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SUMMARY

A higher order theory for thick axi-symmetric circular plates which is an extension of
Reissner’s shear deformation theory is presented using a variational approach. This consists
in assuming a stress and displacement field which satisfies the physical requirements of the
problem as nearly as possible. Thus starting with an assumed displacement field in the form
of a higher order truncated polynomial in the thickness co-ordinate, (the coefficients being
arbitrary functions of the other variables), and a consistent stress state satisfying the boun-
dary conditions on the top and bottom faces of the plate, the governing equations and the
associated boundary conditions along the edges are obtained through the variational
theorem of Reissner. The resulting equations are such that the symmetric and anti-symmetric
parts can be treated separately. Such a procedure of taking higher order truncated polyno-
mials for displacement and stress states does not seem to have appeared in the literature on
thick plates.

By suitably combining and manipulating these equations, governing equations in higher
order shear stress coefficients are obtained for both symmetric and anti-symmetric problems.
Once these equations are solved the solution is complete as all other unknowns can be written
in terms of these shear stress coefficients. The method is applied to uniformly loaded solid
and annular circular plates.

To get an idea of the accuracy of the method numerical results obtained by this method
are compared with those from an elasticity solution for plates under self-equilibrating normal
loads. Comparisons have shown that the present method gives reasonably good agreement
with elasticity solution even for a thick plate with diameter-to-thickness ratio 2. Detailed
numerical results are obtained and compared with classical and Reissner theories for uni-
formly loaded circular plates for various diameter to thickness ratios and for three different
Poisson’s ratios (viz. v =0.3, 0.2 and 0.1). Both simply supported and clamped edge condi-
tions are considered. Numerical results are also included for annular plates for various ratios
of outer to inner diameter of the plate for a given thickness to outer diameter ratio.
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1. Introduction M 5/3
The classical theory of plates is sufficiently accurate for many

engineering problems. However there are many cases where the classical

theory is found inadequate to represent stresses and deformations. This

ig true especlally if the plate is thick or if it is subjected to concen-

trated forces in which case the results of the classical theory in the

immediate vieinity of the loads will be very much in error.

In recent years a number of plate theories have been developed in en
effort to extend the range of validity of the classical theory to that of
thicker plates by including the effects of transverse shear and normal
gtress, etc. One of the foremost theory to include shear deformation
has been due to Reissner [1]. In this theory a system of differentlal
equations which take into account the transverse shear deformability of
of the plate has been derived through a variational approach. Hencky,
Bolle, Schéfer, Kromm, Mindlin and Volterra [2, 3, 4, 5, 6, 7}, haye
presented new theories that take into account the effect of shear. In
these theories one generally starts from hypothesis concerning stress
(or displacement) distribution in the plate in order to reach equations
of equilibrium.

Starting from the three~dimensional elasticity equations Love [8]
has developed a theory for thick plates. Neglecting the edge boundary
conditions he has developed a solution which is valid only in the reglion
away from the edges. Donnell and Lee [9, 10) have given a theory
suitable f%f t&éﬁ%xylates. The solution, in the form of infinite series
involving/bf loading, satisfies the three dimensional elasticity equa-
tions more and more exactly as the number of terme in the series tyre
golution increases. Lee and Lee and Conlee [11, 12] have respectively

applied the theory to rectangular and circular plates.

Reissner' 8 shear deformation theory (of the sixth order in the
general case) is of the fourth order for axi-symmetric problems. The
governing differential equation.in the mid-surface deflection differs
from the corresponding classical theory equation only by an additional
term containing the derivative of loading in the right hand side.

Though the eapressions for moments and shear are accordingly different
the earlier investigations [13) have shown that the overall improvement
obtained is not considerable. Hence & higher order theory for axi-
symmetric circular plates is presented here. Starting with appropriate
and retional stress and displacement fields, use is made of Reissner's
variational equation [14]) to arrive at the governing equations and the
assoclated boundary conditions. The equations are such that the
symmetric and enti-symmetric parts (with respect to the middle plane) can
be treated separately. The equations are reduced to fourth order
ordinary differential equations in higher order shear stress coefficlents,
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the golutions of which are written in terms of Bessel functions of M /5
complex arguments. In order to get an idea of the accuracy achieved
numerical results obtained from the higher order theory are compared with
those of the elasticity solution of Chendrashekhara [15] for a plate
subjected to self-equilibrating normal loads. Results for uniformly
loaded clamped and simply supported plates have been Presented for
various thickness to diameter ratios and for different Poisson's ratios.
Results have also been included for an uniformly loaded annular plate
whose inner edge is free and outer edge is clamped. Numerical results
have been compared with those of classical and Reissner theories.

