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ABSTRACT

In the hybrid simulation/analytic modelling using
uniformization, it is required that the basic random
variables involved in such modelling are uniformi-
zable. This requires the samples for random vari-
ables of interest to be generated by the uniformiza-
tion procedure. In this paper we demonstrate the
use of uniformization in continuous random variate
generation. Using uniformization we represent the
continuous random variable of interest as the first
passage time of a continuous time stochastic process
associated with a Poisson process. An approach
using this result is proposed to generate samples for
continuous random variables. A dynamic uniformiza-
tion algorithm and other extensions of the basic
uniformization algorithm are also considered.

INTRODUCTION

In the hybrid simulation/analytic modelling using
uniformization, it is required that the basic random
variables involved in such modelling are uniformi-
zable. This requires the samples for random variables
of interest to be generated by the uniformization
procedure. The basic concept in the uniformization

of a stochastic process Z = {Z(t), t ¢ R.} is to

represent it as a composition of a discrete-time
stochastic process Z = {Zn, ne N+} and a Poisson

process N. Further, if 0 = SO < S1 < 52 < ...
are the consecutive positions of the points of N on
the real Tine R , then Z|(Sn)3 is a Markov chain.

The uniformization is a modification of an idea
introduced by Jensen (1953) and used by Keilson (1975,
1979), Keilson and Kester (1977), 0'Brien (1976),
Sonderman (1980) and others. Use of uniformization

in the simulation of Markov processes has been
explored by Hordijk, Inglehart and Schassberger (1976)
and Grassman (1982). In these papers, the authors
have made use of the properties of the underlying
Poisson process N. As can be seen in Shanthikumar
(1983b) one can develop a general approach to simu-
late a uniformizable point process that makes use of
both the properties of the Poisson process N and the

Markov property of il(sn)g.

In Section 2 we discuss the conditions for the
uniformizability of continuous random variables. The
use of uniformization in the computer generation of
samples for continuous random variable is discussed
and some algorithms for such generation of samples
are given in the same section. Non-Poissonian uni-
formization and its application in the generation of
continuous random variabies and the simulation of
non-homogeneous point processes are discussed in
Section 3.

UNIFORMIZATION AND RANDOM VARIATE GENERATION

In this section we will discuss the uniformization of
positive continuous random variables and its applica-

tion in random variate generation. Let (Xn)T be a
renewal sequence of random variables with the same

probability distribution as that of X (i.e., X, 9 X).

Suppose Z = {Z(t), t e R+} be the counting process

associated with (Xn)T and T;(2) be its first passage
time to level 1. So

Tl(Z) = inf{t:Z(t) > 1, t « R} (2.1)
It s then immediate that
T(2) = %, 4 x (2.2)
1 1 '

Therefore obtaining a sample for X is equivalent to
obtaining a sample for the first passage time Tl(Z) of

the process Z. !e will next see how the process Z
could be paritally uniformized so that a sample for
Tl(Z) could be obtained in a systematic way.

Let FX(~) be the cumulative distribution function of

X. WYe will assume that the random variable X is
continuous and positive so that,

fy(x) = 4 Fy(x)s x > 0 (2.3)
and
;
F(x) = X , x > 0. (2.3)
Fy(x)

where ?k(x) =1 - FX(x), x > 0, exist. Then:

Fy(x) = r(x) exp {- fér(t)dt} , x>0

and

Fy(x)

exp {- jéf(t)dt} , x>0

Now define an alternate process Z = {Z(t), t e R+}

such that Z(0) = 0, and for some real valued function
g(-) defined on R _and satisfying 0 <g(x) <1, x>0,
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1 wop g(SN(t))
LSyey) = o wp 1‘9<5N(t)) (2.5)
2(t) = z(sN(t)), t > 0. (2.6)
for a given sequence 0 = S0 < S1 < S2 < ... of conse-

cutive positions of points on the real Tine R, of a
Poisson process N(t) with rate A. The process
N = {N(t), t ¢ R} is defined on the same probability

space as that of 7. Let Tl(i) be the first passage
time of Z to reach the level 1. Next we give suffi-

cient conditions under which‘Tl(Z) d Tl(i).

