Sel Sel Sel+  
4:   91 98 99 03 3 4 5( , ' , , , , , )y yF F M M Sel Sel Sel− −  
5:   91 99 00 03 3 4 5( , ' , , , , , )y yF F M M Sel Sel Sel− −  
6:   91 97 98 03 3 4 5( , ' , , , , , )y yF F M M Sel Sel Sel− −  
7:   91 96 97 03 3 4 5( , ' , , , , , )y yF F M M Sel Sel Sel− −  
8:   _ 91 98 _ 99 03, _91 98 _ 99 03 3 4 5( , ' , , , , , , )y y Y Y A AF F M M M M Sel Sel Sel− − − −  
9:   91 94 95 03 _ 91 98 _ 99 03 _ 91 98 _ 99 03 3 4 5( , , ' , , , , , , , )y Y Y A AF F F M M M M Sel Sel Sel− − − − − −  
10: _ 91 98 _99 03 _ 91 98 _99 03 3 4 5( , ', , , , , , , )y Y Y A AF F M M M M Sel Sel Sel− − − −  
11:  _ 91 98 _ 99 03 _91 98 _ 99 03 3 4 5( , ' , , , , , , , )y Y Y A AF F M M M M Sel Sel Sel− − − −  

 

Based on AIC values for models 2 to 7, we focused on models with natural 

mortality M assumed different for young (3 – 5 years) and old (6+ years) fish, and/or 

different for the periods 1991 to 1998 and 1999 to 2003. We found the best models to be 

model _ 91 98 _ 99 03, _91 98 _ 99 03 3 4 5( , ' , , , , , , )y y Y Y A AF F M M M M Sel Sel Sel− − − − and model 
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91 94 95 03 _ 91 98 _ 99 03 _ 91 98 _ 99 03 3 4 5( , , ' , , , , , , , )y Y Y A AF F F M M M M Sel Sel Sel− − − − − − , both of which 

have substantially smaller AIC values than either the age-specific-M model 

3 4 5( , ' , , , , , )y y Y AF F M M Sel Sel Sel or the year-specific-M model 91 98( , ' , ,y yF F M −    

99 03,M − 3 4 5, , )Sel Sel Sel   (Table 3.5). Of all the models in Table 3.5, the constant M 

model has the worst fit. Comparing the two best models using a likelihood ratio test 

results in 2 14χ =  with 11 df (p value = 0.23), suggesting that the reduced F model 

91 94 95 03 _ 91 98 _ 99 03,( , , ' , ,y Y YF F F M M− − − − _ 91 98 _99 03 3 4 5, , , , )A AM M Sel Sel Sel− −   is preferred over 

the more general model (agrees with AIC criteria), and that variation in fishing mortality 

is mainly associated with an increase after the relaxation of fishing regulations. 

Estimates with standard errors in parentheses under both model 

_ 91 98 _ 99 03, _91 98 _ 99 03 3 4 5( , ' , , , , , , )y y Y Y A AF F M M M M Sel Sel Sel− − − − and the reduced F version 

91 94 95 03 _ 91 98 _ 99 03,( , , ' , ,y Y YF F F M M− − − − _ 91 98 _99 03 3 4 5, , , , )A AM M Sel Sel Sel− − , for the striped 

bass data, are displayed in Table 3.6. Both models result in estimates with good 

precision; relative standard errors for most parameter estimates are less than 10%. As 

might be expected, estimated precision for fishing mortality rates F is better under the 

reduced F model. Selectivity estimates have the expected trend under both models, with 

an estimate of about 1 for fish of age 5 years. Under the reduced F model, from 1991 to 

1998, the estimated natural mortality for young fish is 0.40 (SE=0.02), which is larger 

than that for adults (0.15, SE=0.01). From 1999 to 2003, the estimated natural mortality 

for young fish is 0.86 (SE=0.06), which is higher than for adults (0.65, SE=0.03). 

Estimates also indicate that, for both young and adult striped bass, the natural mortality 



 96

rate in earlier years is lower than in later years and that fishing mortality increased after 

fishing regulations were relaxed in 1995. 

