
ABSTRACT 

SHENG, XINXIN. Goal-Based Agent Design: Decision Making in General Game 

Playing. (Under the direction of Professor David Thuente.) 

 

General Game Playing's primary research thrust is building automated intelligent 

computer agents that accept declarative descriptions of arbitrary games at run-time 

and are capable of using such descriptions to play effectively without human 

intervention. The research in general game playing approximates human cognitive 

processes, sophisticated planning, and problem solving with an instant reward system 

represented in games. General game playing has well-recognized research areas with 

diverse topics including knowledge representation, search, strategic planning, and 

machine learning. It attacks the general intelligence problem that Artificial 

Intelligence researchers have made little progress on for the last several decades.  

We have designed and implemented an automated goal-based general game playing 

agent that is capable of playing most games written in the Game Description 

Language and has shown excellent results for general-purpose learning in the general 

game playing environment. Our contributions include: the general game playing 

agent designed to play a wide variety of games, the knowledge reasoning performance 

improvement algorithm, the run-time feature identification algorithm, the contextual 

decision-making algorithm, and the GDL extension to enrich the game domain.  
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1 Introduction 

Games have fascinated humans for centuries. “The term game refers to those 

simulations which work wholly or partly on the basis of a player’s decisions.” 

(Angelides, 1993). Games are, in fact, abstract models of real-world logics. Computer 

game playing research covers many Artificial Intelligence (AI) topics such as 

goal-based agent design, massive search, decision making, and machine learning. 

Scientists simulate games on computers with software programs and work very hard 

to improve the performances of computer game players. Programming an automated 

game playing agent that can challenge, even overcome, human experts in 

competitions has been a goal for many computer scientists for several decades. Some 

game playing programs have proven to be very successful: Chinook (Schaeffer, 1997) 

became the world champion Checkers player in 1989 and Deep Blue (Hsu, 2002) the 

world Chess champion in 1997. The success of Deep Blue became the milestone 

showing that computer game playing exhibited "human comparable" intelligent 

behavior, i.e., passed the Turing test (Turing, 1950) in Chess.  

In contrast to human players, these successful computer game players usually 

capitalize on their computational strength with powerful search techniques that use 

enormous game sub-trees and extensive opening and closing books for evaluation 
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functions. Domain knowledge of the game is used in designing the computer player 

and thereby equipping it with specific strategies for that particular game. The decision 

making procedure caters to and only to the game that it is designed to play.  

However, the computer player that excels in one game does not necessarily or even 

usually play another game. In recent years, many researchers have been interested in 

designing one computer game player that would adapt and evolve to play different 

kinds of games. This is how General Game Playing (GGP) emerged as a research 

topic. Figure 1.1 shows the difference between the classic game agent and the GGP 

agent, where the programmer does not hard code game rules into the agent building.  

 

Figure 1.1: Differences between the classic game agent and the GGP agent 

The concept of General Game Playing is creating computer programs to play different 

games automatically without human intervention. GGP research aims at building 

automated intelligent computer agents that accept declarative descriptions of arbitrary 
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games at run-time, and are able to use such descriptions to play effectively without 

human intervention. The research approximates human cognitive processes, 

sophisticated planning, and problem solving with an instant reward system 

represented in games. Designing one universal game agent that is able to play a wide 

variety of games provides insights into knowledge representation, modeling, and 

learning the underlying intelligent behavior.  

1.1 History of General Game Playing Research 

Barney Pell was one of the first to identify GGP as a research problem (Pell, 1993). 

He suggested designing programs that, given the rules of unknown games, can play 

without human intervention. According to Pell, such programs are considered a better 

approximation to human intelligence than programs that focused on winning a 

particular game. He also proposed the language to define symmetric Chess-like games 

and developed Metagamer, a program that plays games in such categories.  

Based on Pell’s work, Michael Genesereth advanced GGP research by proposing the 

GGP competition, which has been held annually since 2005 at the Association for the 

Advancement of Artificial Intelligence (AAAI) conference or International Joint 

Conference on Artificial Intelligence (IJCAI).  
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As more members joined the GGP community, the first GGP workshop was held at 

IJCAI in 2009 and the second GGP workshop at IJCAI in 2011. The first journal issue 

specifically dedicated to GGP, Künstliche Intelligenz (Artificial Intelligence in 

German), was published by Springer in 2011. Stanford University has a website 

dedicated to GGP and Dresden University of Technology hosts a GGP website for 

agents to play (see references GGP Dresden; GGP Stanford). 

1.2 General Game Playing Framework 

 There are three pieces in the GGP competition framework: the multi-agent game 

system that contains the game manager and agents, the Game Description Language 

(GDL) with which the games are depicted, and a wide variety of example games. The 

framework enables the GGP agents to play against each other for performance 

evaluation.  

1.2.1 Multi-Agent Game Playing System 

The General Game Playing structure can be understood as a multi-agent system with 

one game manager agent coordinating one to several game playing agents. The player 

agents communicate through the game manager but not with each other. The game 

manager starts the automated game play by sending out the game information and 

setting up the playing time.  
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All agents participating in the game accept the same game rules as provided. From the 

received information, the game playing agents figure out the initial game state, the 

legal actions, the goals and rewards, their own roles in the game, and other game 

elements. All agents participating in the game communicate by submitting actions to 

the game manager and receiving game updates from the game manager. The game 

manager validates the actions submitted and only legal actions are accepted. The 

accepted actions are broadcast to all the playing agents and thereby the game moves 

forward to the next stage. The game moves forward in this manner until a terminal 

state is reached. This is when the game manager stops the game and awards the 

winner. A detailed description of the communication protocol is in Section 2.3. 

1.2.2 Game Description Language 

The GGP games are written in the Game Description Language (GDL) which defines 

the logic syntax and semantics in general games (Love, 2005). GDL can be 

understood as a specification language for multi-agent environments, working as 

formal laws to guide the agents to understand the game rules and their own roles so 

that they can participate in the games (Schiffel, 2009a). A game written in GDL can 

be understood as a finite state transition system with one initial state and at least one 

terminal state. The game rules are the transition functions among the states. A game 
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starts from the initial state and transits from one state to the next precisely in response 

to the actions taken. 

GDL is written in Knowledge Interchange Format (KIF) (Genesereth, 1992), which 

is a subset of the First Order Logic (FOL). GDL grammar and syntax can be used to 

define functions, constants, variables, operators, game states and game rules. All 

operators, including the negation, are in prefix notation. The state of the game is 

described with a group of propositions that are true in that state. 

The Game Description Language is quite powerful and has been used to define 

numerous different games. However, as a language written in the First Order Logic, 

GDL suffers the limitation of the FOL as well (see Section 7.1). 

1.2.3 Dedicated Games  

GGP is designed to include a wide variety of games, including single-player games, 

two-player games, multiple-player games, turn-taking or simultaneous games, 

zero-sum or non-zero-sum games, competitive or cooperative games, etc. There are 

about 40 kinds of games in the GGP database with more than 200 variations that are 

created by slight modifications. Many of these games have been played in the annual 

General Game Playing competitions at AAAI and IJCAI. See Appendix A for a 

sample game list. 
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No human intervention is allowed in GGP competitions. An agent can be given a 

common game that has already been solved or be challenged with a new game that the 

world has never seen before. Because the winning dynamics are dramatically different 

from one game to another, a good strategy in one game can become a bad one in 

another. To design a GGP player, researchers cannot depend on game domain 

knowledge, assumptions about the game rules, or predefined evaluations tuned to a 

target game. Building an agent that automatically adapts and learns is the challenge of 

GGP research. 

1.3 Research Status in General Game Playing 

Game playing is limited by time and space resources. Most games are not 

exhaustively searchable. Agents need to allocate limited time to logic reasoning, 

game tree search, action payoff evaluation, machine learning, game states update, 

agent communications, etc.  

Many successful GGP players have emerged in the past few years. All use knowledge 

recognition and reasoning techniques to analyze the game states and calculate legal 

actions. Different GGP research groups approach the GGP problem from different 

perspectives for game tree searching and machine learning techniques. 
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GGP research may use results of game specific research as long as assumptions about 

specific game rules are avoided in designing GGP agents. Kuhlmann and Stone 

approach the GGP problem by identifying games that are similar to known games 

(Kuhlmann, 2006, 2007). The agent decomposes the given new game into directed 

graphs and maps them into graphs of known games for reinforcement learning. The 

agent determines if the new game graph and one of the known game graphs are 

isomorphic directed graphs. When an isomorphism is recognized, the agent can use 

known game strategies and relational patterns (such as preceding or succeeding 

conditions) to solve the given game. The graph isomorphism approach pays an 

obvious cost at the beginning of the game. But once the game is recognized, the GGP 

agent can use all known strategies of the game from its known game database to play 

and outperform other players who have much less knowledge and experience about 

the game being played. The required relational recognition makes the agent's 

performance fluctuate. When given a completely new game that the world has never 

seen, the isomorphic identification loses its advantage. 

James Clune developed an automatic construction of heuristic evaluation functions 

based on game rule analysis (Clune, 2007). Heuristics in a given game can be either 

action or anti-action heuristics: respectively, the action recommended or the action to 

avoid. Based on five parameters including payoff value, playoff stability, which 
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player is in control, control stability, and termination definitions, the agent builds an 

abstract game model to convert game information into stable numeric features to 

guide the game play. The strength of this approach is that it is independent of known 

games or known game strategies. But since this approach is only scanning the game 

description to extract candidate features, game run-time dynamics are not and cannot 

be considered. It makes the agent focus on "how the game is written" instead of "what 

the game is about.” 

One fundamental question in GGP is how to generate heuristic functions before the 

search reaches a conclusion. The FLUX player applies fuzzy logic to quantify the 

degree of how likely a state satisfies a winning state before a search can give a definite 

answer (Schiffel, 2007). Combined with other factors, such as the distance to 

termination and actively seeking or avoiding termination based on whether the goals 

are reached, the FLUX player has had impressive performances in competitions. The 

challenge for this approach is that all possible choices of the agent are confined in the 

[0, 1] range. When the game branching factor grows large, the differences between the 

payoffs become smaller. At some point, the differences can become too small to 

practically distinguish the outcome of one action from that of another action. 

The first two years in the GGP competition focused on incorporating the traditional 

game-tree search with evaluation functions. In 2009, the CADIA player enlightened 
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the GGP field by using Monte Carlo rollouts with upper confidence bounds for tree 

searches (Bjornsson, 2009; Finnsson, 2009). This searching technique significantly 

out-performed the naive Monte Carlo search. The debate on how to allocate limited 

resources between searching and learning has been going on ever since computer 

game playing came into existence and is likely to continue. The success of CADIA 

has brought the old game research topic back into the GGP field: how to combine the 

player searching algorithms with the learning algorithms. In other words, how GGP 

agents can combine the traditional knowledge-based approaches with the new 

simulation-based approaches. 

The Ary player introduced Monte Carlo Tree Search (MCTS) into the GGP area 

(Méhat, 2010, 2011). The game tree search is paralleled on a cluster of computers 

with one multiplexer to communicate with the game manager and coordinating a 

group of sub-players which search a portion of the game tree and evaluate the search 

results. Experiments with four different strategies to combine the results of parallel 

sub-players have shown different effectiveness with different games. Some games, 

such as breakthrough and blocker, cannot be easily parallelized.  

The past winners in the GGP competition are the CLUNEPLAYER (2005), 

FLUXPLAYER (2006), CADIAPLAYER (2007, 2008), ARY (2009, 2010), and 

TurboTurtle (2011). All are briefly described above except the winner in 2011 which 
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has not published yet. There are also other GGP researchers in the field, focusing not 

on agent performance, but approaching the topic from different angles, such as game 

description theorem proving (Thielscher, 2009a; Schiffel, 2009b), game factorability 

analysis (Cox, 2009), end game exploration (Kostenko, 2007), single-player game 

generalization (Méhat, 2010), the GGP framework expansion to incomplete 

information games (Thielscher, 2010) and coalition games (see Chapter 7). 

1.4 Contributions and Limitations of Our GGP Player 

Although different GGP agents address different aspects of the GGP problem, three 

fundamental elements remain common: using knowledge representation and 

reasoning to calculate the game state and move the game forward, using search 

algorithms to foresee future game outcomes, and using machine learning algorithms 

to provide the agent with intelligent decisions. Our GGP agent contains the reasoning, 

search and learning modules as well.  

The rest of the dissertation is organized as follows. The agent architecture is described 

in Chapter 3. Using hash tables to expedite knowledge reasoning is discussed in 

Chapter 4. Chapter 5 shows how our agent uniquely and automatically identifies 

run-time winning features. Rather than just relying on individual features, we 

experimented with grouping winning features to see how they strengthen or weaken 
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each other in Section 6.2. For games with large search spaces, we also expand the 

feature grouping to contextual decision making in Section 6.3. Finally, in Chapter 7, 

we proposed a new interface to expand the current GDL structure to other 

programming languages. This not only reduces the computational complexity, but 

allows the incorporation of coalition eCommerce games and opens the door to 

connect the GGP agent to realistic problem solving in other domains. Our research 

contributions include: the general game playing agent designed to play a wide variety 

of games, the knowledge reasoning algorithm to improve the agent's performance, the 

run-time feature identification algorithm to dynamically analyze winning features, the 

automated decision making algorithm based on the game context, and the GDL 

extension to enrich games allowed in the GGP domain. Each contribution has been 

published.  

The search algorithm has not been our research focus. Our agent is equipped with 

minimax search along with a simple adjustment to play multiple-player and 

simultaneous games (see Section 3.1). Random playing is used to gather the training 

set for learning. For games that are seldom winnable using random playing (such as 

Chess), the training set cannot be effectively gathered. This makes learning 

impossible. Our agent can still submit legal actions in the game play, but its 

performance is about the same as a simple goal-search player. Importing data from 
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directed play to use as the training set will benefit those games, but that violates the 

generality expectation and is not part of the current research (see Section 5.1.3).  

In summary, general game playing is an emerging but well recognized research area 

with diverse research topics. We have designed and implemented an automated 

goal-based GGP agent that plays a wide variety of games.  
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2 Game Description Language 

Game Description Language has been developed as a formal symbolic system to 

define arbitrary games in the GGP area. It was first defined in 2005 for the AAAI 

General Game Playing competition and included only "finite, discrete, deterministic 

multi-player games of complete information" (Love, 2005). GDL serves as the input 

language to describe the game world for game playing agents and the communication 

language to coordinate players and to call for the start and the end of the games. This 

chapter briefly summarizes the GDL grammar as defined in specification publications 

(Love, 2005; Genesereth, 2005) and provides the motivation for GDL improvements. 

2.1 Syntactic and Semantic Definition 

The syntax of GDL allows variables, constants, logical operators, and sentences. 

Variables begin with a ?. Constants can be relation constants, such as adjacent as in 

board positions, or object constants, such as King in Chess. The types of constants are 

determined by the context. Operators are written in prefix notation. Negations are 

allowed. Sentences can be grounded or not grounded. The rules of the game are prefix 

implications. The head of the rule is a relation constant with a number of arguments. 

The body of the rule contains zero or more literals or negative literals. Recursion is 
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allowed, but has to be finite and decidable to avoid unbounded growth. The state of 

the game is described with a group of propositions that are true in that state. The game 

rules serve as the transition functions between states. The rules define the resulting 

states given the current state and the moves of all players. The special reserved 

keyword distinct is true if and only if the two terms are not identical. 

2.2 Game Relations Definition 

A set of relations is defined in GDL as game specific relations to bridge the logic 

description and the terminology in the game world. Tic-Tac-Toe is a turn-taking game 

in which two players alternatively mark the 3 by 3 grid into X or O. We use 

Tic-Tac-Toe as an example to explain the reasoning process. Appendix B contains the 

complete Tic-Tac-Toe description written in GDL for quick reference. 

The game relations are defined as: 

 The game players: (role X), (role O) 

 The game initial state: (init (cell 1 1 blank)), ..., (init (cell 3 3 blank)) 

 The facts that hold in the current state: (true (control X))  

 The game state update (facts that hold in the next coming state):  

(<= (next (control X)) (true (control O))) 
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 The legal actions allowed: (<= (legal ?player (mark ?x ?y)) (true (cell ?x ?y 

blank)) (true (control ?player))) 

 The moves made by players: (does (O, mark(cell 1 2))) 

 The goals for the game players: (<= (goal ?player 100) (line ?player)) 

 The terminal states of the game: (<= terminal (role ?player) (line ?player))  

These relations, highlighted in bold, are considered as reserved keywords in the logic 

definition of the game. In the logic reasoning process, these reserved relations are 

treated no different than the user defined game relations. The Othello game written in 

GDL is given in Appendix C. Recursive relations are defined in Othello. 

2.3 Multi-Agent System Communication Protocol 

The general game playing system contains one game manager (also called game 

master or game server) and one or more automated game playing agents. No human 

intervention is allowed in the game playing process. GDL provides the 

communication protocol for the player agents to communicate through the game 

manager. 

The game manager contains the database about games, registered agents, and 

previous matches, which are instances of games. A match is created with the 

information of a known game, the requested number of players, and the allocated time. 
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When the game commences, the game preparation time gives players time to prepare, 

configure, and deliberate before the first step begins. The game interval time is the 

time players have in each step to respond to the game manager. Different game time 

set-ups affect agents in different ways. For example, an agent specialized in learning 

would prefer a longer game preparation time and an agent specialized in search would 

prefer a longer game interval time.  

The game manager distributes the selected game written in GDL to all participating 

player agents. Such communication takes place through HTTP messages.  

The START command is the first message from the game manager to the agents. It 

contains the players agents' roles in the game, the game rules, and the value of the play 

clock (game preparation time and game interval time). The agents respond with 

READY and use the given time to analyze the game and calculate the best actions to 

submit. When time is up for each step, the game manager validates the actions 

received and replaces an illegal action with a random legal action if necessary. The 

PLAY command broadcasts the legal actions accepted (or replaced) to all players for 

them to update the game states. When the terminal conditions are met, the game 

manager uses the STOP command to end the game. The players respond with DONE 

and release the connection. A complete match of Tic-Tac-Toe is given in Appendix D. 
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2.4 Reasoning with GDL  

Although GDL has been used as the formal language for game play, reasoning with 

GDL has not provided satisfactory performance. There have been many attempts to 

incorporate existing reasoning techniques into GDL. Research has been done on 

mapping GDL into more convenient data structures, such as Propositional Automata 

(Schkufza, 2008; Cox, 2009), into C++ (Waugh, 2009), and Binary Decision 

Diagram (Kissmann, 2011). We propose mapping GDL into hash tables which will be 

discussed in Chapter 4. 

There are other attempts to embed GDL into a structure-rewriting formalism (Kaiser, 

2011) and into the functional programming language OCAML compiler (Saffidine, 

2011). Both target transforming GDL into an efficient encoding that scales to large 

games.  

2.5 Development of GDL 

The first version of GDL (Love, 2005; Genesereth, 2005) was only intended to 

describe finite, discrete, deterministic, complete information games. As the GGP field 

matured over the past few years, incomplete information games were brought into the 

GGP framework by defining the additional keywords of random and sees (Thielscher, 

2010). Coalition games are another game category where the players can play 
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individually or in groups. We develop a GDL extension with additional new 

keywords include and use in Chapter 7 and have successfully experimented with a 

coalition game example with the proposed extension.  
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3 Designing the GGP Agent 

Different types of games require different playing strategies. Single-player games 

usually emphasize game tree searching. One example is using the IDA* algorithm to 

solve the 15-puzzle with a search space of O(10
13

) (Korf, 1985). Two-player complete 

information games, where the agents have access to the entire state of the game, 

generally are played with search, evaluation functions, supervised learning, theorem 

proving and machine building. Successful examples include Chess (Hsu, 2002), 

Othello (Buro, 1997) and Checkers (Schaeffer, 1997). Stochastic games or games of 

chance have to consider probabilities. Temporal difference learning is used to 

evaluate Backgammon (Tesauro, 1992). Incomplete information games normally 

have large branching factors due to hidden knowledge and randomness. Risk 

management and opponent modeling are part of the poker player design (Billings, 

2002). 