Theorem 2.1. Suppose

(1) r(x) <r<=, x>0
and (ii) g(x) = r(x)/r, x > 0.
Then

d

d ~
1,(2) $1,(D) € X

Proof: The proof follows directly from the proof of
Theorem 2.1 of Sonderman (1980).

Remark - the construction z as presented above is
such that

(Z(t), t < T(2)EE 1z(t), t < (D),

where St means equality in Taw.

Theorem 2.1 immediately gives rise to a general
approach to generate samples for uniformizable ran-
dom variables. The algorithm to do this is:

Algorithm 2.1

Step 0. Obtain a = sup{r(x), x > 0} and set t = 0.

Step 1. Generate a sample y from an exponential
distribution with mean 1/x and set ¢t = t + y.

Step 2. Generate a uniform sample u between 0 and 1.

(i)  if u < r(t)/a, set x = t. STOP
(i1) otherwise go to Step 1.

Note that this is essentially the same as obtaining
the first point in the thinning algorithm of Lewis
and Shedler (1979a) for the non-homogenous Poisson
process. A discrete analogue of this algorithm is
developed and modified in Shanthikumar (1983a).

There are several uniformizable continuous random
variables that are of practical interest. In partic-
ular the phase type random variables such as general-
ized Erlang and hyperexponential random variables,
and all random variables with decreasing failure rate
(DFR) with r(0) < «» are uniformizable. Let

u = inf{r(x), x > 0} (2.7}

Then the probability of successfully reaching the
Tevel 1 by Z, at each renewal of N is greater than or

equal to p = u/A < 1. So the exoected number of expo-
nential samples (or comparisons) needed in Algorithm

2.1 is bounded from above by p_l. Maturally, one
would prefer to have a high value for p. When p =1

we need only one observation. However, this case
corresponds to the exponential random variable with
mean 1/2. So when a probability distribution function
is close to that of an exponential random variable,
one may expect this algorithm to perform well. Next
we will discuss the application of this algorithm to
Hyper-exponential, Logistic and Erlang distributions.
Example 1. Hyper-exponential distributions.

A random variable X has a hyper-exponential distribu-
tion if

ple ™) (2.8)

for a probability vector (p )5 and Ay > 0, n=

n

1,2,...,K. It is well know that the hazard rate
K -4, X
o (x) I Pprp®
r(x) = _?( - n=1 , x>0 (2.9)
F,(x K -A X
X I pe n
n=1
is decreasing and
A K
A 2 sup{r(x), x > 0} = = Pn*n {2.10)
n=1
w & infir(x), x > 0} = inf{x } (2.11)

(e.g., see Barlow and Proschan (1975))
The average number of comparisons needed for this
distribution for different sets of values of
(Dn)¥ and (An)§ with K = 10 are given in Table 2.1.
The values of A, are selected according to

A= 1,

A=A + (A -1)9, n=2,...,10.

n n-1 max

The probabilities p, are selected according to

p, = (1o)™Y (1-p'0), 0 = 12,010,

Different distributions are obtained using different

values for Anax and p.

As one may observe as p and Anax increases the

exnected number of observations needed in Algorithm
A

2.1 also increases. This is because the ratio a/u =
sup{r(x), x > 0}/inf{r(x), x > 0} increases as p and

Anax increases. As will be seen later a simple modi-

fication to Algorithm 2.1 will counteract this effect.
Example 2. Logistic distribution.

