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Abstra
tThis paper introdu
es generalized skew-ellipti
al distributions (GSE), whi
h in
lude themultivariate skew-normal, skew-t, skew-Cau
hy, and skew-ellipti
al distributions as spe
ial
ases. GSE are weighted ellipti
al distributions but the distribution of any even fun
tionin GSE random ve
tors does not depend on the weight fun
tion. In parti
ular, this holdsfor quadrati
 forms in GSE random ve
tors. This property is bene�
ial for inferen
e fromnon-random samples. We illustrate the latter point on a data set of Australian athletes.Key words: ellipti
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tionProbability distributions that are more 
exible than the normal are often needed in statisti
almodeling (Hill and Dixon, 1982). Skewness in datasets, for example, 
an be modeled throughthe multivariate skew-normal distribution introdu
ed by Azzalini and Dalla Valle (1996), whi
happears to attain a reasonable 
ompromise between mathemati
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tability and shape 
exi-bility. Its probability density fun
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where �p denotes the pdf of a p-dimensional normal distribution 
entered at � 2 Rp with s
alematrix 
 2 Rp�p and � denotes the 
umulative distribution fun
tion (
df) of a standard normaldistribution. When (1) is the pdf of a random ve
tor Z we write Z � SNp (�;
; �). The ve
tor� 2 Rp 
ontrols the shape and the spe
ial 
ase � = 0 
orresponds to the multivariate normal dis-tribution. Despite the presen
e of an additional parameter, skew-normal distributions resemblethe normal ones in several ways, for instan
e they are unimodal and (Z � �)T 
�1 (Z � �) � �2p:The kurtosis of skew-normal distributions is however bounded. Data from heavy taileddistributions 
an be better modeled through 
ontinuous ellipti
al pdfsj
j�1=2 � g �
�1=2 (z � �)� ; z 2 Rp ; (2)where � 2 Rp is the lo
ation ve
tor parameter, 
 2 Rp�p is the s
ale matrix parameter, and gis the pdf of a spheri
al distribution, that is g (a) depends on a only through aTa. It followsthat ellipti
al densities are symmetri
 around their lo
ation parameters.In order to model both skewness and kurtosis, Bran
o and Dey (2001) introdu
ed skew-ellipti
al distributions by means of the pdf2pj
jg �
�1=2 (z � �)� �G�
�1=2 (z � �)� ; z 2 Rp ; (3)where g is the same as in (2) and G is the 
df of a univariate marginal pdf of g. Skew-ellipti
aldistributions in
lude skew-normal ones as well as ellipti
al ones.The purpose of the present paper is to analyze invarian
e properties of generalized skew-ellipti
al distributions (GSE), a 
lass of distributions whi
h in
ludes the skew-ellipti
al ones.More pre
isely, Se
tion 2 introdu
es GSE and examines their relationships with other skewdistributions in the literature. Se
tion 3 presents a distributional invarian
e property of evenfun
tions in GSE random ve
tors. Se
tion 4 dis
usses likelihood-based inferen
e for generalizedskew-normal (GSN) distributions. Se
tion 5 applies the results of the previous se
tion to infer-en
e from non-random samples, that is a set of non i.i.d. random variables. Se
tion 6 
on
ludesand presents some open problems and 
onje
tures.2 Generalized skew-ellipti
al distributionsAzzalini and Capitanio (1999) de�ned skew-ellipti
al distributions by means of pdfs of the form2pj
j � g �
�1=2 (z � �)� �H ��T (z � �)� ; z 2 Rp ; (4)2



