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Abstract
Uncertainty is rampant in military expeditionary operations spanning high-intensity combat to humanitarian operations.
These missions require rapid planning and decision-support tools to address the logistical challenges involved in provid-
ing support in often austere environments. The US Army’s adoption of an enterprise resource planning system provides
an opportunity to develop automated decision-support tools and other analytical models designed to take advantage of
newly available logistical data. This research presents a tool that runs in near-real time to assess risk while conducting
capacity planning and performance analysis designed for inclusion in a suite of applications dubbed the Military Logistics
Network Planning System, which previously only evaluated the mean sample path. Logistical data from combat opera-
tions during Operation Iraqi Freedom drive supply requisition forecasts for a contingency scenario in a similar geo-
graphic environment. A nonstationary queueing network model is linked with a heuristic logistics scheduling
methodology to provide a stochastic framework to account for uncertainty and assess risk.
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1. Introduction

This paper presents a decision-support tool to support mili-

tary logistics associated with sustaining an expeditionary

force in response to the call to action from the 2005

RAND study1 on logistical issues during the invasion of

Iraq. The tool is designed to run in near-real time to

develop feasible plans, rapidly assess alternatives, identify

logistical capacity requirements to support expeditionary

operations, and assess the associated uncertainty and risks

relevant to military planners and decision-makers. The

model is restricted to a general expeditionary scenario but

not limited to an invasion. Modeling efforts focus on

repair parts (US Class of Supply Nine, CL IX) but also

include food and water (CL I) and ammunition (CL V), as

they share similar sustainment resources.2 By design, the

tool is focused on sustainment and excludes the time

phased force deployment data (TPFDD) problem of get-

ting a deploying unit’s personnel and equipment into the

theater of operations. The paper extends Rogers et al.3 by

incorporating uncertainty and the use of a time-dependent

variance correction to enable risk analysis.

The rest of this paper is organized as follows: Section 2

motivates the paper; Section 3 introduces related work;
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Section 4 establishes this research’s perspective on risk

and presents a stochastic framework for risk analysis;

Section 5 outlines the requisition demand forecasting

methodology; and Section 6 demonstrates the model on a

notional operation. Section 7 provides closing thoughts.

2. Motivation

In March 2003 during Operation Iraqi Freedom (OIF),

within a week of the fall of Baghdad, the 3rd Infantry

Division experienced equipment readiness for key ground

combat systems dropping from 90% to under 70% due to

distribution problems for CL IX; the 2005 RAND study

examining these problems concluded that these distribu-

tion problems stemmed from a lack of automated decision-

support tools capable of generating analysis fast enough to

support the rapid pace of operations.1

More recently, in 2018, the Defense Science Board

Task Force on Survivable Logistics concluded that

‘‘[l]ogistics data is neither as accessible nor used as effi-

ciently as it should be’’ and provided recommendations

that included increasing the ability to wargame logistics

with sufficient ‘‘fidelity to identify logistics constraints to

operations.’’4

3. Related work

Rogers5 proposes a Military Logistics Network Planning

System (MLNPS) that harnesses both the Army’s new enter-

prise resource planning (ERP) system called the Global

Combat Support System—Army (GCSS-A) and mission-

based forecasting (MBF) to assist decision-makers and plan-

ners with several aspects of military logistics.6 As opposed

to using historical average usage rates for repair parts, MBF

provides a tailored forecast using stratified sampling7 that

considers force composition, environmental conditions,

operation duration, and planned mission profiles.8–13 MBF

incorporates regression methods using these explanatory fac-

tors, a new technique to improve forecast accuracy for inter-

mittent demand referred to as the ‘‘Markov-Bootstrap

Method,’’14–16 and both predictive and prognostic methods

using sensor-derived data associated with Condition-based

Maintenance (CBM).8,17–19 Some key MLNPS functions

include identifying required capacities across the logistics

network to support an expeditionary operation, anticipating

bottlenecks, conducting what-if analysis, and course of

action (COA) analysis. The MLNPS is a significant contri-

bution as it is the only known decision-support tool designed

to use the Army’s ERP data.

The MLNPS fundamentally models the logistics net-

work as a large factory with each logistics node repre-

sented as a machine in the factory. Supply requisitions

(e.g., CL IX) act as jobs that must be processed through

this factory. With this approach, the MLNPS exploits an

engine known as the Virtual Factory (VF) to optimally (or

near-optimally) schedule these requisitions across the net-

work in near-real time to minimize the maximum lateness;

lateness is the requisition completion time minus the due

date. Hodgson et al.20 introduced the VF in 1998, and it

has sustained a number of improvements: most notably,

Thoney et al.’s21 addition of batch processing. Rogers5

finds this heuristic optimization provides a good forecast

for real system performance and demonstrates significant

insights that would have impacted planners in 2003.

The ability to handle batch processing allows the VF to

schedule for multiple network locations while also

accounting for transportation between locations, since a

truck may be modeled as a batch processor itself. Trainor22

and Melendez23 use batch processing in conjunction with

the VF to address military deployments (also see Hodgson

et al.24). Rogers et al.3 extend this idea by focusing on

repair parts transiting the military logistics network by

using nested batch processors to model requested repair

parts being loaded into pallets, which are loaded into con-

tainers then shipped via surface (ocean) vessels.

Using the VF to process this data along with a MBF for

future demand, the MLNPS terminates with a near-optimal

sequence to maximize customer (requesting unit) satisfaction

by minimizing the maximum lateness. Rather than focusing

on the sequencing, Rogers et al.3 demonstrate that the VF

provides a forecast of when, where, and how much queuing

will occur at various nodes across the logistics network.

Validating their model against real performance data from

the 2003 invasion of Iraq during OIF demonstrates that the

MLNPS can accurately approximate the performance of a

real logistics network. Using this model and mean value

parameters, they develop a trial-and-error method to test

drive a logistics plan and assess how well it will support a

planned expeditionary operation using deterministic outputs

from the VF. Their model assesses the logistics network both

for the invasion of Iraq and for a notional intervention sce-

nario set in Africa. With two analysts, model setup took 1–2

days from scratch (hours if already created) with run times

taking minutes to hours depending on the time horizon and

the size of the network studied; to our knowledge, this is

faster than contemporary models.

The MLNPS has tremendous potential as a military

logistics model for several key reasons: it supports end-to-

end analysis in near-real time (a capability deemed critical

by Army leadership) and is designed to incorporate both

GCSS-A data and MBF.25,26 As illustrated by Figure 1, the

GCSS-A can provide the model with the current location

and status of all requisitions currently in the system. The

model requires the planned logistics network and necessary

constraints as an input from the planner. The MLNPS then

forecasts how well the network will perform, where signif-

icant queuing will exceed thresholds causing sustainment
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problems, and provides the decision-maker with informa-

tion to adjust the plan or notify subordinate units of what

to expect as the operation unfolds.

The Army’s new ERP system (GCSS-A), with its abil-

ity to provide data on demand, provides unprecedented

access to data. The Army must harness that data and trans-

form it into useful, actionable risk information for deci-

sion-makers. While the uncertainty cannot be altogether

eliminated, GCSS-A makes it possible for tools to account

for this uncertainty.

4. A stochastic framework that permits
risk analysis

4.1. Risk in the military logistics context

As a deterministic tool, the MLNPS does not adequately

assess uncertainty or permit analysis of risk. The term risk

is ubiquitous in both military and nonmilitary applications

but often lacks precision or quantification.27 This paper

defines risk as a set of possible outcomes with negative

consequences. For this definition, assessing risk requires

estimation of both the severity and likelihood of those out-

comes.28,29 For a more detailed review of the supply chain,

military, government, and transportation infrastructure

risk, see McConnell30 (Section 3.3).

This view of risk is justified to assess operational risk

faced by the military logistics network in the form of unan-

ticipated requirements and disruptions from events caused

by enemy action, terrain, and weather.8 Beyond these con-

siderations, a commander faces risks that address timing,

performance, or other concerns. These may be measured

by any number of qualitative or quantitative metrics that

frame how the commander views risk. The framework for

risk analysis must be flexible to accommodate different

notions of risk and address various sources of risk, even if

only through what-if functionality. Further complicating

the analysis is the fact that risk has both time and location

components that greatly increase the dimensionality—risk

can evolve over time as the operational plan unfolds

and might be concentrated in different logistic nodes as a

function of time.