A random variable Y has a Togistic distribution if
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D Anax Average number Standard
of comparisons deviation
.9 2 1.0462 0.2330
4 1.2081 0.6506
7 1.4570 1.2677
10 1.6800 1.8198
7 2 1.0332 0.1977
4 1.1655 0.5289
7 1.3818 0.9663
10 1.6197 1.4848
.5 2 1.0137 0.1188
4 1.0844 0.3330
7 1.2246 0.6216
10 1.3672 0.8820
.3 2 1.0053 0.0740
4 1.0332 0.1879
7 1.0994 0.3627
10 1.1791 0.5245
.1 2 1.0021 0.0458
4 1.0090 0.0955
7 1.0276 0.1739
10 1.0538 0.2464

Table 2.1: Average number of comparisons (and
its standard deviation) needed to generate
samples for hyper-exponential random variables
using Algotithm 2.1, These statistics are
taken over 10,000 sampies.

Fy) = e/ +e), wcyca (2.12)

for a > 0. Now consider the conditional random
variable

X = YlY>0

Then
Fylx) = 27 /(1 + ), x> 0 (2.14)

One may now take a sample for X and randomly assign a
+ or - sign to obtain a sample for Y. So consider

fX(X) a
r{x) = = = =5 X 0. (2.15)
FX(x) 1+e
r(x) is increasing,
2 & sup{r(x), x >0} =a (2.16)
and
w & infir(x), x > 0} = a/2. (2.17)

In a sample size of 10,000 the average number of
comparisons needed to generate a sample for a logistic
random variable is observed to be 1.3779 with a
standard deviation of 0.6445.

Example 3. Erlang distributions.

A random variable X has an Erlang distribution if

, x>0 (2.18)

for K> 1 and ' > 0. If K=1, the Erlang distribu-
tion reduces to an exponential distribution. Now

e XKy

(P — iV
(x) = 2 - L (2.19)
r X) ?k(x) K;l e-A X(A|X)r
r!
r=0 :
K-2
1
= A' {1+ 5 (K1)} ———F—=—}, x > 0.
[ 5 oo ot

It is easily verified that r(x) is increasing,

A = sup{r(x), x > 0} = lim r(x) = ' (2.20)
X-o0
and
p = inf{r(x), x > 0} = r(0) = 0.

The average number of comparisons needed for this
distribution for different values of K are shown in
Table 2.2.

K Number of comparisons
Average Sample standard deviation

2 1.9994 1.0843

4 4.0268 2.0326

6 6.0506 2.7014

8 8.0187 3.2618

10 10.0068 3.7370

Table 2.2. Average number of comparisons (and
its standard deviation) needed to generate
sampies for Erlang-K random variables using
Algorithm 2.1. These statistics are taken over
10,000 samples.

From the above results it is clear that the uniformi-
zation technique is not an efficient approach to
sample values for Erlang random variables. Even the
simple method representing the Erlang-K random
variable as a sum of K exponential random variables

will perform better than the uniformization algorithm.

This clearly indicates that some modifications to the
basic algorithm should be made to make it efficient.
In the latter part of this section we will consider
some modifications to the basic algorithm.

To implement Algorithm 2.1 one needs to compute the

values of r(-) whenever it is needed. In some cases
this may require considerable computational effort.

However, this computational effort may be reduced by
an adaptation of the squeeze method to the uniformi-
zation technique (e.g., Schmeiser and Lal (1980) for
the squeeze method). Let

£(x) < r(x} <u(x), x > 03
be some bounds for the hazard rate r(-). Then the

following algorithm can be used in place of Algo-
rithm 2.1.
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Algorithm 2.2 (squeeze method modification)

Step 0. Obtain A = sup{r(x), x > 0} and set t = 0.

Step 1. Generate a sample y from an exponential dis-
tribution with mean 1/x and set t = t + y.

Step 2. Generate a uniform sample u between 0 and 1

and
(i) if u > u(t)/a go to Step 1
(ii) else (ii1) if u < £(t}/x
set x = t and STOP
(iv) else (v) if u > r(x)/x go to Step 1
(vi) else set x = t. STOP.