where g is the pdf of a spheri
al distribution andH is the 
df of a distribution symmetri
 around0. The above 
lass of densities in
ludes the skew-ellipti
al ones (Bran
o and Dey, 2001). Notealso that (4) is twi
e an ellipti
al pdf at z 2 Rp multiplied by a 
df evaluated at a linear fun
tionof z � �. The pdf of a GSE distribution is twi
e an ellipti
al pdf at z 2 Rp multiplied by afun
tion of z � �. The latter fun
tion is not ne
essarily a 
df and does not ne
essarily dependon z only through �T (z � �). More formally, we give the following de�nition.De�nition 1 A p-dimensional random ve
tor Z has a generalized skew-ellipti
al (GSE) distri-bution with lo
ation ve
tor parameter � 2 Rp , positive de�nite s
ale matrix parameter 
 2 Rp�p ,and skewing fun
tion �, if its pdf is2pj
jg �
�1=2 (z � �)� � � �
�1=2 (z � �)� ; z 2 Rp ; (5)where g is the pdf of a spheri
al distribution, and � satis�es 0 � �(z) � 1 and �(�z) = 1��(z),8z 2 Rp . We write Z � GSEp (�;
; g; �).The lo
ation ve
tor � and the s
ale matrix 
 are not, in general, the expe
ted value and the
ovarian
e matrix of Z, sin
e GSE distributions may not be symmetri
 with respe
t to �: More-over, they may not have �nite se
ond moments. Note also that we 
ould write � �
�1=2 (z � �)�as ~�(z � �) where ~� satis�es exa
tly the same 
onstraints as �, i.e. 0 � ~�(z) � 1 and~�(�z) = 1� ~�(z), 8z 2 Rp . Hen
e, the form (5) and the form2pj
jg �
�1=2 (z � �)� � ~�(z � �); z 2 Rp ; (6)
an be used inter
hangeably, see Se
tion 4.The skewing fun
tion � is 
exible enough for the GSE 
lass to in
lude many well knownskew distributions, some of whi
h appear in Table 1. In order to keep the presentation simple,lo
ation ve
tors and s
ale matri
es are set equal to 0 and Ip respe
tively. In Table 1, �p,�p;�1;�2 , 
p, and �p denote the p-dimensional pdf of a normal, generalized Student t, Cau
hy,and ellipti
al distribution respe
tively. Similarly, �, T��1 ;��2 , C, and El denote the univariate
df of the standard normal, the generalized Student t with ��1 = �1 + zT z and ��2 = �2 + p, theCau
hy, and an ellipti
al distribution. All the distributions in Table 1 are de�ned on Rp .The skewing fun
tions in Table 1 are monotone fun
tions of their arguments, but this doesnot need to hold for every GSE distribution. For instan
e, 
onsider the skewing fun
tion�(z) = �(z3� z) de�ned on R, where � is the 
df of a univariate standard normal distribution.It readily follows that �(z) is in
reasing in z only when jzj > 1=p3.3



Table 1: Some well known skew distributions belonging to the GSE family.g (z) � (z)skew-normal �p (z) � ��T z�skew-t �p;�1;�2 (z) T��1 ;��2 ��T z�skew-Cau
hy 
p (z) C ��T z�skew-ellipti
al �p (z) El ��T z�The skewing fun
tion � 
an also be a 
onstant. Then it follows that �(z) = 1=2, 8z 2 Rp ,and the 
orresponding distribution is ellipti
al. Therefore, the 
lass of GSE distributionsin
ludes ellipti
al distributions as spe
ial 
ases. The skew-normal, skew-Cau
hy, skew-t, andskew-ellipti
al distributions in Table 1 assume some relationship between g and �: The GSE
lass, however, in
ludes all possible 
ombinations of ellipti
al distributions and skewing fun
-tions. Flexibility of the GSE 
lass in modeling skewness 
an be appre
iated by 
onsideringthe univariate skew-t distribution. Its third 
umulant is unbounded, as 
an easily be seen by
onsidering the pdf of the t distribution trun
ated at the origin, a limit of the skew-t, with �degrees of freedom (personal 
ommuni
ation from Donald Rubin):� [(� + 1) =2℄� (�=2) 2p���1 + z2� ����12 ; z � 0:This property represents an advantage of the GSE family over the skew-normal distributionwhen modeling highly skewed data. Indeed, the skewness of the skew-normal distribution isbounded, see Azzalini and Dalla Valle (1996).GSE distributions arise in inferen
e from non-random samples, that is sets of observationswhi
h are not i.i.d. a

ording to the population's density. This happens when the value ofan observation in
uen
es its probability of being in
luded in the sample (Copas and Li, 1997).Under these 
ir
umstan
es, an observation's distribution 
an be better des
ribed by a sele
tionmodel (Bayarri and De Groot, 1992):f (z; �) � w (z)E [w (Z)℄ ; z 2 Rp ; (7)where f is the pdf of the sampled population, � is the parameter of interest, w is a nonneg-ative weight fun
tion and E [w (Z)℄ is the expe
ted value of the random variable w(Z): The4