This research’s perspective on risk analysis extends

Alderson et al.’s31 definition of operational resilience:

‘‘the ability of a system to adapt its behavior to maintain

continuity of function (or operations) in the presence of

disruptions.’’ Alderson et al.31 link infrastructure resilience

to system operation (function) and focus on disruptions.

Our model must enable what-if analysis by capturing both

severity and likelihood.

4.2. Relevant advances in queueing theory

Queuing theory provides a rich and convenient source of

tools to apply to this problem as it can account for uncer-

tainty in both arriving requisitions and processing times

through a network. Recent advances also integrate time-

varying properties while relaxing the mathematically con-

venient but not always realistic Markovian assumptions

from classical textbooks. Queuing theorists largely con-

cern themselves with two basic questions that align with

our stated research objectives: (1) given a stochastic sys-

tem’s properties, estimate its performance (performance

analysis) and (2) given a performance target, estimate the

system properties required to achieve the desired perfor-

mance (capacity planning).

Recognizing that the number of servers at a queue is

analogous to the capacity of a logistics node, it is clear

that queuing theory can assist the MLNPS in setting capa-

cities (or estimating required capacities) to achieve better

performance. Figure 2 (mimicking Mandelbaum and

Momčilović32) demonstrates that by increasing the system

scale, it is possible to increase the quality of service with-

out loss of efficiency—in other words, properly setting the

capacity can benefit both quality and efficiency.

We focus on queuing theory that supports staffing

time-dependent (nonstationary) queueing systems and

non-Markovian (non-exponential) properties, particularly

arrival and service processes. Many studies present evi-

dence of time-varying system properties in everything

from hospitals to call centers and even trucks at a sea-

port.33–38 It is well known that Markovian approximations

to non-Markovian systems can perform poorly, particu-

larly if sufficient variation exists in the arrival process.39–

41 Jennings et al.42 use an infinite server (IS) and Normal

approximation to choose the time-dependent staffing func-

tion, s(t), to stabilize the probability of delay for a

Gt=GIt=st model with nonstationary non-Markovian arri-

vals (the first Gt) and nonstationary identical and indepen-

dent general service times (the GIt). Liu and Whitt43 use

IS models to develop offered-load (OL) and modified

offered-load (MOL) approximations for the time-

dependent staffing required to stabilize the expected delay

and abandonment probabilities for the Mt=GI=st +GI

queue. This approach is extended to a feed-forward net-

work structure of Mt=GI=st +GI queues.44 He et al.41

Figure 1. Conceptual overview of the Military Logistics
Network Planning System (MLNPS).3 DP: decision point; ERP:
enterprise resource planning.
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extend established staffing procedures to allow for non-

Markovian arrival processes using a heavy-traffic limit

that applies to systems where some delay is expected.

Their study of the impact and interplay between arrival pro-

cess variability and service time distributions demonstrates

that the variance correction used by Jennings et al.42 is robust

for nonstationary models. Readers wanting a more thorough

treatment should see Defraeye and Nieuwenhuyse.45

4.3. Modeling the military logistics network

The military logistics network stretching from US depots

to the expeditionary theater of operations can be modeled

as a queueing network where logistical nodes (or pro-

cesses) are queues and the requisitions are arriving as

orders via GCSS-A. The simplified model in Figure 3

illustrates how orders are sourced, picked, and packed,

then shipped to the ordering unit. The model is a feed-

forward queuing network as supply requisitions move

from the sourcing depot across the network to the ordering

unit and do not require rework or depart the network

through a lateral exit. In the simplified network shown,

requisitions are arrivals in the queuing theory terminology

and arrive according to the requisition forecast discussed

in Section 5. There are multiple classes of arrivals based

on the mode of transportation to be used, whether military

Figure 2. Performance of M=M=c queues (for c∈ f1,4,16,64g) demonstrating that it is possible to increase both the efficiency and
quality through staffing; utilization (ρ) is the arrival rate (l) divided by the total service rate (cμ), ρ= l=cμ.

Figure 3. Military logistics network as a queueing network (simplified for illustration).
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air, a contracted point-to-point service denoted world-wide

express (WWX), or surface shipment (ocean freight).

Within each arrival class are many subclasses defined by

the specific route that the requisition must take through

the network, largely defined within a class by the sourcing

node and the ordering unit.

We obtain this feed-forward structure through several

important assumptions. Firstly, we assume that all requisi-

tions are appropriately handled, routed, and moved along

the required path from the point of supply to the point of

consumption—in other words, we do not model lost,

misrouted, or frustrated cargo. This is reasonable due to

the sheer size of the network and the immense requisition

flow volume. In addition, the military is actively embra-

cing interconnected technologies, such as radio-frequency

identification, two-dimensional bar codes, satellite-based

communications, and others that help prevent these logisti-

cal mishaps.46–50 This paper models repair parts (CL IX)

along with food and water (CL I) and ammunition (CL V);

other classes of supply are beyond the scope of this paper.

The feed-forward structure implies that by estimating

the performance or capacity required at an upstream loca-

tion, if the departure process is obtainable it also provides

the arrival process to the downstream nodes so the analysis

can be repeated for downstream locations. Consider the

simplified military logistics network depicted as a feed-

forward queuing network in Figure 3; supply requisitions

arrive at either Defense Depot Susquehanna, Pennsylvania

(DDSP) or to an alternative depot acting as a sourcing

point (SP1 or SP2). The requisitions from alternative

depots still move to DDSP as it is the primary consolida-

tion and containerization point (CCP)51 for palletizing and

containerizing shipments. As Rogers5 discusses, most

requisitions travel via military aircraft, WWX, or surface

shipment. Shipments traveling on military aircraft (ocean

freight) are palletized (containerized) at DDSP then loaded

onto military aircraft (container ships) at the airport (sea-

port) of embarkation, or APOE (SPOE) for movement into

theater where they are offloaded at the airport (seaport) of

debarkation, or APOD (SPOD).51 These shipments are

then transported to the theater distribution center (TDC).

Requisitions being shipped via WWX travel directly to the

TDC. At the TDC, pallets and containers are broken down

and moved forward via military transportation to the order-

ing units. This final process is often referred to as the last

tactical mile (LTM) due to the transportation occurring

through a designated combat zone.

Using MBF and the data from GCSS-A, it is possible

to estimate the arrival processes to the network shown in

Figure 3. Since MBF is not available for all unit types,

Section 5 presents a data-driven approach to forecasting

requisitions for a given scenario. This forecast provides an

estimated nominal time-varying arrival rate to the

upstream sourcing nodes.

4.4. Virtual Factory delayed-infinite server feed-
forward model

4.4.1. Network perspective. To assess risk and answer the

research objectives, this paper uses a tandem Virtual

Factory delayed infinite server (VF-DIS) OL approximation

for each location; the model alternates between using the

VF and the DIS approximations for each location moving

across the network from upstream to downstream. The

appeal lies in leveraging each submodel’s strengths. The VF

is efficient and can handle nested batch processing (e.g., a

multipack inside a pallet on a truck) as well as a number of

realistic constraints, and with small refinements, the DIS

model43 provides a computationally efficient method to

evaluate performance and predict capacity requirements

while communicating a sense of the uncertainty in the pre-

dictions. This tandem approach uses each model to the max-

imum potential while avoiding each model’s weaknesses.

The approach starts with the data-driven requisition

forecast and the performance target of average delay

desired for each of the network locations. These perfor-

mance targets are obtained from stakeholders, proposed for

the sake of continued analysis, or derived from senior

leader interactions. The forecast conforms to the require-

ments described in Section 5 but in general is both nonsta-

tionary and non-Markovian. We assume that an empirical

or fitted theoretical distribution is available for the process-

ing time at each location in the network to account for sto-

chastic variation; these may be general (non-exponential).

