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This paper questions the conventional wisdom that “"standard" distributions such
as the normal, gamma, or beta families should necessarily be used to model inputs

for simulation and proposes an alternative.

Relevant criteria are the quality

of the fits and the impact of the input distributions on effective use of
variance reduction techniques and on variate-generation speed. The proposed
alternative, a "quasi-empirical" distribution, looks good on all these measures.

A "standard" distribution is for our purposes any
theoretical distribution commonly found in statis-
tics textbooks. Examples are gamma, beta, normal,
and Weibull distributions. These distributions
share a key feature: they have only a few para-
meters. Why fit such distributions to data or use
them to capture subjective assessments? One reason
is smoothness. Another is compactness: remembering
only a few parameters is easier than remembering all
the data, and summarizing subjective assessments by
a few parameters makes them appear less vague,
Sometimes there is a better reason: postulating
certain distributions, such as the exponential, may
be natural if they simplify probabilistic or sta-
tistical analysis and if an underlying.limit theorem,
such as Poisson superposition, seems to apply. We

will argue that this Tast reason is the anly good

reason. Even with that reason, validation of the
postulated distribution together with the estimates

of its parameters is needed.

A fit may be spurious. Unless there is a huge
amount of data, goodness-of-fit tests have noto-
riously low power--even less when applied to a
gamut of distributions to select the best fit out
of the set. Especially when several parameters are
estimated from data, cross-validation gives more
power. Fit using half the data, test the fit with

the other half, then interchange roles,

Particularly for shape parameters, estimation often
is difficult or non-robust, involving nonlinear
equations; outliers may well result in grossly- °
wrong estimates. In addition, it is quite possible

that the distribution from which the data come
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differs significantly from the fitted distribution
no matter what parameter values are chosen. In

such cases, fitting loses and distorts information.
This risk makes us skeptical whether the first two
reasons for fitting, namely smoothness and compact-

ness, are sufficient.

The above remarks apply in any setting. In the
simulation context, there is another, perhaps more

important, consideration.

Except for the exponential distribution, none of
the "standard" distributions can be sampled quickly
and easily by inversion (see betow). Only inversion
is compatible with variance reduction techniques
based on. inducing correlation (e.g., common. random
numbers, antithetic variates, and control variates).
Reason: only inversion transforms uniform random
numbers to nonuniform random numbers in a monotone,
one-to-one way. This allows synchronization of
simulation experiments as discussed in detail by
Bratley, Fox, and Schrage (in préparation). If
rejection is used to generate nonuniform random
numbers, in general we eventually get a rejection
in one experiment corresponding to an acceptance

in the other; this misalignment persists, destroying

synchronization.

How can one generate ‘random numbers from "standard"”
distributions by inversion? The Weibull distribu-
tion has a closed-form cumulative, but generating
Weibull variates is not necessarily fast: proceed-
ing directly, we take a log and a k-th root every
time. The gamma, beta, and normal distributions
are more typical in that they do not have closed-
from cumulatives. If standard methods, such as
continued fractions, are used to approximate the

inverses, variate generation is slow. Recently
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Ahrens and Kohrt (T981),gresented what appears to
be a method for generatiﬁg variates by inversion
from "largely arbitrary" distributions fhat is
"almost as fast" as tailored rejection algorithms.
However, their method is complicated and they do

not indicate its accuracy.

If for a particular distribution variate generation
by accurate inversion significantly lengthens simu-
Tation runs, we have two alternatives. The first
is to go a relatively fast rejection method, thus
giving up the chance to reduce the number of runs
to achieve a given statistical precision by such
variance reduction techniques as common random
numbers, antithetic variates, and control variates.
The secoﬁd‘a]ternative is more attractive to us:
choose a different distribution

(i} that models the (generally unknown) real

distribution about as well as any other, and

(i) for which accurate inversion is fast and

easy.

This distribution may be "nonstandard”, but that
does not bother us at all. We have already argued
that the putative benefits of fitting with

"standard" distributions may well be illusory.

Our candidate "nonstandard™ distribution is a
"quasi-empirical" distribution that blends a con-
tinuous piecewise-linear component with a shifted
exponential tail. The first part closely mimics
the data, interpolating the usual empirical dis-
tribution up to a certain breakpoint. The exponen-
tial tail has some theoretical justification, as
detailed in Bratley, Fox, and Schrage {in prepara-
tion); for sensitivity analysis, replace it by
Weibull tails of various shapes. With a reasonable

number of breakpoints, say 20 or more, the quasi-



FITTING "STANDARD" DISTRIBUTIONS TO DATA IS NECESSARILY GOOD: DOGMA OR MYTH?

empirical distribution will Took quite smooth.

The piecewise Tinear interpolation tends to shift
the mean of the empirical distribution slightly

to the left, but this is exactly offset by selecting
the parameter of the exponential tail suitably;

see Bratley, Fox, and Schrage (in preparation) for
details or carry out the routine calculus and
algebra yourself. We can also use a quasi-empirical
distribution to approximate a "standard" distribu-
tion, whether the latter arises by fitting data

or simply reflects a subjective assessment. It
seems to us more natural to postulate a quasi-em-
pirical distribution directly. In view of all this,
it seems fair to say that the quasi-empirical
distribution satisfies (i) above. We now show

that it also satisfies (ii).

The key observation is that the vertical spacings
between successive breakpoints are all the same,
say 1/n., Let u be a uniform random number. Let

j be the integer part of nu and let w be the frac-
tional part (w=nu-j). Thus, j tells us what piece
of the quasi-empirical distribution to work with.
If the piece is linear, use w to do (inverse)
linear interpolation, If the piece is the expo-
nential tail, inversion is again simple; it is
easy to figure out how to do this. For the record,
Bratley, Fox, and Schrage (in preparation) give

the answer. Because the tail will normally be
sampled rarely, variate generation is fast and
only a few lines of FORTRAN or other high-level

language are needed.

To close, we answer the question posed in the
title: that fitting "standard" distributions to
data is necessarily good is both a dogma and a

myth. Such fitting some accept uncritically as a
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principle, but the belief that it is universally

applicable is false.

Paul Bratley's comments on an earlier version of
this paper improved its style. This paper was
written while the author was a visiting professor

at Yale University.

REFERENCES

Ahrens, J.H. and K.D. Kohrt (1981), Computer Methods
for Efficient Sampling from Largely Arbitrary
Statistical Distributions, Computing, Vol. 26,
pp. 19-31.

Bratley, P., B.L. Fox, and L.E. Schrage {in prepa-
ration), A Guide to Simulation.