representation of a GSEp (0;
; g; �) distribution as a sele
tion model is straightforward:f (z; �) = g �
�1=2z�j
j1=2 ; w (z) = � �
�1=2z� ; E [w (Z)℄ = 1=2: (8)It follows that the multivariate skew-normal distribution is a sele
tion model as well. Indeed,the p-dimensional skew-normal distribution 
an be generated through a (p + 1)-dimensionalnormal distribution, by 
onditioning the �rst p variates on the event that the last variate islarger than its expe
ted value. From the inferential point of view, this means that skew-normalsamples arise when multivariate normal observations are in
luded in the sample only if a given
omponent of the observation itself is larger than it is expe
ted to be. Similar 
omments holdfor the multivariate skew-ellipti
al distribution (Azzalini and Capitanio, 1999; Bran
o and Dey,2001; Sahu et al., 2003), the multivariate skew-t distribution (Bran
o and Dey, 2001; Sahu etal., 2003), and the multivariate skew-Cau
hy (Arnold and Beaver, 2000).GSE distributions also arise in prospe
tive studies (Weinberg and Sandler, 1991; Weinbergand Wa
holder, 1993; Wa
holder and Weinberg, 1994; Zhang, 2000). Consider a random sampleZ1; : : : ; Zn from a p-dimensional ellipti
al distribution with pdf g. Let di 2 f0; 1g, i = 1; : : : ; n;be the observed value of a di
hotomous random variableDi asso
iated with the i-th observation,and P (Di = 0jZi = zi) = � (zi) : Prospe
tive studies fo
us on the 
onditional distribution of Zigiven Di = di: From Bayes' theorem we get:f (zijdi = 0) = g (zi) � � (zi)E [� (Z)℄ ; f (zijdi = 1) = g (zi) � (1� � (zi))1�E [� (Z)℄ : (9)It easily follows that � (�zi) = 1�� (zi) implies that f (zijdi) is GSE. Relevant examples in
ludethe logisti
 regression model:P (Di = 0jZi = zi) = exp ��T zi�1 + exp (�T zi) ; (10)and the probit regression model:P (Di = 0jZi = zi) = � ��T zi� ; (11)when the inter
ept is assumed to be equal to zero.3 Invarian
e propertiesAzzalini (1985) shows that if Z � SN1(0; 1; �), then Z2 � �21 for any value of the shapeparameter �. This result has been generalized to the multivariate skew-normal distribution by5



Azzalini and Dalla Valle (1996): if Z � SNp(0;
; �), then ZT
�1Z � �2p. A similar result holdsfor skew-ellipti
al random ve
tors (Bran
o and Dey, 2001). A further generalization is given byAzzalini and Capitanio (1999): if Z � SNp(0;
; �), then ZTAZ � �2p when A
A = A. Gentonet al. (2001) 
ompute moments of quadrati
 forms in skew-normal random ve
tors. The jointdistribution of several quadrati
 forms is examined in Azzalini and Capitanio (1999), as wellas in Genton et al. (2001). These results are related to the following distributional invarian
eproperty (Loper�do, 2001): if Z � SNp(0;
; �), then the joint distribution of the produ
tsZiZj (i; j = 1; : : : ; p) does not depend on the shape parameter � . In this se
tion, we show thata similar property holds for any even fun
tion � (Z), i.e. a fun
tion su
h that �(�z) = �(z)8z 2 Rp , of a GSE random ve
tor Z 
entered at 0:Proposition 1 If Z� GSEp (0;
; g; �), then the distribution of �(Z), where � is an evenfun
tion, does not depend on the skewing fun
tion �.Proof: We derive the proof for a real-valued fun
tion � sin
e the ve
tor- or matrix-valued 
ase issimilar and straightforward. Without loss of generality, we 
an assume that 
 = Ip: It suÆ
esto prove that the 
hara
teristi
 fun
tion 
(q) of �(Z),
(q) = ZRp exp (i�(z)q) 2g (z) � (z) dz; q 2 R; (12)does not depend on �. Let A+ (A�) be the set of ve
tors in Rp whose �rst 
omponent is notnegative (is negative):A+ = f(z1; z2; : : : ; zp) : z1 � 0g ; A� = f(z1; z2; : : : ; zp) : z1 < 0g : (13)It follows that A+ [A� = Rp and A+ \A� = ;. Hen
e:
(q) = ZA+ exp [i�(z)q℄ 2g (z) � (z) dz + ZA� exp [i�(z)q℄ 2g (z) � (z) dz:Consider now the transformation w = �z and noti
e that z 2 A+ ()�z 2 �A�, the 
losure ofA�. Be
ause �A� and A� have the same measure, we have:ZA� exp [i�(z)q℄ 2g (z) � (z) dz = ZA+ exp [i�(�w)q℄ 2g (�w) � (�w) dw: (14)By assumption, �(�z) = �(z), g(�z) = g(z), and �(�z) = 1� �(z). Thus:
(q) = 2ZA+ exp [i�(z)q℄ 2g (z) dz; (15)whi
h does not depend on �. 6