Figure 4 offers a visualization of the VF-DIS process

with a small portion of the network. It depicts the network

as two complementary models, the DIS and the VF

approaches, with the bold (blue) line representing the VF-

DIS hybrid solution approach for an analyst conducting

risk analysis and military logistics planning. The dashed

line represents the model workflow if only using a single

model in isolation from the other. Taking the logistics net-

work, processing logic, and requisition forecast, l(t), as

inputs, the VF-DIS first uses the VF at the upstream nodes

to assess the arrival process and the resulting departure

process given the default time-dependent capacity plan, st,

which can be initialized via a simple constant capacity.

With the average delay targets for the upstream nodes, the

DIS model calculates the time-dependent capacity required

to meet the targets by providing both a time-dependent

average (st) and the stochastic variability around that aver-

age. These capacity plans (functions over time) are inputs

to the VF, which accounts for location-specific policies,

logic, and schedules; the VF then returns the time-

dependent departure process, represented as σ(t). Since the

network is feed-forward, the departure process is the

downstream arrival process so the model advances down-

stream once the upstream planning is complete and repeats

the process until it reaches the most downstream nodes.

McConnell et al. 5



The VF can model location-specific policies via its pro-

cessor logic. These are important because some locations

do not work weekends, and resources vary according to

specific schedules driven by real-world considerations.

Another example stems from a working policy used by a

container packing location (one of several batch pro-

cesses): a container is considered full when it reaches its

effective capacity, reaches the minimum capacity to send

and there are no orders left to pack, or when it has been

sitting open (and partially filled) for at least three days.

The VF’s processor logic conveniently incorporates these

nuances.3

Planners may obtain the performance targets for each

node from senior leader guidance, experts, or simply a staff

estimate as part of the planning process. If not derived

from successful historical performance or leader guidance,

staff planners may choose to use a range of targets they

believe to be feasible and present them with their resulting

impacts to the staff and/or leadership for analysis and deci-

sion. The calculations this choice permits is the science,

but choosing an appropriate performance target is clearly

part of the art of the planning method described here.

The VF-DIS performs the same steps at every location.

If that location is not of interest or cannot be impacted by

available decisions, there is no need to linger performing

analysis after obtaining the departure process. However,

when the VF-DIS model reaches a node of interest such as

the TDC or the LTM trucks, it may be desirable to identify

a logistics plan for that location to meet senior leader per-

formance guidance and assess the associated risk. Section

4.4.2 provides the technical details for this process.

4.4.2. Node perspective. Consider an arbitrary node in the

logistics network. Let w be the average delay taken as the

performance target for this node and denote the average

arrival rate on day t as l(t); the VF provides this nonsta-

tionary arrival rate using the data-driven requisition

forecast discussed in Section 5. The logistics node is repre-

sented as a Gt=GI=st queueing model where the processing

time, S, at this location is independent and identically dis-

tributed according to the general distribution FS . Figure 5

labels this Model 1. Define σ(t) as the average departure

rate on day t for the associated departure process. Denote

Q(t) as the queue length at time t. Let B(t) be the number

of busy servers at time t with mean m(t)=E½B(t)� and var-

iance v(t); B(t) is approximately as follows:

B(t)∼Normal(m(t)+ 1=2, z(t)m(t)), ð1Þ

with

E½B(t)�=
ð(t�w)+

0

l(t � w� x)�FS(x)dx, ð2Þ

where the notation (x)+ =maxfx, 0g and the service time

complementary cumulative distribution function
�FS(x)= 1� FS(x). Equation (2) calculates the average

capacity over time required to maintain the performance

target w> 0.

Define fA(t), t ø 0g as the counting process that tracks

the number of arrivals (events) by time t, then the arrival

process index of dispersion (for counts), I(t), is the

variance-to-mean ratio of the cumulative number of arri-

vals (events) as given by Equation (3). If the node sees Mt

arrivals according to a nonhomogeneous Poisson process

(NHPP),52 I(t)= 1, t > 0:

I(t)= Var(A(t))

E½A(t)� , t > 0: ð3Þ

The arrival process is overdispersed if I(t)> 1 and

underdispersed if I(t)< 1. If the arrival process to Model 1

is significantly overdispersed then a naı̈ve implementation

of the DIS OL approximation will underestimate risk to

the decision-maker because, while the predicted average

will be true, the model will underestimate the variance.

Figure 4. Visualization of the Virtual Factory delayed infinite server (VF-DIS) offered-load network model. The models
complement each other—our unified approach is denoted in bold (blue). The dashed lines represents using the two single model
approaches. Note: w0 represents the average elapsed time from a requisition establishment to the release to the source depot.
DDSP: Defense Depot Susquehanna, Pennsylvania; CCP: consolidation and containerization point. (Color online only.)
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Using the Sudan scenario from Rogers et al.,3 Figure 6 pro-

vides an estimated dispersion for the LTM trucks revealing

that the LTM arrivals are over five times more variable

than a NHPP. In other applications, healthcare clinics often

see underdispersion (≈ 0.4–0.6) in appointment-based sys-

tems but overdispersion (≈ 1.5–2.5) in emergency depart-

ments or at call centers.53–56

This research assumes that with GCSS-A data an ana-

lyst can estimate the dispersion for a given location

(Section 5 enables estimating the dispersion using multiple

sample paths for the requisition forecast).

If arrivals occur according to a NHPP, then I(t)= 1, 8t,
and for a fixed t, B(t) is a Poisson random variable with

mean E½B(t)� (2).43,57 This implies m(t)= v(t). If the arri-

val process is not a NHPP, then m(t) 6¼ v(t) and the heuris-

tic risk correction factor (RCF), ~z(t), enables the following

approximation:

v(t)≈~z(t)m(t), ð4Þ

with the correction factor

~z(t)=maxfz(t), 1g, ð5Þ

z(t)= 1+ (c2
a(t)� 1)

E½S�

ð∞
0

½1� FS(x)�2dx, ð6Þ

where

c2
a(t)≈ Var(A(t � w)� A(t � w� η))Ð t

t�η l(u� w)du
, ð7Þ

for a chosen η> 0.

The capacity recommendation follows the square root

staffing (SRS) rule:

sγ(t)= E½B(t)�+ δγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(B(t))

pl m
, ð8Þ

establishing a buffer to hedge against stochastic variability

by establishing a probability γ and associated quality of

service parameter δγ such that P(N(0, 1)>δγ)= γ, which

exploits the Normal approximation to the Poisson.

4.4.3. Discussion. Figure 5 graphically depicts the node

specific approximation. Model 2 (Mt=GI=st queue) can

approximate Model 1 (see Figure 5) as it captures the

time-dependent fluctuations in the arrival process with the

same deterministic mean function while retaining Model

1’s non-exponential service time distribution and time-

varying capacity. The only difference is in the arrival pro-

cess variability. Convenience motivates the transition to

Model 2 and requires a correction to account for the

Figure 5. Queueing models for a location. Model 2 approximates Model 1 by focusing on the time-dependent behavior. Model 3 is
the delayed infinite server (DIS) offered-load approximation for Mt=GI=st ; Liu and Whitt43 show that Model 3 approximates Model
1. Within Model 3, the contents of the first two queues, Q(t) and B(t), respectively, are independent Poisson random variables for a
fixed t. See Table 1 for the departure rate, ~σ(t). NHPP: nonhomogeneous Poisson process.
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arrival variability. There is no reliable method to obtain

analytical approximations for the capacity required over

time to meet performance targets for Model 1 and the use

of simulation will not permit the analysis to be performed

in near-real time. From the network perspective, Model 2

enables Poisson superposition at a downstream node that

receives requisitions from multiple upstream nodes; the

aggregate arrival process is then a NHPP.

To identify the capacity to achieve the average delay

target w> 0 for Model 2, Liu and Whitt43 show that the

DIS OL approximation works well for systems such as the

military logistics system where requisitions may be

expected to wait for some (even small) amount of time

before processing. The DIS model, depicted as Model 3 in

Figure 5, approximates Model 2 by using two infinite

capacity queues in series. This presentation of the DIS

model omits the abandonment process implying the

assumption that there is no lost, misrouted, or frustrated

cargo. The first queue represents the waiting space in

Model 2; the second queue represents the service facility

of Model 2.