In contrast to these computer players that are dedicated to specific games, the general 

game player is supposed to make no assumptions about what the games are like. 

Game evaluation functions, weight analysis or search adjustment cannot be 

hard-coded in GGP. A general game player needs to automatically create playing 

strategies and adjust for each game.  
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Figure 3.1: Architecture of our General Game Playing agent 

Based on the GGP communication protocol described in Section 2.3, the agent needs 

a HTTP parser to interact with the game manager. Since GDL limits the scope of the 

games to only "finite, discrete, deterministic multi-player games of complete 

information" (Love, 2005), game tree search is proper to these games. Attempts to 

extend GDL to cover incomplete information games will be indicated by additional 
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keywords. We also need a reasoning module to identify legal actions in a given game 

state and a learning module to evaluate the outcome of the actions. Our agent 

architecture is shown in Figure 3.1. We'll explain each module in the following 

sections of this chapter. 

3.1 Heuristic Search 

A complete game tree is a directed graph with the initial game state as the root, the 

terminal states as the leaves, and all possible moves from each position as 

intermediate tree nodes. The number of nodes in a complete game tree is bounded by 

O(b
d
), where b is the branching factor and d is the game depth. Chess has roughly 38

84
 

(~10
130

) possible game states (De Groot, 1965). Tic-Tac-Toe has roughly 3
9
 (nine 

cells, each with three possible values, ~19,000) possible intermediate game states. 

Although a complete game tree can provide the optimal action at every step, in most 

cases, it is too expensive to build.  

In this dissertation, the term game tree refers to the partial game tree that uses the 

current game state as the root and includes as many nodes as the player can search. 

Search algorithms that explore one ply, two plies, ahead of the current state are called 

one-step search, two-step search, respectively.  
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Assuming both players play optimally, minimax search can be used in two-player 

complete information games. It recursively computes the minimax values of the 

successor states, beginning from the tree leaves and backing up through the tree as the 

recursion unwinds. Minimax is a depth first tree search. It has the space complexity of 

O(bd) and time complexity of O(b
d
).  

We make certain adjustments for the minimax search in our agent. For single-player 

and simultaneous games, every ply is a MAX ply. For games with more than two 

players, we assume each player is in competition with all others and attempts to make 

optimal moves for himself. Therefore, all other players' moves are treated as MIN ply. 

The minimax search becomes the max-min-min search in a three-player turn-taking 

game.  

Search algorithms used in GGP include Binary Decision Diagrams (Edelkamp, 2011), 

Monte-Carlo Tree Search (Finnsson, 2011; Gudmundsson, 2011; Möller, 2011), and 

tree parallelization (Méhat, 2011). Among these search algorithms, Monte-Carlo Tree 

Search has recently been recognized as the new benchmark for game tree search in the 

AI area (Kroeker, 2011). We are aware that minimax is not optimal in our algorithm 

and should be replaced, but the focus of our research has been on the learning 

algorithms as opposed to the search. 
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 Figure 3.2: Pseudo-code for minimax search in general games 

1. function action minimax(GameState state, depth) { 

2. if(isTimeOut() || reachMaxDepth()){//recursion base 

3.   action = state.getAction(); 

4.   action.value=evaluate(state); //get the action that leads to the selected state 

5.   return action;  

6. }  

7. else { 

8.   legalActions = state.getLegalActions(); 

9.   selected = legalActions[0];  //set the default action as the first legal action in the list. 

10.   childrenStates = state.doActions(legalActions); 

11.   for each childState in childrenStates { 

12.     tempAction = minimax (childState, depth+1); 

13.     if(isMyTurn(depth)) {  

14.     //no matter how many players are in the game, only my actions reach for the max 

value.  

15.       if(selected.value < tempAction.value) { //MAX ply 

16.         selected = tempAction 

17.         selected.value = tempAction.value; 

18.       }  

19.     } else { 

20.       if(selected.value > tempAction.value) { //MIN ply 

21.         selected = tempAction 

22.         selected.value = tempAction.value; 

23.       }  

24.     } 

25.   } 

26.   return selected; 

27. } 

28. } 
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3.2 Logic Resolution 

A GGP game starts from one initial state and transits from one state to the next only 

by actions. The agent uses the reasoning module to retrieve game states, each player's 

roles, game transitions, game termination validation, and legal actions. Knowledge 

representation and reasoning algorithms including inference, deduction, substitution 

and unification are used in the agent (see Section 4.1).  

Our first attempt to develop a learning algorithm used forward chaining to calculate 

the legal actions in a given game state. The forward chaining approach starts from the 

facts in the Knowledge Base (KB) and keeps solving the rules and adding new facts 

entailed by the KB. This is supposed to be efficient because each time we mark a new 

proposition as true, it will be added to the KB and can be re-used by another reasoning 

thread without being re-generated. Since there are many propositions (e.g. board 

adjacency) that stay unchanged from the beginning to the end of the game, calculating 

them once and using them repeatedly should save time.  

This assumption turned out to be wrong. As more and more propositions are added to 

the KB, the size of the KB grew tremendously. The KB starts with only propositions 

describing the game state and grows into millions of logical inferences that can be 

generated from the KB about the game. Although the forward chaining procedure's 

computational complexity can be reduced to linear in the size of the KB, the agent 
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needs to access the KB so frequently that trivial delays in the KB access can 

significantly impair agent performance (see Section 4.2).  

We had to revert to the backward chaining reasoning algorithm. It starts from the 

target clause and works backward to the facts in the KB. The backward chaining itself 

is not as efficient as forward chaining because it conducts a considerable amount of 

redundant searching (Brachman, 2004). Yet it is more proper in the GGP context 

because the KB size is kept small and the KB access is kept efficient.  

3.3 Learning 

While logic resolution is straight forward in determining the available legal actions, 

selecting good actions remains challenging. Most games are too large to be searched 

exhaustively so the search has to be truncated before a terminal state is reached. The 

agent has to make decisions without perfect information. Evaluation functions replace 

terminal or goal states so that the game can move forward. 

Note that the evaluation functions return an estimate of the expected utility of the 

game at a given state. The "guessing" is not as correct as searching but it can be very 

useful. Research has shown that in a Chess game, even expert players seldom look at 

more than 100 possible situations to decide on an action (De Groot, 1965). Compared 

to Deep Blue that evaluates 200,000,000 states per second, humans excel with 
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intelligence and Deep Blue excels with computational power. The performance of a 

game-playing program is dependent concurrently on its ability to search and the 

quality of the evaluation. Our research focus is primarily on the quality of the 

evaluation functions. 

The purpose of general game playing is to build automated agents to play arbitrary 

games. Learning is the core research problem in the GGP. It is indeed surprising that 

the general learning algorithms have not dominated the state of the art in GGP. The 

reason is mainly due to the difficulty of designing general-purpose learning 

algorithms. The GGP competition set-up also makes it hard to differentiate how much 

search or learning individually contributes to the agent's winning. Lack of evaluation 

benchmarks has made it hard to measure the learning results (see Section 9.3). Three 

known learning algorithms in GGP include transfer learning, temporal difference 

learning, and neural network algorithms. 

Transfer learning generalizes known games into directed graphs and uses graph 

isomorphism to map the known strategies to new games (Kuhlmann, 2007; Banerjee, 

2007). It is dependent on the availability of known games. When given a game that the 

world has never seen before, the agent loses its advantage. 

Game Independent Feature Learning (GIFL) is the temporal difference learning (Kirci, 

2011), but is very much limited to two-player, turn-taking games. The features can be 
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learned only if the player that wins the game makes the last move. Features-to-Action 

Sampling Technique (FAST) is another temporal difference method that uses 

template matching to identify piece types and cell attributes (Finnsson, 2010). It is 

designed to play board games only.  

The neural network algorithm transforms the goal of a game to obtain an evaluation 

function for states of the game (Michulke, 2009, 2011).  It is capable of learning and 

consequently, improving with experience. But games where the ground-instantiation 

of the goal condition is not available, such as when the goal conditions (or predecessor 

conditions in the chain) are defined in a recursive manner, are out of the scope of this 

algorithm. 

The learning algorithm we decided to pursue does not depend on any known games, 

any game types, or assumptions of the game rules. It is based on game simulations, 

not on how the game rules are written. Our learning algorithm has three steps. First, 

the agent singles out influential features that helped the players win (see Chapter 5). 

Second, the agent identifies some individual features that are more beneficial when 

combined with certain other features. It uses a decision tree (see Section 6.2) to 

evaluate the entire game state, not the individual features. Third, the agent moves 

from global learning to local learning (see Section 6.3). The game states are better 

differentiated when limited by the search bound.   
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3.4 Game Examples 

We now give a few example games that we use in the rest of the dissertation to 

illustrate the effectiveness and performance of the algorithms in building an 

intelligent general game player. The games we chose include small, middle, and large 

size games; single-player, two-player, and three-player games; zero-sum and 

non-zero-sum games; turn-taking and simultaneous games; direct search, strategic 

and eCommerce games.  

 

Figure 3.3: General game examples I 

Maze: This is a small-size single-player game (Figure 3.3A). The player searches for 

the gold in the maze and brings it back to the entrance.  

Tic-Tac-Toe: This is a two-player, turn-taking, small-size board game played on a 3 

by 3 grid (Figure 3.3B). It is a territory-taking game in which once a position is taken 

by a player, it is held until the end of the game. 
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Crossing Chinese Checkers: Two players alternatively move or jump pieces to the 

other end of the board (Figure 3.3C). Players can either move one grid forward or 

jump over one piece and land on the other side. Players can repeat jumping until no 

legal jump is available as part of the same move. The first player with all four pieces 

in the target area wins.  

Chess Endgame: This is a middle-size strategic game with three pieces left on the 8 

by 8 Chess board (Figure 3.3D). The piece movements obey the regular Chess rules. 

White needs to checkmate Black in at most 16 steps to win. Unlike Tic-Tac-Toe, 

positions taken by players can be released. 

Mini-Chess: Two players play on a 4 by 4 Chess board with the same movement rules 

as regular Chess (Figure 3.4A). White has a rook at (c,1), and a king at (d,1). Black 

has only a king at (a,4). This is an asymmetric game. White must checkmate Black in 

at most ten steps; otherwise, Black wins.  

Connect Four: Classic vertical Connect Four is a middle-size territory-taking game. 

Two players alternatively drop pieces down slots from the top of a six by seven grid 

(Figure 3.4B). The first player that connects four pieces in a line (horizontal, vertical, 

or diagonal) wins. White goes first and it is advantageous to go first. Connect Four has 

a branching factor of seven and the search space is roughly 3
42

. 
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Figure 3.4: General game examples II 

Othello: Othello is a large-size two-player territory-taking game (Figure 3.4C). The 

player tries to flip the opponent's pieces into his own color. The player with majority 

of pieces showing at the end of the game wins. Othello has a branching factor of 8-12 

and a search space of roughly 3
64

 (~10
30

) .  

Farmer: Farmer is a three-player simultaneous game especially written for GGP 

(Figure 3.4D). Traditional computer game research covers mainly two-player 

turn-taking games, but the Farmer game sets up tasks for three players (Alice, Barney 

and Charlie) to make as much money as possible in the given iterations. Each player 

tries to make more money than either of the other players. In each iteration, all three 

players act simultaneously. 

The three players each start with 25 gold pieces. It takes 10 gold pieces to build (buy) 

a farm and 20 gold pieces to build a factory. The players begin with no commodities 

on hand. They have to build a farm before growing wheat or cotton and build a factory 

before making flour or cloth out of their existing wheat or cotton inventory. Once the 
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farm is built it will produce wheat if the “grow wheat” action is taken or cotton if the 

“grow cotton” action is taken at any subsequent iteration. Once the factory is built it 

will produce flour if the “manufacture flour” action is taken or cloth if the 

“manufacture cloth” action is taken, provided the player has the required wheat or 

cotton in inventory.  

However, manufacturing products from raw materials is not the only way to make 

money. Players can buy and sell directly to the market as well. The market has an 

infinite supply of commodities and gold.  The initial market price for wheat is 4 gold 

pieces, flour 10, cotton 7 and cloth 14 gold pieces. After every step of the game, the 

market price of each commodity automatically increases by one even if nothing is 

bought or sold. In addition to this automatic increase, the product price decreases by 

two in the next iteration for every selling action of that commodity and increases by 

two in the next iteration for every buying action of that commodity. The players begin 

with no inventory. The buy action will fill up the player’s inventory with that 

commodity and the sell action will clear the inventory of that commodity. Essentially 

all commodities except gold have only a single unit size. 

The Farmer game is a very interesting game in many aspects. It contains a simplified 

skeleton of manufacturer financial activities, such as invest in infrastructure (farm or 

factory), buying raw material from the market, selling the product to the market, and 
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keeping the inventory down. It also contains the elements of the stock market, such as 

an inflation indicator (prices increase by one in every step) and a market pressure 

indicator (price goes down by two for every selling action, and up by two for every 

buying action). The Farmer game opens the possibility of using general game playing 

techniques to explore, and perhaps even solve, skeletal real world financial or social 

problems. 

Another outstanding feature about the Farmer game is the simultaneous movement of 

all three players. Each player can buy or sell one of the four commodities, grow or 

make one of the four raw materials, or build one of the two infrastructures. Each 

player has 12 to 14 possible legal actions in every step. In other words, the branching 

factor is about 12
3
 because the three players move simultaneously. The typical 

branching factors is 36 for Chess, 7 for Connect Four, 10 for Checkers, and 300 for Go 

--- all are well-recognized complex games. The complexity of the Farmer game is 

amazing. 

The Farmer game can be very flexible too. The game can be easily reconfigured from 

three players to two, four or more players. It can be changed from 10 iterations to 20, 

40 or more iterations. The game dynamics change accordingly. Further discussions on 

the Farmer game can be found in Sections 5.4, 6.2.4, and 7.4.  
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4 Knowledge Representation and Reasoning 

As mentioned in Chapter 2, the game manager provides the player agents with the 

initial state of the game, the set of game rules, and their roles in the game. The game 

state information is in the form of logic propositions. The game's legal actions and 

goals are defined in the form of logic relations. The agents' roles in the game are 

provided in the form of logic statements. With such information, the agents use 

knowledge representation and reasoning to calculate the available actions. It is 

impossible to conduct further game operations such as game tree search or learning 

without knowledge resolution. Reasoning is the foundation in all general game 

players. However, not all reasoning algorithms are the same. The contents in this 

chapter have been published (Sheng, 2010b). 

4.1 Reasoning with Logic: Substitution, Unification and 

Backward Chaining  

The game state is a collection of true propositions or facts. The facts are stored in the 

Knowledge Base (KB). The game rules are written in prefix logic implications. 

Reasoning is the process of using the implications from the existing propositions to 
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produce a new set of propositions. The reasoning algorithms used in our general game 

player include substitution, unification and backward chaining.  

We now use Tic-Tac-Toe game as an example. Suppose the grid is marked as in 

Figure 4.1 and O-player is in control in the current state. The game relation row is 

defined as below: 

  (<= (row ?x ?player)  

        (true (cell ?x 1 ?player)) 

        (true (cell ?x 2 ?player)) 

        (true (cell ?x 3 ?player))) 

 

Figure 4.1: Tic-Tac-Toe example 

The arguments that begin with ? are variables. To answer the question "Is there an ?x 

value such that (cell ?x 1 ?player) is true?", the inference rule substitution is used. 

Substitution inference is looking for a variable/ground term pair so that the 

proposition sentence is true (Russell, 2003). In the Figure 4.1 example, (cell 1 1 X) 

and (cell 3 1 O) are both true propositions coming out of the inference.  
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The substitution rule gives different groups of variable assignments to each condition 

in the row implication. For the first condition clause (true (cell ?x 1 ?player)), the 

assignments are {x=3, player =O}, {x=1, player =X}. For the second clause (true 

(cell ?x 2 ?player)), the assignments are {x=1, player =X}. The unification rule is 

introduced to combine the two clauses. Unification requires finding substitutions to 

make different logic expressions identical (Russell, 2003). Only the pair {x=1, player 

=X} satisfies both the first condition and the second condition concurrently.  

Using the unification inference recursively until all clauses in the implication body are 

unified with a known fact is the process called backward chaining. Backward 

chaining is the goal-oriented reasoning that finds implications in the knowledge base 

that conclude with the goal (Russell, 2003). If the clause cannot be determined in the 

current implication, the agent introduces other rules to the process.  

4.2 Limitations of the Knowledge Base 

In the reasoning process, the propositions are stored in the KB. When the game state 

proceeds forward or a new query is needed, the agent searches the KB to substitute 

variable values with grounded terms. New propositions will be generated, and copied 

into the KB to store. 
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Tic-Tac-Toe is a simple example and we use it only for illustration purposes. Connect 

Four is a middle-size game with a branching factor of seven. Othello is a large-size 

game with a branching factor that varies from 8 to 12. The KB is very frequently 

queried for both proposition search (returning all applicable values) and theorem 

proving (returning true when the first applicable value is found). Table 4.1 shows the 

average number of KB accesses based on 100 random matches. The KB access count 

from the beginning to the end of the match is in hundreds for a Tic-Tac-Toe match, in 

thousands for a Connect Four match, and in millions for an Othello match. The access 

frequency grows quickly as the game size grows, even without a heuristic search 

involved. 

Table 4.1: The average number of knowledge base visits during random matches 

  
Static 

Propositions 

Dynamic 

Propositions 
State Features 

  Search Prove Search Prove Search Prove 

Tic-Tac-Toe 0  0  10  80  76  110  

Connect Four 12  263  424  2,016  760  3,297  

Othello 68,423  603,490  556,345  1,577,560  27,269  2,008,058  

Static propositions are the facts that never change from the beginning to the end of the 

game. They are either defined in the game description or can be inferred from and 

only from the static propositions. Tic-Tac-Toe does not have any static propositions 

defined in the game. The board adjacency relations defined in Othello are considered 

static since they do not change once the game begins. Dynamic propositions change 
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over the game cycle. They can be added or removed as the game proceeds. State 

features contain the game state information and are the most frequently queried group 

of the three.  

The KB is accessed frequently during the game cycle. So the data structure in the KB 

affects the reasoning performance of the agent. The larger the game, the more 

significant the influences of the KB data structure are. A small performance 

improvement in the reasoning process can be greatly amplified to expedite searches 

and learning and therefore, add up to huge improvements in the agent's performances. 

GDL has been known as not particularly efficient in reasoning, and there are many 

attempts to improve its performance (see Section 2.4). 

4.3 Using Hash Tables to Expedite Reasoning  

We propose using hash tables to improve the reasoning performance. Hash tables use 

hash functions to convert data into indexed array elements. A hash table is a 

commonly used data structure to improve the search performance. Depending on the 

implementation, the searching complexity varies, but the time complexity of 

searching a hash table can be as low as O(1). We designed the hash function so that it 

groups all propositions starting with the same logic terms together. Because the 

number of logic relation terms is very limited (as in the game playing context), the 
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hashing function will not create collisions in the conversion. The hashing function is a 

one-to-one literal-to-integer perfect hashing.  