Corollary 1 If Z � GSEp (0;
; g; �), then the distribution of ZZT does not depend on theskewing fun
tion �.Proof. This is a dire
t 
onsequen
e of ZZT being an even fun
tion and Proposition 1.Corollary 2 Let A1; : : : ; Am be p � p real matri
es and let Z � GSEp (0;
; g; �). Then thejoint distribution of the quadrati
 forms (ZTA1Z; : : : ; ZTAmZ) does not depend on the skewingfun
tion �.Proof. This is a dire
t 
onsequen
e of quadrati
 forms being even fun
tions and Proposition1.The following proposition presents an invarian
e property that will be useful for inferen
e inthe GSE family, see Se
tion 4.Proposition 2 If Zi � GSEp (0;
; g; �i), i = 1; : : : ; n, are independent random ve
tors andS = Pni=1 ZiZiT =n, then the joint distribution of Z1TS�1Z1; : : : ; ZnTS�1Zn does not dependon 
 , �1; : : : ; �n.Proof. Without loss of generality, we 
an assume that 
 = Ip. Then it suÆ
es to showthat the joint distribution of the ve
tor of quadrati
 forms (ZT1 S�1Z1; : : : ; ZTn S�1Zn) does notdepend on the skewing fun
tions �1; : : : ; �n. The following set of determinants is a fun
tion of(Z1ZT1 ; : : : ; ZnZTn ): jZ1ZT1 + SjjSj � 1; : : : ; jZnZTn + SjjSj � 1: (16)From elementary properties of determinants, we know that jA+yyT j = jAj(1+yTA�1y). Then:� jZ1ZT1 + SjjSj � 1; : : : ; jZnZTn + SjjSj � 1� = �Z1TS�1Z1; : : : ; ZnTS�1Zn� : (17)By Corollary 1, the joint distribution of (Z1ZT1 ; : : : ; ZnZTn ) does not depend on the skewingfun
tions �1; : : : ; �n, whi
h is therefore also the 
ase for �Z1TS�1Z1; : : : ; ZnTS�1Zn�.4 Generalized skew-normal distributionsInvarian
e properties of GSE distributions allow one to ignore the sampling bias when thedistribution of the data are sample sele
tion models. They lead to several extensions of well-known inferential results from normal distribution theory.7