Table 3.6. Parameter estimates with standard errors in parentheses from fitting the age- 

and year-specific M models (a) _ 91 98 _ 99 03, _ 91 98 _ 99 03( , ' , , , ,y y Y Y A AF F M M M M− − − −  

3 4 5, , )Sel Sel Sel and (b) 91 94 95 03 _ 91 98 _99 03 _ 91 98 _ 99 03( , , ' , , , , ,y Y Y A AF F F M M M M− − − − − −  

3 4 5, , )Sel Sel Sel   to the striped bass data. 

 
 
Parameter      (a)             (b)              
  
F(91)       0.106 (0.014)    0.154 (0.007)   
F(92)    0.163 (0.014)    0.154 (0.007)   
F(93)    0.152 (0.011)    0.154 (0.007)   
F(94)    0.162 (0.011)      0.154 (0.007)   
F(95)    0.226 (0.013)    0.235 (0.007)   
F(96)    0.190 (0.012)    0.235 (0.007)   
F(97)    0.233 (0.015)    0.235 (0.007)   
F(98)    0.244 (0.017)    0.235 (0.007)   
F(99)    0.254 (0.019)    0.235 (0.007)   
F(00)    0.260 (0.018)    0.235 (0.007)   
F(01)    0.293 (0.022)    0.235 (0.007)   
F(02)    0.230 (0.018)    0.235 (0.007)   
F(03)    0.140 (0.022)    0.235 (0.007)   
F’(91)   0.125 (0.016)    0.124 (0.016)   
F’(92)   0.156 (0.013)    0.160 (0.014)   
F’(93)   0.105 (0.009)    0.109 (0.009)   
F’(94)   0.132 (0.010)    0.131 (0.010)   
F’(95)   0.106 (0.009)    0.117 (0.009)   
F’(96)   0.116 (0.009)    0.125 (0.010)   
F’(97)   0.092 (0.009)    0.099 (0.009)   
F’(98)   0.094 (0.010)    0.095 (0.010)   
F’(99)   0.074 (0.010)    0.082 (0.010)   
F’(00)   0.169 (0.014)    0.168 (0.014)   
F’(01)   0.126 (0.013)    0.123 (0.012)   
F’(02)   0.081 (0.009)    0.092 (0.009)   
F’(03)   0.056 (0.012)    0.050 (0.011)   
Sel3     0.663 (0.061)    0.627 (0.058)   
Sel4     0.730 (0.044)    0.739 (0.044)   
Sel5     0.967 (0.047)    1.000 (0.048)   
MY_91-98  0.378 (0.021)    0.399 (0.021)   
MY_99-03   0.836 (0.063)    0.858 (0.056)   
MA_91-98  0.145 (0.009)    0.150 (0.009)   
MA_99-03    0.673 (0.038)      0.645 (0.028)   
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For all the models we investigated above, we assume that λ = 'λ =0.43. If the 

true values of λ and 'λ  are not 0.43, we will obtain biased parameter estimates. We tried 

to fit the models with different values of λ and 'λ .Larger values of λ and 'λ  are usually 

associated with larger estimates of M, and smaller estimates of F and 'F . We should 

keep in mind that the increase in estimates of M in later years could actually be due to a 

decrease in λ and 'λ  in later years, rather than to presence of disease, as mentioned in 

Section 3.2. Again we emphasize the importance of obtaining accurate, independent 

information about λ and 'λ . 

Models where λ and 'λ  are estimated are also considered. Results of estimates 

with their standard errors in parentheses from fitting models 

_ 91 98 _ 99 03 _ 91 98 _ 99 03 3 4 5( , ' , , , , , , , , , ')y y Y Y A AF F M M M M Sel Sel Sel λ λ− − − −  and 91 94 95 03( , ,F F− −  