2, Analysis

The approach indicated by Reissner [14] coneists in assuming
suitable stress and displacement fields which satisfy the physical
requirements of the problem as nearly as possible. The governing
equations and associated boundary conditions are then obtained by the
application of the variational equation.

The variational equation of Reissner [14] is:

6{ ISR av - f§ (iru+59v+§zw) dS\I = 0 (1)
v S
where

F = g, €, ¥ ge €y * eeeee ¥ 9oz eez - W

W = Sirain energy density function defined as €y = w/ o, ete.

gy = stress components

Uy VW displacement components

5r’39’5z = applied surface tractions in the r, e, z directions respect-
ively.

A displacement state is taken in the form of higher order polynomials
in z as
2 3
us=u, +uoz+u, g o+ uz z“ (2)
2

W=Wo

where coefficients Ugs Upy ete. are functions of r only.

+WlZ+W22

A stress state consistent with the agsumption of eq.(2) must now be
obtained. This can be achieved by modifying the classical forms by
agsuming higher order polynomials in z, the coefficlents of these poly-
nomials being arbitrary functions of r. These polynomials should be such
that the resulting stress-state comply with the definition of classical
stress resultants and should satisfy the boundary conditions on the top
and bottom faces of the plate. For a plate subjected to normal loads



4
(#ig. 1) the transverse shearing stress must vanish on these faces and

the transverse normal stress must be equal to the applied normal loads.
Thug the stress state becomes:

o, = N /h+ 12 M, 2/8° + R, £;(z)/n° + B, 2 £,(2)/b’
o, = Ng/h + 12 My z/n° + Ry £1(2)/0° + By z £,(2)/b’ )
o,,= 3 Vp(1-42%/0)/20 + A = f3(z)’h“ + B f4(z)/h5

g, = Q (-1+3 z/h = 4 22 /n*)/2 + 38 f5(z)/28 h+1T2z f5(z)/he

where
£,(z) =15 (1-12 22 /b*) , f,(z) = -420 (1-20 2% /3n? )
f3(z) =15 (1-4z®/n®) , f4(z) = 35 (1-24 2*/n® + 80 z4/h4)/4
£5(a) = 35 (1-8 2°/n® + 16 24/mt) /4

Nr’Mr’ wesse 5 T are functions of r only.

Since eq.(2) consists of finite polynominals in z they are not the
most general representation of displacements. If the last two terms in
each of the egs. (2) and (3) are deleted, the resulting displacement and
stress fields correspond to Reissner’'s theory. This may be designated
as a first order theory. Then the present theory as per eqs. (2) and
(3) which incorporates two higher order effects (one even end one 0dd)
over Reissner's may well be termed as a third order theory.

2.1 Governingz Equations and Boundary Conditions:

2.1.,1 Governing differential equation:

The displacements and stresses are now substituted into eq. (1).
Performing integrations with respect to z and carrying out the varia-
tions yield the governing equations and associated boundary conditions.
The governing equations are 14 first order ordinary differential equa-
tions plus four algebraic equetions which by suitably combining and
manipulating are reduced to the following higher order equations
convenient for integration.

LL(a,) - i—,} L(A,) + -5—;% A, = o 4

L(E)+ML(A)= p(l+p) dg

(4)

1n(s,) - 228 1(z) + 45360 5 . 4.8 da _ 3.8 ()
11 n® 11 h

dvr/dr + Vr/r = -q
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D L(u) + TﬁT%:ET h ﬁ% + FT%:HT L(B,) =V,

% (5)
dw ¥ 12 1+ 1+
Wru - 5= %_E). V. + 4 .Ls_'l B. = 0

where
(2,14 _ 1 = En® 2
L=( — tE r')’ D = Eh’/12 (1-p°)
- * »
u=ug+ou, h¥/6, u = u; + 3 h? u3/20, w =W, o+ h? wy/12

2.1.2 Boundary Conditions:

The variational equation also gives the natural boundary conditions.
These are, (say for an edge r = constant) either the quantities

N Mr’ Rr’ Pr’ Vr, Ar and Br
or the corresponding displacement coefficients

Uys Ups Uy, u3, Wgr Wy and Wy
be prescribed.