As shown in Figure 4.2, each proposition stored in the KB is decomposed into the list 

of its arguments. The literal cell is mapped into integer 10, and each of the arguments 

in the same sentence are converted into distinct integers. The fact (cell 1 1 X) is stored 

as (10 11 11 14) in the KB. All propositions starting with the term cell are grouped 

together so that its integer value 10 occurs only once as the group index. Variables are 

mapped into negative numbers so that the reasoning process knows what should be 

instantiated.  

 

Figure 4.2: Tic-Tac-Toe hash table mapping example 
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Using hash tables to convert the data stored in KB from game specific features to 

integers not only saves storage space, but also saves search time. Without hashing, the 

KB search conducts string comparisons and is dependent on the length of the string. 

Suppose one proposition has an average of n strings, and each string has an average of 

m letters. A positive equal comparison has the computational complexity of O(m*n). 

But using the hash table, only O(n) comparisons are needed. The length of the string 

does not matter anymore. The savings are beneficial to any GGP player that uses logic 

substitution, unification and backward chaining reasoning algorithms.  

Some GGP players in the field choose to convert GDL into other programming 

languages with better AI support, such as Prolog or LISP, or other compilers or 

reasoning tools. The hash tables presented here create a one-to-one hashing schema 

that map each game element into a unique integer. The agent does not need to handle 

hashing value collisions. Perfect hashing is as good as any hashing method can do. 

The hash table is of the same cardinality as the game rules.  

To avoid human cheating, all the competition games are scrambled into random letter 

combinations, which can be long, meaningless strings. For example, (cell 1 1 B), 

which means a ternary relation cell that relates a row number, a column number, and a 

content designator, is logically equivalent to the description (position first first empty), 

or scrambled version (tsrtysdfmpzz ryprry ryprry fmajafgh), as long as the terms are 
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replaced consistently for all other occurrences in the game rules. With the proposed 

hash tables, as long as the logic relations are the same, the scrambled version of the 

game will be treated the same, no matter if the logic relation is scrambled into 

two-letter words or two-hundred-letter words.  

In addition to converting the data stored in the KB, we expand the hash values to the 

reasoning process. When the agent receives the game description at the beginning of 

the game, it converts the entire game logic into integers. Which literal is used does not 

affect the logic relations as long as the changes are consistent. Therefore, the rule (<= 

(goal ?player 100) (line ?player)) is logically equivalent to  (<= (15 -3 77) (26 -3)) as 

long as the terms are changed consistently for other places in the game rules. Figure 

4.2 shows how the propositions in the Tic-Tac-Toe example game state are converted 

into distinct integers in the KB. The pseudo-code for hashing the game description 

written in GDL to integers is presented as in Figure 4.3. 

The standard Java API is used in the calculation. The hash code of a string is 

calculated from the ASCII value of each letter in the string, as shown in function 

hashCode. To avoid collisions, the hash code is mapped into a unique index value 

with the getIndex function, creating a perfect hash. In general game playing 

circumstances, even for a very complicated game like Chess or Othello, the rules in 

GDL are only a few pages. Therefore, the number of literals used in one game 



 

 

42 

 

description is limited, possibly less than one hundred. We have not seen any actual 

hash collisions in all known GGP example games (list given in Appendix A). Perfect 

hashing of game literals creates a table of the same cardinality as the game description 

and does not require a heavy maintenance burden.   
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Figure 4.3: Pseudo-code for converting GDL sentences into hash tables 
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function parseGDL(gameDescription) 

1.  expressionArray =  parseGDLToExpresionStrings(gameDescription);   

2.  for all expressions in expressionArray 

3.    hashKey = getKeyWord(expression);     

4.    index = getIndex(hashKey);     

5.    childrenArray = parseChildren(expression);     

6.    KB[index].add(children);  

 

  function parseGDLToExpresionStrings(gameDescription) 

//expression is the group of literals surrounded by parenthesis 

7.  for all letters in the gameDescription 

8.    char c = gameDescription.charAt(i); 

9.     if c=='('  

10.      bracketCount++; 

11.    else if c==')'  

12.      bracketCount--;   

13.    if bracket == 0 //when one complete sentence identified 

14.      end = i+1; 

15.      expressionArray[Index++] = gameDescription.subString(begin, end); 

16.      begin = end; 

 

  function getKeyWord(expression)//keyword is the first parameter of expression  

17.  nextIndex ← find the next space in the expression; 

18.  //parameters in one expression are separated by spaces.  

19.  keyWord = expression.subString(0, nextIndex); 

 

  function getIndex(hashKey)  

20.  index ← look up the hash table by hashKey; 

21.  if index does not exist in HashTable 

22.    index = tableSize+1; //assign the next table slot to index 

23.    putIndexToHashTable(hashCode(hashKey), index); 

 

  function parseChildren(expression) 

24.   for each parameter in the expression 

25.  result[i] = getIndex(keyOfChild); 
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  function hashCode(hashKey) // standard Java String.hashcode() API 

26.  if the hashKey is empty  

27.    hashcode = 0; 

28.  else 

29.    for each letter in the hashKey 

30.      hashCode = hashKey.charAt[i] + ((hashCode << 5) - hashCode); 
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In our agent, the knowledge representation and reasoning process are conducted with 

integers. Only the equal and not-equal operations are invoked. No addition or 

subtraction operations are allowed. The hashing conversion from GDL to the integers 

is processed only once at the beginning of the game. Subsequent reasoning is 

conducted directly with integers and access only the KB but do not search the hash 

table key-value pairs. Introducing hash tables into the reasoning process is because 

the KB is visited extremely often (Table 4.1). When communicating to the game 

manager, the agent translates the integers back into the strings. Considering the 

communication is only done at the end of each step, this translation cost is minimal.  

4.4 Hash Tables Performance Analysis 

Dresden University of Technology general game playing website has published a Java 

agent player (see reference GGP Player). Our GGP agent is written in Java and we 

compare our agent against the published Java agent for performance benchmarks. 

Different games have different logic relations and therefore different reasoning 

computational complexities. We compare our agent and the published Dresden Java 

agent in seven games: Maze, Mini-Chess, Tic-Tac-Toe, Connect Four, Chess 

Endgame, Othello, and Farmer. A wide variety of different game sizes, player 

numbers, and dynamics are covered.  
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The experiments were run on a desktop PC with Intel Q6600 2.4GHz CPU, 2GB 

memory, and Ubuntu Linux 10.04. To design a fair comparison to test the reasoning 

speed of the two Java players, we used three criteria: 

Initial Game Step: We compare the time consumed by each agent from the 

beginning of the game to finding all available legal actions in the initial game state. 

The agent parsed the input from the game manager into the game rules, the initial 

game state, and its own role in the game. It proceeds with the knowledge reasoning 

process to find available legal actions. The time used by the published Java agent is 

normalized as 100% and the time used by our agent is converted into its percentage, as 

shown in the Figure 4.4. Depending on which game, our agent used about 10% - 40% 

of the time that the Dresden Java agent used.  

 

Figure 4.4: Normalized time cost comparison to find legal actions 
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Random Play: We compare the time consumed by the two agents from the beginning 

to the end of the game. All players take random actions in this scenario. The clock is 

set for each individual agent. In addition to the reasoning in the first step, the agents 

perform the state transition logic operations to move the game forward. The time used 

by the published Dresden Java agent is normalized as 100% and our agent uses 5% - 

60% as much time, as shown in Figure 4.5. 

 

 

Figure 4.5: Normalized time cost comparison to play with random actions 

 

Goal-Search: We compare the time consumed from the beginning to the end of the 

game. In this scenario, the agent searches for the goals one step ahead of the current 

state. In addition to state transition logic operations added in the previous scenario, the 
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goal state and the terminal state validation are added to the reasoning process. Again 

the published Dresden Java agent is normalized to 100% and our agent uses only 5% - 

25% as much time as shown in Figure 4.6. 

 

Figure 4.6: Normalized time cost comparison to search one-step for goals 

In the three figures above, the data show the reasoning performance improvement 

scales well as the game size increases. Indeed, the improvement is more obvious on 

large games than on small games. The performance improvement has been consistent 

when dealing with a large number of logic operations in Figure 4.4, the state transition 

operation in Figure 4.5, and the goal validation in Figure 4.6. When the game 

complexity grows, the knowledge base size grows accordingly. The number of the KB 

searches grows as well. The small improvement in one query operation is amplified 
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into a significant improvement in the entire game. The data used to create Figure 4.4, 

4.5, and 4.6 are listed in Table 4.2. The unit is milliseconds.  

Table 4.2: Agent time usage (milliseconds) 

(Unit: 

Millisecond) 

First Step Random Play Goal-Search 

Our 

Agent 

Java 

Agent 

Our 

Agent 

Java 

Agent 

Our 

Agent 

Java 

Agent 

Maze 1 3 1  2  2 13 

Mini-Chess 29 72 6  29  15 121 

Tic-Tac-Toe 3 7 3  8  24 136 

Connect Four 5 19 10  199  166 3540 

Chess Endgame 18 114 45  213  620 3396 

Othello 84 216 2980  22433  26662 104233 

Farmer 14 195 14  260  435 28711 

In addition to saving time during the reasoning process, hashing the game rules 

described in GDL into integers saves memory as well. We compare the KB size in 

these seven games after initializing the games to calculate available legal actions as in 

Figure 4.4. The memory used is counted in bytes as shown in Table 4.3. The data 

show that memory reduction becomes more pronounced in large games than in small 

games.  
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Table 4.3: Agent memory usage (bytes) 

(Unit: Byte) Our Agent Java Agent Percentage 

Maze 1194 1359 88% 

Mini-Chess 1879 3198 59% 

Tic-Tac-Toe 1361 1558 87% 

Connect Four 1541 1866 83% 

Chess Endgame 2047 7860 26% 

Othello 5206 9021 58% 

Farmer 2767 7947 35% 

 

From the above experiments, we have shown that using hash tables to convert the 

knowledge reasoning process into integers can significantly improve the reasoning 

speed. In our current agent, we only indexed the first logic literal in a proposition, 

which normally is the logic relation name. We also investigated if indexing on every 

argument of the proposition is more beneficial. Suppose n is the number of logic 

literals that appeared in a game definition, then the search time can be improved from 

O(n) to O(log2 n), since binary search rather than linear search is applicable. Hence 

the answer appears to be yes that we should index on every argument of the 

proposition unless the cost of building the index is too high.  

To verify this idea, we have tested it with the games in the GGP game collection as 

partially listed in Appendix A. In all known games, the hash tables group the 

propositions by the first argument. It turned out that none of these games contain more 
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than 100 game relations. So the problem size n is less than 100. The cost of search is 

close to the cost of building the index on each argument.  

To summarize, in the general game playing field, knowledge representation and 

reasoning are the fundamental operations for the agent to understand and participate 

in the game. Although the logic inference algorithms have been available for a long 

time, how to implement them for the agents' performances when dealing with 

computational intensive tasks remains a challenge. A small performance 

improvement in the reasoning process can be greatly amplified to expedite searches 

and learning, and thus potentially add up to huge improvements in agents' 

performances. We have shown in seven heterogonous games that our hash tables can 

save significant computation time and memory in the reasoning process. 
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5 Sub-Goal Identification  

Given a completely new game, the GGP agent uses knowledge representation and 

reasoning algorithms to calculate legal actions. To decide which action to take, the 

agent uses machine learning algorithms to discover which are beneficial for winning. 

This chapter connects the knowledge-based game states with the simulation-based 

game process. We present a feature identification algorithm that analyzes winning 

features to quantify how much certain features predict the winning. These important 

winning features are treated as temporary goals in the game and the agent actively 

seeks them in the game tree search. The contents in this chapter have been published 

(Sheng, 2010a). 

5.1 Generating Training Set with Simulation 

If an agent has unlimited time and space resources, it can build a complete game tree 

and make optimal choices in every step. But most games are too large to be searched 

exhaustively so the search has to be truncated before a goal state is reached. When the 

game goals, as defined in the game rules, are out of the search range and are 

non-deterministic, the agent has to make some decisions without perfect information. 

This is why machine learning is used to help the agent. 
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Perhaps the first question in the learning process is: where can we get a good player 

from which to learn? While a particular game playing program can learn from human 

game experts or extensive opening and closing books, a general game playing agent 

does not have that luxury but is expected to handle a game that the world has never 

seen before. 

5.1.1 Random Simulation versus Active Learning 

We now introduce an automatic feature recognition algorithm that does not use any 

assumptions about the games. The agent uses a self-play simulation database to record 

the agent's past actions for analysis. One way to create the self-play database is by 

running simulations of players using random decisions for any given game. Each 

random match can be understood as one random path, from the initial game state to 

the terminal game state in the game tree. Given enough simulations, these random 

paths approximate the complete game tree in an evenly distributed manner. Another 

possibility to create the simulation database is using active learning to run simulations 

with learned agents and improve the agents as more simulations are available. The 

two approaches have strengths and weaknesses. The former is unbiased but needs a 

larger training set, while the latter loses the generality and decreases the coverage of 

the game tree, but can be more efficient. We use the former to set up our training set 
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due primarily to better game tree coverage and a theoretically more conservative 

approach. 

When given a game to play, the agent plays and records its actions. The agent 

generally does not win more than its "random share" in random playing, but the 

random play does provide a chance for the agent to observe the game, explore the 

game space and analyze the outcome of these actions. The agent will examine the 

winners' history to see what elements, if any, the winners have in common. The 

common winning elements can be the status of the board, the positions of the pieces, 

the actions taken, the existence or absence of some features, etc. From the simulation 

runs, the agent picks out the winners' history and identifies common features that 

appeared to help the players win. Statistical analysis is used to decide how likely the 

occurrence of a certain feature predicts winning. Features with high probabilities to 

predict winning, called sub-goals, are singled out and are considered desirable in the 

game tree search. The sub-goal identification approach is independent of specific 

games. It is designed to fit games that can produce winners during random play. As 

the game dynamics change, the identified features change automatically. 
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5.1.2 Determining the Simulation Size  

The purpose of using machine learning is not because it is more accurate than the 

complete game tree, but because it is more feasible. The simulation sacrifices the 

accuracy of a complete game tree search in exchange for efficiency. Too few 

simulations will not provide useful results, but too many simulations will be more 

expensive than needed. 

The learning process is expected to distinguish game elements that have a significant 

positive influence on the game outcome. The sequential order of these game features 

provides more utility than the absolute value of the features. The agent keeps track of 

the statistical frequency of the features. The occurrence of certain game elements has 

a probabilistic correlation with the outcome of the game. The features' occurrence 

probabilities are used to determine if the features' sequential order has been 

established at 95% confidence interval. If not, additional simulations are run (in 

groups of 1000). We increase the number of simulation runs until we are certain the 

sequential order has been established, or can never be established, for the game 

features. Hypothesis testing is used to verify the utility order of the features when their 

95% confidence intervals are disjoint.  
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5.1.3 Out of Scope Situations  

The sub-goals identified from random simulations enable us to learn to play some 

games that are not exhaustively searchable. However, the branching factor for some 

games can be so large and the goals so deep that it is computationally too expensive to 

reach the goal states by taking random actions. When not enough complete paths that 

result in wins in the game tree are explored, the simulation set may not be big enough 

to represent the game. Then it may be computationally impractical to obtain an 

adequate sized learning set. 

For games that are hard to win with random play (not necessarily with large branching 

factors), efficiency weights over impartiality in training set generation. Without a 

reasonable size training set, the learning module in the agent as designated in Figure 

3.1 will be bypassed for not being able to provide beneficial suggestions on action 

selection. The agent can still submit legal actions in the game play, but its 

performance will be about the same as a goal-search player. Importing history from 

external resources such as opening book and close book is a possible solution to get 

the training set for the learning module. But it violates the expectation of generality 

and that is beyond the scope of this dissertation.  
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5.2 Identify the Sub-Goals 

Game feature is defined as the predicate naturally provided in the game description. 

Depending on how a game is written, a game feature can have one dimension, such as 

(control White), two dimensions, such as (distinct a b), three dimensions, such as (cell 

x y blank), or more dimensions. We deal with the entire predicate as one unit because 

it contributes as one entity in logic reasoning. 

The agent encounters a large number of features from the beginning to the end of a 

game. We are interested in only a very small subset that significantly helps win the 

game. Using sub-goals identified from the previous playing history can guide the 

heuristic game tree search when a exhaustive search is not feasible. Unlike the goals 

defined in the game description with clear payoffs, the game sub-goals are not 

self-evident.  

The sub-goals have to be tested to see if they contribute to a winning strategy. For 

example, in a turn-taking game like Tic-Tac-Toe, each player has control to take 

actions half of the time. However, in all games that X-player won, X-player always 

ended up in control. This is because when X-player forms a line to win the game, the 

game ended without transferring the control to O-player. In this case, (control 

X-player) is a frequently occurring feature shared by the winners but it is not 

considered a sub-goal. Another example is the step counter in Mini-Chess (Figure 
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3.4A) and Chess Endgame (Figure 3.3D). These features are always present in the 

winners' state. But their existence has no effect on winning. They are the simultaneous 

occurrence of winning but not part of a winning strategy.  

In addition to sub-goal identification, this algorithm can identify anti-goals, which are 

features that would hurt the player. In other words, to win the game, the agent player 

should actively avoid certain features. Depending on the game goal definition, 

features to avoid have different meanings in different game contexts.  

Numerical values are assigned to quantify the payoffs of the sub-goals. Note that 

sub-goals are used only to guide the heuristic game tree search when the exhaustive 

search is not feasible. Sub-goals are never as good as actual goals - they sacrifice the 

accuracy of complete game tree search for efficiency. The sub-goals come out of 

learning from simulation runs and are used to win future games. To test if high 

occurrences features are actually sub-goals, we designed experiments in the next 

section to test if using such features (values) to guide the search helps win. 

5.3 Sub-Goal Analysis Example 

We use Tic-Tac-Toe as an example to illustrate how sub-goals are identified. For a 

human player, it is easily to tell that the middle position in Tic-Tac-Toe is the most 

important, then the four corners, and finally the middle of the edges. But the game 
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agent does not know these priorities. The agent sees a completely new game with 

rules defined in logic relations and it needs to figure out proper actions.  

5.3.1 Statistical Analysis 

The agent runs random matches repeatedly to simulate a proportional abstraction of 

the game tree. The experiments used the pseudo-random seed 1234 to generate 

random numbers and the constant coefficient 1.96 as the t-distribution critical value 

for 95% confidence interval (Wackerly, 2008). The agent divides the simulation 

results into 30 groups, with 100 matches in each group. These parameters are for 

explanation only. If the readers choose to use other random seeds or match grouping 

methods, the experiment results should be statistically equivalent.  