The infinite capacity implies that the departure process

from each queue in Model 3 is also a NHPP, which is

computationally and mathematically critical in the feed-

forward network. The idea behind Model 3 is simple.

Requisitions arrive to the first queue (waiting area) and

wait a deterministic amount of time equal to the target

average delay, w, before continuing to the second queue.

This implies an average arrival rate of β(t)= l(t � w),

t ø w at the second queue, which is just a deterministic

time shift.

At the second queue, requisitions immediately begin

processing according to the general service time distribu-

tion G =FS . The objective is to determine the number in

the second queue at time t, B(t), which serves as the first-

order approximation of the number of busy servers in

Model 2 while maintaining an average delay of w. In sim-

pler terms, Model 3 approximates Model 2 by having all

requisitions wait the desired average delay then simply

observes how many busy servers would be in the second

queue over time. Based on the mathematics of the IS

queue, this is obtained via direct calculation using

Equations (1) and (2), applying known results for the

Mt=GI=∞ queue (see Theorem 1, Eick et al.57).43

While Equation (2) calculates the average capacity over

time required to maintain the performance target, the

mathematics of Model 3 fully specify the approximate dis-

tribution of this predicted capacity requirement. Section 6

exploits this idea and uses Monte Carlo methods to esti-

mate what is not available analytically. Table 1 sum-

marizes the remaining analytical formulas for the DIS OL

approximation.

The DIS approximation prediction for Model 2 with Mt

arrivals implies B(t)∼ Poisson(E½B(t)�). Correcting for the

variability of the Gt arrival process requires application of

a result from the stationary G=G=∞ queueing model as a

heuristic, which is consistent with Jennings et al.42 (see

Section 6) and He et al.41 (see Section 3). This paper is the

first to use a time-shifted variance correction to integrate

the DIS approach.

The function ~z(t) (5) does not allow a reduction in var-

iance (an optional modeling assumption due to lack of dis-

persion data—this avoids a false sense of certainty) and

Table 1. Model 3 delayed infinite server (DIS) approximations for Model 2 (assumes Mt arrivals).

Performance feature DIS approximation (for a fixed t)

Queue length, Q(t) ∼ Poisson with mean E½Q(t)�= Ð t^w

0 l(t� x)dx
Number of busy servers, B(t) ∼ Poisson with mean E½B(t)�= Ð (t�w)+

0 l(t� w � x)�Fs(x)dx
Departure rate, ~σ(t) ∼NHPP with time-varying rate ~σ(t)= Ð (t�w)+

0 l(t� w � x)dFS(x)

Total number in systema, X(t) X(t)=Q(t)+ B(t)

aSystem refers to a specific node; t ^ w =minft,wg; (t� w)+ =maxft� w,0g.
NHPP: nonhomogeneous Poisson process.

Figure 6. The last tactical mile (LTM) arrival dispersion for the
Sudan scenario is over five times more variable as a
nonhomogeneous Poisson process (dashed line). The graph
shows arrival dispersion in 463L pallet equivalent units from
Equation (9).
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can increase the variance for B(t) using the time-dependent

generalization of the heavy-traffic peakedness (6) taken

from Whitt’s58 treatment of the stationary G=G=∞ model,

which characterizes the variance-to-mean ratio of the

steady-state number of busy servers. Since Model 1 is non-

stationary, (6) is a heuristic. Equation (6) assumes a sta-

tionary service time distribution, but this can be relaxed.

Equation (7) is a time-dependent generalization of the

asymptotic variability parameter and is similar in form to

(3); this paper time-shifts the asymptotic variability para-

meter by w to account for the DIS approximation. The

parameter η determines the dispersion estimate in the local

interval ½t � η, t�; this paper uses a timestep of one day

and numerical evaluations confirmed that η= 1 is a good

choice for this application. The intuition is that both the

arrival variability (7) and the service time variability (6)

affect the variance of the capacity prediction (number of

busy servers). Specifically, the tail of the service time dis-

tribution drives the impact on the variance with the termÐ∞
0
½1� FSt

(x)�2dx in (6).

Since we estimate the arrival variability parameter (7)

empirically, it can be undefined when
Ð t

t�η β(u)du= 0,

which occurs during lulls in arrivals on η consecutive days.

When this occurs, we define c2
a(t)= 0 for this special case

such that the RCF z(t)= 1, which aligns with engineering

intuition.

This RCF (5) corrects the variance in the approximation

for Model 2 so the final results may serve as an approxi-

mation for Model 1. The Normal approximation to the

Poisson implies that instead of B(t)∼ Poisson(m(t)), which

underestimates risk, the required capacity is actually

approximated by B(t)∼Normal(m(t)+ 1=2, z(t)m(t)).

Adding a half to the mean function corrects for the conver-

sion between a discrete distribution to a continuous one,

but may be omitted in practice if desired. This continuity

correction may lead to a positive bias in the capacity fore-

cast when the nominal requirements are relatively low and

the continuity correction has a larger relative impact on

the mean. In Section 6, which demonstrates this technique,

B(t) is a Normal distribution truncated on the interval

½0, +∞) to prevent the sampled z(t) from pushing the

probability below zero; this is equivalent to (B(t)jB(t)> 0).

Figure 5 displays an overview of the entire process to pre-

dict capacity requirements for a single location. The VF is

responsible for both the arrival rate to each node, l(t), and

determining the departure rate, σ(t), as it is designed to

handle location-specific packing policies, work schedules,

and other realism constraints.

Much of the queueing literature cited is motivated by

staffing requirements for call centers and often employs

(8) over a discretized time horizon. In the case of expedi-

tionary military logistics such continuous control is not

likely to be possible, even over long subintervals. Section

6 addresses this concern and also demonstrates a technique

to use the VF-DIS model structure to generate possible

capacity plans for a location given the time-varying risk

information.

Combined with the tandem VF-DIS approach for the

network, this approximation provides a framework to

describe the average requirements that fluctuate over time

as well as the stochastic variation around that deterministic

prediction. In short, this includes both severity and likeli-

hood in the predictions.

While the feed-forward structure imparts computational

efficiency and suggests a simple sequential approach, the

time-varying (nonstationary) property and presence of

non-Markovian (non-exponential) arrival and service pro-

cesses greatly complicate the analysis. The reader will

notice that the fundamental modeling unit traversing the

network is changing as well and there is no common unit

for capacity (number of servers); Rogers5 uses number of

requisitions per day for DDSP, 463L pallets59 per day for

the APOE, and 40 foot container equivalents (FEU) per

day for surface freight, and even the number of medium

truck companies as a capacity unit. Queueing theory has

no easy way of accounting for these unit changes.

To simplify the analysis, the model employs a 463L

pallet equivalent unit (PEU) as the base unit of capacity to

be used throughout the network. For reference, Figure 7

portrays airmen loading a 463L pallet holding multipack

containers into a military aircraft. This unit is reasonable

as it readily converts to the 20 foot container (TEU) and

FEU equivalent units widely used in the logistics practi-

tioner community. The CCP packs requisitions and multi-

pack boxes into containers. The TDC requires an

Figure 7. Depiction of a 463L pallet with multipack containers
in Al Taqqadum, Iraq (9 January 2009). Seabees assigned to
Naval Mobile Construction Battalion 7 and airmen of the Air
Force Expeditionary Logistics Readiness Squadron Detachment
4 maneuver 463L pallets into an Air Force C-17 for
transportation.59
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equivalency unit as it breaks down both pallets and con-

tainers and organizes them with individual requisitions for

onward transport. Given a particular Army truck company

equipment list, known as the modified table of organiza-

tion and equipment (MTOE),51 it is possible to convert

between PEU and a collection of logistics distribution

resources.