From eqs. (2) and (3) it can be seen that boundary conditions
correspond to the following stress (or displacement) conditionss:

0, =0 (or u = 0), Opy = 0 (or w=0)

The boundary conditions for different supports are

(a) for clamped edges: u = u; = a4 = uz = W= wp =W, =0 (8)

(b) for simply supported edges:
N,=¥, =R, =P, = w* = W) = w, =0 (n
and (e) for free edges: N, =M, =R, =P, = Veo=4,=B, =0 (8)

2.2 Solution:

The homogeneous part of the fourth order eqs. (4) and (5) are of the
same form and can be written as:

LL(F) - 8% L(F) + p¥(F) = 0 (9)

The general solution of (9) can be written as
(1)
F=4 d, (an r) + A, H, (an r)

+ g 3y (Vg )+ &y B2 (yn1 ) (10)
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where Ny and ﬁl are the roots of the equation
0+ 28 +pt = 0
Jo = Bessel functions of the first kind and zero order

Ho(l), Ho(z) = Hankel functlions of the first and second kind of
zero order respectively.

It is convenlent to write:

Ynq, = B e? B (cos ¢ + i sin g)

n

=8 e *® =p (cos ¢ ~1sing )

mn

Since the functions J (an r) ete. are complex while the plate=~
deflection and resultents must be real. Al, ey must be complex.
In order to express the solution through real functions eq.(10) is
written in the following form:

P = Gy u (Br) + Cp v (Br) + C3 £,(Br) + Oy g,(BT) (11)
where

u, (Br)

Re 3 (Vny r), v, (Pr) = In J, (Vny r)

£, (pr) = Re 5,V (Yny ), g,(pr) = In H°<2>(vﬁl r)

The constants Cl,..,4 are now real.

The remaining equations of (4) and (5) are readily integrable.
3 Applications:
The method is applied to the following problems.

3,1 Uniformly loaded annular plate with clamped outer edge and
free inner edge (Fig. 1).

All the derivatives of q in the governing equations vanish, The
integration of egs. (4) and (5) and further substitution of results in
appropriate equations yield the following final expressions for the un-
knowns of the problem. The symmetric and anti-symmetric parts are
independent and hence are given separately. The following notations
are introduced:

°]

1 = Blu, cos ¢ - v, sin p)s O, = B(u, sin ¢ + v, cos ?)

m; = p*(u, cos 2 ¢ - vy sin 2 p), my = B¥(uy sin 2 ¢ + vy cos 2 ¢)

n, = ﬁ’(u0 cos 3 ¢ - v, sin 3 ?)y n, ﬁs(u° sin 3 ¢ + v, cos 3 ?)

fl""4 = U, vl,fl and g respectively.
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The functlons 03, 04, Mgy My, etc., can be obtained from above by replac-
ing u, v by f and g respectively.

3.1.1 Symmetric-part:

B
= 4 - = - 1+ _o
Aom G ot a3
i=1
= I 4 1-p-2u? -
LR ~rE U SLAENERS & ¢ry KB igl ¢y Hy (Br)
A A B
P r o] 1l
N, 'I—p+}2£r_-I+p rg-_ﬂT-%)'q (12)
A B 4
=04 01 4 _
4 4
R, = ,I C, R (pr), R, = Ea ¢, Ry, (pr)
where
H,(pr) = a) —i L Lu_p_lf
* Fn * Eh®
b a - 2 O
uy(Pr) = gy Bomy v (AR =24 4
4 a h? £
h 2-p .3 _1
Ry (fr) = —[ —(l-u)—]+ - nd L
: 180(1-p?) S % =77 T
nt o) .
Rgy(Br)= W (pny + (1-u) —] + 1#4—5 o, + =% h" —

o = 27 - %2 B, B = 4.7381, ¢ = 1.0699

3s1,2 Anti-symmetric part:

The constants and functions appearing in this are different from
thoge of the symmetrilc part. The primes over tnem are omitted for
convenience.

4
= = o =2 2 _13
B, iil Cy £, V., 3= (2*-0%)

B 3 2
¥ 2o _ 2w(lep) o _ gr® | gb®
u AT + 2 - B, 15 * 8D r(2 log r/a-1)

u

4 2
5= 3 Oy Hy (pr) + {28500) o (e
1=1 Eh'

2
iy
LI e N ifl ¢y uy (Br) + grisy -

2 p(l+n)(2-0)) a b?
+Hg - %TL 1501n) "En ~ Top 4p log (v/a)
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B B
[¢] r
e = DL g = D04) S § 55+ Toriy @
2 a e
~(3+p) Yz + G- (1+0) log r/a + (1-p) & (13)
5y
M, = D(l+p) &y + D(l-p) + % ci (6, - 24
2 2 2
+ TorTmy @ ~(1+3w) _’{-E— + (1+p) 9}4}- log x/a -(1-p) L=
4 2
= 4, 2= 42
Pp= B GF s (Pr) + S8 ant v Sb-an
4 2
= _2+p .4 2= 4 b
Fo = %) G Ter (pr) + 53 @ - —5gh5 b
where
i )
H (pr) = a) —= + 280 2w o
* 1 En® 9 Eh' 1
_ ri0 56— -p? gi 1 ni
Wy () = 39+ Dgppiegiliy Ly 5 pa)
m 2 £
£, G0 - oy - m) B By, - B 2
nt m 2

, 1
Po1(BT) = mgoorroey 81 Lk g + (1-0) £=1 + 555 05 + 55
- 22 u*), § = 8.01, ¢ = 1.18246.