For each feature, the agent adds up all of its occurrences in that group, then divides by 

the number of games that X-player ended up winning in that group. It calculates the 

95% confidence interval of the features' occurrence in the winners' end game. Figure 

5.1 has the list of X-player’s preferred features based on 95% confidence interval, 

ordered according to occurrence probability from high to low.  
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Feature High Bound Low Bound Mean 

(CELL 2 2 X) 0.61562 0.57922 0.59742 

(CELL 1 1 X) 0.52311 0.48745 0.50528 

(CELL 3 3 X) 0.51555 0.47937 0.49746 

(CELL 1 3 X) 0.50028 0.46827 0.48428 

(CELL 3 1 X) 0.49761 0.45825 0.47793 

(CELL 2 1 X) 0.43764 0.40146 0.41955 

(CELL 1 2 X) 0.43410 0.39927 0.41668 

(CELL 2 3 X) 0.43070 0.39717 0.41394 

(CELL 3 2 X) 0.42817 0.39234 0.41026 

Figure 5.1: Tic-Tac-Toe X-player winning features based on 95% confidence interval 

We can observe that in matches won by X-player, the 95% confidence interval for 

X-player to take the center position is [0.57922, 0.61562]. For X-player, taking the 

middle position outperforms taking the corners, which outperforms taking the middle 

of the edges. All corners are of similar weight as are the middle edge positions.  

We ran a hypothesis test on the middle position (cell 2 2 X) against one of the four 

corners, for example (cell 1 1 X). We set up the null hypothesis where these two 

features are of equal weights. Based on the (cell 2 2 X) with mean value of 0.59742 

and the (cell 1 1 X) with mean value of 0.50528, we calculated that the test statistic is 

1.996, which is bigger than the critical value of 1.645 (Wackerly, 2008). Therefore, 

we rejected the null hypothesis at 5% significance level and concluded that (cell 2 2 X) 

is statistically better than (cell 1 1 X) at 95% confidence level. 

The hypothesis test for the comparison within the group of four corners fails to reject 

the null hypothesis that the features are of equal weights. Therefore we conclude that 
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there is no significant difference between weights within the four corner group. The 

same hypothesis test process can conclude that (cell 2 2 X) is better than any of the 

four middle edge cells, and any corner cell is better than any of the middle edge cell as 

well.  

Given the nature of the random actions in game simulations, we constructed the 

feature weights independently. The results of hypothesis testing can be inferred from 

the table of confidence interval showed above. Because the 95% confidence interval 

range of (cell 2 2 X) does not overlap with the confidence interval of the corners, or 

the middle of the edges, it is safe to conclude that the middle cell carries higher 

weights than the rest of the board. For simplicity purposes, when the 95% confidence 

intervals do not overlap for two features, the automated sub-goal identification 

algorithm considers the ordinal utility of the features are as their probability indicate.  

In addition to identifying good features for a player, this algorithm can be used to 

identify features to avoid as well. Since Tic-Tac-Toe is a zero-sum game, good 

features for X-player should be features-to-avoid for O-player and vice versa. For 

games that are not zero-sum, features that have high probability of occurrence in the 

player’s lost matches are the features it should avoid.  
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5.3.2 Sub-Goals versus Actual Goals 

 

Figure 5.2: Tic-Tac-Toe middle game example 

In the Tic-Tac-Toe example in Figure 5.2, when X-player searches exactly one step 

ahead to find good actions for himself, position (2,2) should be the selected action, 

because this feature is related to the highest probability of winning, almost 59%, and 

potentially helps form four lines. However, the game definition describes winning as 

the highest payoff and losing as the lowest payoff. By searching two steps ahead, the 

agent finds that if O-player takes position (3,3) two steps from current state, X-player 

will lose. Using minimax to search two steps ahead, X-player should take (3,3) 

instead of (2,2), not because (3,3) gives a better payoff to win, but to avoid losing. 

Sub-goal identification provides the agent with better information when the game 

goals are not in the search range. When game goals are reachable, the agent will value 

goals over sub-goals in choosing actions. 
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5.3.3 Using Sub-Goals in Game Play 

Tic-Tac-Toe is an asymmetric game, where the first player to move (X-player) has a 

higher probability to win. In the 3000 random simulation runs, X-player won 58.4% 

against random O-player. O-player won 28.6% and 12.9% of the matches tied.  

An improvement from random playing for X-player is to search one step ahead for 

goals and take random actions when goals are not within the search range. When a 

goal is exactly one movement ahead of the current state, the agent will select the goal.  

In another 3000 simulated games, this improved X-player wins 81.9% against the 

same random O-player. This improvement is due purely to search.  

Taking advantage of the learned sub-goals adds another layer of improvement to 

one-step searching. Instead of making random selections when goals are not within 

the search range, the learned X-player uses the weighted sum of the sub-goals 

numerical values to evaluate the available actions and selects the potentially most 

promising action.  

Suppose in a given state S, the feature fi has the probability wi of occurring in the 

winners' end game. Respectively, let ki = 1 if fi exists in S and ki = 0 if fi does not exist 

in S. Then the state value of S is given by: 

S = k1w1 + k2w2 +... + knwn 
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Using sub-goals for state evaluation, the learned sub-goal X-player won 92.1% of the 

matches against the same random O-player. This time the performance improvement 

from one-step search resulted purely from applying sub-goals in the action selection 

during game play. 

If the sub-goal X-player takes one step farther in the search, it will evaluate both the 

good features and the features-to-avoid. In minimax search, the player selects a game 

action to maximize his own payoff when searching one step ahead and the player 

selects a game action to minimize his loses when searching two steps ahead. The 

winning rate became 95.5% against the same random O-player. This last 

improvement results from searching farther in the game tree by adding more features 

into the evaluation. In Tic-Tac-Toe, searching nine steps ahead of the initial game 

state will create an exhaustive game tree. Data from more levels of search would 

deviate from the purpose of the example. 

In sum, the sub-goal analysis player outperforms the goal-search player, which 

outperforms the random player. The simulation data from 3000 matches for the four 

versions of X-player running against the same random O-player is given in Figure 5.3. 

The experiments showed certain features (sub-goals) are helpful in winning. We 

designed similar experiments and analyzed the results for our algorithm with several 

other distinctly different games. The results are provided in the following section.  
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Figure 5.3: Tic-Tac-Toe X-player winning rate against random O-player 

5.4 Experiments for Generality 

The general game player is supposed to play a wide variety of games without 

assuming any game specific information. To verify the generality of the sub-goal 

identification algorithm, we applied it to other games. The detailed agent players' 

description is given in Appendix E. 

Connect Four 

In Connect Four the middle positions can be used to construct more lines than edge 

positions and are therefore considered more desirable. The corner positions are the 

least desirable since they can be used to form only three lines. Positions in the middle, 
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(4,3) and (4,4) are the most beneficial positions to take. However, position (4,3) 

should be more valuable than (4,4) because the first player connecting four in a line 

wins and the lower part of the board is filled earlier than the upper part of the board. 

Also, by symmetry, positions (3,3) and (5,3), or (3,2) and (5,2), or (2,1) and (6,1), etc., 

should be of similar importance. We used 5000 simulation runs to separate features 

into different groups at the 95% confidence interval. In the following heated map of 

the Connect Four board, each square is marked with the probability of how its 

occurrence predicts winning. The middle positions are the most desirable because 

they can be used to construct more lines than the edge or the corner positions. 

 

Figure 5.4: Heated map of the Connect Four board positions 

In Connect Four, White has a little advantage by going first. In 5000 simulations, 

random White won 53.1% against random Black. The one-step goal-search White 

won 84% against the same random Black. After applying the learned sub-goal 
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information from the analysis, the learned White won 91% against the random Black 

player. See the Connect Four results in Figure 5.6. 

Mini-Chess 

In Mini-Chess all pieces have the same movement rules as in regular Chess. It's 

obvious to human players that if White King moves from its initial position (c,1) to 

(b,2), the Black King can be pinned in the corner, creating a very promising situation 

for checkmate. The agent was not aware of such strategy when the game started. But 

after learning from its own history, it identifies the top three most desired sub-goals 

from simulation. They are having White King take (b,2), and White Rook take (d,4) 

and therefore pin Black King in (b,4). 

 

Figure 5.5: Initial state of the Mini-Chess game and its top three sub-goals 

In random playing, Black has higher chances to win the game since a random player 

can hardly come up with a winning strategy. In 3000 matches, random White wins 

30.5% against random Black (wins 69.5%). By searching goals one step ahead in the 

simulations, White wins only 31.8%, due to the fact that a winning strategy takes 
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more than one step to develop. After applying the learned sub-goal information to 

guide the search, the learned White wins 81% against the same random Black. See the 

Mini-Chess results in Figure 5.6. 

Farmer 

In the Farmer game, each player can buy or sell one of the four commodities, grow or 

make one of the four raw materials, or build one of the two infrastructures -- giving 

the Farmer game a branching factor over 1000 on simultaneous moves (see Section 

3.4). While the game tree search cannot possibly reach any goals more than a few 

steps away, the sub-goal analysis correctly identifies important actions shared by the 

winners. In 3000 random Farmer matches, we found the action building a factory 

seriously negatively affects the cash flow and puts the player at a disadvantage in the 

ten-iteration Farmer game. The player owns a factory in 21% of the matches he won. 

But owning a factory is very beneficial in a 20-iteration Farmer game. The player 

owns a factory in 95% of the matches he won. See the winning rate improvement for 

the ten-iteration Farmer game in Figure 5.6.  
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Figure 5.6: Performance comparison of random player, one-step goal-search player, 

and sub-goal learning player 

This chapter describes how the general game player uses simulated game playing data 

created from random playing to identify the winning features without any game 

specific strategies. We used statistical analysis to identify sub-goals in games when 

they are too large to be searched exhaustively. The sub-goals are critical in guiding 

game tree searches and selecting promising actions. In GGP, a game is understood as 

a state machine powered by logic relations, not as a board, pieces, or players. With 

only the game rules, the agent identified sub-goals and used them to guide game play. 

The sub-goals identified in Tic-Tac-Toe, Connect Four, Mini-Chess and Farmer are 

consistent with human game playing experience. The identified sub-goals can guide 

the heuristic search to efficient and effective game play.  
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6 Decision Making in GGP 

6.1 Grouping of Sub-Goals 

A game may have hundreds or even thousands of features in its life cycle. The 

existence of one individual feature provides some information about the game status 

but often it is too isolated. Some features are more beneficial when combined with 

certain other features. Some features are mutually exclusive and cannot co-exist. 

Therefore, following influential features one after another may not lead the agent 

towards the goals. In a game tree, every node is a game state and every game state is 

composed of many features. A game state needs to be considered as one unit when 

comparing to other states. This is the essential idea why the groupings of features are 

needed. 

Note that the purpose of the evaluation function is to guide the heuristic search. The 

search needs to pick one action out of a list of available legal actions so that the 

game can move forward. The evaluation function is looking for a preference order of 

the states, not the exact value of the states. Payoff acts and is used as an ordinal 

utility function. Agent behavior is preserved under any monotonic transformation of 
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the evaluation. We use a decision tree to get such a preference sequence of the game 

states.  

6.2 Decision Trees 

A decision tree, also called classification tree or regression tree, is a widely used 

machine learning algorithm. A decision tree takes a set of attributes as input and 

outputs the predicted values for the input. It works as a predictive model to map the 

target game states to numerical values according to existing observations. ID3 

(Quinlan, 1986) and C4.5 (Quinlan, 1993) are well known decision tree algorithms. 

The major improvements of C4.5 over ID3 are handling continuous attributes and 

pruning trees after creation. We use C4.5 in this dissertation. The contents in this 

section have been published (Sheng, 2011a, 2011b). 

6.2.1  Decision Tree C4.5 Algorithm 

The C4.5 algorithm calculates the information gain for each attribute in the training 

set and selects the attribute with the highest gain value on which to split. The 

splitting process partitions the training data into two groups, one with the splitting 

attribute, one without it. New attributes are added iteratively into the decision tree as 

tree nodes. The partition stops when majority voting can be established for the 

outcome class. Figure 6.1 is the pseudo-code for creating the decision tree. 
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Figure 6.1: Pseudo-code for decision tree C4.5 
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 function makeTree(features){ //create a tree with pre-selected features and build the structure. 

1.   rootFeature = calculateGain(features, SIMULATION_DATA)); 

     //information gain calculation is illustrated in (Quinlan, 1993) 

2.   makeTreeStructure(features, SIMULATION_DATA, rootFeature); 

3.   calculateOutcome(root currentDataSet); //calculate the consequences of the decision tree 

4. } 

 

function makeTreeStructure(GameState selectedFeatures, DataSet dataSet, TreeNode root){ 

5.   childSet = partition(dataSet, root); 

6.   remainFeatures = minus(selectedFeatures, root); 

7.   root.left = calculateGain(remainFeatures, childSet.left); 

8.   root.right= calculateGain(remainFeatures, childSet.right); 

9.   if(childSet.left.size>MINIMAL_SAMPLE_SIZE)  

        makeTreeStructure(remainFeatures, childSet.left, root.left); 

10.  if(childSet.right.size>MINIMAL_SAMPLE_SIZE)   

        makeTreeStructure(remainFeatures, childSet.right, root.right) 

} 

 

function calculateGain(Array features, DataSet dataSet){ 

11.    for each feature in features{ 

12.        p[1] = truePositiveNumberCount[i];  

           //count incidents of the feature exist and the game end up winning 

13.        n[1] = trueNegativeNumberCount[i]; 

           //count incidents of the feature exist and the game end up losing 

14.        p[0] = falsePositiveNumberCount[i]; 

           //count incidents of the feature not exist and the game end up winning 

15.        n[0] = falseNegativeNumberCount[i]; 

           //count incidents of the feature not exist and the game end up losing 

16.        result = informationGain(p, n);//calculate information gain. 

17.        if(result>max)  max=result; 

18.    } 

19.    return the feature with max gain; 

} 

 

function informationGain(p[],n[]) { 

20.    return entropy(sum(p),sum(n)) - remainder(p,n); 

}  
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function remainder(p[], n[]){//remainder = ∑(pi + ni)/(p+n) *entropy(pi,ni) 

21.    total = sum(p)+sum(n); 

22.    return sigma(((p[i]+n[i])/total)*entropy(p[i],n[i])); 

}  

 

function entropy(p, n) {  

//entropy = ∑-P(vi)(log2P(vi), P is the probability of the result based on the feature value v 

23.    return prediction(p/(p+n), n/(p+n));  

} 

 

function prediction(p[]) { 

24.    return sigma(-p[i]*log2(p[i])); 

} 
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6.2.2 Build C4.5 with Sub-Goals 

Analyzing the self-play simulations provides us with a list of identified sub-goals. 

These sub-goals are used as attributes in the training set and later as the decision tree 

nodes. The C4.5 algorithm starts with one of the sub-goals and calculates the 

information gain on all nodes, partitioning the training set into two groups on the 

sub-goal providing the most information gain. The outcome value of the decision tree 

leaf nodes are calculated from the winning percentage in the training data that are 

classified to that branch. The complexity of the decision tree algorithm is O(log2n) 

where n is the number of sub-goals identified in the game.  

For most games, there are three possible outcomes: win, lose or tie. The decision 

tree will be overfit if we keep partitioning until all data for a given node belong to 

the same class. For example, suppose we have 5000 matches, and after partitioning 

by a number of different nodes in the decision tree, the outcome class ends up with 

40 winning matches. The outcome is less than one percent of the matches in the 

training set. This small percentage does not accurately project the outcome of the 

future data and we say the decision tree is “overfit.”  
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To avoid overfitting, our agent calculates the outcome of the decision node from the 

number of partitioned data for a given node. The node value is the percentage of the 

simulation runs that the agent ends up winning. Figure 6.2 is a simplified decision 

tree example for illustration purposes: 

 

Figure 6.2: A decision-tree example 

The decision tree example started with 5000 matches. According to the C4.5 

calculation, feature A provides the most information gain at the beginning. There are 

1527 matches out of the 5000 simulation runs that contain feature A and the rest do 

not contain feature A. Then the algorithm decides that feature B provides the next 

highest information gain and partition the data over feature B. There are 1352 
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matches contain feature B out of the 1527 matches that already contain feature A. 

Among the 1352 matches that contain both feature A and feature B, 872 matches 

turned out winning the game. Therefore, the left most bucket has a value of 

875/1352 = 0.64. The rest of the nodes and buckets in the example are built with the 

same method and have similar explanations. 

The example demonstrates the creation of the decision tree and how the outcome 

results are calculated. The creation process complexity is O(log2n) where n is the 

number of game features. Once created, the tree is used for the entire game playing. 

The actual decision tree in the GGP agent goes through additional processes such as 

an overfitting test and pruning, but the overall cost of creating the decision tree is 

considered linear in the game tree size.  

6.2.3 Using Decision Tree for Evaluation 

Using the decision tree for evaluating game states is straight forward. The agent 

feeds game states covered by the search one at a time into the decision tree, to 

determine into which outcome bucket they belong. The state value is the outcome 

result of the tree. The pseudo-code of using the decision tree for state evaluation is 

given in Figure 6.3. 

 



 

 

79 

 

Figure 6.3: Pseudo-code of using decision tree for state evaluation  

Suppose we have a game search tree as given in Figure 6.4. The game state S1 contains 

features ABCK and we are using the decision tree shown in Figure 6.2 for evaluation. 

The decision tree root is feature A. Because S1 contains feature A, the state is classified 

as A's left children. The feature to test in A's left children is feature B. S1 contains 

feature B, therefore the state is classified as B's left children and falls into the bucket 

with value 0.64. So the value of the state S1 is 0.64. The remaining two features, C and 

K, in S1 are not relevant in the evaluation process because they are not tested during 

the classification.  

1. public double evaluate(BinaryTreeNode root, GameState gameState) { 

2.   BinaryTreeNode father = root; 

3.   while(father!=null) { 

4.     if(gameState.contains(father.feature) { 

5.       if(father.left == null) return father.value; 

6.       else father=father.left; 

7.     } else { 

8.       if(father.right == null)  return father.value; 

9.       else father=father.right; 

10.     } 

11.   }  

12.  } 
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Figure 6.4: Evaluating searched states in a partial game tree 

Suppose there are n available legal actions in the current game state. The agent 

searches one step ahead of the current state and finds three different actions lead to n 

different game states, S1 , S2, ..., Sn. The agent first validates if any of these game states 

are the goal of the game. If so, the agent reaches for the goal directly. If no goal state is 

within the search range, then the agent has to make a choice somehow. This is where 

the decision tree evaluation is used. The state is evaluated from the root of the 

decision tree, and the root-to-leaf path highlighted in Figure 6.4 refers to how the 

value of the state is calculated. In Figure 6.4, we get 

 S1 = 0.64 

 S2= 0.22 

    … 

 Sn= 0.73 
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Thus the action n is the most promising choice to win the game.  

The outcome of the decision tree evaluation is used to guide the minimax search in our 

GGP agent. Suppose in a given time frame, the minimax search explored 500 nodes in 

a game tree. There are 370 nodes that have both ancestors and successors, and the 

remaining 130 have only ancestors but not successors. These 130 nodes are called leaf 

nodes in the search tree. The decision tree evaluation is only applicable to these leaf 

nodes. The value of the intermediate nodes will be calculated using backward 

chaining in the minimax search. From the example scenario, we can conclude that the 

time consumption of using the decision tree for evaluation is m*O(n), where m is the 

total steps to finish a game and n is the game tree nodes searched in every step.  

6.2.4 Decision Tree Learning versus Individual Sub-Goal Learning 

For our study, we set up four different agents to play against the same random dummy 

opponent, so that the agent's performance can be evaluated against the same criteria. 

The agents take the role of the first player to move (Farmer has simultaneous moves) 

in the following examples. If we had set up other players to be the second player in the 

game with decision tree learning, the performance improvements would be just as 

convincing. The detailed agent players' description is given in Appendix E. The four 

agents are: 
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 The random player; 

 The goal-search player that searches for goal states one step ahead of the 

current state; 

 The sub-goal learning player that searches one step ahead and uses sub-goal 

learning for state values; 

 The decision tree player that searches one step ahead and use the decision tree 

for state evaluation. 