Consider a GSE pdf (6) whi
h fa
tors into a p�dimensional normal pdf �p and a skewingfun
tion �, that is: 2�p (z; �;
) � � (z � �) ; z 2 Rp : (18)A random ve
tor Z with pdf (18) has a generalized skew-normal distribution with lo
ationve
tor parameter �, s
ale matrix parameter 
, and skewing fun
tion �: We denote it byZ � GSNp (�;
; �) : Note that the dependen
e of � on 
 has been removed, and thus infer-en
e is simpli�ed as shown below. The multivariate normal distribution and the skew-normaldistribution (1) are spe
ial 
ases of GSN distributions.The skewing fun
tion � 
an be interpreted as a parameter, sin
e di�erent skewing fun
tionslead to di�erent GSN distributions. It follows that suÆ
ient and an
illary statisti
s are de�nedfor GSN distributions too. For example, 
onsider a random variable Z whose pdf f (z; �; 
)depends on the parameters � and 
. A statisti
 t is said to be partially suÆ
ient for � if itsdistribution depends on � only and it is suÆ
ient for � for any given value of 
 (Basu andPereira, 1983; Reid, 1995): Loper�do (2001) shows that the sum of squares and produ
ts (SSP)matrix is partially suÆ
ient for the s
ale parameter 
 when the rows of the data matrix areindependent skew-normal SNp (0;
; �) random ve
tors. Similar results hold for GSN randomve
tors.Under the same assumptions, the SSP matrix divided by the number of observations is themaximum likelihood (ML) estimator and the uniform minimum varian
e unbiased (UMVU)estimator of the s
ale matrix. Moreover, its distribution is Wishart. The above statements 
anbe formalized as follows:Proposition 3 Let b
 = ZTZ=n, where Z is an n� p matrix whose rows Z1; : : : ; Zn are inde-pendent and Zi � GSNp (0;
; �i), i = 1; : : : ; n. Then(1) b
 is the ML estimator of 
.(2) The distribution of b
 is Wishart: b
 �W (
=n; n) :(3) b
 is partially suÆ
ient for 
.(4) b
 is the UMVU estimator of 
.Proof: 8



(1) Be
ause the random ve
tors Z1; : : : ; Zn are independent and Zi � GSNp (0;
; �i), i =1; : : : ; n, the likelihood fun
tion l is the produ
t of a fun
tion of 
 only and a fun
tion of�1; : : : ; �n only. Therefore, the supremum of l is:sup
;�1;:::;�n l (
; �1; : : : ; �n) = sup
 j
j�n=2 exp ��12tr �
�1ZTZ�� � sup�1;:::;�n nYi=1�i (Zi) :The above equation implies that the fun
tional form of b
 does not depend on the 
hoi
e of�1; : : : ; �n: Hen
e standard maximization pro
edures (e.g. Mardia et al., 1979, p. 104) lead tob
=ZTZ=n and the �rst part of the proof is 
omplete.(2) If the n rows of a matrix Y are i.i.d. Np (0;
) then Y TY � W (
; n), see e.g.Mardia et al. (1979, p. 66). Equivalently, if the n rows of the matrix Y=pn are i.i.d.Np (0;
=n) then Y TY=n � W (
=n; n) : Sin
e ZTZ=n is an even fun
tion in the rows Zi ofZ, ZTZ=n � W (
=n; n), see Proposition 1 in Se
tion 3. We already proved that b
=ZTZ=nand this 
ompletes the se
ond part of the proof.(3) We already proved that the distribution of b
 depends on 
 only. Then it suÆ
es toprove that the 
onditional distribution of the sample given ZTZ does not depend on 
 for anygiven 
hoi
e of �1; : : : ; �n. Sin
e ZTZ � W (
; n), the pdf of ZTZ is proportional to (Mardiaet al., 1979, p. 85): j
j�n=2qjZTZjn�p�1 exp ��12tr �
�1ZTZ�� :The 
onditional pdf of Z given ZTZ = D is proportional to:j
j�n=2 � exp ��12tr �
�1D�� �Qni=1�i (Zi)j
j�n=2pjDjn�p�1 exp ��12tr (
�1D)� =pjDj1+p�n nYi=1�i (Zi) :The last relationship does not depend on 
 for any given 
hoi
e of �1; : : : ; �n: Hen
e the thirdpart of the proof is 
omplete.(4) The Wishart distribution belongs to the exponential family and hen
e is 
omplete (e.g.Mardia et al., 1979, p. 46). The UMVU property of b
 easily follows from suÆ
ien
y of ZTZ,unbiasedness of b
 with respe
t to 
, and 
ompleteness of the Wishart distribution.Invarian
e properties of GSN distributions 
an be applied to hypothesis testing as well.Many likelihood-based tests for s
ale matri
es with normal data Zi � Np (0;
) maintain theirproperties when the data are GSN, i.e. Zi � GSNp (0;
; �i). The following proposition fo
useson likelihood ratio tests (LRT) for the equality of two s
ale matri
es. It shows that the fun
tionalform of the LRT statisti
, as well as the power fun
tion of the LRT test, do not depend on theskewing fun
tions �1; : : : ; �n: Hen
e the skewing fun
tions do not need to be spe
i�ed, allowing9



