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ABSTRACT

When a 2-dimensional structure is subjected to in-plane dynamic
loading, the faces of a pre-existing crack are pressed together over some part of
their surface, a non-linear contact crack closure problem ensues. Without
consider the crack face contact and slide effects, an application of a finite
element approach will be yield solutions in which overlap of the crack face is
implied. When a crack tip actually lie in its overlap zone, a negative K; value
is obtained. In the present work, we examine the above problem using an
iterative procedure in conjunction with a well developed 2-D dynamic finite
element contact analysis program. It is used to predict dynamic behavior and
variations of stress intensity factors for two examples which involves the
center crack and mixed mode slant crack plates whose tips experience mode I

and II loading. In addition, we bring the frictional force to the stress intensity
factor K;;. We obtain the frictional force between crack surfaces affects

greatly on the value of Kj;;. When coefficient of the friction reaches some
specific value, Ky can almost be neglected. This justified that it is reasonable
that stress intensity factor can be neglected under static pressure for cracked
materials with rough crack faces. But it is wrong for smooth crack face, such
as: crack in oil pipe etc..

1. INTRODUCTION

There is much literature describing various analytical and numerical
approaches for determining fracture parameters such as stress intensity factors,
J-integral and open crack tip displacement. Most of majority of their work is
concerned with situations where the faces of the pre-existing cracks are
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deemed either to open (mode I behavior) or to slide over each other (mode II
and mode III). When a structure is loaded in such a way that the faces of a pre-
exist cracks are pressed together over some part of their surface, a nonlinear
boundary value problem ensues. A finite element approach will yield solutions
in which overlap of the crack face is implied. When a crack tip actually lies in
this overlap zone, a negative value is obtained for K;. While studies on the
analysis of crack with closure effects are limited in recent years. Chen &
Wang [1980] have analyzed the dynamic tension problem of a strip plate with
a center crack. They used the hybrid displacement finite element method. The
analysis method is to adopt singular element near the crack tip region and the
regular elements in the remain region. Chen & Wu [1981] have analyzed the
dynamic tension problem of the bimaterial strip plate with a center crack. Their
analysis method considered the impact effects of crack faces. Karami & Fenner
[1986] have used boundary element method to analyze the closure effects of
the strip plate with a single edge crack under static bending.

In present work, we exam the above crack contact problem utilizing an
iterative procedure in conjunction with a well-developed 2-D dynamic finite
element contact analysis program. It is used to predict dynamic behavior and
variation of stress intensity factors for a partially opened crack plate whose tips
experience mode I and mode II.

2. FINITE ELEMENT FORMULATION

The method of analysis employed in the present work is the dynamic
finite element transformation matrix method original developed by Chen &
Yeh [1988,1991]. On the basis of on the works of Chen & Yeh [1991 ], a
modified and simplified finite element procedure for partial closure crack
contact problem was derived and described. The main difference between the
one body contact problem treated by present and the multiple body contact
problem treated by Chen & Yeh is in the assembling of the global stiffness
matrix. After doing the Gaussian Upper-triangle partition, our matrices will
have two decoupled terms that are closely similar to the full matrix form at the
up-right and down-left parts of stiffness matrix.

According to the principle of virtual work, the incremental nodal

displacement.{Aq(k)} with kth iteration can be obtained from the following

simultaneous ordinary differential equations for dynamic crack contact
problem with friction:



137
M M G,
T T,T | as Map | Oy |y
[ (k-1) + HaS ) ]([MBA Mgp I ( Q(k))

K K G,
e b )
Kps Kpp 1

. (N+1)
=[Gy + 1Sl 1] Py _[MAA MAB] 94
(k-1) (k-1) PI(;N+1) Mg, Mg 311(3N+1)(k)

N+1
gticala bl WS ] ()
gykﬂg) Mg, Mg 0 Kga Kpp|L O
In which, [G] is the matrices assembled from {N} and {1, };{t,}. {N} is the
assembly matrix of the local area coordinates of the triangle contact element.
{t,}:{z,} are two perpendicular unit tangential vectors that are arbitrarily

chosen on the triangular target surface. [I] represents the global unit matrix.
The gap vector {h} is prescribed from the geometry of the contact surface.

{P/(‘N “)} is the resultant global contact nodal force for the instant fN*V, [M ]

is the mass matrix. [K] is the stiffness matrix. In order to solve these

ordinary differential equations, the modified Newmark direct integration
method [Hallquist,1983] is adopted.

3. RESULTS AND DISCUSSIONS

The first example is solved to verify the partial crack closure effect on
mode I situation. A strip plate with a center crack, is subjected to uniform
dynamic tension loading represented by Heaviside function. We adopt the
material properties as follows: Young's modulus 2.1x 102 dyne [ cm?,
Possion’s ratio 0.3, material density 5.0 g/ cm> and Heaviside function
loading is Py =4x10° dyne/cm®. We use "quarter-point" eight-node
isoparametric quadrilateral elements near the crack tip region and the eight-
node convection elements in the remaining part. In the present work, we denote
the portion above the crack surface as deformable contactor and the lower
portion as the rigid targetas shown in Fig.1. Fig. 2 show the computed dynamic
stress-intensity factor K, (t) normalized by Py~+/ma for plane strain case. Also
show in Fig.2 the time integration is completed with 130 steps at 0.2 us each.
It appears that excellent agreement between results from the present study and
that given in referenced paper [Chen,& Wang, 1981 ] and [Chen, 1975]. before
the crack surface contact . When the crack impact happened, the upper crack
surface and the lower crack surface are no more overlap in the present
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analysis. The maximum K, (¢) value of the dynamic case is more than double
of the value of the static K;(¢) case.

Often, the crack angle of the material with crack is not equal to zero
degree. In such case , situations are more general where mixed mode of I and
IT partial crack closure may occur. The model we have adopted is a strip plate
with center slanted crack angle (6 =30°). The material properties and the
loading condition are considered as same as those used in the above example.
The total number of 71 elements and 252 nodes are taken and the time
integration is complete with 200 steps at time increment 2 ts. We consider
surfaces as two deformable bodies so that there will have sticking
displacement. Fig.3 displays the relationship of stress-intensity factor K with
different friction coefficients under static pressure. Fig.3 vividly indicates that
when the coefficient of friction is equal to 0.6, K;; will be zero. This justifies
that it is reasonable that the stress-intensity factors K; can be neglected under
static pressure for cracked materials with rough crack surface, But it is wrong
for smooth crack faces. When the time is 248 s , a part of crack surfaces near
crack tip 1 will open and the part away from the tip 1 be closed as shown in
Fig.4. At the tip 2, the time variation of the dynamic stress-intensity factor
K, , K, are show in Fig.5 & Fig.6 , in which the theoretic value of
K,;=0.8453 and K, =0.4490 under uniform static tension loading are
shown by the dash line. The results we computed for dynamic stress-intensity
factors K, , K,; are over twice as much as the results under static loading.

4. CONCLUSION

In the present work, we have derived and modified the contact
transformation matrix method to compute the stress-intensity factor K; , K
of the cracked structure under dynamic impact loading. We can efficiently
evaluate the crack contact effects of the fracture parameters, concerning stress
wave arrival at crack surfaces and the stress-intensity factors after stress wave
rebounding. The results that we have obtained match very well with practical
fracture problems.
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Fig.5 The time variation of K, ()
for slant-crack plate with friction.
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Fig.2 The time variation of K, (1)
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Fig.6 The time variation of K ; (1)
for slant-crack plate with friction.