Mini-Chess (Figure 3.4A) 

Mini-Chess could have been exhaustively searched, but we deliberately avoid that for 

example purposes. In Mini-Chess, the random White player or the one step 

goal-search player has only a small chance to win over random Black because it is 

hard to form an attacking strategy without planning. The third agent uses sub-goals as 

the evaluation criteria to guide the search. When the actual goals defined in the game 

description are not within the search range, the agent considers putting certain Chess 

pieces on certain positions as sub-goals (e.g. putting white king at position (b, 2) is 

one high value sub-goal), and taking actions toward these sub-goals. The performance 

improvement for the sub-goal learning player is due to adding the sub-goal learning 

layer to the one-step goal-search. 
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Figure 6.5: Mini-Chess: winning rate for four White players 

Adding the decision tree to the evaluation allows the agent to better understand a more 

complete picture of the game state. The game state with both white king and white 

rook in attacking positions is considered as of the highest value. The double attack 

features strengthen each other. It is more effective than linearly adding up the pieces 

and positions. The performance improvement over the one-step goal-search agent is 

totally the consequence of the decision tree. The one-step goal-search player extends 

the random player by using the search algorithm instead of random choice to select 

actions. The sub-goal learning player extends the one-step goal-search player by using 

the sub-goals when actual goals are not available. The decision tree learning player 
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extends the one-step goal-search player with decision tree evaluation to guide the 

search. The sub-goal learning and decision tree learning are two different machine 

learning algorithms. Figure 6.5 shows the winning rate of four types of White players 

based on 1000 matches each. 

Connect Four (Figure 3.4B) 

The sub-goal identification process concludes that taking the center positions such as 

(4, 3), (4, 4), (3, 3), (5, 3), is helpful in winning (see Figure 5.4). These sub-goals are 

consistent with human analysis that the center pieces can form more lines than border 

pieces and the fact that the Connect Four board is symmetric. We use four kinds of 

White players to compete against the random dummy Black player for 1000 matches 

in each scenario. The winning rates are given in Figure 6.6: 
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Figure 6.6: Connect Four: winning rate for four White players 

Both the sub-goal learning and the decision tree learning improved over the simple 

goal-search agent. But it is hard to tell the difference between these two learning 

methods. When looking exactly one-step ahead, both learning methods probably 

identified the same best actions. Since the purpose of the learning is to win the game, 

it makes sense for different agents to pick out the same winning actions.  

To better illustrate the difference, we set the game up so that both the decision tree 

player and the sub-goal learning player run against the one-step goal-search player. 

When facing a stronger opponent, the difference between the two learning methods is 

more visible. In 1000 simulation runs, the decision tree player wins 9% more than the 



 

 

86 

 

sub-goal player. This shows that a decision tree player is better for Connect Four than 

the one-step sub-goal search.  

Crossing Chinese Checkers (Figure 3.3C) 

Because the terminal states are the same for all matches, the sub-goal identification 

algorithm does not provide much information on how to win the Crossing Chinese 

Checkers game. The most important sub-goals are having the pieces in the target area 

which is exactly what the game rules tell us. The sub-goal learning helps improve 

performance because it provides feedback three steps ahead when the actual goals are 

within the search range. The decision tree performance is the best among the four 

players. The winning rate over 1000 matches in each scenario is shown in Figure 6.7.  

 

Figure 6.7: Crossing Chinese Checkers: winning rate for four Red (first) players 
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Farmer (Figure 3.4D) 

The Farmer game is very flexible. The game can be easily reconfigured from three 

players to two, four or more players. It can be changed from 10 iterations to 20, 40 or 

more iterations. The game dynamics change accordingly. For example, in a 

ten-iteration game, building a factory is not a good choice because the player has 

spent a significant portion of his money for the factory which does not leave much to 

buy raw materials and there is not adequate time to recoup the expense. But in the 40 

iteration game, the cost of building a factory is almost nothing compared to the 

skyrocketing price of the commodities the player can sell in the later part of the game.  

For the three-player ten-iteration Farmer game, the sub-goal identification recognized 

some basic winning factors including having a farm, not having a factory, and not 

keeping any inventory when the game ends. By setting up the same four agents for 

player Alice, and using random dummy players for Barney and Charlie, we get the 

simulation winning rate over 1000 matches in each scenario in Figure 6.8. 
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Figure 6.8: Ten-iteration Farmer game: winning rate for Alice  

The Farmer game shows that decision tree learning is applicable to play a game with 

an enormous search space. It is a step towards using general game playing techniques 

to solve large financial or social problems. 

6.2.5 Time Cost of Using Decision Tree Algorithm 

We described how we use decision tree learning to improve the agent performance in 

a multi-agent general game playing environment. The C4.5 decision tree is used to 

identify a potentially good and possibly even best action from available legal actions 

at each step. In a game state, features that amplify or diminish each other are evaluated 

as an entity. We considered four different games: Mini-Chess, Connect Four, 
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Crossing Chinese Checkers, and Farmer. The decision tree learning algorithm has 

shown improved performance in all four games over both one-step goal-search player 

and sub-goal learning player against random players.  

The agent, of course, pays an extra cost in using the heuristic evaluations. We ran the 

following experiments on a desktop PC with Intel Q6600 2.4GHz CPU, 2GB memory, 

and Ubuntu Linux 10.04. One game takes so little time to run that the overhead noise 

would be misleading and we would not get an accurate cost of using the decision tree. 

We played 100 matches and used the average execution times. This gave a good 

approximation for run-times. The decision tree player will spend more time 

evaluating the game states than the simple goal finder player for every step. By using 

the decision tree, the agent sometimes won the game earlier than the agent not using 

the decision tree. The data from the Crossing Chinese Checkers in Table 6.1, for 

example, has the goal-search using more time than the decision tree search. It is 

because the decision tree search wins with fewer steps.   

Table 6.1: Execution time comparison: goal-search versus decision tree 

Time used from 

beginning to end 

One-step 

Goal-Search 

One-step Search with 

Decision Tree 

Tic-Tac-Toe 0.02872 sec. 0.04694 seconds 

Mini-Chess 0.07871 sec. 0.12423 seconds 

Connect Four 0.36538 sec. 0.45216 seconds 

Crossing Checkers 0.22302 sec. 0.20699 seconds 

Farmer 22.220 sec. 26.632 seconds 
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6.2.6 Overfitting Concerns  

The decision tree learning algorithm considers features in one game state as a unit and 

evaluates the state weight as an entirety. Experiments showed the decision tree 

algorithm improved the winning rate significantly for small games such as 

Mini-Chess, Tic-Tac-Toe, and Crossing Chinese Checkers. However, the 

improvement generated by the decision tree learning for larger size games is not as 

clear. Our experiments were based on very limited game tree search. This allowed us 

to isolate the improvement attributable to learning algorithms from the effect of 

deeper searches. Searching more game tree nodes in the game playing certainly 

enables the machine learning algorithms to make more informed decision. 

Another challenge is that the decision tree is based on the entire game. In large games, 

the differences of the states reached by different moves in one step can be quite trivial 

compared to the whole game process. These trivial differences lead to the situation 

that several game states are classified into the same outcome bucket of a decision tree 

and therefore make it impossible to differentiate a good action from one that is not so 

good. Of course, we can always let the decision tree grow and split on more nodes. 

There always exist enough features on which to split. But it would eventually come to 

a threshold where unimportant features would be magnified so as to reach misleading 

conclusions. This small percentage of results used in the decision relative to the total 
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size of the decision space would not accurately predict the outcome. Overfitted 

decision trees do not provide good guidance for the learning algorithm, but it is not 

clear how to avoid overfitting. This is the motivation for investigating and improving 

the decision tree learning algorithm so that we can effectively solve larger problems.  

6.3 Contextual Decision Tree 

6.3.1 Decisions Bounded by Search 

Overfitting is not a simple question and there are numerous publications about 

avoiding overfitting in decision trees (Schaffer, 1993; Mingers 1989; Bramer, 2007). 

However, from the game playing perspective, the decision tree pruning would 

eliminate the trivial differences in the data. We cannot get the preference order of the 

game states. Machine learning is necessary in game playing only when the game is 

too large to be searched exhaustively. Why bother guessing with learning if searching 

the game tree provides definitive decisions to good actions? Decision making in 

game playing is always integrated with the game tree search. The search algorithm 

reveals information about the future of the game and the learning algorithm evaluates 

the searched game states and provides feedback to the search. There exists no 

decision making for the entire game but only in the context of the current search 
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range. The decision making is bound within the searched range that changes from 

step-to-step.  

Introducing contextual, or dynamic, decision trees enables the decision making 

process to function effectively within the context of the search range. It is an 

extension of the decision tree learning in the last section. When the game tree is only 

partially revealed by the search, there may exist no utility that is important in the 

entire game. By addressing the local utility in the context of the current game state 

and the current search range, the agent is able to reach pragmatic decisions in every 

step while limited by search time and space. Based on the available partial picture, 

the agent is capable of making appropriate and timely decisions given the context.  

A general game playing agent, by definition, is supposed to play a wide variety of 

different games. In order to do this, the machine learning algorithms must scale well 

as the game size grows. We propose decision making based on the context of the 

decision in order to address large complicated games. The contents in this section 

have been published (Sheng, 2011d). 

6.3.2 Building Contextual Decision Trees 

The agent's purpose for searching a game tree and evaluating the game states 

encountered during the search is to select an action that has the best potential of 
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winning. Therefore, the status of the game matters less than the differences of the 

action outcomes. Instead of observing the huge game tree as an entirety, the problem 

of picking a good action is local to the search range. The game tree is constantly 

being updated as the actions are taken. The game tree contents are also revealed by 

the search. At every step of the decision making only the portion of the game tree that 

is being searched and evaluated affects the player's choices. And only the states 

changed by actions within the search range are essential for the decision making. 

Figure 6.9 shows the concept of the state changes in the game play: 

 

Figure 6.9: State changes in game playing 

We propose building decision trees with and only with winning features that occur in 

the search range. In this approach, only new features to the game added by the 

possible actions differentiate the actions from each other. Suppose the current game 
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state S contains a group of features. The available legal actions a1, a2, ... an lead to the 

states S1, S2, ... Sn. Each of outcome states, Si, inherited some subset of features from 

S but also contain some new features of its own. These states need to be evaluated by 

the learning algorithm for their winning potentials. The feature set StateChange, 

contains the differences added by these actions, can be given as:  

StateChange = (S1-S) ∪  (S2-S) ∪   ... ∪   (Sn-S) 

The differences of the action outcomes are amplified from making a small impact 

over the entire game to making a strong impact over the action selection. The state 

values calculated from the decision tree will not be consistent from step to step. 

Instead, the state values become relative and are only meaningful to the states against 

which it is being compared. The pseudo-code of implementing the contextual 

decision tree is given in Figure 6.10. 
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1. //create decision tree based on the state changes. 

2. function makeTree(GameState currentState, List<GameState> searchedStates ){ 

3.    GameState StateChange = countChange(currentState, searchedStates); 

4.    selectedFeatures = intersection( StateChange, SUB_GOALS); 

5.    //select sub-goals included in the StateChange. 

6.    rootFeature = calculateGain(selectedFeatures, SIMULATION_DATA));//see Figure 6.1  

7.    makeTreeStructure(selectedFeatures, SIMULATION_DATA, rootFeature);  

8. //see Figure 6.1 

9.    calculateOutcome(root currentDataSet); //calculate the outcome value of the decision tree 

10. } 

 

11. //count the union of the features in all searched states. 

12. function countChange(GameState currentState, List<GameState> searchedStates){  

13.    GameState StateChange = new GameState(); 

14.    For each state in searchedStates { 

15.         For each feature in the state { 

16.            if(!currentState.contains(feature) &&!StateChange.contains(feature)) { 

17.             StateChange.add(feature);  

18.            } 

19.         } 

20.    } 

21.    return StateChange; 

22. } 

Figure 6.10: Pseudo-code for creating contextual decision tree 

Note that the contextual decision tree will not solve the overfitting problem. There 

still exists the possibility that more than one state will come out with nearly the same 

value. However, it certainly reduces such incidents and enables us to deal with large 

scale games. 

In summary, the contextual decision tree is based on the state changes that are 

covered within the heuristic search range. Random simulations as explained in 

Section 5.1.1 create the training data. The state changes are the disjoint union of the 

new features brought in by taking legal actions (Figure 6.10). 
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6.3.3 Using Contextual Decision Trees for State Evaluation 

To evaluate the effectiveness of the contextual decision trees, we compare it against 

our previous agents to isolate the benefits introduced by the contextual decision trees. 

We also compared it against other widely available agents published at the GGP 

website and against other benchmark scenarios. Finally, the costs and the benefits are 

discussed. 

6.3.3.1 Comparison with Other Learning Algorithms 

The agent using the contextual decision tree is compared among five agents that 

 take random actions; 

 search one step ahead for goals; 

 search one step ahead for goals; if goals are not in the search range, use 

sub-goal learning to evaluate the states; 

 search one step ahead for goals; if goals are not in the search range, use 

decision tree learning to evaluate the states; 

 search one step ahead for goals; if goals are not in the search range, use 

contextual decision tree learning to evaluate the states; 

A detailed agent players' description is given in Appendix E. We use Tic-Tac-Toe, 

Connect Four (with the branching factor 7 and possible positions 3
42

), Othello (with 
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the branching factor of 8-12 and possible positions 3
64

), and the three-player 

non-zero-sum simultaneous eCommerce game Farmer (branching factor ~1000) as 

benchmarks. The agent is set up to be the first player in all four games. If we had set 

up the contextual decision tree learning as the second player in the game, the 

performance improvements would be just as convincing. 

In the first column of every game in Figure 6.11, the player makes random decisions. 

In the second column, the player searches one step ahead of the current game state for 

the goals and makes random decisions when the goals are not found. The performance 

improvement is due to the goal-search. In the third column, the player uses sub-goal 

values in the one-step search. The improvement is attributable to using sub-goals to 

guide the search when the actual goals are not within the search range. This shows that 

the sub-goals are correctly identified and are helpful in winning. In the fourth column, 

the player uses decision tree learning that shows groupings of the features are more 

useful to winning than individual features. In the fifth column of each game, the agent 

uses contextual decision trees. The performance improvement, especially in 

large-size games, is attributable to considering the action results within the search 

context.  
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Performance Comparison
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Figure 6.11: Winning rate comparison of five different playing strategies 

We use the Tic-Tac-Toe game as an example to show the contextual decision tree, 

although designed to address large games, did not cause performance to deteriorate in 

small-size games. The Farmer game, with the branching factor of about 1000, is an 

example to show the contextual decision tree scales well with large-size games as we 

expected. 

For the Farmer game with 1000 simulations, the 95% confidence interval for the 

winning rate of contextual decision tree learning agent versus the random agent is 

[0.8057, 0.8322]. It is clear from the confidence interval that the contextual decision 

tree agent’s winning rate is significantly better than agents using any of the other 

strategies. Similar results hold for the other games except Tic-Tac-Toe, in which the 

contextual decision tree learning agent wins every time so the 95% confidence 

interval is not as meaningful for it. The contextual decision tree learning agent 
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showed significant improvement over the other strategies in each of the three 

large-size games.  

Limited experiments also showed that when the agent searches deeper, the learning 

algorithm benefits more. When Othello plays against the goal-search player with both 

players searching one level ahead, the dynamic decision tree wins 53% percent, a 

little better than the goal-search player. But when both player search three levels 

ahead with minimax, the dynamic decision tree player defeats the goal-search player 

64% of the time. With more nodes covered in the search range, more new features are 

introduced and more states are evaluated. The contextual decision making is more 

beneficial when provided with more information. 

6.3.3.2 Comparison with Other Widely Available GGP Players  

The GGP website maintained by Dresden University of Technology provides an 

excellent platform to test agents on a wide variety of games and play against other 

intelligent agents. In playing against other GGP players, our results can be described 

in the following three categories:  

 For single-player games, three-person prisoner's dilemma game variation, and 

Mini-Chess, our player achieved nearly a 100% winning rate. Because our 
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agent is based on feature analysis, once a feasible solution is found, the agent 

would follow the winning path in the next match.  

 For Tic-Tac-Toe like games (small-size two-player games), our agent always 

ties with the competing agent. The reason is that if both players play well, tie 

is the optimal solution for each of them, no matter who goes first. In the past 

experiments, we have not encountered even one match that did not tie 

Tic-Tac-Toe when playing against an intelligent agent. We consider this result 

as the optimal outcome of the game.   

 For more complicated games such as Connect Four or Othello, our player wins 

more when the playing interval between the steps is set shorter and wins less 

with longer playing intervals. In the game process, the playing interval is used 

for heuristic search. When both players search only a few nodes in short 

playing intervals, our agent has a better learning algorithm to differentiate the 

good actions from the not-so-good ones. In the GGP area, Monte Carlo Tree 

Search is considered by far to be the most effective searching algorithm 

(Finnsson, 2011; Gudmundsson, 2011; Méhat, 2010; Kroeker, 2011). We are 

aware that our search algorithm (minimax) is not optimal and obviously needs 

improvement but the focus of our research has been on the learning algorithms 

as opposed to the search. 
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6.3.3.3 Comparison with Human Expert Game Strategies 

All known GGP agents are still far from competing against human expert players in 

realistic matches. Being capable of playing different games legally with no human 

intervention is the benchmark that distinguishes the GGP agents from other game 

programs.  

We have already shown in Figure 5.4 that the Connect Four board position weights 

can be calculated from statistical analysis. It is known that Connect Four is a solved 

game with the first player winning (Allis, 1988). We tested a few example 

intermediate game states to see how close our GGP player’s choices would conform 

to the optimal solution that is suggested by the solved game player. Figure 6.12 

presents two examples from the solved Connect Four analysis:  

 

Figure 6.12: Connect Four: intermediate game examples (Allis, 1988) 

In Figure 6.12(a), Black is to move, and White (first player) has an odd threat (the 

group filled with the three pieces of the same color with the fourth empty square of 

that group in an odd column). According to the expert analysis, this is considered 

good for White. If Black plays column one then White wins after that, so Black 
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should avoid column one. In Figure 6.12(b), it is White’s move. There are four 

columns with an odd number of empty squares (slots). According to the solved 

Connect Four player, White is supposed to move in one of these four columns (1, 3, 

5, 7).  

The GGP agent does not have the human knowledge of the odd threat or even square 

numbers. But with the feedback from search and learning, our GGP agent correctly 

identifies taking column one in 6.12(a) and taking column two or six in 6.12(b) has 

adverse effects and avoids them. The GGP agent also identifies the first player's first 

step should be to take column four, which has been considered by the solved player 

as an optimal choice for the first step. These scenario examples show that, although 

far from competing against human experts, our GGP agent makes reasonably good 

actions in Connect Four, a game with a large number, 3
42

 (~10
20

), of possible 

positions.   

6.3.4 Time Cost of Contextual Decision Trees 

The GGP agents need to allocate the limited resources to different tasks including 

logic reasoning, game tree search, game state evaluation, and learning. The agent 

pays extra cost to use an advanced learning algorithm and a good learning algorithm 

should bring noticeable results with less noticeable costs. Because the time spent on 
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learning is not spent on the game tree search, a perfect learning algorithm that 

requires more time than the successful brute force search is still not as good as no 

learning algorithm at all. We compare the time consumption of the goal-search agent 

that does not use any learning enhancement and our contextual decision tree 

algorithm in Table 6.2. The data shows the time consumption scales well as the game 

size increases with all three games spending about 10% more time doing the learning. 