Establishing the PEU unit also provides an opportunity

to account for the tare weight. One can calculate the num-

ber of PEUs arriving (or departing) location m on day t by

taking the total weight and volume for that day and loca-

tion and dividing by the effective maximum capacity of

the 463L pallet given by Equation (9) below. The larger of

the two determines the 463L pallet equivalent capacity

required; note that for resources the smaller of the two is

the offered resource capacity. Table 2 lists the 463L maxi-

mum and effective capacity. The use of cubic inches pre-

serves integrality in the model for computational

efficiency and adequately models the many requisitions

with less than a unit cubic foot volume:

Pmt =max
TotalWTmt

95%PEU WT
,

TotalCUmt

85%PEU CU

� �
_ ð9Þ

Using 95% of the maximum weight accounts for the

tare weight. Using 85% of the maximum volume accounts

for the inevitable voids between contents that prevent

using all of the physical container volume. Whether a trac-

tor trailer or a shipping container, spaces are considered

full at the 85% volume utilization point.

5. Generating a data-driven demand
forecast

The MLNPS provides a convenient set of tools for analyz-

ing the performance of logistical COAs as well as a means

of identifying the capacities needed to hit performance tar-

gets. Both of these capabilities require forecasted demand

from certain classes of supply, such as food and water,

ammunition, and repair parts, over the studied time hori-

zon. Since MBF, driven by consumption data, is not avail-

able for platforms outside of Army aviation, we use

available modern combat data as a surrogate to generate

the demand forecast. Acknowledging this is supply-side

data and therefore a faulty signal for true demand, this

data-driven process mimics some MBF techniques, such

as stratifying on unit type and mission intensity, in order

to generate the best demand forecast possible without true

MBF.

5.1. Data-driven approach

It is critical to use modern combat data to get a representa-

tive picture of modern combat repair part demand. To

forecast demand for different missions in varying opera-

tional environments, the process presented here would be

replicated using data generated under those conditions.

While order data may not be a perfect demand signal,

when properly characterized this data provides an initial

approximation of the demand required in absence of

consumption-driven MBF. The model focuses on food

and water, ammunition, and repair parts primarily

because the data describe repair parts and they all share

common resources across the distribution network.

An author from the 2005 RAND study1 provided OIF

repair part requisitions and the US Transportation

Command (TRANSCOM) provided data on all requisitions

that DDSP processed in 2003. Together these datasets pro-

vide the weight, volume, sourcing depot, requisition date,

requesting unit and location, and other factors for all repair

part orders processed by DDSP and those destined for units

in Kuwait and Iraq. For specific operational characteristics,

the process relies on data from the first 87 days of OIF,

which consists of 647,189 individual requisitions (11.6

million parts) spanning the two weeks prior to crossing the

line of departure (LD) through to the end of May 2003.

The DDSP-specific data contain the 7.7 million requisi-

tions from 2003. Both datasets have a time precision of

days, which aligns with the chosen time step for this work.

Due to similar terrain and environmental factors the OIF

dataset is sufficient for the analysis, which considers a

notional operation in Sudan.

5.2. Process overview—a sample path approach

Generating a demand forecast requires three key inputs–

the task organization, concept of the operation, and the

timeline–which are estimates produced during the military

planning process. The task organization lists what units

are conducting the operation and may change over time.

The specific tasks (missions) for these units are found in

the concept of the operation. These products provide the

analyst with the specific details (who, what, when, where,

and why) for the operation.

The timeline is essential to breaking down the time hor-

izon of interest into distinct missions for the units. The

forecast must account for the fact that repair part demand

is different by both unit type (think infantry versus aviation

units) and type of operation (preparing for combat versus

Table 2. Maximum and effective capacity of the 463L pallet.

Weight (lbs) Volume (cu in)

100% 463L capacity 10,000 838,080
Effective PEU 9500 (95%) 712,368 (85%)

PEU: pallet equivalent unit.
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combat). This is accomplished by defining three opera-

tional intensity levels (OILs) then using the OIF invasion

data to characterize each type of unit’s demand under those

operational descriptions to describe pre-combat (OIL 1),

steady-state operations out of an established base (OIL 2),

and direct (major) combat operations or high-intensity con-

flict (OIL 3). Since these levels are qualitative in nature,

Table 3 provides recommended guidelines for identifying

these levels using historical data.

Figure 8 graphically shows the forecasting process,

which begins by generating requisitions for the food,

water, and ammunition supplies that must sustain the units

in the model. Then a specific workflow addresses repair

part demand for every unit for every OIL. This workflow

determines the number and timing of requisitions, how

those requisitions are routed to the ordering unit, the

required delivery date, order weight and volume, and the

sourcing depot. Once this has occurred for every unit for

every OIL, the concatenation of these requisitions consti-

tutes the forecast. Due to how the forecast employs prob-

ability distributions, the resulting forecast is a projected

sample path for that time horizon.

5.3. Modeling the demand process
5.3.1. Food, water (CL I), and ammunition (CL V). Unit size

plays an obvious role in estimating CL I requirements.

Since bottled water was the primary source of potable

water during OIF and this research focuses on initial expe-

ditionary operations, we generate pallets of bottled water

to supply the units originating at the TDC.1,5 This assump-

tion may vary across the time horizon as may the starting

locations of those pallets, depending on the logistics plan.

Army Tactics, Techniques, and Procedures (ATTP) 4-41,

‘‘Army Field Feeding and Class I Operations’’ recom-

mends ration cycles and feeding plan guidelines (see

Section 5.3 of Rogers5) to identify the capacity required to

haul CL I to the units so the remaining capacity may be

allocated to other classes of supply.

Assuming an average Brigade Combat Team (BCT)

strength of 4500 soldiers with attached enablers that

Table 3. Guidelines to identify operational intensity levels.

Operational
intensity

Distinguishing
features

Level 1 A Prior to crossing line of departure
A Not conducting combat operations
A Preparation for combat operations

Level 2 A Operations conducted from
established and secured base or
fixed location

A Operations take on a steady-state,
routine nature during this period

Level 3 A Conducting invasion
A Major combat operations/

high-intensity conflict

Figure 8. Process overview to generate a demand forecast. More details available in McConnell.30 The irregularly shaped (blue)
box indicates the steps required for every unit type and operational intensity level (OIL). (Color online only.)

McConnell et al. 11



increase the troop count by 10% yields approximately

4950 personnel per BCT. Consistent with doctrinal water

planning guides, assume 7.27 gallons of water per person

per day is required in an arid environment to account for

hydration, hygiene, and feeding purposes. The standard

planning factor estimates that a pallet may hold up to 228

gallons of bottled water.60 Using a 10% breakage planning

factor, this yields a daily water requirement of 173 pallets

of water per day for a BCT.5 A pallet holds 576 Meals-

Ready-to-Eat (MREs) and, assuming initial rations are

three MREs per day, the daily food requirement is approx-

imately 26 pallets per day. These rations are nonperish-

able. Based on planning factors provided by the Army’s

Training & Doctrine Command Analysis Center–Fort Lee

(TRAC-LEE, a logistical analysis center), ammunition

requirements would be approximately 60% of the water

weight and 40% of the water volume.5

5.3.2. Generating repair part (CL IX) requisitions. This section

describes the workflow depicted in Figure 8 by the irregu-

lar shaded (blue) box. This process occurs for each unit,

with generated requisitions being collected into a large list

along with the CL I and CL V requisitions. Depending on

multiple factors, such as the time horizon, task organiza-

tion, and mission, this process generates a significant num-

ber of requisitions. For reference, the Sudan scenario in

Section 6 generates requisitions for 61 days prior to the LD

and 90 days of operations after. In addition to the almost

2.3 million requisitions that competed for DDSP resources

during the OIF invasion used as a surrogate for global,

non-Sudan demand, the random requisitions generated for

just the Sudan operation are of the order of 294,149 requi-

sitions on average (20 samples with sample standard devia-

tion of 11,538).

