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Abstract

This paper introduces generalized skew-elliptical distributions (GSE), which include the
multivariate skew-normal, skew-t, skew-Cauchy, and skew-elliptical distributions as special
cases. GSE are weighted elliptical distributions but the distribution of any even function
in GSE random vectors does not depend on the weight function. In particular, this holds
for quadratic forms in GSE random vectors. This property is beneficial for inference from

non-random samples. We illustrate the latter point on a data set of Australian athletes.
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1 Introduction

Probability distributions that are more flexible than the normal are often needed in statistical
modeling (Hill and Dixon, 1982). Skewness in datasets, for example, can be modeled through
the multivariate skew-normal distribution introduced by Azzalini and Dalla Valle (1996), which
appears to attain a reasonable compromise between mathematical tractability and shape flexi-

bility. Its probability density function (pdf) is

T
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where ¢, denotes the pdf of a p-dimensional normal distribution centered at £ € RP with scale
matrix 0 € RP*P and ® denotes the cumulative distribution function (cdf) of a standard normal
distribution. When (1) is the pdf of a random vector Z we write Z ~ SN, (£, 9, a). The vector
a € RP controls the shape and the special case @ = 0 corresponds to the multivariate normal dis-
tribution. Despite the presence of an additional parameter, skew-normal distributions resemble
the normal ones in several ways, for instance they are unimodal and (Z — S)T O Z ¢~ X;QJ-

The kurtosis of skew-normal distributions is however bounded. Data from heavy tailed

distributions can be better modeled through continuous elliptical pdfs
Qg (2 (z-9), zeR, 2)

where ¢ € RP is the location vector parameter, {2 € RP*P is the scale matrix parameter, and g
is the pdf of a spherical distribution, that is ¢ (a) depends on a only through a”a. It follows
that elliptical densities are symmetric around their location parameters.

In order to model both skewness and kurtosis, Branco and Dey (2001) introduced skew-

elliptical distributions by means of the pdf
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where ¢ is the same as in (2) and G is the cdf of a univariate marginal pdf of g. Skew-elliptical
distributions include skew-normal ones as well as elliptical ones.

The purpose of the present paper is to analyze invariance properties of generalized skew-
elliptical distributions (GSE), a class of distributions which includes the skew-elliptical ones.
More precisely, Section 2 introduces GSE and examines their relationships with other skew
distributions in the literature. Section 3 presents a distributional invariance property of even
functions in GSE random vectors. Section 4 discusses likelihood-based inference for generalized
skew-normal (GSN) distributions. Section 5 applies the results of the previous section to infer-

ence from non-random samples, that is a set of non i.i.d. random variables. Section 6 concludes

and presents some open problems and conjectures.

2 Generalized skew-elliptical distributions

Azzalini and Capitanio (1999) defined skew-elliptical distributions by means of pdfs of the form

W-Q(QU2 (z-9) - H(@ (z-€), 2R, (4)



where g is the pdf of a spherical distribution and H is the cdf of a distribution symmetric around
0. The above class of densities includes the skew-elliptical ones (Branco and Dey, 2001). Note
also that (4) is twice an elliptical pdf at z € RP multiplied by a cdf evaluated at a linear function
of z — &. The pdf of a GSE distribution is twice an elliptical pdf at z € RP multiplied by a
function of z — £. The latter function is not necessarily a cdf and does not necessarily depend

on z only through o’ (z — ¢). More formally, we give the following definition.

Definition 1 A p-dimensional random vector Z has a generalized skew-elliptical (GSE) distri-
bution with location vector parameter & € RP | positive definite scale matriz parameter 0 € RP*P
and skewing function , if its pdf is
Zg(@ - 0) (2 0). zew, (5)
ViQl

where g is the pdf of a spherical distribution, and m satisfies 0 < w(z) < 1 and w(—2z) = 1—m(z),
Vz € RP. We write Z ~ GSE, ({,Q,9.7).

The location vector ¢ and the scale matrix €2 are not, in general, the expected value and the
covariance matrix of Z, since GSE distributions may not be symmetric with respect to £&. More-
over, they may not have finite second moments. Note also that we could write 7 (Q*I/2 (z—¢))
as m(z — &) where 7 satisfies exactly the same constraints as m, i.e. 0 < 7(z) < 1 and
n(—2z) =1—7(z), Vz € RP. Hence, the form (5) and the form

2 (2 (-0) w8, zew, (6

VIl

can be used interchangeably, see Section 4.