The data is based on the average of 100 simulations for each game, running on a 

desktop PC with Intel Q6600 2.4GHz CPU, 2GB memory, and Ubuntu Linux 10.04. 

Connect Four shows very little increase in game time consumption. This is due to the 

learned agent being able to win the game with fewer steps than the goal-search agent.  

Table 6.2: Execution time comparison (seconds) 

  

Goal-search  Contextual  

Normalized without Learning Decision Tree 

TicTacToe 0.23 0.257 11.70% 

Connect 4 0.737 0.746 1.22% 

Othello 0.471 0.529 12.31% 

Farmer 7.505 8.851 17.93% 

To summarize, we explained why the contextual decision tree learning algorithm is 

beneficial for large scale general games and the agent has demonstrated performance 

improvement with reasonable cost. We have provided enough details for any other 

potential GGP competitor to incorporate our learning algorithm into their agents. The 

agent uses learning to guide the search because it is a feasible choice as opposed to 
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searching the complete game tree. Our learning algorithm heuristics sacrifices the 

accuracy of complete game tree search in exchange for efficiency.  
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7 Beyond the Current GGP Framework 

GDL language enables various game definitions in the GGP framework. However, 

GDL was designed with inherent limitations. The limitation to "finite, discrete, 

deterministic multi-player games of complete information" (Love, 2005) was 

proposed to simplify the problem set to facilitate research. But as the GGP research 

developed in the past few years, the research advances have out grown the limited 

definition. There have been attempts to extend GDL to include non-deterministic, 

incomplete information games (Thielscher, 2010). We have proposed the extension to 

include coalition games. The contents in this chapter have been published (Sheng, 

2011c; Sheng, 2011e). 

7.1 Issues with the Current GDL 

Game playing is limited by time and space resources. Most games are not 

exhaustively searchable. The agents need to allocate the limited time to logic 

reasoning, game tree search, the action payoff evaluation, machine learning, and 

game states transition, etc. Logic reasoning participates in all these operations. Small 

performance improvements in the reasoning process can be greatly amplified to 
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expedite searches and learning and can therefore generate huge advancements in the 

agent's performance (see Chapter 4) 

In addition to the logic resolution data structure, we discovered how a game is written 

affects the reasoning performance as well. For example, to determine if there exists a 

line in Tic-Tac-Toe, the function can be written either as "find out all lines on the 

board, and check if one is owned by myself", or as "find out all my pieces, and check 

if any three formed a line.” The computational complexity is different in these two 

expressions. In big games, some expressions can become so computationally 

demanding that the wanted function cannot be reasonably defined.  

7.1.1 Burden of the Natural Numbers 

The Farmer game is a three-player simultaneous non-zero-sum financial game in 

which each player tries to maximize his own net worth. In a financial game with items 

to buy and sell, arithmetic addition and subtraction are used to calculate the gold 

amount. Natural numbers are not naturally as part of GDL. Instead, the arithmetic 

operations are defined as part of the game rules. Figure 7.1 is part of the Farmer game 

that defines the addition operations of natural numbers. Bold indicates the first 

definition of a function. 
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1. (number 0) //define unary relation number 

2. (number 1) 

3. ... 

4. (number 300) 

5.  

6. (succ 0 1) //define the sequential relation 

7. (succ 1 2) 

8. ... 

9. (succ 299 300) 

10.  

11. (<= (sum ?x 0 ?x) //define function addition 

12.        (number ?x)) 

13. (<= (sum ?x ?y ?z) //define recursive function addition 

14.       (succ ?x ?m) 

15.       (succ ?n ?y) 

16.       (sum ?m ?n ?z))  

Figure 7.1: Arithmetic addition defined with GDL in the Farmer game 

 

The Farmer game defines the unary relation number, and the order sequence of the 

numbers. The sum function in line 11 defines {x+0 = x}, and line 13 is the recursion 

version of the sum function. In this piece of code, only natural numbers between 0 and 

300 are defined. The addition calculation is extremely tedious. To calculate (1+299), 

for example, the game rules as defined in line 13, need to calculation (2+298) in line 

16, then (3+297) etc. After performing 300 layers of recursion, the result {(300+0) = 

300} can be calculated from the recursion base in line 11 and the stack is popped until 

(1+299) value returns. In this schema, it is not even possible to calculate (2 +300). 

Even though both numbers are defined in the game, the sum is not defined.  

Let us assume we can define such a big set of numbers that we are completely 

confident that it is enough for the game to use. In this case, let the numbers defined be 
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n, the time complexity for the number or succ function are O(n), so the recursion 

addition calculation as defined in line 13 has the time complexity of O(n
2
). A simple 

arithmetic addition operation is expected to be conducted in O(1) time. The current 

GDL structure is obviously not satisfactory in terms of computational requirements.  

7.1.2 Confusion of the Comparison 

Although natural numbers are not defined as a GDL component, they are loosely used 

in the goal definition in many games. For example, in Tic-Tac-Toe, when a player 

forms a line, it is rewarded with 100 points with the rule (<= (goal ?player 100) 

(line ?player)), and is rewarded with 0 points when the opponent forms a line. In both 

situations, the numbers were used without being defined. To pursue the desired goals, 

the agent needs to determine which goal is more desirable. For the current practice, 

agents are assuming 100 is better than 0 without any logic definitions to support it. 

In logic operations, which term is used does not affect the logic relations as long as the 

changes are consistent. Anything that is not defined as a keyword in GDL is 

substitutable. In fact, in the GGP competitions, to avoid human cheating, all the 

competition games were scrambled into random, meaningless letter combinations. 

The agent, operating correctly, can perform the same logic inference on the scrambled 
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version. As long as the logic relations are the same, the scrambled version of the game 

will be treated the same. 

Since substitution is not supposed to change the logic relations, GDL code (<= 

(goal ?player 100) (line ?player)) can be substituted to (<= (goal ?player sss) 

(line ?player)) as long as all the definitions and usages of the constant 100 are 

substituted with sss universally. In many games, 100 (or 0) is used without definition. 

Although the numerical goal rewards have never been scrambled in the past 

competitions since they are used as regular logic symbols, they are not defined as 

keywords and are subjected to the scramble operation just like any other symbol. Now 

the agent is facing a logic resolution loophole: is the goal sss more desirable than the 

goal ttt? 

In some situations where the players are given partial credit, such as moving four 

pieces into the designated place and getting 25 points for each piece, it is not possible 

to choose one goal over another without knowing the values of the goals. 

To define the goals more rigorously, the game needs to define unary relation number 

as in Figure 7.1. It also needs to define a greater function for the agent to compare the 

value of 100 and 0. The agent can order all the goal definitions and determine which 

one is most desirable. Only in this way, can the agent calculate the partial credit for 

completing partial tasks.  
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7.1.3 Challenge of Infinity 

The finite set of natural numbers is hard enough for GDL to handle. When the content 

of the game element involves an infinite set, the existing structure faces new 

challenges. In the Farmer game, the market price of each commodity automatically 

increases with the inflation factor at the end of every iteration as time goes by. 

Suppose the inflation factor is 10% of the current price. Then the wheat price with no 

transaction influence is 4 gold pieces in the first step, 4.4 in the second, 4.84 in the 

third, 5.324 in fourth, and so on.  

In GDL, it is still possible to define the natural numbers or a subset of real numbers by 

defining the computational elements, such as the carry flag, the borrow flag, the 

negative sign, etc. But for the real number infinity set, there does not exist a 

reasonable way to describe such a scenario.  

We can go on with the limitations of GDL and how to better use it to define an infinite 

set by proposing a overflow threshold just like all computer systems do. But the 

discussion of how to define more powerful scenarios within GDL misses the point. 

GDL structure is for accommodating heterogeneous games in one multi-agent system 

for the player agents to play. Re-writing of these computer games with GDL is not 

only cumbersome but also not necessary.     
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7.2 Extension Implementation 

GDL describes the basic game elements such as game initialization (keyword init), 

state transition (keyword next), legal actions (keyword legal), game roles (keyword 

role), game goals (keyword goal), game termination (keyword terminal), etc. 

Researchers have written about 40 games with more than 200 variations with GDL.  

GDL was never meant to be a closed system. There have been efforts to extend GDL 

to describe new groups of games. New keywords sees and random were introduced in 

order to add incomplete information games (Thielscher, 2010). New keywords 

message, receive, send, time were added to describe market trading scenarios 

(Thielscher, 2009b). Adding new keywords and a new group of games to the GGP 

family certainly enriches this area. However, the process can be generalized in a 

manner that makes new game definitions much easier, simpler, and clearer.  

We propose adding the keywords include and use into GDL. Just like importing 

packages in the Java language, or including the header files in C++, the include 

keyword in GDL serves as an interface allowing area specific definitions and 

functions to be shared and quoted without affecting the generality of GDL. The 

include keyword serves as the information facade that bridges the game logic 

representations described with GDL and the area specific contents. The keyword use 

is to call external functions with parameters.  
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The major contribution of the extension is that an existing game does not have to be 

completely re-written into GDL for the general game player to play. A game does not 

have to be written in one computer language either. Certain game information (see 

Section 7.5) can be defined and calculated in the user's favorite programming 

languages and passed back and forth through a command line interface.  

We now use the piece of code in Figure 7.1 of the Farmer game again as an example 

for how arithmetic can be introduced with the include interface. Suppose the market 

price for wheat is 4 now and the price rises 10% for every iteration. Alice wants to 

know how much the price will be six iterations later. The rules in the Farmer game 

need three arithmetic functions: add, exponential, and multiply. Suppose the three 

functions are written in Java, C++, and Lisp, respectively. The pseudo-code of the 

GDL extension is given in Figure 7.2.  
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Figure 7.2: Pseudo-code for extending GDL to call external resources 
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1. ----------------- Code written in GDL  --------------- 

2. include mathFromJava http://server/app/math1.jar 

3. include mathFromCpp http://server/app/math2.exe 

4. include mathFromLisp http://server/app/math3.lsp  

5.   

6. use mathFromJava (java research.ggp.MathApp) 

7. mathFromJava (add ?p1 ?p2 ?p3) //call Java jar through command line parameters 

8.  

9. use mathFromCpp (math2.exe) 

10. mathFromCpp (exponential ?p1 ?p2 ?p3) //call C++ executable through command line  

11.  

12. use mathFromLisp (load math3.lsp) 

13. mathFromLisp (multiply?p1 ?p2 ?p3) //call Lisp executable through command line 

14.    

15. <=(inflation ?oldPrice ?rate ?step ?newPrice) 

16.   (add ?rate 1 ?inflation) // inflation rate is 1+10% 

17.   (exponential ?inflation ?step ?totalRate) 

18.   (multiply ?oldPrice ?totalRate ?newPrice) 

19.  

20. //-------Code written in GGP agent for parsing-------- 

21. Concatenate use sentence into command line with known parameters assignments, e.g. 

concat line 6 and line 7 into (java research.ggp.MathApp add  10% 1 ?p3) 

22. Process result list as returned by standard output 

23.  

24. //-----------Code written in Java------------------------ 

25. package research.ggp  //java code 

26. class MathApp{  

27. public static void main(String[] args) { 

28.   switch(args[0]) {//function selection 

29.      case "add": add(args); break; 

30.      case "function2": function2(args);break; 

31.      case "function3":function3(args); break;} 

32. }//end of main 

33.  

34. static void double[] transform(String[] args){ 

35. //parse the arguments into an array with proper type. 

36.   for(int i=0; i<args.length;i++){ 

37.     result[index] = doubleValueOf(args[index]);} 

38.   return result; 

39. } 

40.  

41. static void function add(String[] args) { 

42.   double ps[] = transform(args); 

43.   out.println("%s %s %s %s", ps[0], ps[1], ps[2], ps[1]+ps[2]); }//send result to standard 

output, where the GGP agent collects results. (add 3 5 ?p3) will return (add 3 5 8) 

44. }//end of class 

45.  

46.  //-------Code written in C++ -------- 

47. //omit function selection and parameter list parse 

48. void exponential(char *argv[]) { 
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49.   double ps[] = transform(char *argv[]); 

50.   cout <<ps[0]<<" "<<ps[1]<<" "<<ps[2]<<" " ps[1]^ps[2] << endl; } 

51.   

52. //-------Code written in Lisp-------- 

53. //omit function selection and parameter list parse 

54. (defun multiply(args) 

55.   (setq result (* (second args) (third args))) 

56.   (remove '?p3 args) 

57.   (append args (list result))) 

 



 

 

116 

 

The pseudo-code shows a straightforward example of how to include and use the 

external resources in different computer languages. The GDL code (lines 1-19) is 

available to all players. The executables of different languages are available at some 

public URL for all players too. Depending on the programming languages that the 

GGP agents use, the agent needs to add additional keyword parsing ability to parse 

include and use, just as it parses other keywords. The GDL code needs to be parsed 

into a command line to call the public executables with parameters (line 21). The 

parsing process assigns values to known parameters, and concatenates them into a 

command line to call the target executables. The parsing schema is independent of the 

language in which the GGP agent is written or the language in which the executable is 

written. The agent collects standard output as the results returned (line 22). When 

calling the executables, not all parameters need to be instantiated (e.g. line 21). The 

undecided parameters' value will be filled by the external calculation. When there are 

multiple assignments of the parameters, the external functions can be called multiple 

times, each time with one assignment list.  

Instead of defining the numbers, the number sequence, and number addition as in 

Figure 7.1, the add function is not defined in the game rules. GDL uses the include 

keyword to refer to a foreign resource and pass three parameters (two instantiated) 



 

 

117 

 

with the use keyword.  The same calculation that took O(n
 2

) time in Figure 7.1 can 

be done in O(1) time now.  

The foreign resource can be a shared file, a URL, or a database library. It is accessible 

by all players. The foreign data structure can be a list of facts, functions, or 

calculations. We have tested Java, C++ and Lisp. The same experiments can easily be 

done in other programming language(s) as well. The area of specific knowledge can 

be game related such as resource utilization or, more generally, eCommerce or a 

social scenario.  

Note that the GGP agent does not need a corresponding compiler to invoke the 

executables. Only the running environment for the executables needs to be set up, just 

like .exe on Windows, or bash on Linux. Additional steps need to be taken for cross 

platform implementation such as data transfer from Windows to Linux, or to Mac, etc. 

In the future, the executable invoking process can be generalized into a more 

universal solution such as using web services or cloud computing. 

To summarize, as long as the parameters can be passed back and forth through the 

information façade, the game functions can perform the query to complete the logic 

resolution. Where the data are stored and how the data are organized are not GDL's 

concern any more. 
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7.3 Impact of the Extension 

The modifications and extensions of GDL broaden the GGP area and raise the set of 

potential applications to a new level. GDL is sufficiently expressive to model many 

relations. However, the fact that GDL is capable of describing many real world 

scenarios does not mean it can be done in a concise or effective manner and it 

certainly does not help or force the game designer to do so in a reasonable manner. 

Section 7.1.1 is an example of a tedious definition of a small group of natural numbers 

and addition operations. When it comes to the game goal determination or infinite real 

number calculations, the existing GDL structure is hindering rather than enabling new 

games being brought to the general game playing field. Since there exist arithmetic 

libraries described in other computer programming languages, redefining everything 

again in GDL not only adds little values to the GGP system, but also is discouraging 

people from turning to the GGP system for problem solving. The include and use 

keyword would introduce the arithmetic library and thereby make additional games 

possible in the GGP. With the new keywords include and use available to open the 

interface with other languages, existing information or data from other domains can 

be easily hooked to the GGP engine. 
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7.4 Extension Application to Coalition Games 

The external information provided via the include and use keywords is used only for 

the knowledge resolution and reasoning process within the game description. 

Different game agents are given the same game to play; therefore the same external 

functions to use. The logic resolution performance will be improved in a way that 

shifts from "how the game is written" to "what the game is about.” But the decision 

making and agents’ performance are still completely determined by the game playing 

algorithms.  

At the beginning of the Section 7.2, we mentioned that the GDL extension would 

benefit market-trading economic and incomplete information games. Coalition games 

are another important area of game playing research that would benefit from the GDL 

extension.  

7.4.1 Coalition Games  

A coalition game with transferable utility is defined as (N, v), where N is finite set of 

players;  v : 2
N
→ R associates with each subset S⊆ N a real-valued payoff v(S)  

(Leyton-Brown, 2008). The inherent payoff calculations in coalition games strongly 

motivated and essentially required that the calculations be defined in the GDL 

extension rather than directly in GDL. 
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There have been multi-player games that require playing in groups in the GGP area. 

The six-player 3D Tic-Tac-Toe (see reference Tic-Tac-Toe 3D 6-player) requires 

players to play in groups of three. Each player picks the coordinate value in one 

dimension. The three dimensions picked by the three players determine the final 

position of the piece. The four player Othello (see reference Othello 4-player) game is 

similar. Four players are divided in groups of two, with each player picking one 

coordinate. Unlike these two games that are played in groups, coalition games require 

that each agent can play the games both by itself and in groups. There have not been 

any published coalition games in GGP.  

The extension of GDL makes describing coalition games possible. Using the extended 

GDL, we can explore more realistic economic and societal problems. The focus of 

this section is not a study of the coalition games as such, but an example of the use of 

the GDL extension in coalition games. The results show our extensions generated 

reasonable results for an eCommerce coalition game. 

7.4.2 Coalition Farmer Game 

The Farmer game contains a simplified skeleton of manufacturer financial activities 

and elements of the stock market (see Section 3.4). The Farmer game opens the 
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possibility of using the general game playing techniques to explore and perhaps even 

solve skeletal real world financial or social problems.  

The current Farmer game is defined as a win-or-lose game. The player that ended up 

with the most money at the end of the game wins with 100 points awarded. If the 

player owns the same amount of money as another player, or less money than another 

player, he loses with zero points awarded.  

However, the nature of the Farmer game is indeed an eCommerce game with financial 

achievements. In a more realistic scenario, when three players started with the same 

amount of money and face the same market rules, they do not have to become the 

richest among the three to be rewarded. The amount of money the player owns is the 

real reward. How much the player earned during the process matters. The player 

would be happier with 100 gold pieces and finishing in second place, than with 60 

gold pieces and finishing in the first place. The metrics of winning is different in 

reality.  

In addition to the amount of gold pieces earned, the three players can be more 

cooperative than competitive. In the open market setting with a fixed inflation number, 

buying a small amount in each step, holding till the end of the game, then selling 

together at the last step can be an easy solution for all three players to get rich. This is 

because pushing the price high every step with a purchase action benefits all players. 
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In a coalition scenario like this, the goal is not beating the other players anymore, but 

to maximize the net worth of the entire coalition, without severely punishing any 

individual players of course.  

 

The Farmer game can be rewritten into a coalition game with the GDL extension 

where the performance metrics is the total money earned by the three players together. 

The current inflation factor in the Farmer game is set to one gold every iteration for 

simplicity. If the step-wise inflation is re-defined as 10% of the current price, there 

exists no reasonable way in the current GDL framework to describe such game factors 

without forcing the proposed extension of importing external libraries. The extension 

is not only convenient, but also necessary to define practical, realistic, and applicable 

coalition games in GGP. 