Dynamic Uniformization of Random Variables with
Decreasing Hazard Rate

Next we will Took at a possible improvement of
Algorithm 2.1 for application to distributions with
decreasing hazard rates. This improvement is
achieved by dynamically changing the uniformization
constant A, at every observation epoch. That is, if
a renewal of the underlying point process occurs at
time epoch t, the new uniformization constant A is
set equal to r(t), since

2 & r(t) > r(x), x > t. (2.22)
The algorithm incorporating this modification is:

Algorithm 2.3 (dynamic uniformization)

Step 0. Set i = r(0), n=1,and t = 0
Step 1. Generate a sample y from an exponential
distribution with mean 1/An and set t =t +y
Step 2. Generate a uniform sample u between 0 and 1.
(1) if u < r(t)/x, set x = t. STOP
(i) else set n = n+l, Ap = r(t) and go
to Step 1.
Theorem 2.2

The random sample X obtained through algorithm 2.3
has a probability density function

fX(x) = r(x) exp{- ?r(t)dt}, x>0
0

Proof:
Consider the conditional probability

P{x < X < x + ax|X > x and the last renewal
before time x occurred at time epoch t}
(2.23)

{r(t)ax + o(Ax)}(‘"—(%{%-'A—Xl) + 0(ax)

r(x)ax + 0{ax), x > t

Since the right hand side of (2.23) is independent
of t, one has

P{X<x+ax}-P{X<x}

PIoKT (2.24)

Pix < X < x + ax|X > x} =

r(x)ax + 0{ax)

Dividing both sides of (2.24) by ax and taking the
1imit as Ax + 0 one obtains

fX(x) = r(x)?&(x) = r(x) Z fX(t)dt, x>0 (2.25)

Solving the integral equation (2.25) for fX(-) with
the boundary condition fX(O) = r(0) one obtains the
desired result.

As noted earlier hyper-exponential distributions have
decreasing failure (or hazard) rates. Samples from
these distributions for various parameter values are

generated using Algorithm 2.3. The results of this
computation is given in Table 2.3.

Thé values of (pn)§ and (An)¥ are chosen to be the
same as those used in Table 2.1.

D Amax Average number Standard
! of comparisons deviation
9 2 1.0432 0.2101
4 1.1541 0.4069
7 1.2597 0.6511
10 1.3376 0.6497
7 2 1.0311 0.1804
4 1.1332 0.3788
7 1.2506 0.5202
10 1.3352 0.6045
.5 2 1.0135 0.1163
4 1.0745 0.2778
7 1.1724 0.4184
10 1.2565 0.5132
.3 2 1.0052 0.0719
4 1.0323 0.1802
7 1.0857 0.2905
10 1.1406 0.5131
.1 2 1.0021 0.0453
4 1.0089 0.0939
7 1.0264 0.2215
10 1.0504 0.2215
Table 2.3: Average number of comparisons

(and its standard deviation) needed to
generate samples for hyper-exponential
random variables using Algorithm 2.3. These
statistics are taken over 10,000 samples.

Comparison of Table 2.3 to Table 2.1 clearly shows
that the dynamic uniformization algorithm is a con-
siderable improvement over Algorithm 2.1.

Partitioned Uniformization of Continuous Random

Varjables with Increasing Hazard Rate

An alternate form of Algorithm 2.3 can be used to
obtain samples for uniformizable continuous random
variables with, increasing hazard rates. Let

[O,tl), [tl,tz),...,[tK_l,m) be K mutually exclusive

partition of the support R of the random variable X.
Hithin each of these partitions one may use a unifor-

mization constant suitable for that partition; i.e.,
the uniformization constant An used for the partition

[tn_l,tn) is

Ay & suptr(x), x e [ 58003 = r(t)

n
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Now the following algorithm can be used to sample a
value for a random variable X. Let t0 =0and t, =

K
+ o,

Algorithm 2.4

Step 0. Set A= r(tl), n=1,and t = 0.

Step 1. Sample a value y from an exponential distri-
bution with mean l/xn and set t =t + y.