' ,yF _ 91 98 _ 99 03, ,Y YM M− − _ 91 98 _ 99 03 3, , ,A AM M Sel− − 4 5, , , ')Sel Sel λ λ  to the striped bass data 

are displayed in Table 3.7. Model _ 91 98( , ' , ,y y YF F M − _ 99 03,YM −  

_ 91 98 ,AM − _ 99 03,AM − 3 4 5, , , , ')Sel Sel Sel λ λ produces reasonable estimates but with low 

precision. Interestingly, estimates of λ and 'λ (0.41 and 0.43, respectively) agree well 

with the value of 0.43 used in the “known λ ” models. The model 

91 94 95 03( , , ' ,yF F F− − _91 98 _ 99 03, ,Y YM M− − _ 91 98 ,AM − _ 99 03 3, ,AM Sel−  4 5, , , ')Sel Sel λ λ  produces 

poor precision with relatively high estimates of fishing mortality on harvested fish and on 

tags of fish released alive and relatively low estimates of natural mortality compared with 

estimates obtained from the model 91 94 95 03( , , ' ,yF F F− − _ 91 98 _ 99 03, _ 91 98, ,Y Y AM M M− − −  

_ 99 03,AM − 3 4 5, , )Sel Sel Sel . We notice that estimates obtained under models where 

λ and 'λ  are estimated are sensitive to the initial values of the parameters used in the 
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estimation process. The poor performance of the models with λ and 'λ  estimated 

suggests that we should use external sources to obtain accurate information for λ and 'λ . 

Table 3.7. Parameter estimates with standard errors in parentheses from fitting four M 

models (a) _ 91 98 _ 99 03 _ 91 98 _ 99 03 3 4 5( , ' , , , , , , , , , ')y y Y Y A AF F M M M M Sel Sel Sel λ λ− − − − , (b) 

91 94 95 03 _91 98 _ 99 03 _ 91 98 _ 99 03 3 4 5( , , ' , , , , , , , , , ')y Y Y A AF F F M M M M Sel Sel Sel λ λ− − − − − −   to the 

striped bass data. 

 
 
Parameter      (a)             (b)               
  
F(91)        0.173  (0.075)  0.208 (0.053) 
F(92)     0.185  (0.080)  0.208 (0.053) 
F(93)     0.164  (0.071)  0.208 (0.053) 
F(94)     0.144  (0.059)    0.208 (0.053) 
F(95)     0.269  (0.110)  0.315 (0.080) 
F(96)     0.207  (0.086)  0.315 (0.080) 
F(97)     0.238  (0.100)  0.315 (0.080) 
F(98)     0.288  (0.125)  0.315 (0.080) 
F(99)     0.264  (0.116)  0.315 (0.080) 
F(00)     0.236  (0.102)  0.315 (0.080) 
F(01)     0.228  (0.096)  0.315 (0.080) 
F(02)     0.173  (0.069)  0.315 (0.080) 
F(03)     0.108  (0.036)  0.315 (0.080) 
F’(91)    0.157  (0.150)  0.204 (0.091) 
F’(92)    0.158  (0.153)  0.268 (0.118) 
F’(93)    0.117  (0.112)  0.184 (0.082) 
F’(94)    0.122  (0.116)  0.216 (0.094) 
F’(95)    0.121  (0.115)  0.193 (0.085) 
F’(96)    0.116  (0.110)  0.206 (0.092) 
F’(97)    0.114  (0.109)  0.161 (0.073) 
F’(98)    0.104  (0.099)  0.156 (0.070) 
F’(99)    0.081  (0.077)  0.130 (0.058) 
F’(00)    0.125  (0.120)  0.275 (0.121) 
F’(01)    0.089  (0.085)  0.203 (0.092) 
F’(02)    0.068  (0.063)  0.156 (0.070) 
F’(03)    0.035  (0.030)  0.083 (0.039) 
λ       0.407  (0.170)  0.321 (0.081) 
λ’      0.430  (0.407)  0.261 (0.113) 
Sel3      0.755  (0.066)  0.621 (0.059) 
Sel4      0.810  (0.049)  0.726 (0.045) 
Sel5      0.978  (0.048)  1.000 (0.047) 
MY_91-98   0.405  (0.159)  0.283 (0.110) 
MY_99-03    0.678  (0.170)  0.726 (0.132) 
MA_91-98   0.148  (0.183)  0.001 (0.134) 
MA_99-03     0.480  (0.185)    0.491 (0.146) 
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3.4  Discussion  

 Different approaches exist for estimating the survival and mortality rates from tag 

return data where tagged fish are subject to harvest and catch-and-release. Youngs and 