 

 

Figure 7.3: Normal distribution of the amount of the money the players made in 

different scenarios. Based on 1000 matches each. (A) is gold pieces earned by 

player Alice; (B) is the total gold pieces of all three players; (C) is the collective 

results of player Alice and Barney.  
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With the extension of GDL, we added the gold pieces from each of the players to get 

the total gold pieces earned by the three players for a coalition game. When each of 

the three players is trying to make their own best net worth (individually and 

collectively), the total value of the game (number of gold pieces as presented on the 

X-axis in Figure 7.3) increases with more cooperation.  

We analyzed four experimental scenarios of the Farmer game with 1000 simulations 

each. In Scenario 1, an intelligent GGP agent Alice plays against random dummy 

players Barney and Charlie. Alice is using the contextual decision trees. Alice earns 

almost twice as much as Barney or Charlie that shows the value of the intelligent 

agent. In Scenario 2, both Alice and Barney are using intelligent decision making for 

actions while Charlie remains a random player. Here both Alice and Barney earn 

twice as much as Charlie and Alice increases her earning over her earnings in 

Scenario 1.  Scenario 3 has all three players using intelligent agents to make 

strategic decisions to maximize their individual income. In Scenario 3 both Alice 

and Barney improve their earnings over Scenarios 1 and 2 where they were the only 

one or two, respectively, trying to optimize their earnings.  Scenario 4 has Alice 

and Barney in a coalition playing against the intelligent player Charlie. Compared to 

the Scenario 3, Alice and Barney both focus on maximizing the sum of their 
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collective earnings. It turned out by working in coalition, the individual player’s 

earning, the coalition earning, and the three players’ total earning all increased.  

The obvious observation is that when the individual players get better, the total 

income of the group increases (Figure 7.3B).  In addition, if we single out Alice's 

income in the three scenarios, it is notable that as the other players are getting more 

capable, the income of Alice increases instead of decreases (Figure 7.3A). Such 

observations verify that it is possible to pursue the player's own interest without 

hurting other players in the Farmer game and therefore the Farmer game is more 

cooperative than competitive. We showed that, for this game, maximizing an 

individual agent's payoff actually improves the total payoff.  

To make it a more truly coalition game, we rewrite the Farmer so that “winning” 

requires the collective net value must be at least some number of gold pieces. We 

have learned from previously playing of the game in the Scenario 2 with the 

intelligent Alice and Barney versus random Charlie that the average collective 

income of Alice and Barney is 40 gold pieces (Figure 7.3C). So if the total of Alice 

and Barney is above the average 40, it is considered a coalition win for both players. 

In the new coalition game design, when we apply the same sub-goal identification 

algorithm, a different set of features and weights were identified to guide the game 

tree search. For example, the action group sell inventory together is identified as 



 

 

125 

 

important, because the price drops after each selling action so the inventory is 

devalued by another player's selling action. When Alice and Barney are cooperating 

in Scenario 4, the coalition income exceeded the addition of the individual income in 

Scenario 3. 

To summarize, the GDL extension enables complex payoff distributions and 

therefore allows the new coalition version of the Farmer game, in which each of the 

three or more players can have their own strategy or a group strategy. The players can 

play individually to determine how much they can win, or in coalition with the 

definition of winning for the game being the collective winnings of any given 

coalition. Scenario 4 in Figure 7.3C gives the results of Alice and Barney coalition 

when they are actively cooperating to maximize the sum of their winnings. Scenario 4 

provides the highest winnings for any of the examined renditions of the 10 iteration 

Farmer game. The collective achievements do not necessarily conflict with 

individual payoffs. Depending on the games rules, there exist situations where 

maximizing collective payoffs would strengthen individual payoffs and vice versa.  

7.5 Benefits and Concerns 

Since the emergence of the GGP area, the focus of the research has been on how to 

build a good agent. Yet this chapter discusses how to incorporate more GGP games 
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into the GGP research. The GDL extension opens the door for extending the GGP 

into new, realistic, coalition eCommerce applications. The coalition Farmer game is 

an example of using the modifications and extensions of GDL. The coalition games 

broaden the GGP research area as we study how the dynamics change from 

competitive to coalition games. Fresh insights will be gained in both the specific 

games and GGP.   

In GGP games, the logic knowledge can be divided into static information that does 

not change from the beginning to the end of the game (e.g. the board adjacency) and 

dynamic information that changes from step to step. With the GDL extension, 

theoretically, only game elements such as the game state, player's role, goals, state 

transition, legal actions, etc. need to be defined in GDL and all other computational 

intensive functions can be imported from or defined in the user’s favorite languages. 

However, the time spent passing parameters back and forth is considered game time 

cost as well. Most static information can be defined outside GDL with the expectation 

of improving performance since the parameters are only passed once. The arithmetic 

calculations that have extremely high cost within GDL should be defined outside 

GDL. The minor or moderate calculation that demand frequent changes as the game 

state changes need to handled with caution. It is up to the game writers’ judgment to 

determine if keeping the function definition in or outside GDL is more efficient.  
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It is possible that certain GGP agents in the field today will be affected by the 

extension and lose their advantage in competitions. In fact, the annual GGP 

competition does not have to implement the proposed extension, as long as the 

researchers do not mind writing every new game with GDL for the competition. But 

the GDL extension proposed in this dissertation allows people to contribute to the 

GGP area without being experts in GDL. Therefore, it would give agents access to 

more games outside of GDL and hence attract more people into the GGP area in the 

long run. As GGP agents become more powerful and with this GDL extension, GGP 

agents may contribute to solutions in diverse domains.  

The purpose of extending GDL goes beyond number calculation and even beyond 

introducing coalition games. It is the first step of setting up a system in which an 

existing game written in other programming languages does not need to be completely 

rewritten into GDL to let the GGP agent play. We believe as long as the basic game 

elements such as initial state, player's role, legality, state transition, and goals are 

re-defined in GDL, a new game can be added to the GGP family without importing 

the data relations, computations, and storage.  
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8 Summary 

In summary, we presented five pieces of research contributions: the general game 

playing agent that plays a wide variety of games, the knowledge reasoning algorithm 

to improve the agent's performance, the run-time feature identification algorithm to 

dynamically analyze winning features in different games, the automated decision 

making algorithm based on the game context, and the GDL extension to enrich games 

allowed in the GGP domain. Each contribution has been published.  

Creating a general game playing agent that does not assume any specific game 

elements (such as boards or pieces), but plays solely based on the logic relations in a 

given game attacks the general intelligence problem which is appealing to many AI 

researchers. The games we discussed in this dissertation  provide examples for our 

explanations. The GDL definition limits the games to "finite, discrete, deterministic 

complete information games" to simplify the problem for early progress (Love, 2005). 

But new game categories have been added to GDL to expand the research scope.  

There are limitations on the kind of games that our agent can effectively learn in order 

to improve playing performance. Because the useful learning data are gathered only 

from random playing of games that end in a win and games like Chess or Go seldom 

terminate during random play, it is practically impossible to collect a large enough 
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training set for data analysis for these games. Theoretically, our game agent is able to 

improve in almost all cases that it is able to get an effective training set. Farmer, with 

the branching factor of 1000, is a good example showing our learning agent can play 

and improve performance in complicated games, although the playing result is still far 

from being optimal. 

In addition to our decision tree learning algorithm, there are three other learning 

algorithms in the GGP field. Each has certain limitations of not being effective on 

certain kinds of games because of the inherent design of its learning (Section 3.2). Our 

decision tree learning algorithm has practical concerns to play certain games, but does 

not have inherent design barriers; i.e. given enough resources to gather a large enough 

training set, it can play any game written in GDL. We also discussed other attempts to 

improve the learning algorithms such as active learning or reinforcement learning. 

These attempts sacrifice the generality in exchange for efficiency (Section 5.1). That 

diverts from the focus of our GGP research.  
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9 Future Work 

The general game playing attacks the general intelligence problem on which AI 

researcher have found difficult to make progress for the last several decades. It 

includes comprehensive AI topics like knowledge reasoning, planning, search and 

learning. Although GGP has drawn considerable attention and has developed 

vigorously over the last few years, this area is still in its infancy.  

9.1 GGP Definition 

Because strategic game playing has been a computer science exercise with relatively 

few real world applications, it is natural to consider GGP as a more advanced layer of 

game playing on the same academia level. But GGP has a potential to develop into a 

general problem analyst and a general problem solver. We understand game play as 

an instant reward system where people can get timely feedback for actions taken. By 

introducing more games into this framework, the players may become capable of 

solving real problems. The GDL extension proposed in Chapter 7 is an important step 

to add new game categories to the area. We plan to investigate other coalition games 

and formalize GDL extension with more examples. We would like to extend the 
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eCommerce game to four players with two players in each coalition, use multiple 

units of commodity inventory and utility transfer to test how the GGP agent will work.  

At the beginning of GGP (2005), the games were limited to "finite, discrete, 

deterministic complete information games" to simplify the problem for early progress 

(Love, 2005). In the recent workshops, many researchers have agreed arithmetic must 

be part of the GGP. Beyond that, different areas may need different elements for 

domain specific problems. The existing game agents need to evolve as the game 

specification moves forward. Certain techniques such as rule analysis or tree search 

may not apply to new general physics games or new general video games. Broadening 

the scope of general game playing, designing a broader problem specification 

language, and building agents capable of solving general problems in different 

categories, is very interesting and a natural next step. 

9.2 GGP Competition 

In the GGP competition set-up, agents are given minutes for game preparation and 

seconds for each step. Such game playing configurations make it very difficult for 

learning algorithms to gather enough training data from which to learn. That is one 

reason GGP research has primarily focused on search improvements rather than 

learning improvements.  
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To encourage research in GGP machine learning, the annual GGP competition at 

AAAI and IJCAI is considering splitting into different tracks in the future. In the 2011 

IJCAI workshop on general game playing, Nathan Sturtevant, Michael Thielscher, 

Daniel Michulke and I discussed changing the competition configuration so that 

players specialized in learning can compete. We agreed that minutes or even hours of 

game preparation time is too short for agents to collect meaningful data from which to 

learn. The agent specializing in learning should be given weeks or months of game 

preparation time to play against other players specializing in learning. The first 

attempt for a separate track designed for the GDL extension to incorporate 

non-deterministic, incomplete information games was held in Germany in October, 

2011. 

Selecting games for the GGP competition is another challenge. It is not surprising to 

see agents that are good at some games but not good at others.  Recent competitions 

last less than a week. If a player encounters a bad game type, it will be dropped out of 

the competition early. It may be better to have the GGP agents compete in a 

tournament rather than a single elimination but with head-to-head competition in the 

final round.  
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9.3 GGP Evaluation 

The GGP agent is a complicated project with many components (search, planning, 

learning, etc.) involved. When the player wins (or loses), it is very difficult to measure 

which piece of the agent worked (or failed). Evaluating the contribution of different 

GGP components is not addressed in the current literature.  

We propose creating dummy player skeletons into which different components can 

plug-and-play. With a new defined interface and communication protocol, a new 

component can be singled out and plugged into the dummy skeleton to play. All the 

performance changes before and after the component replacement can be measured 

and evaluated. This encourages new people to enter this area by lowering the 

threshold from building one complete agent to building and evaluating one 

component.  

Because of the lack of evaluation criteria for the GGP configurations, we created our 

own measurements in several situations (see Section 4.4, 5.4, 6.2.5, 5.3.3). Such 

measurements provided insights on how the algorithms improve the agents, but 

allocating time resources between learning and search was not explored. Monte-Carlo 

tree search has been the best GGP search algorithm so far, searching up to 1,000,000 

nodes per move (Finnsson, 2011). We talked to Hilmar Finnsson about combining 

their searching and our learning algorithms into one agent. It should be very 
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interesting to investigate how the resource allocation between learning and search 

would change as game dynamics change. Our hypothesis is that for small games, 

search can use the time better than learning, but for large games with enormous search 

space, the time spend on learning will be better invested. 

In addition to the statistical feature identification algorithm, we are investigating 

using genetic algorithms for state evaluations. Preliminary research appears 

promising.  

As the general game playing research matures, the game scope will be extended. The 

competition configuration will be improved and may be extended to separate 

competitions for search algorithms, learning algorithms, and games in different 

domains. This will allow better evaluation measurements of the various GGP 

components and more rapid improvements in GGP and therefore advance the entire 

field. General game playing is a sophisticated area with huge potential.   
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APPENDIX A 

 

General Game Playing Example Game List 

 

1. Blocks: Move three bricks around so that they are line up vertically. 

2. Buttons:  Three buttons (a, b, c) and three lights (p, q, r). Press the buttons to turn 

all lights on. 

3. Endgame: White king and rook against black king on regular Chess board. White 

must checkmate within 16 moves (Figure 3.3D). 

4. Maze: The maze contains four interconnected cells. Robot is in A and Gold in C. 

The robot can move, grab, or drop. The goal is to get the gold to the beginning cell A 

(Figure 3.3A).  

5. Mini-Chess: Small size Chess on a 4 by 4 board. White with one king and one rook 

play against Black king. White must checkmate within ten steps to win (Figure 3.4A). 

6. Rock-paper-scissors: Roshambo is another name for Rock, Paper, Scissors. Also 

known as Scissors, Paper, Stone. A game of randomness.  

7. Tic-tac-toe: Try to line three Xs or three Os. (Figure 3.3B).  

8. Simultaneous Tictactoe: Both players go at the same time. If both tried to mark the 

same cell, the cell remains empty. 
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General Game Playing Example Game List 

 

9. Chess: regular Chess 

10. Blocker:  Simultaneous game on a 4 by 4 board. One player is trying to block the 

other player from creating a path from the left to right.  

11. Connect Four: Classic Connect Four on 6 by 7 board for White and Black players 

to line up four pieces (Figure 3.4B). 

12. Farmer: Three players move simultaneously, trying to make money by buying and 

selling farms, factories, and commodities (Figure 3.4D).  

13. Eight-puzzle: Single-player eight-puzzle game. The player slide blocks (tiles) to 

get all the numbers to their correct positions. 

14. Simultaneous Wall-maze: A maze game in which players make simultaneous 

moves. If the moves collide, all players stay where they were.  

15. Guess: One player tries to guess a number, the other responds higher or lower 

accordingly. The responder may change his number, as long as the new number is 

consistent with his earlier responses. 

16. Tetris: A move-based Tetris with no piece rotation. The player tries to line up the 

pieces into lines.  
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General Game Playing Example Game List 

 

17. Connect Four variation: Connect Four on eight by eight horizontal board. Players 

can put his pieces on any place of the board. 

18. Othello: it is also called Reversi. Players can flip the opponent's pieces. The player 

with more pieces on the board at the end of the game wins (Figure 3.4C). 

19. Pancake: The player is a cook at a short order diner, and wants to flip pancakes 

into the shape of a pyramid.  

20. Nothello: The opposite of Othello. The players with less pieces on the board wins. 

The board is changed with corners cut off. 

21. Peg Jumping: Every peg jump removes a peg. The goal is to remove all pegs, but 

leave one in the center. 

22. Chinese Checkers variation 1: Small Chinese Checkers with one player. 

23. Crossing Chinese Checkers: A simplified version of Chinese Checkers (Figure 

3.3C).  

24. Three-player Checkers: three players trying to move or jump to the other end of 

the Checkers board.  
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General Game Playing Example Game List 

 

25. Circles Solitaire: remove all circles on a board (graph).  

26. Hallway walking: The board is a simplified corridor with only horizontal walls. 

Players walk across the board to the other end.  

27. Racetrack: A simultaneous-play corridor variation. The goal is to place walls to 

impede the opponent in a race to the end. 

28. Queens: Eight-Queens problem on Chess board. 

29. Four-player Othello: Four players divided in two groups. Each picks one 

coordination for the Othello move.  

30. 3D Tic-Tac-Toe: Six players divided in two groups. Each picks one coordination 

for the 3D Tic-Tac-Toe move.  

31. Breakthrough: Two players begin with 16 pieces each on a eight by eight board, 

trying to reach the other side of the board while blocking the opponent. 

32. Hanoi:  Towers of Hanoi 

33. Catch me if you can: three players on seven by seven board. If one player catches 

the other, he gets one point. The game ends in 31 steps and the highest score wins the 

game.  
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General Game Playing Example Game List 

 

34. Two-player normal form: The three by three version of prisoner's dilemma. Two 

players make simultaneous moves. One pick the horizontal value, the other pick the 

vertical value.  

35. Beat Mania: a revision of Tetris. The dropper drops items from the top of a 30 by 

three well for 30 times, the catcher scores for every successful catch.  

36. Coins: Single-player game. The board has eight cells. Each cell has a coin in it. 

The player moves the coins around, or jumps over the coins.  

37. Six-player Checkers.  

38. Double Tic-Tac-Toe: players move alternatively on two boards.  

39. Fire fighter: Fire changes the maze layout.  

40. Farmer with 20 iterations.  
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APPENDIX B 

Full Tic-Tac-Toe Game Description in GDL (Love, 2005) 

 

Note that lines beginning with ; (semicolon) are comments. 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Tictactoe 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Roles 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(role x) 

(role o) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Initial State 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(init (cell 1 1 b)) 

(init (cell 1 2 b)) 

(init (cell 1 3 b)) 

(init (cell 2 1 b)) 

(init (cell 2 2 b)) 

(init (cell 2 3 b)) 

(init (cell 3 1 b)) 

(init (cell 3 2 b)) 

(init (cell 3 3 b)) 

(init (control x)) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Dynamic Components 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Cell 

(<= (next (cell ?x ?y ?player)) 

(does ?player (mark ?x ?y))) 

(<= (next (cell ?x ?y ?mark)) 

(true (cell ?x ?y ?mark)) 

(does ?player (mark ?m ?n)) 

(distinctCell ?x ?y ?m ?n)) 
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Full Tic-Tac-Toe Game Description in GDL 

 

;; Control 

(<= (next (control x)) 

(true (control o))) 

(<= (next (control o)) 

(true (control x))) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Views 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (row ?x ?player) 

(true (cell ?x 1 ?player)) 

(true (cell ?x 2 ?player)) 

(true (cell ?x 3 ?player))) 

(<= (column ?y ?player) 

(true (cell 1 ?y ?player)) 

(true (cell 2 ?y ?player)) 

(true (cell 3 ?y ?player))) 

(<= (diagonal ?player) 

(true (cell 1 1 ?player)) 

(true (cell 2 2 ?player)) 

(true (cell 3 3 ?player))) 

(<= (diagonal ?player) 

(true (cell 1 3 ?player)) 

(true (cell 2 2 ?player)) 

(true (cell 3 1 ?player))) 

(<= (line ?player) (row ?x ?player)) 

(<= (line ?player) (column ?y ?player)) 

(<= (line ?player) (diagonal ?player)) 

(<= open (true (cell ?x ?y b))) 

(<= (distinctCell ?x ?y ?m ?n) (distinct ?x ?m)) 

(<= (distinctCell ?x ?y ?m ?n) (distinct ?y ?n)) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Legal Moves 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (legal ?player (mark ?x ?y)) 

(true (cell ?x ?y b)) 

(true (control ?player))) 
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Full Tic-Tac-Toe Game Description in GDL 

 

(<= (legal x noop) 

(true (control o))) 

(<= (legal o noop) 

(true (control x))) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Goals 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (goal ?player 100) 

(line ?player)) 

(<= (goal ?player 50) 

(not (line x)) 

(not (line o)) 

(not open)) 

(<= (goal ?player1 0) 

(line ?player2) 

(distinct ?player1 ?player2)) 

(<= (goal ?player 0) 

(not (line x)) 

(not (line o)) 

open) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Terminal 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= terminal 

(line ?player)) 

(<= terminal 

(not open)) 
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APPENDIX C 

Full Othello Game Description in GDL 

 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Roles 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(role white) 

(role black) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Initial State 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(init (cell 1 1 green)) 

(init (cell 1 2 green)) 

(init (cell 1 3 green)) 

(init (cell 1 4 green)) 

(init (cell 1 5 green)) 

(init (cell 1 6 green)) 

(init (cell 1 7 green)) 

(init (cell 1 8 green)) 

(init (cell 2 1 green)) 

(init (cell 2 2 green)) 

(init (cell 2 3 green)) 

(init (cell 2 4 green)) 

(init (cell 2 5 green)) 

(init (cell 2 6 green)) 

(init (cell 2 7 green)) 

(init (cell 2 8 green)) 

(init (cell 3 1 green)) 

(init (cell 3 2 green)) 

(init (cell 3 3 green)) 

(init (cell 3 4 green)) 

(init (cell 3 5 green)) 

(init (cell 3 6 green)) 

(init (cell 3 7 green)) 

(init (cell 3 8 green)) 

(init (cell 4 1 green)) 

(init (cell 4 2 green)) 

(init (cell 4 3 green)) 
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Full Othello Game Description in GDL 

 

(init (cell 4 4 white)) 

(init (cell 4 5 black)) 

(init (cell 4 6 green)) 

(init (cell 4 7 green)) 

(init (cell 4 8 green)) 

(init (cell 5 1 green)) 

(init (cell 5 2 green)) 

(init (cell 5 3 green)) 

(init (cell 5 4 black)) 

(init (cell 5 5 white)) 

(init (cell 5 6 green)) 

(init (cell 5 7 green)) 

(init (cell 5 8 green)) 

(init (cell 6 1 green)) 

(init (cell 6 2 green)) 

(init (cell 6 3 green)) 

(init (cell 6 4 green)) 

(init (cell 6 5 green)) 

(init (cell 6 6 green)) 

(init (cell 6 7 green)) 

(init (cell 6 8 green)) 

(init (cell 7 1 green)) 

(init (cell 7 2 green)) 

(init (cell 7 3 green)) 

(init (cell 7 4 green)) 

(init (cell 7 5 green)) 

(init (cell 7 6 green)) 

(init (cell 7 7 green)) 

(init (cell 7 8 green)) 

(init (cell 8 1 green)) 

(init (cell 8 2 green)) 

(init (cell 8 3 green)) 

(init (cell 8 4 green)) 

(init (cell 8 5 green)) 

(init (cell 8 6 green)) 

(init (cell 8 7 green)) 
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Full Othello Game Description in GDL 

 

(init (cell 8 8 green)) 

(init (control white)) 

 

;;sequential order 

(succ 0 1) 

(succ 1 2) 

(succ 2 3) 

.... 