Step 2. If (i) t>t setn=n+1,x = r(tn)

and go to Step 1,

(ii) else sample a uniform value u
between 0 and 1 and

(ii1) ifu 5_r(t)/An, set x = t. STOP.

(iv) else go to Step 1.

We will establish the validity of Algorithm 2.3
through the following theorem.

Theorem 2.3

The random sample X obtained through Algorithm 2.4
has a reliability function

FX(x) = exp{- } r(t)dt}
0

Proof: Consider the conditional probability

P{X > x]X > too1h xe [tn_l,tn). Since the
uniformization constant An is the same in the range
[t,.1»t,), from Theorem 2.1, it is clear that

X
PIX > x[X >t 1} =exp{- [ r(t)dt},
t
n-1
(2.26)
X e [tn-l’tn)
From (2.26) we note that
by
P{X >t [X>t, .} =-expl- [ r(t)dt),
k k-1 t
k-1 (2.27)
k=1,2,....

Now it is immediate from (2.26) and (2.27) that

P{X > x} =

1

n_
P{X > x|X > tn_l}kI=I1 PIX >t |X >t 4} =

X

exp{- [ r(t)dt}, x e [t > n=1,2,...,K,
0

n-l’tn)

Remark - Algorithm 2.4 can be used to sample a value
for a uniformizable continuous random variable, even
if the hazard rate does not have the monotonicity
property. In such a case one would set

Ay = suplr(x), x e [t,_;5t )} n=1,2,...,K,

and then use Algorithm 2.4 without resetting the value
of A, in Step 0 and the value of Ap in Step 2(4).

So far we have considered continuous random variables
that are uniformizable. It should be pointed out,
however, that there are several continuous random
variables that are not uniformizable. In particular
the random variables with finite support are not
uniformizable. There are also several random vari-
ables with support on the real line R or on the
nositive half real line R+ which are not uniformi-

zable. For example, a Gamma random variable with a
shape parameter a < 1 has a decreasing hazard rate and

gim r(x) = + = .
Xx-+0

On the other hand the random variable X & YIY > 0

with Y being a unit normal random variable has an
increasing hazard rate and

2im r(x) = + o .
X=oo

We will briefly outline a modification to the basic
algorithm that would allow one to generate samples
from some non-uniformizable random variables. Let X
be a non-uniformizable random variable with hazard
rate infinite in the 1imit only at either zero or

infinity. Now define the random variable
Xif X > e
X = { if 2im r(x) = + ® (2.28)
€ e if X<¢e x+0
X K<e
X, ={ if 2im r(x) = + o (2.29)
X>e¢ Xhoo

E
Now one can appropriately choose e such that its
continuous part of Xe is uniformizable. Now one may

use a modified partitioned uniformization technique
to sample a value for XE and use it as an approxima-

tion for a sample from X.

NON-POISSONIAN UNIFORMIZATION AND THE SIMULATION OF
NON-HOMOGENEOUS POINT PROCESSES

In this section we will consider non-Poissonian
uniformization of continuous random variables and its
application in the simulation of non-homogeneous

point processes. As before let X be a continuous
positive random variable with support I. Its cumula-
tive probability distribution function, probability
density function and hazard rates are FX(-), fx(~) and

r(-), respectively. Now let Y be another random
variable with the same support I as X and cumulative
probability distribution function; probability
density function and hazard rate FY(-), fY(-) and

rY(-) respectively. Suppose

—

r{x)

<1l,¥xel (3.1)

-
—<
>

Then we say that the random variable X is Y-uniformi-

zable. In the earlier sections we considered the

case where Y is an exponential random variable with

mean 1/A. In this case the condition (5.1) reduces to
r(x) <x <=, ¥x>0. (3.2)

Now we will consider an altorithm to generate a

Y-uniformizable random variable from the samples of Y.
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Let
o(x) 4 r(x)/ry(x), ¥ xel.

The following algorithm can be used to generate a
sample for the random variable X. The validity of
this algorithm will be established following the de-
scription of the algorithm.