Analysis of the OIF invasion data clearly identified that

the number of daily requisitions varies both with the type

of unit and based on that unit’s OIL. For a given unit, the

model assumes each day as independent and identically

distributed within an OIL, as the data showed weak auto-

correlations. This assumption is not limiting and can be

relaxed. The OIF invasion data permits modeling the eight

unit types listed in Table 4. For each unit, the sub-timeline

of each OIL determines the number of requisitions per

day. If an Infantry Brigade Combat Team (IBCT) has an

OIL schedule as depicted in Figure 9, the number of requi-

sitions released on days 1–14 requires the appropriate esti-

mated probability distribution for OIL 1. In Figure 9,

Nrel(j), j= 1, 2, 3 is the daily number of requisitions

ordered (released by GCSS-A) for OIL level j. Table 4

lists the unit types the model can support using the OIF

data taken from 6 March–31 May 2003; interested readers

may refer to McConnell30 (pp.92–94) for distribution and

sample size details.

After generating a unit’s requisition volume across the

timeline of interest, the process randomly selects each

requisition’s mode of transportation according to a speci-

fied distribution, which identifies the route. The Sudan

operation in Section 6 employs the distribution from

Table 5, taken from the OIF invasion data.

The allotted time to deliver the requisition in days,

known as the standard delivery time (SDT), is generated

based on a requisition’s transportation mode (TransM).

This time is added to the release time (RT) to calculate the

due date (DD) according to Equation (10), where i indexes

each requisition. In Equation (11), each standard delivery

time (conditional on transportation mode) is modeled with

a discrete uniform distribution (denoted DU). Since stan-

dard delivery times vary by requisition priority and

service-specific processes, assuming that the actual stan-

dard delivery times found in Table 6 from Department of

the Army Pamphlet (DA PAM) 710-2-1 (Using Unit

Supply System) are the upper bounds (bTransM ) and allow-

ing up to an approximate 70% reduction (aTransM ) to

Table 4. Unit types supported by model. Relies on historical
data taken from Operation Iraqi Freedom invasion 6 March–31
May 2003.

Unit Operational intensity level (OIL)

IBCT 1, 2, 3
HBCTa 1, 2, 3
AVN BN 1, 2, 3
EN BN Single level only
DIV HQ Single level only
Sustainment BDE Single level only
Misc Enabler BN Single level only
3 × Truck CO Single level only

aNow called ABCT, also used as surrogate for Stryker Brigade Combat

Team (SBCT).

IBCT: Infantry Brigade Combat Team; AVN BN: Aviation battalion;

EN BN: engineer battalion; DIV HQ: division headquarters; BDE:

brigade; BN: battalion; CO: company.

Figure 9. Example for generating the number of requisitions
by day for an Infantry Brigade Combat Team (IBCT). Note:
FOIL level

unit type is the estimated probability distribution for the number
of requisitions required by day for a particular unit type at a
specific operational intensity level (OIL).
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account for varying priority designations helps to account

for individual prioritization.61 For more details on requisi-

tion priorities see Rogers5 (p.31) and DA PAM 710-2-161

(Chapter 2 and Table 2.2):

DDi = (SDTijTransMi)+RTi, ð10Þ

(SDTijTransMi) ∼iid DU(aTransM , bTransM ): ð11Þ

The VF requires orders to have both a weight and vol-

ume to properly capture the details of processes such as

movement by truck, packing a 463L pallet, and breaking

down and sorting packages in a 40 foot container. The

OIF invasion data provides an estimate of these marginal

distributions. Reality requires them to be correlated. Using

a Gaussian copula (see Ross7) allows using a different tar-

get correlation based on the unit type from Table 4 while

respecting the correct marginal distributions for weight

and volume (see pp.94–95 of McConnell30). Sampled

weights or volumes that exceed that requisition’s transpor-

tation mode get reassigned to the maximum capacity for

the offending weight or volume; this is reasonable as this

only occurs less than one-fifth of 1% of the time in the

data.

Each requisition is assigned to a sourcing depot condi-

tional on the requesting unit according to the empirical

probability mass function found for each unit type’s source

depot location. These empirical distributions can vary

based on order content; since the model does not specify

individual types of repair parts, this approach permits cap-

turing the unit-type variation of supply depots while keep-

ing the level of detail at overall requisition attributes. As

explained by Rogers,5 certain Defense Logistics Agency

(DLA) distribution centers have specialized stock—such

as communications equipment at Tobyhanna,

Pennsylvania—and these specializations affect these sour-

cing distributions.

After specifying the unit (demand node), transportation

mode, and sourcing depot (supply node), it is a simple

lookup from the appropriate route matrix that stores the

route for a requisition going from that depot to that unit

with that transportation mode. Collectively these route

matrices comprise the route library, which is an output of

the logistical network modeling process. After identifying

each requisitions route, the entire requisition forecast is

completed by aggregating the CL I/CL V requisitions,

each unit’s forecast, and the forecast for global requisitions

that will compete for DDSP resources. A comparable set

of requisitions that are routed through DDSP in OIF pro-

vides a start point for the non-expeditionary requisitions

that share continental US (CONUS) resources upstream.5

This procedure (Figure 8) provides a data-driven

approach to generating requisition forecasts, since MBF is

not yet available for all Army units and platforms. The

result is a sample path approach that requires replication

to assess the uncertainty in the forecast itself, which is the

arrival process to the queueing network described in

Section 4.

6. Risk-based expeditionary logistics
planning for a notional operation

Armed with the methodology from Section 4, this section

applies the VF-DIS framework on a notional operation.

The section uses the same fictional scenario used by

Rogers,5 where an IBCT and a Stryker Brigade Combat

Team (SBCT) are conducting operations from South

Sudan into Sudan against the self-styled Islamic State in

Iraq and Syria (ISIS). The SBCT will operate in the outly-

ing Darfur region, while the IBCT operates in the capital

of Khartoum.5 A Division Headquarters conducts com-

mand and control for the operation and the units are pro-

vided with enablers that include engineer and aviation

units; Table 7 presents the Task Organization used to gen-

erate the forecast for supply requisitions using the

Table 5. Transportation mode distribution taken from
Operation Iraqi Freedom data.

Transportation Mode Probability

Military air 0.7340
World-wide express (WWX) 0.1292
Surface (ocean) 0.1368

Table 6. Bounds for standard delivery times (SDTs) in days
modeled by the discrete uniform (DU) distribution in Equation
(11). Transportation mode distribution taken from Operation
Iraqi Freedom invasion data.

Transportation mode (aTransM,bTransM) Probability

Military air (12, 18) 0.734
World-wide express (WWX) (10, 14) 0.129
Surface (ocean) (52, 75) 0.137

Table 7. Task organization for Sudan mission.5

Task organization
1 × Infantry Brigade Combat Team (IBCT)
1 × Stryker Brigade Combat Team (SBCT)
1 × Engineer battalion (construction effects)
1 × Aviation battalion (attack & lift)
1 × Sustainment brigade
1 × Division headquarters
3 × Battalions of miscellaneous enablers
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procedure outlined in Section 5. In his analysis, Rogers5

evaluates different COAs based on potential locations for

the TDC. While the techniques from this section could

assist with evaluating the COAs presented by Rogers,

this section focuses on Rogers’ selected option, Sudan

COA 1, locating the TDC in Juba, the capital of South

Sudan.

6.1. Focusing on the last tactical mile

Applying the techniques from Section 4 to the final plan

recommended by Rogers5 illustrates the contribution of

this methodology. The LTM trucks—the ground units that

transport supplies from the TDC to the BCT Supply

Support Activities (SSAs)—are the ideal candidate for this

demonstration for several reasons. The LTM trucks are the

logistical link to the units, which implies this may be a

location where a theater commander has the most control

as they are not necessarily constrained by ties to airports,

seaports, or other infrastructure or process restrictions,

including CONUS effects. Practically, their geographical

proximity to the units also incurs more risk. Given the

feed-forward structure of the network, the LTM trucks are

the final node to analyze and identify the required capacity

for operations; the process to analyze other nodes is almost

identical except that no other node is the furthest down-

stream resource. This property creates a few technical

challenges that are readily overcome but not present at

any other place in the feed-forward network. In simpler

terms, if analysis of LTM trucks is possible, it is possible

to do this for any node upstream.

6.2. Overview of the notional operation

The operational details and timeline are identical to

Rogers’5 scenario; Figure 10 provides a visual summary.