Robson (1975) did not include fish that were released alive in their analysis of lake trout 

data. Burnham (1991) and Barker (1997) developed methods for the joint analysis of data 

from fish harvested and caught-and-released. These two methods assume that tags are not 

removed prior to release and that the catch-and-release procedure does not affect 

survival. However, for the Maryland striped bass study, tags were removed regardless of 

the disposition of the recaptured fish prior to reporting the tag numbers to the U.S. Fish 

and Wildlife Service. High proportions (36% for all fish, 32% for adult fish) of striped 

bass tags were reported from caught-and-released fish. Also, the catch-and-release 

procedure affects survival (Diodati and Richards 1996). Thus, the Youngs and Robson 

(1975), Burnham (1991) and Barker (1997) approaches are not valid for the Maryland 

striped bass study. 

Smith et al. (2000) developed models to estimate the finite rates of survival and 

recovery from the catch-and-release data where high proportions of tags were reported 

from caught-and-released fish, adjusting the bias caused by fish released alive with tag 

removed before reporting to the fishery agency. In their methods, they assumed that the 

natural mortality rate was known to be 0.15, and that all parameters were age-

independent. In contrast, our models assume reporting rates are constant and known, and 

allow age- and year-dependence for M. 

 We extend the instantaneous rate formulation of tag return models to analyze the 

catch-and-release study data. In our methods, we separate the fishing mortality into two 
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parts: mortality on fish that are harvested, and mortality on tags of fish that are released 

alive. We show how to use experimentally determined estimates of hooking mortality 

(Diodati and Richards, 1996) to adjust mortality rates for tags to estimate the total fishing 

mortality and annual survival rates for fish. Traditionally, the natural mortality rate is 

difficult to estimate (Hightower et al. 2001). One very important feature of our models is 

that a limited degree of age- and/or year-dependence can be allowed in the estimation of 

natural mortality, assuming reporting rates are known.  Analyses of the striped bass data 

demonstrate that a model with a limited degree of age- and year- dependent natural 

mortality, M, is preferred over models with more restrictive assumptions about M. For 

both young and adult fish, results show that total mortality increases and annual survival 

decreases after 1995, likely reflecting the effects of the change of harvest regulations as 

well as disease. Because of parameter redundancy problems (Chapter 1), models where 

tag reporting rates are estimated produce unreliable estimates, indicating the importance 

of estimating tag reporting rates using external information (Pollock et al. 1991, 2001, 

and 2002; Hearn et al. 2003). 

For the Maryland striped bass study, tags were removed from the fish before they 

were released alive. In studies where tags are not cut off from fish before release, the 

marked fish can be recaptured multiple times, and additional information on survival can 

be obtained. For future research, the generalized Jolly-Seber model (Williams et al. 2002) 

can be applied to the case where the tags of fish released alive are not cut off.  
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Appendix A 
 
Table A.1. Release and tag return data from the study on striped bass carried out from 

1991-2003 by Maryland Department of Natural Resources (fish released alive are treated 

as dead for purposes of illustration). 

 
 
Year of     Number        Number recaptured 
release      Tagged 
                                                                              

                                                             Age 3    
 
                                     1991   1992   1993   1994   1995  1996  1997  1998  1999   2000   2001  2002   2003  
                                      
1991           288               20          8       11      6        3         3        2       1        0         0         0        0         0       
1992           380                            21        5    12        6         6        1       2        0         0         0        0         0       
1993           159                                        5      6        7         1        2       0        0         0         0        0         0       
1994             92                                                3        6         3        0       0        0         0         0        0         0       
1995           221                                                         11      11        7       7        1         1         0        0         0       
1996           393                                                                   23      23     14        5         1         2        0         0 
1997             31                                                                               2       0        0         1         0        0         0       
1998           131                                                                                        6        1         0         0        1         0 
1999           178                                                                                                21         5         1        2         0 
2000           116                                                                                                            10        2        2         0 
2001           116                                                                                                                      11        3         1 
2002             73                                                                                                                                  4         4 
 