The skewing function 7 is flexible enough for the GSE class to include many well known
skew distributions, some of which appear in Table 1. In order to keep the presentation simple,
location vectors and scale matrices are set equal to 0 and I, respectively. In Table 1, ¢,,
Tpunwes Vp, and €, denote the p-dimensional pdf of a normal, generalized Student ¢, Cauchy,
and elliptical distribution respectively. Similarly, ®, T, .-, C, and El denote the univariate
cdf of the standard normal, the generalized Student ¢ with v} = vy + 2%z and v = v + p, the
Cauchy, and an elliptical distribution. All the distributions in Table 1 are defined on RP.

The skewing functions in Table 1 are monotone functions of their arguments, but this does
not need to hold for every GSE distribution. For instance, consider the skewing function
n(z) = ®(z — 2) defined on R, where ® is the cdf of a univariate standard normal distribution.

It readily follows that 7(z) is increasing in z only when |z| > 1/4/3.



Table 1: Some well known skew distributions belonging to the GSE family.

9(2) 7 (2)
skew-normal bp (2) ? (a’2)
skew-t Tp i (2) Tor w3 (aTz)
skew-Cauchy Yp (2) C (aTz)
skew-elliptical ep (2) El(a"z)

The skewing function 7 can also be a constant. Then it follows that 7(z) = 1/2, Vz € RP,
and the corresponding distribution is elliptical. Therefore, the class of GSE distributions
includes elliptical distributions as special cases. The skew-normal, skew-Cauchy, skew-¢, and
skew-elliptical distributions in Table 1 assume some relationship between g and w. The GSE
class, however, includes all possible combinations of elliptical distributions and skewing func-
tions. Flexibility of the GSE class in modeling skewness can be appreciated by considering
the univariate skew-¢ distribution. Its third cumulant is unbounded, as can easily be seen by
considering the pdf of the t distribution truncated at the origin, a limit of the skew-£, with v

degrees of freedom (personal communication from Donald Rubin):

Tl(v+1)/2] 2 2\ T
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This property represents an advantage of the GSE family over the skew-normal distribution

when modeling highly skewed data. Indeed, the skewness of the skew-normal distribution is
bounded, see Azzalini and Dalla Valle (1996).

GSE distributions arise in inference from non-random samples, that is sets of observations
which are not i.i.d. according to the population’s density. This happens when the value of
an observation influences its probability of being included in the sample (Copas and Li, 1997).
Under these circumstances, an observation’s distribution can be better described by a selection
model (Bayarri and De Groot, 1992):

f(z0) - w(z)

Ewzy @ % 9

where f is the pdf of the sampled population, 6 is the parameter of interest, w is a nonneg-

ative weight function and E[w (Z)] is the expected value of the random variable w(Z). The



representation of a GSE, (0,4, g, 7) distribution as a selection model is straightforward:

q (971/22)

f G0 = g w(z) =7 (Q’1/2z> , Ew(Z)] = 1/2. (8)

It follows that the multivariate skew-normal distribution is a selection model as well. Indeed,
the p-dimensional skew-normal distribution can be generated through a (p + 1)-dimensional
normal distribution, by conditioning the first p variates on the event that the last variate is
larger than its expected value. From the inferential point of view, this means that skew-normal
samples arise when multivariate normal observations are included in the sample only if a given
component of the observation itself is larger than it is expected to be. Similar comments hold
for the multivariate skew-elliptical distribution (Azzalini and Capitanio, 1999; Branco and Dey,
2001; Sahu et al., 2003), the multivariate skew-t¢ distribution (Branco and Dey, 2001; Sahu et
al., 2003), and the multivariate skew-Cauchy (Arnold and Beaver, 2000).