The integration constants in egs. (12) and (13) are determined using
appropriate boundary conditions given in egs. (6) and (8).

Fumerical results for annular plates having inner to outer radii
ratio (b/a) varying from 0.1 to 0.5 and outer radius to thickness ratio
(a/h) varying from 2 to 15 have been obtained. Fig. 2 shows varlation of
maximum non-dimensional deflection while Fig. 3 shows varlation of maximum
tangential stress (at polnt A).

3.2 Uniformly loaded solid plates:

Expressions for a solid plate can be obtained from those of the
annular plate by deleting the terms containing B, and b in egs. (12) and
(13) and also by restricting 1 to land 2.

Humerical results for clamped and simply supported plates were
obtained for a/h ratios varying from 1 to 5 and Poisson's ratio p = 0.1,
0.2, and 0.3. Pig. 4(a) shows the distribublion of radlal stress (or/q)
at the centre of the plate wiile Fig., 4(b) shows the same at the edge for

M 5/3
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a/h = 1, Fig. (5) shows shear stress distribution (cr/q) at different
sections for a/h =1, 2 and 5. Figs. (6) and (7) show the variation of
maximum deflection and radial stress for different a/h4&Polsson’s ratics.

In Figs. 2 to 5 results obtained from classical and lst order
(Reigsner) theories have also been incorporated for comparison.

3.3 Plate with gelf-equilibrating load (Fig. 8):

The solution for the region 0 = r =<c¢ (s0lid plate) and that for the
region ¢ = r = a (annular plate) can be obtained from eqs. (12) and
(13). The constants are obtalned using boundary conditions at r = a and
continuity conditions at r = ¢. At the junction (r = ¢) there are
fourteen equations expressing the continuity of Uys Ups Uy, u3, Wor Wps
wyr Ny, M, R, P, V,, A and B.

Numerical results for different a/h ratios have been obtained for
c/a ratio of 0.125. The radial stress profile at the centre is given in
Flg. 9 while the varilations of radial and tangential stress at the top
surface are given in Figs. 10 and 11 respectively. Results from an
elasticity solution [15] and classical theory are included for comparison.

4., Discusgsion of numerical regults:

It may be observed from Figs. 2 and 3 that for a/h = 2 and for all
b/a ratios there is considerable difference between the first order
(Reissner's) theory and third order theory results both for deflection
and tangential stress. This indicates that if the radius of the hole is
very much less than the thickness of the plate, then for such a case the
results obtained using first order theory could be in error.

It may be seen from Figs., 4(a) and (b) that the radial stress distri-
bution is far from linear and this may be due to combined thickness and
edge effect. It was observed that for larger a/h ratios (thinner
plates) the variation of radial stress at the centre approaches the
linear distribution of classical theory.

Prom Fig. 5 it may be observed that for sections close to the support
the shear stress distribution deviates considerably from the classical
parabolic distribution. It was also observed that for larger a/h
ratios (a/h = 5), the classical parabolic distribution of shear stress
can be achieved even at sections very close to the support (r/a = 0.90).

From Figs. 6 and 7 1t may be observed that Poisson's ratio has a
congiderable effect on deflection and stresses. However, Poisson's
ratio was found to have negligible effect on normal stress (cz). It
must be mentloned here that similar deviations were also observed for
simply supported case.
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Figs. 9, 10 and 11 show that classical and third order theory give M

almost the same radial stress distribution as given by elasticity solu-

tion for a/h = 5. However for a/h less than 5 the deviations between

the classical and third order theories are considerable. It is interest-

ing to note that the results of 3rd order theory for the radial stress

digtribution even for a/h = 1 agrees fairly well with those of elasticlity

gsolution (Fig. 4a). The deviations are more predominant at the centre

of the plate than at the edges as seen in Figs. 10 and 11. The percent-

age deviations between classical, Reissner, 3rd order and elastlcity

theories (for maximum radial stress at centre) are shown in Fig. 12.

The percentage deviation is calculated from

BElasticity solution - 3rd order(or lst order or
classical) solution

Elasticity solution

% deviation

From this figure it may be observed that for a/h = 1 the percentage
difference between elasticity and 3rd order theory is 16, while those
between elasticity and lst order and classical theories are respectively
50 and 90, thug indicating that the third order theory could give
results close to elastieity solution.
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