                                                                                 Age 4    
 
                                  1991   1992   1993   1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
1991           202            11        15         2      5        2         1        2       0        0         0         0        0         0 
1992           325                        24       19    13        6         4        2       1        0         0         0        0         0 
1993           721                                   32    41      27       14        9       4        3         0         0        0         0 
1994           333                                           18      22       11        3       4        0         0         1        0         0 
1995           112                                                       7         5        5       4        0         2         0        0         0 
1996           352                                                                36      18       8        1         2         0        0         0 
1997           372                                                                          18     22        0         7         2        1         0 
1998             72                                                                                     4        0         0         0        0         0 
1999           221                                                                                             15         7         4        3         0 
2000           596                                                                                                         57      14        6         2 
2001           412                                                                                                                   39      13         4 
2002           442                                                                                                                             39         3 
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                                                                                 Age 5   
 
                                 1991   1992   1993   1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
1991           217            9          16       10      5        6         0        1       0        0         0         0        0         1 
1992           209                        13       10      7        5         2        2       0        3         0         0        0         0 
1993           452                                   33    27      16         7        6       2        2         1         1        0         0 
1994           593                                           56      46       14      15       8        4         3         0        0         0 
1995           190                                                     27       14        6       2        1         0         1        0         0 
1996             95                                                                  7        5       9        0         1         0        0         0 
1997           210                                                                          34     13        2         4         0        1         1 
1998           516                                                                                   62      17       11         4        2         0 
1999           376                                                                                             45         9         4        1         0 
2000           543                                                                                                         59        3        2         0 
2001           586                                                                                                                   59      20         2 
2002         1130                                                                                                                             80       16 
 
                                                                                 Age 6   
 
                                  1991    1992   1993   1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
1991           344           30         34       15      6        7         3        3       3        1         0         0        0         1 
1992           334                        46       22    17        6         2        0       0        2         0         1        0         0 
1993           285                                   32    21      13         9        1       2        3         0         0        1         0 
1994           430                                           46      33       18      10       6        3         1         0        0         0 
1995           434                                                     50       28      17       6        5         0         1        0         1 
1996           171                                                                23        9       5        4         0         1        1         0 
1997             63                                                                          10       3        6         0         0        0         0 
1998           101                                                                                   15        5         1         0        0         0 
1999           245                                                                                             28       10         2        0         0 
2000           898                                                                                                        85       24      10         2 
2001           438                                                                                                                   61        8         2 
2002           709                                                                                                                             60       21 
 
                                                                                 Age 7   
 
                                  1991    1992   1993  1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
  1991           310         28         21       14      7        8         3        4       1        0         1         0        0         0 
  1992           328                      39       20    10        8         2        3       1        1         0         0        0         0 
  1993           331                                 31    24      17         8        5       3        2         0         0        0         0 
  1994           189                                         19      11         5        7       3        6         1         1        0         0 
  1995           273                                                   41       15        8       5        2         3         0        2         0 
  1996           397                                                              52      29     13        5         4         2        0         0 
  1997             75                                                                        10       3        2         0         0        0         0 
  1998             67                                                                                   9        1         4         0        1         0 
  1999             94                                                                                           12         7         0        0         0 
  2000           413                                                                                                      55       10        4         1 
  2001           316                                                                                                                 34        5         2 
  2002           507                                                                                                                           50         7 
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                                                                                 Age 8+  
 
                                  1991    1992   1993  1994  1995  1996  1997  1998  1999   2000   2001  2002   2003  
 
                                      
      1991           365     35         24       17      6        6         3        2       1        0         3         0        0         0 
      1992           384                  39       23    15      14         8        9       6        4         2         0        0         0 
      1993           568                             49    33      29       15      15       7        4         1         2        1         0 
      1994           371                                     32      24       19        9     13        8         2         2        0         1 
      1995           374                                               39       18      19     14        6         4         2        0         4 
      1996           719                                                          85      43     35      13         6         5        1         1 
      1997           350                                                                    48     27      13         1         2        1         0 
      1998           280                                                                             34      14         3         5        2         1 
      1999           221                                                                                       27         8       10        2         0 
      2000           368                                                                                                  39       15        6         2 
      2001           551                                                                                                             44      17         7 
      2002           598                                                                                                                       36       15 
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Table A.2: Release and tag return data from the  study on striped bass carried out from 1991-2003 by Maryland Department of Natural Resources. 
 