GSE distributions also arise in prospective studies (Weinberg and Sandler, 1991; Weinberg
and Wacholder, 1993; Wacholder and Weinberg, 1994; Zhang, 2000). Consider a random sample
Z1, ..., Zp from a p-dimensional elliptical distribution with pdf g. Let d; € {0,1},i=1,...,n,
be the observed value of a dichotomous random variable D; associated with the i-th observation,
and P (D; = 0|Z; = z;) = w(z;) . Prospective studies focus on the conditional distribution of Z;

given D; = d;. From Bayes’ theorem we get:

_9(z) 7 (=)

_9(z) - (1 =7 (z))
Er(Z)] '

[ (zildi = 0) =B (7)

[ (zild; = 1) (9)

It easily follows that 7 (—z;) = 1—m (2;) implies that f (z;|d;) is GSE. Relevant examples include

the logistic regression model:

exp (,BTZZ)
P(D;=0|7Z;=2)=—"—"—"— 10
( 2 | 1 ZZ) 1 —I—eXp (IBTZi)7 ( )
and the probit regression model:
P(D;=0Z; =z) =% (8" =), (11)

when the intercept is assumed to be equal to zero.

3 Invariance properties

Azzalini (1985) shows that if Z ~ SN;(0,1,«), then Z%2 ~ x? for any value of the shape

parameter «. This result has been generalized to the multivariate skew-normal distribution by



Azzalini and Dalla Valle (1996): if Z ~ SN, (0,9, ), then ZTQ ™17 ~ x2. A similar result holds
for skew-elliptical random vectors (Branco and Dey, 2001). A further generalization is given by
Azzalini and Capitanio (1999): if Z ~ SN,(0,Q, ), then ZTAZ ~ X;Q; when AQA = A. Genton
et al. (2001) compute moments of quadratic forms in skew-normal random vectors. The joint
distribution of several quadratic forms is examined in Azzalini and Capitanio (1999), as well
as in Genton et al. (2001). These results are related to the following distributional invariance
property (Loperfido, 2001): if Z ~ SN,(0,2, @), then the joint distribution of the products
ZiZ; (i,j =1,...,p) does not depend on the shape parameter . In this section, we show that
a similar property holds for any even function 7 (Z), i.e. a function such that 7(—z) = 7(2)

Vz € RP, of a GSE random vector Z centered at 0.

Proposition 1 If Z~ GSE,(0,Q.g,7), then the distribution of 7(Z), where T is an even

function, does not depend on the skewing function .

Proof: We derive the proof for a real-valued function 7 since the vector- or matrix-valued case is
similar and straightforward. Without loss of generality, we can assume that € = I,. It suffices

to prove that the characteristic function ¢(q) of 7(Z),

e(g) = /R e (i7(2)0) 2 () m(2)dz, g e R (12)

does not depend on 7. Let AT (A7) be the set of vectors in RP whose first component is not

negative (is negative):
At ={(z1,22,...,2p) : 21 > 0}, A" ={(z1,22,...,2p) : 21 <0} (13)
It follows that AT U A~ =RP and AT N A~ = (). Hence:

o) = [ ewlir)i2 @ m (@) dz+ [ explir(2)il2g ()7 ()

Consider now the transformation w = —z and notice that z € A* <= —z € A, the closure of

A~. Because A~ and A~ have the same measure, we have:

/ exp [i7(z)q] 2g (z) 7 (2) dz = / exp [iT(—w)q] 29 (—w) 7 (—w) dw. (14)

A+

By assumption, 7(—z) = 7(2), g(—z) = g(z), and 7(—z) = 1 — 7(2). Thus:

c(g) = 2 /A explir ()] 29 (2) (15)

which does not depend on 7. m



Corollary 1 If Z ~ GSE, (0,Q,g,7), then the distribution of ZZ" does not depend on the

skewing function m.
Proof. This is a direct consequence of ZZ" being an even function and Proposition 1. m

Corollary 2 Let Ay,..., Ay be p X p real matrices and let Z ~ GSE, (0,Q,g,7). Then the
joint distribution of the quadratic forms (ZV A\ Z, ..., ZT A, Z) does not depend on the skewing

function m.

Proof. This is a direct consequence of quadratic forms being even functions and Proposition
1.m
The following proposition presents an invariance property that will be useful for inference in

the GSE family, see Section 4.