a high degree of robustness with respe
t to departures from normality and maintaining manyoptimality properties of the LRT. More formally:Proposition 4 Let Z1; : : : ; Zn and Y1; : : : ; Ym be independent p-dimensional random ve
torssu
h that Zi � GSNp (0;
Z ; �i), i = 1; : : : ; n, and Yj � GSNp (0;
Y ; !j), j = 1; : : : ;m:Moreover, let � be the likelihood ratio test statisti
 for the null hypothesis H0 : 
Z = 
Yagainst the alternative H1 : 
Z 6= 
Y . Then the followings hold:(1) � is invariant with respe
t to the skewing fun
tions �1; : : : ; �n and !1; : : : ; !m.(2) The power fun
tion of the LRT does not depend on the skewing fun
tions �1; : : : ; �n and!1; : : : ; !m.(3) When the null hypothesis is true and the sample size is large, the distribution of �2 log �is 
hi-square: �2 log � a� �2p(p+1)=2 under H0.Proof: Denote by A, B, and C the following matri
es:A = 1n nXi=1ZiZTi ; B = 1m mXj=1YjY Tj ; C = nA+mBn+m ;and denote by W the ve
tor of weight fun
tions �1; : : : ; �n; !1; : : : ; !m.(1) From the previous proposition's proof we know that:supH0 l (
Z ;
Y ;W ) =pjCj�n�m � supW nYi=1�i (Zi) mYj=1!j (Yj) :Following a similar argument, we 
an write:sup
Z ;
Y ;W l (
Z ;
Y ;W ) =pjAj�n �pjBj�m � supW nYi=1�i (Zi) mYj=1!j (Yj)By de�nition, the LRT statisti
 is the ratio of the above suprema:� =s jCjn+mjAjn � jBjmIts fun
tional form does not depend on W and hen
e it is invariant with respe
t to it. This
ompletes the �rst part of the proof.(2) The statisti
 � depends on ZTZ and Y TY only, whi
h are even fun
tions of the data.Hen
e � is an even fun
tion of the data. By Proposition 1 in Se
tion 3, this implies that thedistribution of �, and hen
e the power fun
tion of the test, depends on 
Z and 
Y only, andnot on the skewing fun
tions �1; : : : ; �n; !1; : : : ; !m:10



(3) Proof of the asymptoti
 properties of �2 log � easily follows from ordinary properties oflikelihood ratio tests and from the invarian
e property of �. The proof is then 
omplete.It is well known that the joint distribution of the random variables:ZT1 �ZTZ��1 Z1; : : : ; ZTn �ZTZ��1 Zndoes not depend on 
, when the rows Z1; : : : ; Zn of the data matrix Z are independent andZi � Np (0;
) : The same result holds if Zi � GSNp (0;
; �i): they are an
illary with respe
tto the s
ale matrix 
 and skewing fun
tions �1; : : : ; �n. Therefore they 
an be used to 
he
kgeneralized skew-normality.Proposition 5 If Zi � GSNp (0;
; �i), i = 1; : : : ; n are independent random ve
tors andS = Pni=1 ZiZiT =n, then the joint distributions of ZT1 S�1Z1; : : : ; ZnTS�1Zn does not dependon 
, �1; : : : ; �n.Proof: This is a spe
ial 
ase of Proposition 2.Noti
e that all the above propositions hold even when the observations are not identi
allydistributed, sin
e the skewing fun
tions �1; : : : ; �n might not be equal. Moreover, the assump-tion of the lo
ation parameter � being zero is not restri
tive when � is known or the sample islarge and a 
onsistent estimator of � is available.5 Inferen
e from non-random samplesThis se
tion applies invarian
e properties of GSN distributions to inferen
e on heights andweights of Australian adults, using a non-random sample drawn from the same population.From oÆ
ial statisti
s (Australian Bureau of Statisti
s, 1995) we know that the average height(in 
entimeters) and weight (in kilograms) of adult Australian males (females) is 174.8 and 82.0(161.4 and 67.0) respe
tively. We make the standard assumption that the joint distributions ofheights and weights for adult Australian males (HM and WM ) and females (HF and WF ) arebivariate normal: 0� HMWM 1A � N2 240� 174:882:0 1A ;
M350� HFWF 1A � N2 240� 161:467:0 1A ;
F3511