(succ 60 61) 

(succ 61 62) 

(succ 62 63) 

(succ 63 64) 

 

;; number comparison  (recursion) 

(<= (greater ?a ?b) 

    (succ ?b ?a)) 

(<= (greater ?a ?b) 

    (distinct ?a ?b) 

    (succ ?c ?a) 

    (greater ?c ?b)) 

 

;;board coorination 

(coordinate 1) 

(coordinate 2) 

(coordinate 3) 

(coordinate 4) 

(coordinate 5) 

(coordinate 6) 

(coordinate 7) 

(coordinate 8) 

(piece white) 

(piece black) 

(direction n) 

(direction s) 

(direction e) 

(direction w) 
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Full Othello Game Description in GDL 

 

(direction nw) 

(direction ne) 

(direction sw) 

(direction se) 

(opp n s) 

(opp s n) 

(opp e w) 

(opp w e) 

(opp nw se) 

(opp se nw) 

(opp ne sw) 

(opp sw ne) 

 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Views 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;;board adjacency determination 

(<= (adj nw ?a ?b ?c ?d) 

    (succ ?c ?a) 

    (succ ?d ?b)) 

(<= (adj sw ?a ?b ?c ?d) 

    (succ ?a ?c) 

    (succ ?d ?b)) 

(<= (adj ne ?a ?b ?c ?d) 

    (succ ?c ?a) 

    (succ ?b ?d)) 

(<= (adj se ?a ?b ?c ?d) 

    (succ ?a ?c) 

    (succ ?b ?d)) 

(<= (adj w ?a ?b ?a ?d) 

    (succ ?d ?b) 

    (coordinate ?a)) 

(<= (adj e ?a ?b ?a ?d) 

    (succ ?b ?d) 

    (coordinate ?a)) 
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Full Othello Game Description in GDL 

 

(<= (adj n ?a ?b ?c ?b) 

    (succ ?c ?a) 

    (coordinate ?b)) 

(<= (adj s ?a ?b ?c ?b) 

    (succ ?a ?c) 

    (coordinate ?b)) 

 

;; determine if the pieces can form a line 

(<= (onalinep ?i ?j ?c1 ?m ?n ?c2 ?dir) 

    (true (cell ?i ?j ?c1)) 

    (adj ?dir ?i ?j ?m ?n) 

    (piece ?c2)) 

(<= (onalinep ?i ?j ?c1 ?m ?n ?c2 ?dir) 

    (true (cell ?i ?j ?c1)) 

    (adj ?dir ?i ?j ?x ?y) 

    (onalinep ?x ?y ?c1 ?m ?n ?c2 ?dir)) 

(<= (onaline ?i ?j ?c1 ?m ?n ?c2 ?dir) 

    (true (cell ?i ?j ?c1)) 

    (true (cell ?m ?n ?c2)) 

    (adj ?dir ?i ?j ?m ?n)) 

(<= (onaline ?i ?j ?c1 ?m ?n ?c2 ?dir) 

    (true (cell ?i ?j ?c1)) 

    (adj ?dir ?i ?j ?x ?y) 

    (onaline ?x ?y ?c1 ?m ?n ?c2 ?dir)) 

 

;; determine if the pieces can be flipped to the opposite color 

(<= (flippable ?p) 

    (true (cell ?x ?y green)) 

    (flip ?i ?j ?p ?x ?y)) 

 (<= (flip ?i ?j white ?m ?n) 

    (onalinep ?i ?j black ?m ?n white ?dir) 

    (opp ?dir ?odir) 
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Full Othello Game Description in GDL 

 

    (onaline ?i ?j black ?x ?y white ?odir)) 

(<= (flip ?i ?j black ?m ?n) 

    (onalinep ?i ?j white ?m ?n black ?dir) 

    (opp ?dir ?odir) 

    (onaline ?i ?j white ?x ?y black ?odir)) 

 

;;if the pieces do not need to be flipped, they are "clear" and remain the same color in the next step.  

(<= (clear ?i ?j black ?m ?n) 

    (not (onalinep ?i ?j white ?m ?n black ?dir)) 

    (coordinate ?i) 

    (coordinate ?j) 

    (coordinate ?m) 

    (coordinate ?n) 

    (direction ?dir)) 

(<= (clear ?i ?j white ?m ?n) 

    (not (onalinep ?i ?j black ?m ?n white ?dir)) 

    (coordinate ?i) 

    (coordinate ?j) 

    (coordinate ?m) 

    (coordinate ?n) 

    (direction ?dir)) 

(<= (clear ?i ?j black ?m ?n) 

    (onalinep ?i ?j white ?m ?n black ?dir) 

    (opp ?dir ?odir) 

    (not (onaline ?i ?j white ?x ?y black ?odir)) 

    (coordinate ?x) 

    (coordinate ?y)) 

(<= (clear ?i ?j white ?m ?n) 

    (onalinep ?i ?j black ?m ?n white ?dir) 

    (opp ?dir ?odir) 

    (not (onaline ?i ?j black ?x ?y white ?odir)) 

    (coordinate ?x) 

    (coordinate ?y)) 
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Full Othello Game Description in GDL 

 

;; counting the pieces on the board 

 (<= (count ?row ?column ?whitenum ?blacknum) 

    (distinct ?column 8) 

    (true (cell ?row ?column white)) 

    (succ ?column ?nc) 

    (count ?row ?nc ?rest ?blacknum) 

    (succ ?rest ?whitenum)) 

(<= (count ?row ?column ?whitenum ?blacknum) 

    (distinct ?column 8) 

    (true (cell ?row ?column black)) 

    (succ ?column ?nc) 

    (count ?row ?nc ?whitenum ?rest) 

    (succ ?rest ?blacknum)) 

(<= (count ?row ?column ?whitenum ?blacknum) 

    (distinct ?column 8) 

    (true (cell ?row ?column green)) 

    (succ ?column ?nc) 

    (count ?row ?nc ?whitenum ?blacknum)) 

(<= (count ?row 8 ?whitenum ?blacknum) 

    (distinct ?row 8) 

    (true (cell ?row 8 white)) 

    (succ ?row ?nr) 

    (count ?nr 1 ?rest ?blacknum) 

    (succ ?rest ?whitenum)) 

(<= (count ?row 8 ?whitenum ?blacknum) 

    (distinct ?row 8) 

    (true (cell ?row 8 black)) 

    (succ ?row ?nr) 

    (count ?nr 1 ?whitenum ?rest) 

    (succ ?rest ?blacknum)) 

(<= (count ?row 8 ?whitenum ?blacknum) 

    (distinct ?row 8) 

    (true (cell ?row 8 green)) 

    (succ ?row ?nr) 

    (count ?nr 1 ?whitenum ?blacknum)) 
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Full Othello Game Description in GDL 

 

(<= (count 8 8 1 0) 

    (true (cell 8 8 white))) 

(<= (count 8 8 0 1) 

    (true (cell 8 8 black))) 

(<= (count 8 8 0 0) 

    (true (cell 8 8 green))) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Dynamic Components 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (next (cell ?m ?n white)) 

    (does white (place ?m ?n)) 

    (true (cell ?m ?n green))) 

(<= (next (cell ?m ?n black)) 

    (does black (place ?m ?n)) 

    (true (cell ?m ?n green))) 

(<= (next (cell ?m ?n white)) 

    (true (cell ?m ?n black)) 

    (does white (place ?i ?j)) 

    (flip ?m ?n white ?i ?j)) 

(<= (next (cell ?m ?n black)) 

    (true (cell ?m ?n white)) 

    (does black (place ?i ?j)) 

    (flip ?m ?n black ?i ?j)) 

(<= (next (cell ?m ?n white)) 

    (true (cell ?m ?n white)) 

    (does white (place ?x ?y))) 

(<= (next (cell ?m ?n black)) 

    (true (cell ?m ?n black)) 

    (does black (place ?x ?y))) 

(<= (next (cell ?m ?n black)) 

    (true (cell ?m ?n black)) 

    (does white (place ?i ?j)) 

    (clear ?m ?n white ?i ?j)) 
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Full Othello Game Description in GDL 

 

(<= (next (cell ?m ?n white)) 

    (true (cell ?m ?n white)) 

    (does black (place ?i ?j)) 

    (clear ?m ?n black ?i ?j)) 

(<= (next (cell ?m ?n green)) 

    (does ?w (place ?j ?k)) 

    (true (cell ?m ?n green)) 

    (or (distinct ?m ?j) (distinct ?n ?k))) 

 (<= (next (cell ?m ?n ?color)) 

    (true (cell ?m ?n ?color)) 

    (true (control ?p)) 

    (does ?p noop)) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Controls 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (next (control white)) 

    (true (control black))) 

(<= (next (control black)) 

    (true (control white))) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Legal Moves 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (legal white (place ?m ?n)) 

    (true (control white)) 

    (true (cell ?m ?n green)) 

    (flip ?i ?j white ?m ?n)) 

(<= (legal black (place ?m ?n)) 

    (true (control black)) 

    (true (cell ?m ?n green)) 

    (flip ?i ?j black ?m ?n)) 

(<= (legal white noop) 

    (true (cell ?x ?y green)) 

    (true (control black))) 

(<= (legal black noop) 

    (true (cell ?x ?y green)) 

    (true (control white))) 
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Full Othello Game Description in GDL 

 

(<= (legal ?p noop) 

    (true (control ?p)) 

    (not (flippable ?p))) 

 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;;Goals 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= (goal white 100) 

    (count 1 1 ?w ?b) 

    (greater ?w ?b)) 

(<= (goal black 100) 

    (count 1 1 ?w ?b) 

    (greater ?b ?w)) 

(<= (goal ?role 50) 

    (count 1 1 ?x ?x) 

    (role ?role)) 

(<= (goal black 0) 

    (count 1 1 ?w ?b) 

    (greater ?w ?b)) 

(<= (goal white 0) 

    (count 1 1 ?w ?b) 

    (greater ?b ?w)) 

(<= open 

    (true (cell ?m ?n green))) 

;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Terminal 

;;;;;;;;;;;;;;;;;;;;;;;;; 

(<= terminal 

    (not open)) 

(<= terminal 

    (not (flippable white)) 

    (not (flippable black))) 
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APPENDIX D 

A Complete Tic-Tac-Toe Match with HTTP Communications  

 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 1554 

(START MATCH.3316980891 X 

(ROLE X) (ROLE O) (INIT (CELL 1 1 B)) (INIT (CELL 1 2 B)) (INIT (CELL 1 3 B)) 

(INIT (CELL 2 1 B)) (INIT (CELL 2 2 B)) (INIT (CELL 2 3 B)) (INIT (CELL 3 1 B)) 

(INIT (CELL 3 2 B)) (INIT (CELL 3 3 B)) (INIT (CONTROL X)) 

(<= (NEXT (CELL ?X ?Y ?PLAYER)) (DOES ?PLAYER (MARK ?X ?Y))) 

(<= (NEXT (CELL ?X ?Y ?MARK)) (TRUE (CELL ?X ?Y ?MARK)) (DOES ?PLAYER 

(MARK ?M ?N)) 

(DISTINCTCELL ?X ?Y ?M ?N)) (<= (NEXT (CONTROL X)) (TRUE (CONTROL O))) 

(<= (NEXT (CONTROL O)) (TRUE (CONTROL X))) (<= (ROW ?X ?PLAYER) (TRUE (CELL ?X 

1 ?PLAYER)) 

(TRUE (CELL ?X 2 ?PLAYER)) (TRUE (CELL ?X 3 ?PLAYER))) (<= (COLUMN ?Y ?PLAYER) 

(TRUE (CELL 1 ?Y ?PLAYER)) (TRUE (CELL 2 ?Y ?PLAYER)) (TRUE (CELL 

3 ?Y ?PLAYER))) 

(<= (DIAGONAL ?PLAYER) (TRUE (CELL 1 1 ?PLAYER)) (TRUE (CELL 2 2 ?PLAYER)) 

(TRUE (CELL 3 3 ?PLAYER))) (<= (DIAGONAL ?PLAYER) (TRUE (CELL 1 3 ?PLAYER)) 

(TRUE (CELL 2 2 ?PLAYER)) (TRUE (CELL 3 1 ?PLAYER))) (<= (LINE ?PLAYER) 

(ROW ?X ?PLAYER)) 

(<= (LINE ?PLAYER) (COLUMN ?Y ?PLAYER)) (<= (LINE ?PLAYER) 

(DIAGONAL ?PLAYER)) 

(<= OPEN (TRUE (CELL ?X ?Y B))) (<= (DISTINCTCELL ?X ?Y ?M ?N) (DISTINCT ?X ?M)) 

(<= (DISTINCTCELL ?X ?Y ?M ?N) (DISTINCT ?Y ?N)) (<= (LEGAL ?PLAYER 

(MARK ?X ?Y)) 

(TRUE (CELL ?X ?Y B)) (TRUE (CONTROL ?PLAYER))) (<= (LEGAL ?PLAYER NOOP) 

(NOT (TRUE (CONTROL ?PLAYER)))) (<= (GOAL ?PLAYER 100) (LINE ?PLAYER)) 

(<= (GOAL ?PLAYER 50) (NOT (LINE X)) (NOT (LINE O)) (NOT OPEN)) (<= 

(GOAL ?PLAYER1 0) 

(LINE ?PLAYER2) (DISTINCT ?PLAYER1 ?PLAYER2)) (<= (GOAL ?PLAYER 0) (NOT (LINE 

X)) 
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A Complete Tic-Tac-Toe Match with HTTP Communications 

 

(NOT (LINE O)) OPEN) (<= TERMINAL (LINE ?PLAYER)) (<= TERMINAL (NOT OPEN)) 

30 30) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 5 

READY 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 27 

(PLAY MATCH.3316980891 NIL) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 10 

(MARK 3 3) 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 40 

(PLAY MATCH.3316980891 ((MARK 3 3) NOOP)) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 4 

NOOP 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 40 
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A Complete Tic-Tac-Toe Match with HTTP Communications 

 

(PLAY MATCH.3316980891 (NOOP (MARK 1 3))) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 10 

(MARK 2 2) 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 40 

(PLAY MATCH.3316980891 ((MARK 2 2) NOOP)) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 4 

NOOP 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 40 

(PLAY MATCH.3316980891 (NOOP (MARK 1 2))) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 10 

(MARK 1 1) 

POST / HTTP/1.0 

Accept: text/delim 

Sender: GAMEMASTER 

Receiver: GAMEPLAYER 

Content-type: text/acl 

Content-length: 40 
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A Complete Tic-Tac-Toe Match with HTTP Communications 

 

(STOP MATCH.3316980891 ((MARK 1 1) NOOP)) 

HTTP/1.0 200 OK 

Content-type: text/acl 

Content-length: 4 

DONE 

 



 

 

165 

 

Appendix E  

General Game Playing Agent Descriptions and Experiment Set-up 

 

System Environment Configuration: 

The experiments in this dissertation were run on a desktop PC with Intel Q6600 

2.4GHz CPU, 2GB memory, and Ubuntu Linux 10.04. 

 

Intelligent Agent Configuration: 

Goal-search agent: The goal-search agent searches for the goals as defined in the 

game definition. Since most of the games are not exhaustively searchable, the search 

is bound by the game states that the agent can reach within the given time or the 

pre-defined search range. In this dissertation, the search range is defined to be one 

step ahead of the current state. If goals are in the search range, the agent will take 

actions to achieve the goals. If not, the agent takes random legal actions.  

Sub-goal learning agent: The agent searches one step ahead for goals; If the goals 

are in the search range, the agent will take actions to achieve the goals. If not, the 

agent uses sub-goal learning (Section 5.2) to evaluate the states. The learning 

algorithm calculates the state values and the agent selects the state with the highest 

value. 
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General Game Playing Agent Descriptions and Experiment Set-up 

 

Decision tree learning agent: The agent searches one step ahead for goals. If the 

goals are in the search range, the agent will take actions to achieve the goals. If not, 

the agent uses decision tree learning (Section 6.2) to evaluate the states. The learning 

algorithm calculates the state values and the agent selects the state with the highest 

value. 

Contextual Decision Tree Learning agent: The agent searches one-step ahead for 

goals. If the goals are in the search range, the agent will take actions to achieve the 

goals. If not, the agent uses contextual decision tree learning (Section 6.3) to evaluate 

the states. The learning algorithm calculates the state values and the agent selects the 

state with the highest value. 

Random Players: Random players are used to build a self-play simulation database 

(Section 5.1). They are also used when evaluating the performance of the intelligence 

player. When there is more than one player in the game, the first player is set to be the 

intelligent player that uses different learning algorithms and the remaining players are 

set to be dummy players. It uses the same reasoning engine to retrieve legal actions.  
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General Game Playing Agent Descriptions and Experiment Set-up 

 

The agent randomly selects one action in the legal action list. The purpose of using the 

random players is to create different paths of the same game and collect statistical data 

for analysis.  