Proposition 2 If Z; ~ GSE, (0,Q,g9,7;), i = 1,...,n, are independent random vectors and
S =31 ,22"/n, then the joint distribution of Z,"S ' Zy,..., Z,7 S Z, does not depend

on Q,w,..., T,

Proof. Without loss of generality, we can assume that € = I,. Then it suffices to show
that the joint distribution of the vector of quadratic forms (Z1S~17,,..., Z1'S71Z,) does not
depend on the skewing functions 7, ..., 7,. The following set of determinants is a function of

(z1zF,...,2,27): , ,
%z +5 o |2 8]
S| N

From elementary properties of determinants, we know that |A+yy?| = |A|(1+y? A~ 1y). Then:

1. (16)

<|Z1Z1T+S| . |Z, 2T + S|

1) =(zts'z,..., 2,157, . (17)
5§ 1) = )

By Corollary 1, the joint distribution of (ZlZIP, ceey ZnZnT) does not depend on the skewing
functions mq, ..., m,, which is therefore also the case for (ZlTS*IZl, e ,ZnTS*IZn). [
4 Generalized skew-normal distributions

Invariance properties of GSE distributions allow one to ignore the sampling bias when the
distribution of the data are sample selection models. They lead to several extensions of well-

known inferential results from normal distribution theory.



Consider a GSE pdf (6) which factors into a p—dimensional normal pdf ¢, and a skewing
function m, that is:

20p (2,6,9Q) - (2 - &), zeR. (18)

A random vector Z with pdf (18) has a generalized skew-normal distribution with location
vector parameter &, scale matrix parameter {2, and skewing function w. We denote it by
Z ~ GSNy (¢, Q,m). Note that the dependence of m on © has been removed, and thus infer-
ence is simplified as shown below. The multivariate normal distribution and the skew-normal
distribution (1) are special cases of GSN distributions.

The skewing function 7 can be interpreted as a parameter, since different skewing functions
lead to different GSN distributions. It follows that sufficient and ancillary statistics are defined
for GSN distributions too. For example, consider a random variable Z whose pdf f (z;6,7)
depends on the parameters 6 and . A statistic ¢ is said to be partially sufficient for 0 if its
distribution depends on 6 only and it is sufficient for 6 for any given value of v (Basu and
Pereira, 1983; Reid, 1995). Loperfido (2001) shows that the sum of squares and products (SSP)
matrix is partially sufficient for the scale parameter 2 when the rows of the data matrix are
independent skew-normal SN, (0, €, &) random vectors. Similar results hold for GSN random
vectors.

Under the same assumptions, the SSP matrix divided by the number of observations is the
maximum likelihood (ML) estimator and the uniform minimum variance unbiased (UMVU)
estimator of the scale matrix. Moreover, its distribution is Wishart. The above statements can

be formalized as follows:

Proposition 3 Let 0= ZYZ[n, where Z is an n x p matriz whose rows Z1, ..., Z, are inde-

pendent and Z; ~ GSN, (0,9, 7;), i =1,...,n. Then
(1) Q is the ML estimator of Q.
(2) The distribution of Q is Wishart: QO ~ W (Q/n,n).
(3) Q is partially sufficient for Q.

(4) Q is the UMVU estimator of Q.

Proof:



(1) Because the random vectors Zi, ..., Z, are independent and Z; ~ GSN,, (0,9, 7;), i =
1,...,n, the likelihood function [ is the product of a function of  only and a function of
7, ..., 7, only. Therefore, the supremum of [ is:

1
sup [ (Q,7m,...,m,) = 81812p|Q\7"/2 exp —Etr (QlZTZ)] - sup HT{'Z’ (Z;) .

Q1,7 TseensTn;

The above equation implies that the functional form of Q does not depend on the choice of
T, ..., T. Hence standard maximization procedures (e.g. Mardia et al., 1979, p. 104) lead to
Q:ZTZ/n and the first part of the proof is complete.

(2) If the n rows of a matrix YV are i.id. N, (0,9) then YIY ~ W (Q,n), see e.g.
Mardia et al. (1979, p. 66). Equivalently, if the n rows of the matrix Y/y/n are i.i.d.
N, (0,Q/n) then YTY/n ~ W (/n,n). Since Z" Z/n is an even function in the rows Z; of
Z, ZVZ/n ~ W (82/n,n), see Proposition 1 in Section 3. We already proved that (AZ:ZTZ/n
and this completes the second part of the proof.