Algorithm 3.1

Step 0. Sett =0

Step 1. Generate a sample y for the random variable
Y|Y>t’ and set y = t

Step 2. Generate a uniform sample u between 0 and 1.

(i) if u<p(t) set x = t. STOP
(ii) else go to Step 1.

Theorem 3.1

The random sampie X obtained through Algorithm 5.1
has a probability density function

fX(x) = r{x)exp{~ ? r(t)dt}, x el
0

Proof: Suppose we call each of the values t seen in
the above algorithm a renewal epoch. Consider the
conditional probability

P{x < X < x + ax|X > x and the last (3.4)
renewal before time x occurred at
time epoch t}

= {ry(x)ax + 0(ax)H(p(x) + 0(ax)), x > t

= r{x)ax + 0(ax), x > t.

Now similar to that in the proof of Theorem 2.3 one
has
_ X
fx(x) = r(x)FX(x) = r{x)exp{- [ r(t)dt}, x e I
0

This notion of non-Poissonian uniformization is im-
bedded in the concept of thinning of non-homogeneous
Poisson processes (e.g., Lewis and Shedler (197%)).
It is easily seen that this approach can be extended
to simulate non-homogeneous point processes. Next
we will illustrate the applicability of the above
algorithm through an example.

Example: Consider a random variabie X with hazard
rate

r(x) = exp{a0 +oagx + a2X2}, X > 0, (3.5)

ag > 0 and ay < 0. Simulation of non-homogeneous

Poisson processes with such degree-two exponential
polynomial rate function is considered by Lewis and
Shedier (1979b). lle choose %, < 0 so that the random

variable X could be uniformized by the random variable
Y with hazard rate

rY(x) = exp{a0 + alx}, x>0 (3.6)

Note that X has a defective distribution. To imple-
ment Algorithm 3.1, we first need to device an effi-
cient approach to sample a value for Y Yot So con-

sider
y
PLY > y|Y > t} = exp{- { rY(x)dx}, ys>t (3.7)
t
.7)

Substituting (3.6) into (3.7
cation

we get after simplifi-

1,0 vt %
PLY > y|Y > t} = exp{-—fe " -e " Je ")}, y > t (3 8)
1

Now using the inverse transform method, one has

Hew

%—-zn{l - alexp{-(a0 + alt)}zn(U)} +t, (3.9)

Ylyst )

where U is a uniform rnadom variable with support
(0,1). Now the algorithm to sample a value for X
follows Algorithm 3.1 in a natural way.

Algorithm 3.1a. (for r(x) = explag + ax + azxz},
x>0, ag > O,az < 0)

Step 0.
Step 1.

Sett =0
Generate a uniform sample u between 0 and 1
and calculate

y = %E-zn{l - alexp(-(a0 + alt))zn(u)} +t

and set t = y
Step 2. Generate a uniform sample u between 0 and 1
and
(i) ifu < expla,t} set x = t STOP

(ii) else go to Step 1.

Remark - Since X has a defective distribution one
should put an upper Timit for the value t and use it
in Step 2(ii) to terminate the algorithm after finite
number of steps.

Similar to the modifications used in Section 2, one ‘
may modify Algorithm 3.1 depending on whether p(x)

is decreasing or increasing. Further the extension
of Algorithm 3.1 to the simulation of a non-homoge-
nous point process is immediate. Hence we will not
make any effort to include these modifications here.

CONCLUSION

In this paper we have demonstrated the use of unifor-
mization in continuous random variate generation. In
particular we have developed several algorithms to
generate samples for uniformizable continuous random
variables. A dynamic uniformization and a non-
Poissonion uniformization algorithms are also devel-
oved. The basic idea of uniformization can be applied
in developing hybrid simulation/analytic models of
renewal processes (Shanthikumar (1983c)). Shanthi-
kumar and Sargent (1983) discuss the concepts of
hybrid simulation/analytic models.
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