Under the above model, inferen
e on heights and weights of Australian adults redu
es toinferen
e on 
M and 
F . We shall fo
us on point estimation of 
M and 
F and hypothesistesting for their equality. Inferen
e will be based on the heights and weights 
olle
ted bythe Australian Institute of Sport (AIS) from 202 athletes of both sexes (102 males and 100females), 
ompeting in di�erent events. Cook and Weisberg (1994) analyzed this data withinthe framework of a regression model, under the normality assumption. Azzalini and DallaValle (1996) showed that the bivariate skew-normal distribution gave a better �t, the databeing slightly skewed. Arnold and Beaver (2000) modeled skewness through the skew-Cau
hydistribution, whi
h also a

ounts for heavier tails. AIS data, however, are not a random samplefrom the adult Australian population. Individuals are in
luded in the sample only if they aregifted athletes. Moreover, the sample in
ludes athletes of both sexes, 
ompeting in di�erentdis
iplines (i.e. basketball, gymnasti
, and rowing). Indeed, the AIS data are signi�
antlyskewed: p-values asso
iated with Mardia's b1;2 measure of multivariate skewness (Mardia, 1970)for male athletes and female athletes are 0.003 and 0.046 respe
tively.We now motivate the GSN model for the AIS data. Without loss of generality we 
anrepresent the joint distribution of height HS and weight WS of an adult Australian individualof sex S (S =M for males and S = F for females) as follows:HS = �HS + �HS � US + 
HS � �HS ;WS = �WS + �WS � US + 
WS � �WS;where US , �HS , and �WS are independent standard normal variables and:
S = 0� �2HS + 
2HS �HS � �WS�HS � �WS �2WS + 
2WS 1A ;�HS = 8<: 174:8 S =M;161:4 S = F; �WS = 8<: 82:0 S =M;67:0 S = F:It easily follows that the above model is a single fa
tor model, where US is the 
ommon fa
torand �HS , �WS are the spe
i�
 fa
tors for height and weight respe
tively. The former 
an beinterpreted as a proxy for \physi
al �tness", whi
h is 
learly above average for all individualsin the AIS data set. More formally:0� HSWS 1A������ individual in the data set , 0� HSWS 1A������US > 012



Azzalini and Dalla Valle (1996) show that the distribution of HS;WS jUS > 0 (and hen
e thejoint distribution of heights and weights for the athletes in the sample) is bivariate skew-normal,under the above assumptions. More pre
isely:0� HSWS 1A������ individual in the data set � SN2 240� �HS�WS 1A ;
S; �S35where �S is a fun
tion of �HS , 
HS , �WS , and 
WS . In order to a
hieve some robustness and toa

ount for individual di�eren
es (i.e. for di�erent sport events) we propose the more generalGSN bivariate model: Zi � GSN2 (0;
M ; �i) i = 1; : : : ; 102;Yj � GSN2 (0;
F ; !j) j = 1; : : : ; 100:Here Z1; : : : ; Z102 and Y1; : : : ; Y100 are the ve
tors of di�eren
es between the observed heights,weights and the 
orresponding populations' averages:Zi = 0� Height of the i-th male athlete� 174:8Weight of the i-th male athlete� 82:0 1A ;Yj = 0� Height of the j-th female athlete� 161:4Weight of the j-th female athlete� 67:0 1A :Despite the above arguments, the GSN distribution might not be an appropriate model forthe AIS data. The sampled population might not be normal, nor the sampling bias 
ould bemodeled through a skewing fun
tion � (z) = 1� � (�z) : An example of the latter 
ase is:f (z) = �1 (z)� (Æ0) � �� Æz + Æ0p1� Æ2� ; z 2 R; Æ0 2 R; �1 < Æ < 1: (19)The above distribution is a sele
tion model with respe
t to the normal pdf, but it is not GSNsin
e in general: ���Æz + Æ0p1� Æ2 � 6= 1� �� Æz + Æ0p1� Æ2� :Simple 
ounterexamples show that invarian
e properties introdu
ed in Se
tion 3 do not holdfor (19) unless Æ0 = 0:Invarian
e properties of GSE distributions 
an be used to 
he
k the adequa
y of the GSNmodel. Azzalini and Capitanio (1999) analyzed body fat and body mass indi
es of the athletesin the AIS data set, under the assumption that they 
ame from a skew-normal distribution.They 
omputed the quadrati
 forms of the data and used Healy's plot (Healy, 1968) to obtain13