(3) We already proved that the distribution of Q depends on € only. Then it suffices to
prove that the conditional distribution of the sample given Z* Z does not depend on £ for any

given choice of my,...,m,. Since Z1'Z ~ W (Q,n), the pdf of Z''Z is proportional to (Mardia

1
‘Q|fn/2 |ZTz|n7p71 exp |i_§tr (leTZ):| .

The conditional pdf of Z given Z1'Z = D is proportional to:

et al., 1979, p. 85):

‘Q|fn/2 - exp [7%“4 (Qle)] . H;L:ﬂfi (Zz) n
_ D|1+p—n i (Z;) .
|Q‘fn/2\/|l)‘”ﬁexp [—%tr (Qle)] \/|7}:[17Tz ( )

The last relationship does not depend on €2 for any given choice of 7y, ..., m,. Hence the third

part of the proof is complete.

(4) The Wishart distribution belongs to the exponential family and hence is complete (e.g.
Mardia et al., 1979, p. 46). The UMVU property of Q easily follows from sufficiency of Z7 Z,
unbiasedness of ) with respect to 2, and completeness of the Wishart distribution. m

Invariance properties of GSN distributions can be applied to hypothesis testing as well.
Many likelihood-based tests for scale matrices with normal data Z; ~ N, (0,€2) maintain their
properties when the data are GSN, i.e. Z; ~ GSN, (0,9, m;). The following proposition focuses
on likelihood ratio tests (LRT) for the equality of two scale matrices. It shows that the functional
form of the LRT statistic, as well as the power function of the LRT test, do not depend on the

skewing functions 7y, ..., m,. Hence the skewing functions do not need to be specified, allowing



a high degree of robustness with respect to departures from normality and maintaining many

optimality properties of the LRT. More formally:

Proposition 4 Let Zy,...,7Z, and Yq,...,Y,, be independent p-dimensional random wvectors
such that Z; ~ GSN,(0,Q,,m), i = 1,...,n, and Y; ~ GSN,(0,Qy,w;), j = 1,...,m.
Moreover, let A be the likelihood ratio test statistic for the null hypothesis Hy : Q7 = Qy
against the alternative Hy : Qz # Qy . Then the followings hold:

(1) A is invariant with respect to the skewing functions 7, ..., 7, and wy, ..., wy,.

(2) The power function of the LRT does not depend on the skewing functions my,...,m, and

Wiy --- Wi

(8) When the null hypothesis is true and the sample size is large, the distribution of —2log A

. . . a 2
is chi-square: —2log A ~ Xp(p+1)/2 under Hy.

Proof: Denote by A, B, and C the following matrices:

1 T 1 — T nA+mB
=1 7=1
and denote by W the vector of weight functions my,...,7,, w1, ..., wWn-

(1) From the previous proposition’s proof we know that:

n

sup! (Qz,Qy, W) = /|C] ™ S;IVPHW (Z) [ Jwi (v3).
0 i=1 j=1

Following a similar argument, we can write:

n

sup l (Qz, Qy, W) = \/|A‘*Tl . \/|B‘*m . S;/pHWi (Zz) H(dj (Y})
=1 7=1

Qz.Qy,W

By definition, the LRT statistic is the ratio of the above suprema:

‘C|n+m
A = R i E—
\ 141" - B

Its functional form does not depend on W and hence it is invariant with respect to it. This
completes the first part of the proof.

(2) The statistic A depends on Z7Z and YTY only, which are even functions of the data.
Hence A is an even function of the data. By Proposition 1 in Section 3, this implies that the
distribution of A, and hence the power function of the test, depends on €2z and Qy only, and

not on the skewing functions 7y, ..., 7, w1,. .., Wny.

10



(3) Proof of the asymptotic properties of —2log A easily follows from ordinary properties of
likelihood ratio tests and from the invariance property of A. The proof is then complete. m

It is well known that the joint distribution of the random variables:

AN VANA R T AN VAV AR
does not depend on €2, when the rows Zi,..., 7, of the data matrix Z are independent and
Zj ~ N, (0,9Q) . The same result holds if Z; ~ GSN, (0,, m;): they are ancillary with respect
to the scale matrix Q and skewing functions my, ..., m,. Therefore they can be used to check

generalized skew-normality.