The SPOD is located in the port of Mombasa, Kenya. The

TDC is located in Juba, South Sudan, with the APOD

nearby. Although not depicted in Figure 10, the CONUS

network is also identical to Rogers’ scenario.

Figure 10. Sudan course of action 1 overview with the main supply route (MSR) IRISH annotated.62 PH: phase; IBCT: Infantry
Brigade Combat Team; SBCT: Stryker Brigade Combat Team.
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The logistics network in Figure 10 is identical to the

one used by Rogers to enable direct comparison with key

details summarized here. For more details on the logistics

network, the reader is encouraged to see Chapter 3 of

Rogers.5 To model the logistics network, we make the fol-

lowing assumptions.

1. CONUS dedicated truck routes depart six days a

week (Monday–Saturday). Trucks travel seven

days a week but may not deliver on a Saturday or

Sunday.

2. CONUS dedicated trucks have unlimited capacity

as DLA can quickly acquire additional trucks.

Similarly, there are always enough trucks to move

requisitions from source depots to CCPs or from

a CCP to the APODs/SPODs.

3. Restocking the sourcing depots does not require

the same resources used by the distribution

system.

4. A CONUS depot sources all orders then ships

them to their destination.

5. Once a multipack, pallet, or container has started

loading, it remains at the location until full or the

maximum waiting period has been met (which-

ever is soonest). Pallets wait up to three days with

containers waiting up to 15. Multipacks, pallets,

and containers are considered full when they

reach 95% of maximum weight capacity or 85%

maximum volume capacity. If at least one of

these criteria are met, prior to sending, any requi-

sitions that could fit in the remaining space are

pulled from the queue and packed (on a revised

slack basis) to ship forward to the next location.

6. All pallets and containers contain repair parts for

different units unless the route to a unit does not

support break bulk operations. This ensures the

model does not ship near-empty containers.

7. If a requisition can fill an entire multipack, pallet,

or container, the logistics node builds it unit-pure

(no other unit orders included). Unit-pure multi-

packs, pallets, and containers do not require

breakdown and sorting operations at the TDC and

advance directly to the LTM trucks.

8. All air shipments use 463L pallets and all ocean

freight employ 40 foot containers. These pallets

and containers are comprised of multipack boxes

and individual parts that are too large to fit in the

multipacks.

9. All surface (ocean) freight travels on commercial

ships. This is not a limiting assumption but fits

the Sudan scenario.

10. Orders for the Sudan scenario follow the same

distribution of transportation modes as occurred

in OIF. This is not a limiting assumption, as this

is an input to the forecasting procedure.

Unlike Rogers,5 times to process requisitions are stochas-

tic and are akin to service time distributions. The mean

roundtrip times from Rogers5 are kept fixed (10 days for

IBCT, 8 for SBCT), but this research assumes LTM con-

voys may sometimes return up to one day early if there

are good conditions, but may be delayed significantly if

adversely impacted by weather or mechanical failures.

Without data to estimate these deviations, we assume the

LTM roundtrip time is distributed via a generalized Beta

distribution having the form a+ (b� a)Beta(α1, α2) with

the first shape parameter α1 = 1:2 and second shape para-

meter α2 = 12.63 The generalized lower and upper bounds

result from the assumption that roundtrips to support the

maneuver units take a minimum of 90% of the mean

roundtrip time from Rogers5 and no more than twice the

mean time.

6.3. Forecasting the required capability to achieve the
performance target at location

With the network capacities determined by Rogers et al.3

for this scenario, the VF readily provides the sample aver-

age arrival rate in PEU to the LTM trucks using 55 sample

paths. The reader is reminded that multiple sample paths

are necessary due to our method of forecasting repair part

demand; with a different and perhaps more direct forecast-

ing method–such as consumption data-driven MBF–the

average scenario demand over time might be more accessi-

ble, which would require only one run of the VF instead of

the multiple runs required in this work. The analysis pre-

sented used 55 sample forecasts.

The DIS model requires a performance target for this

node. Based on Rogers’5 findings, this section uses a per-

formance target that requires the capacity needed to

achieve a requisition average (not time average) delay of

seven days. The sample dispersion at the LTM is both

time-varying and greater than 1 (≈ 5), which requires the

RCF to adjust the forecasted variance. Without this correc-

tion, the model would underestimate risk.

The forecasted requirements presented in Figure 11

include the risk correction for the LTM required capacity

given in PEU. The solid bold (blue) line marks the aver-

age, with shaded regions denoting the probability that the

required capacity is in that range on any given day. The

graph is not smooth for good reasons. The LTM node is

located furthest downstream and is subject to the accumu-

lated effects of every node’s schedule nuances (e.g., some

logistics nodes in CONUS do not operate on Saturdays

and Sundays). With the timeline fixed, ship schedules,
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dedicated trucking routes, and long convoy roundtrip times

create a very jagged forecast.

This forecast provides the framework that allows ana-

lyzing potential outcomes in a stochastic (probabilistic)

sense because it provides a fully specified distribution for

required capacity for every day. With this in place, it is

possible to rapidly compute probabilities, calculate expec-

tations, or even generate realizations via Monte Carlo

methods. This implies that if something can be calculated

or generated then it is possible to get stochastic descrip-

tions for any metrics of interest.

6.4. Generating courses of action

The queueing theory that permits construction of the fore-

cast depicted in Figure 11 implies a continuous or near-

continuous control of that logistics node, but that is hardly

possible in the military logistics context, especially under

expeditionary conditions. It may be possible to plan for

significant capacity changes once per phase. Perhaps a

commander can adjust resources once in the planning hori-

zon or maybe not at all. The forecast generated with the

VF-DIS model is useful for generating some default capac-

ity options for a specific location.

Developing multiple options is attractive, as the compu-

tational efficiency of these models permits rapid detailed

analysis of each option and permits comparing them over

time. One approach is to simply look at the requirements

forecasted by Figure 11 and visually set the capacities with

intuition or external knowledge about the plan; this tech-

nique might develop a plan to ensure the LTM trucks have

70 PEU for Phases I and II then only 20 PEU for Phases

III and IV (presumably freeing up some capacity for other

missions, including a reserve). A more detached technique

would be to simply use the forecast from Figure 11 to cal-

culate the daily value-at-risk (VaR0:95), also known as the

95th quantile, and plan each phase to receive the capacity

set to the phase’s time-averaged VaR0:95. Alternatively, a

constant capacity throughout the planning horizon may be

appropriate. The analysis proceeds with these three plans,

although one can evaluate any given plan.

Figure 12 provides a visualization of these

competing options over time with the constant option set

to 78 PEU, consistent with Rogers’5 final recommended

plan for the LTM trucks. The chart overlays the three

LTM options against the backdrop of average required

capacity, the 75th quantile for required capacity, and the

95th quantile for required capacity to convey a sense of

the stochastic variation that exists about the average.

These options serve to demonstrate the flexibility of this

approach and the capability to evaluate any given logisti-

cal capacity plan.

Figure 11. Forecasted capacity required at the last tactical mile (LTM) in 463L pallet equivalent units (PEUs) to achieve the target
performance of seven-day average delay (55 sample paths). Dashed vertical lines denote phases of the operation. Brigade Combat
Team operational intensity level timelines are displayed below the graph for reference. OIL: operational intensity level; IBCT:
Infantry Brigade Combat Team; SBCT: Stryker Brigade Combat Team. (Color online only.)
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6.5. Evaluating multiple courses of action

Regardless of the complexity or the number of capacity

plans, the visualization provided by Figure 12 is not

enough. Commanders want to understand the impacts of

these plans in meaningful terms that include both expected

performance and an understanding of the uncertainty

involved. With the VF and the DIS models, an analyst can

evaluate backlogs, delay, lateness, utilization, and other

measures by location, by day, by requesting unit, transpor-

tation mode, or any combination of these. The model

equips the analyst to dig for insights. We present some

examples of initial insights that may be constructed by

default to inform the decision-maker. Figure 13 shows

average backlog over time for the three options as an

example.