a graphi
al display of �t. We also use quadrati
 forms to 
he
k the adequa
y of the GSN modelfor the heights and weights in the AIS data set. We 
onsider the Mahalanobis distan
es of theobservations from their oÆ
ial average values, with respe
t to the ML estimates b
M and b
F ;that is: ZT1 b
�1M Z1; : : : ; ZT102b
�1M Z102 and Y T1 b
�1F Y1; : : : ; Y T100b
�1F Y100:By Proposition 5, the joint distribution of these statisti
s does not depend neither on 
M ;
Fnor on �1; : : : ; �102 and !1; : : : ; !100: The same holds for any fun
tion of the above statisti
s,in
luding Mardia's measure of multivariate kurtosis (Mardia, 1970):b2;p(M) = 1102 102Xi=1 ZTi b
�1M Zi; (20)b2;p(F ) = 1100 100Xj=1 Y Tj b
�1F Yj : (21)Mardia (1970) obtains the asymptoti
 distribution of b2;p under normality. Proposition 5 impliesthat the same result holds under generalized skew-normality. Hen
e, we 
an use b2;p(M) andb2;p(F ) to 
he
k the adequa
y of the GSN model. The p-values of the b2;2 statisti
s for maleand female athletes are 0.098 and 0.016 respe
tively. Hen
e, at the 0.05 level, we do not reje
tthe GSN hypothesis for male athletes, but we do reje
t it for female athletes. If we do not reje
tthe GSN model for both male and female athletes, we 
an test the hypothesis H0 : 
M = 
Fthrough the likelihood ratio test. Sin
e the sample size is large, the sampling distributionof �2 log � is approximately 
hi-square with 3 degrees of freedom under the null hypothesis(Proposition 4 in the previous se
tion). The observed value of �2 log � is 11.166, and the
orresponding p-value is 0.011. We 
an therefore reje
t the hypothesis 
M = 
F at the 0.05level:6 Con
lusionsIn this arti
le, we have introdu
ed a new 
lass of skewed distributions: generalized skew-ellipti
al(GSE) distributions. These are weighted ellipti
al distributions that in
lude the multivariateskew-normal, skew-t, skew-Cau
hy, and skew-ellipti
al distributions as spe
ial 
ases. We haveshown that the distribution of any even fun
tion in GSE random ve
tors does not depend onthe skewing fun
tion, whi
h holds in parti
ular for quadrati
 forms. This property is bene�
ialfor inferen
e from non-random samples. We have developed inferen
e for the spe
ial 
ase14



of generalized skew-normal (GSN) distributions and illustrated our results on the Australianathletes data set.At present time there does not exist a general method for 
omputing ordinary measures ofskewness and kurtosis (i.e. 
umulants) for GSE distributions, due to the great 
exibility of theskewing fun
tion and the extent of the ellipti
al family. The problem is stri
tly related to the
hara
teristi
 fun
tion of a GSE pdf, whi
h we 
onje
ture to have the following form:
(t) = ZRp exp �itT z� 2g (z) � (z) dz = 2	(tT t)k(t); t 2 Rp ; (22)where 	 is the 
hara
teristi
 fun
tion 
orresponding to the ellipti
al pdf g and the fun
tion kis a fun
tion su
h that k (�t) = 1 � k (t) and 0 � k (t) � 1. The 
onje
ture is true for theskew-normal distribution (Azzalini and Dalla Valle, 1996) where k(t) = �(ÆT t), and it is worthasking whether it holds for a more general sub
lass of GSE distributions.7 A
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