Proposition 5 If Z; ~ GSN,(0,Q,7;), i = 1,...,n are independent random vectors and
S =" ZZ" n, then the joint distributions of ZI' S~ 'Zy,...,Z,"S ' Z, does not depend

on Q, T, ..., Tp-

Proof: This is a special case of Proposition 2. m

Notice that all the above propositions hold even when the observations are not identically
distributed, since the skewing functions m, ..., m, might not be equal. Moreover, the assump-
tion of the location parameter £ being zero is not restrictive when ¢ is known or the sample is

large and a consistent estimator of £ is available.

5 Inference from non-random samples

This section applies invariance properties of GSN distributions to inference on heights and
weights of Australian adults, using a non-random sample drawn from the same population.
From official statistics (Australian Bureau of Statistics, 1995) we know that the average height
(in centimeters) and weight (in kilograms) of adult Australian males (females) is 174.8 and 82.0
(161.4 and 67.0) respectively. We make the standard assumption that the joint distributions of
heights and weights for adult Australian males (Hp; and W) and females (Hp and Wy) are

bivariate normal:

H 174.8
M ~ N2 3 QM

W 82.0

Hp 161.4
~ N2 3 QF

Wp 67.0

11



Under the above model, inference on heights and weights of Australian adults reduces to
inference on 3, and Q2. We shall focus on point estimation of Q;; and Qr and hypothesis
testing for their equality. Inference will be based on the heights and weights collected by
the Australian Institute of Sport (AIS) from 202 athletes of both sexes (102 males and 100
females), competing in different events. Cook and Weisberg (1994) analyzed this data within
the framework of a regression model, under the normality assumption. Azzalini and Dalla
Valle (1996) showed that the bivariate skew-normal distribution gave a better fit, the data
being slightly skewed. Arnold and Beaver (2000) modeled skewness through the skew-Cauchy
distribution, which also accounts for heavier tails. AIS data, however, are not a random sample
from the adult Australian population. Individuals are included in the sample only if they are
gifted athletes. Moreover, the sample includes athletes of both sexes, competing in different
disciplines (i.e. basketball, gymnastic, and rowing). Indeed, the AIS data are significantly
skewed: p-values associated with Mardia’s b; 3 measure of multivariate skewness (Mardia, 1970)
for male athletes and female athletes are 0.003 and 0.046 respectively.

We now motivate the GSN model for the AIS data. Without loss of generality we can
represent the joint distribution of height Hg and weight Wg of an adult Australian individual

of sex S (S = M for males and S = F for females) as follows:

Hs = pps+Aus-Us+yus-€us,

Ws = pws+Aws -Us+yws - Ews,
where Ug, £ggs, and &y g are independent standard normal variables and:

Moo +7hs  AHs Aws

Qg = ,
AHS * Aws Mys +Ys
1748 S =M, 82.0 S=M,
HHS = pws =
1614 S=F 67.0 S=F

It easily follows that the above model is a single factor model, where Ug is the common factor
and £pg, &ws are the specific factors for height and weight respectively. The former can be
interpreted as a proxy for “physical fitness”, which is clearly above average for all individuals

in the AIS data set. More formally:

HS HS
individual in the data set < Us >0

WS WS

12



Azzalini and Dalla Valle (1996) show that the distribution of Hg, Wg|Ugs > 0 (and hence the
joint distribution of heights and weights for the athletes in the sample) is bivariate skew-normal,

under the above assumptions. More precisely:

Hg HS
individual in the data set ~ SNy K ,Qg, ag

Ws HW S

where ag is a function of Agg, Yrs, Aws, and yws. In order to achieve some robustness and to
account for individual differences (i.e. for different sport events) we propose the more general

GSN bivariate model:

Zi ~ GSNQ (O,QM,’]TZ') 1= 1,...,102,
Y; ~ GSNy(0,Qp,wj) j=1,...,100.
Here Zy,...,Z192 and Yi,..., Y19 are the vectors of differences between the observed heights,

weights and the corresponding populations’ averages:

7 Height of the i-th male athlete — 174.8
l‘ =
Weight of the i-th male athlete — 82.0

v Height of the j-th female athlete — 161.4
j =
Weight of the j-th female athlete — 67.0

Despite the above arguments, the GSN distribution might not be an appropriate model for
the AIS data. The sampled population might not be normal, nor the sampling bias could be

modeled through a skewing function 7 (z) =1 — 7 (—z). An example of the latter case is:

¢1 (2) dz+9
f(z):d)l(dg)-@(\/ﬁ)’ zeRJeR —-1<di<l. (19)

The above distribution is a selection model with respect to the normal pdf, but it is not GSN
since in general:
@<M> 7&1_@(@)_
iie i@

Simple counterexamples show that invariance properties introduced in Section 3 do not hold
for (19) unless dy = 0.

Invariance properties of GSE distributions can be used to check the adequacy of the GSN
model. Azzalini and Capitanio (1999) analyzed body fat and body mass indices of the athletes
in the AIS data set, under the assumption that they came from a skew-normal distribution.

They computed the quadratic forms of the data and used Healy’s plot (Healy, 1968) to obtain

13



a graphical display of fit. We also use quadratic forms to check the adequacy of the GSN model
for the heights and weights in the AIS data set. We consider the Mahalanobis distances of the
observations from their official average values, with respect to the ML estimates ﬁM and ﬁp,
that is:

ZTQX/[IZD AN ,Z%QQX/}ZH)Q and YlTQEIYh A ,qu(;UQ;lYlog.

By Proposition 5, the joint distribution of these statistics does not depend neither on Q;7, Qp
nor on 7i,...,mg2 and wy,...,wigo- The same holds for any function of the above statistics,

including Mardia’s measure of multivariate kurtosis (Mardia, 1970):

102
1 ~
byp(M) = @ZZZTQMIZi, (20)
i=1
1 100
bap(F) = 155 Y Q'Y (21)
7=1

Mardia (1970) obtains the asymptotic distribution of b3 ;, under normality. Proposition 5 implies
that the same result holds under generalized skew-normality. Hence, we can use by (M) and
ba ,(F') to check the adequacy of the GSN model. The p-values of the by o statistics for male
and female athletes are 0.098 and 0.016 respectively. Hence, at the 0.05 level, we do not reject
the GSN hypothesis for male athletes, but we do reject it for female athletes. If we do not reject
the GSN model for both male and female athletes, we can test the hypothesis Hy : Qp = Qp
through the likelihood ratio test. Since the sample size is large, the sampling distribution
of —2log A is approximately chi-square with 3 degrees of freedom under the null hypothesis
(Proposition 4 in the previous section). The observed value of —2log A is 11.166, and the
corresponding p-value is 0.011. We can therefore reject the hypothesis Q3 = Qp at the 0.05

level.

6 Conclusions

In this article, we have introduced a new class of skewed distributions: generalized skew-elliptical
(GSE) distributions. These are weighted elliptical distributions that include the multivariate
skew-normal, skew-t, skew-Cauchy, and skew-elliptical distributions as special cases. We have
shown that the distribution of any even function in GSE random vectors does not depend on
the skewing function, which holds in particular for quadratic forms. This property is beneficial

for inference from non-random samples. We have developed inference for the special case
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of generalized skew-normal (GSN) distributions and illustrated our results on the Australian
athletes data set.

At present time there does not exist a general method for computing ordinary measures of
skewness and kurtosis (i.e. cumulants) for GSE distributions, due to the great flexibility of the
skewing function and the extent of the elliptical family. The problem is strictly related to the

characteristic function of a GSE pdf, which we conjecture to have the following form:
c(t) = / exp (ith) 29 (2) 7 (2) dz = 20 (tT t)k(t), t e R, (22)
Jrp

where V¥ is the characteristic function corresponding to the elliptical pdf g and the function &
is a function such that k(—¢) = 1 — k(¢) and 0 < k(¢) < 1. The conjecture is true for the
skew-normal distribution (Azzalini and Dalla Valle, 1996) where k(t) = ®(67t), and it is worth

asking whether it holds for a more general subclass of GSE distributions.
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