This approach extends Rogers et al.3 by not only evalu-

ating average delay across the time horizon, but also by

making stochastic information available either directly cal-

culated analytically using the distributions (by day) or via

Monte Carlo methods,64,65 which are both quick and acces-

sible with modern computers. Although Figure 13 currently

shows an average backlog only, it is just as easy to present

confidence intervals, quantile bands, or other stochastic

visualizations for a chosen metric of interest. Presenting

risk-based information that depicts the uncertainty coupled

with delay predictions provides a more complete under-

standing of the tradeoffs between multiple COAs. Senior

leaders seek to understand the risks faced and how to miti-

gate them—to that end it is critical to estimate how bad

things can actually get both by location and over time.

6.6. Further evaluation of a specific plan

After evaluating a set of plans over time, we arbitrarily

select the constant capacity plan taken from Rogers et al.3

for further analysis. With the outputs of the VF and DIS

models, an analyst can evaluate backlog, delay, lateness,

and other constructed metrics over time for a specific plan

and under multiple what-if scenarios. Motivated by the

massive sandstorm that resulted in a seven-day disruption

to CL IX part resupply early in the invasion of Iraq in

2003, Rogers5 evaluates the impact of a complete disrup-

tion of the resupply vehicles for this Sudan scenario. It is

possible to perform a risk-based analysis of the constant

78 PEU capacity plan for LTM trucks from Rogers5 under

a complete disruption of the resupply vehicles.

Figure 12. Generating options for the last tactical mile (LTM) trucks in the Sudan scenario. PEU: pallet equivalent unit. (Color
online only.)

Figure 13. Average backlog in pallet equivalent unit (PEU) at
last tactical mile (LTM) trucks for the LTM capacity plans from
Figure 12. (Color online only.)
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Rogers5 shows the value of performing what-if analysis

on a given plan to assess how it performs under different

potential outcomes. This VF-DIS model not only permits

the same analysis but also shows information beyond the

average by connecting potential outcomes with their likeli-

hoods. Figure 14 illustrates this by showing the average

backlog at the LTM trucks with and without a seven-day

disruption starting at D+ 11; the figure also depicts how

bad the backlog can get by showing the 75th and 95th

quantiles. The peak backlog with a seven-day disruption

will be almost 480 PEU (7.4 times the no disruption peak).

By taking into account the variation around the average,

an analyst can forecast that there is a 75% chance the peak

backlog with this seven-day disruption would be less than

550 PEU (8.7 times the no disruption peak) if the LTM

trucks have a 78 PEU capacity. Similarly, there is a 95%

chance that the peak backlog would be no more than 685

PEU (11 times the peak when there is no disruption peak).

The recovery times are also available from Figure 14.

Because of the underlying distribution forecast by day,

Monte Carlo methods are readily available to assess not

only average behavior over time for a specified logistics

plan but also the full distribution of worst-case behavior.

Traditional average worst-case metrics used in finance,

such as conditional value at risk, can be readily computed,

but the computational speeds enable looking at more than

the conditional expectation of the worst-case scenarios

(e.g., worst 5%). Further, the worst-case distribution of a

particular metric is available.30

The utility of risk-based measures for what-if analysis

cannot be overstated. These tools enhance the MLNPS

and extend the possible depth of analysis. Using multiple

demand forecasts (sample paths) required multiple runs of

the VF to estimate the sample arrival rate as well as the

sample dispersion. If the US Army continues to develop

MBF beyond aviation units, this analysis would require

only one run with the VF if GCSS-A data provided the

sample dispersion for the variance correction. Multiple

sample paths are currently required to obtain the required

capacity forecast (Figure 11), but with an approach such

as MBF that does not rely on sample paths, this is obtain-

able with a single run of the VF.

By exploiting the strengths of both the DIS model and

the VF as well as the feed-forward network structure, this

approach maximizes its computational advantages. After

obtaining the forecasted requirements to meet a logistics

target (Figure 11), the subsequent analysis is computation-

ally efficient using either analytical results, VF output, or

simple Monte Carlo methods, which are extraordinarily

fast in our experience just working with MATLAB.66

7. Conclusion

This research contributes to the military expeditionary

logistics planning problem in several ways. Firstly, since

MBF is not operational for the majority of Army plat-

forms, formations, missions, or operational environments,

we use supply-side modern combat data taken from OIF

and apply MBF-style techniques, namely stratified sam-

pling, to generate the best forecast possible for the demand

signal. This forecast accounts for unit type and operational

mission. Based on an operational scenario, we improve the

MLNPS capabilities by adding techniques to account for

uncertainty and assess risk; we achieve this improvement

using a sample path-based forecasting approach, incorpor-

ating recent advances in time-varying queueing networks,

such as the DIS approximation, and fusing these capabil-

ities with the strengths of the VF using the tandem

approach. The VF excels at realistic tasks such as properly

packing multipacks, pallets, and containers, timing the

shipments, and accommodating real-world schedules; the

queueing model integrates both time-varying properties

and overdispersion. This is the first paper to use a time-

shifted variance correction to account for overdispersion

in a DIS setting.

These enhancements to the MLNPS center on two fun-

damental tasks: (1) given a plan, estimate the plan’s per-

formance, and (2) given a target performance, find the

required plan. This research provides a data-to-decision

support process that yields a framework for assessing risk

as both the severity and likelihood of possible outcomes

become available via analytical calculation or Monte

Carlo methods. Our intent is to highlight the utility GCSS-

A data can provide by enabling decision-support and plan-

ning models in ways not previously possible.

Efforts to capture readiness-based performance metrics

and model a logistical plan while including the collection

of contingency (branch) plans are already underway.

Figure 14. Daily last tactical mile (LTM) backlog with and
without a seven-day disruption (starting D+ 11) for the Sudan
course of action (COA) 1 scenario in Rogers5 for the 78 pallet
equivalent unit (PEU) LTM plan. PH: phase.
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Current efforts are also working toward integrating alter-

native routing and decision points into the modeling

framework. Future efforts should expand this emphasis on

readiness and provide prescriptive decision-support capa-

bility rather than the predictive outputs this paper illus-

trates. Outputs should include identification or

visualization of the readiness-versus-cost tradeoffs.

We envision these ongoing efforts resulting in a risk

mitigation design matrix to provide insights on how to

‘‘optimize’’ various resilient, robust, adaptive, or flexible

logistics network mitigation strategies against potentially

disruptive conditions or catastrophic events within an

operational risk landscape (defined by event probability

versus consequence).

The methods in this paper apply to other contexts that

employ an underlying stochastic queueing network model

that exhibits nonstationary and/or non-Markovian (non-

exponential) arrival processes. These applications include

disaster relief, humanitarian operations, and understanding

international commercial global supply chain disruptions.
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Appendix: list of acronyms

Readers seeking definitions of military acronyms will find

Joint Publication (JP) 1-02 Department of Defense

Dictionary of Military and Associated Terms a valuable

resource.51
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Greg H Parlier is an adjunct Professor of Operations

Research at NC State. His Army service included eight

eventful years as a paratroop commander, five deploy-

ments, 12 named operations, and missions in over 20

nations. He was the first Air Defense officer upon whom

the 82nd Airborne Division Association bestowed All-

American Centurion Wings. He led six different OR orga-

nizations in major commands, Iraq, and the Pentagon. A

member of several National Research Council studies, he

is a MORS Director, past President of INFORMS MAS,

and recipient of Tisdale, Rist, Barchi, Koopman, and

Edelman Laureate recognition. His claim to fame? Future

successes of those he led and taught, among them our cur-

rent Secretary of State who survived his OR professor at

West Point.

Kristin Thoney-Barletta is an Associate Professor at

NCSU. She teaches textile supply chain management and

does research in sourcing, logistics, scheduling, and inven-

tory control. Her logistics skills are put to the test every

day in managing the schedules of her four kids.

James R Wilson is a Professor Emeritus at NC State. His

research interests are focused on probabilistic and statisti-

cal issues in the design and analysis of simulation experi-

ments, with special emphasis on applications in healthcare

and production. He is a Fellow of IIE and INFORMS.
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