 
Year of     Number        Number recaptured 
release      Tagged 
                                                                                 

Age 3    
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           288            8     12      3      5        6    5        2       4      3     0       3      0       1     1       1     0     0      0       0      0      0      0         0      0    0      0 
1992           380                             9     12       3    2        9       3      4     2       4      2       1     0       2     0     0      0       0      0      0      0         0      0    0      0 
1993           159                                               0    5        3       3      7     0       1      0       1     1       0     0     0      0       0      0      0      0         0      0    0      0 
1994             92                                                               2       1      4     2       1      2       0     0       0     0     0      0       0      0      0      0         0      0    0      0 
1995           221                                                                                7     4       6      5       5     2       4     3     1      0       1      0      0      0         0      0    0      0 
1996           393                                                                                                7    16     13   10      11    3     4      1       1      0      2      0         0      0    0      0 
1997             31                                                                                                                 1     1        0     0    0      0       1      0      0      0         0      0    0      0 
1998           131                                                                                                                                  1     5    0       1      0      0      0      0         0      1    0      0 
1999           178                                                                                                                                             10     11      2      3      1      0         2      0    0      0 
2000           116                                                                                                                                                                5      5      0      2         2      0    0      0 
2001           116                                                                                                                                                                                3      9         3      0    0      1 
2002             73                                                                                                                                                                                                   2      2    3      1 
 
                                                                                 Age 4    
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           202             5     6        7      8       2     0        2       3      1     1       1      0       1     1       0     0     0      0       0      0      0      0         0      0    0      0 
1992           325                            14    10     13     6        9       4      3     3       3      1       0     2       0     1     0      0       0      0      0      0         0      0    0      0 
1993           721                                             15   17      17     24    15    12      8      6       7     2       4     0     3      0       0      0      0      0         0      0    0      0 
1994           333                                                                5     13     12   10      4      7       2     1       3     1     0      0       0      0      0      1         0      0    0      0 
1995           112                                                                                  4     3       1     4       3     2       3     1     0      0       2      0      0      0         0      0    0      0 
1996           352                                                                                                20    16    13     5       7     1     1      0       2      1      0      0         0      0    0      0 
1997           372                                                                                                                  6   12     14     8     0      0       6      1      1      1         1      0    0      0 
1998             72                                                                                                                                  3     1     0      0       0      0      0      0         0      0    0      0 
1999           221                                                                                                                                                9      6       2      5      4      0         1      2    0      0 
2000           596                                                                                                                                                               19     38    10     4         3      3    2      0 
2001           412                                                                                                                                                                                14    25      10      3    3      1 
2002           442                                                                                                                                                                                                  23    16    2      1 
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                                                                                 Age 5   
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           217             5      4     10      6       5     5        3       2      5     1       0      0       1     0       0     0     0      0       0      0      0      0         0      0    0      1 
1992           209                              6      7       5     5        3       4      2     3       1      1       2     0       0     0     3      0       0      0      0      0         0      0    0      0 
1993           452                                             19   14      19       8    12     4       6      1       4     2       2     0     2      0       1      0      1      0         0      0    0      0 
1994           593                                                              32     24    35   11     13      1     11     4       6     2     4      0       3      0      0      0         0      0    0      0 
1995           190                                                                               14   13     10      4       4     2       2     0     1      0       0      0      0      1         0      0    0      0 
1996             95                                                                                                  4      3      3     2       6     3     0      0       1      0      0      0         0      0    0      0 
1997           210                                                                                                                19   15       6     7     2      0       4      0      0      0         1      0    0      1 
1998           516                                                                                                                                39   23   10      7       3      8      4      0         2      0    0      0 
1999           376                                                                                                                                              35    10       8      1      2      2         0      1    0      0 
2000           543                                                                                                                                                               34     25     3      0         2      0    0      0 
2001           586                                                                                                                                                                                42    17      17      3    2      0 
2002         1130                                                                                                                                                                                                  54    26   10     6 
 
 
 
 
                                                                                 Age 6    
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           344           16    14     21    13     12     3        2       4      6     1       2      1       3     0       3     0     1      0       0      0      0      0         0      0    0      0 
1992           334                            24    22     12   10      10       7      4     2       1      1       0     0       0     0     2      0       0      0      1      0         0      0    0      0 
1993           285                                             20   12      13       8      8     5       4      5       1     0       1     1     3      0       0      0      0      0         1      0    0      0 
1994           430                                                              22     24     21   12      7    11     10     0       5     1     1      2       1      0      0      0         0      0    0      0 
1995           434                                                                                25   25     20     8     14     3       3     3     4      1       0      0      1      0         0      0    1      0 
1996           171                                                                                                11    12      4     5       4     1     4      0       0      0      1      0         1      0    0      0 
1997             63                                                                                                                  4     6       3     0     5      1       0      0      0      0         0      0    0      0 
1998           101                                                                                                                                  9     6     4      1       1      0      0      0         0      0    0      0 
1999           245                                                                                                                                              18    10       6      4      2      0         0      0    0      0 
2000           898                                                                                                                                                               42     43    16     8         6      4    2      0 
2001           438                                                                                                                                                                                41    20        7      1    2      0 
2002           709                                                                                                                                                                                                  42    18   16     5 
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                                                                                 Age  7  
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           310           10    18       9    12       8     6        5       2      5     3       3      0       3     0       3     1     1      0       0      0      0      1         0      0    0      0 
1992           328                            16    23     14     6        6       4      5     3       2      0       2     1       1     0     0      1       0      0      0      0         0      0    0      0 
1993           331                                             15   16      13     11     15    2       5      3       5     0       3     0     2      0       0      0      0      0         0      0    0      0 
1994           189                                                                8     11      6     5       2      3       6     1       1     2     5      1       1      0      0      1         0      0    0      0 
1995           273                                                                                31   10     11     4       6     2       3     2     1      1       3      0      0      0         2      0    1      0 
1996           397                                                                                                28    24     20    9      10    3     4      1       3      1      2      0         0      0    0      0 
1997             75                                                                                                                  8     2       3     0     2      0       0      0      0      0         0      0    0      0 
1998             67                                                                                                                                  5     4     1      0       4      0      0      0         1      0    0      0 
1999             94                                                                                                                                              11      1       4      3      0      0         0      0    0      0 
2000           413                                                                                                                                                               37    18      8      2         3      1    1      0 
2001           316                                                                                                                                                                                29     5         4      1    1      1 
2002           507                                                                                                                                                                                                   39   11    5      2 
 

                                                                                 Age  8+   
 
                                        1991       1992         1993          1994        1995       1996        1997        1998        1999        2000       2001           2002       2003  
                                     H     R      H     R      H     R        H     R     H     R      H     R      H     R     H     R    H     R      H     R      H     R        H     R    H     R 
 
1991           365           22    13     12    12     13     4        4       2      4     2       3      0       2     0       1     0     0      0       3      0      0      0         0      0    0      0 
1992           384                            21    18     13   10        9       6    12     2       5      3       7     2       6     0     3      1       2      0      0      0         0      0    0      0 
1993           568                                             29   20      22     11     21    8     14      1     14     1       6     1     3      1       1      0      2      0         1      0    0      0 
1994           371                                                              19     13     18    6     18      1       9     0     12     1     7      1       2      0      2      0         0      0    0      1 
1995           374                                                                                31    8     12      6     14     5     11     3     4      2       4      0      2      0         0      0    4      0 
1996           719                                                                                               52    33     32    11    32     3    11     2       5      1      5      0         1      0    1      0 
1997           350                                                                                                                37    11    19     8    13     0       0      1      2      0         1      0    0      0 
1998           280                                                                                                                                27     7    11     3       2      1      3      2         2      0    1      0 
1999           221                                                                                                                                               21     6       6      2      8      2         1      1    0      0 
2000           368                                                                                                                                                               27    12     11     4         2      4    1      1 
2001           551                                                                                                                                                                                32    12      11      6    7      0 
2002           598                                                                                                                                                                                                  29      7   13     2 
 
 
Note: H is harvested, R is released alive. 
 
 


