
ABSTRACT 

MOTHAPO, NAPE VICTORIA.  Nodulation and Rhizobia Diversity Associated with 

Distinct Hairy Vetch Genotypes.  (Under the direction of Dr. Julie Grossman). 

 

Presence of effective rhizobia strains in soils is essential for nodulation and enhanced 

biological nitrogen fixation (BNF) of the cover crop hairy vetch (Vicia villosa Roth, 

HV).  This study evaluated nodulation effectiveness, BNF efficiency and genetic 

diversity of resident Rhizobium leguminosarum biovar viciae (Rlv) from 6 paired fields, 

three with HV cultivation history and three with no history.  Ten distinct HV genotypes 

were used to trap rhizobia from each soil over a 6-wk period in a growth chamber.  

Nodulation efficacy was equated to nodule number and mass, and BNF efficiency to 

shoot nitrogen.  Significant effects of both HV cultivation history and genotype on all 

nitrogen fixation parameters were found, except for lack of significant effect of 

genotype on plant biomass.  Nodule numbers were significantly higher in all fields with 

HV history, and nodule mass in fields with HV history in two of the three sites.  On 

average there were 60% more nodules and 70% greater nodule mass, in fields with 

history compared to fields without history.  As with nodulation, plants inoculated with 

soil dilutions from HV history fields had significantly higher plant biomass and plant 

tissue N than those inoculated from fields without history, except one site where no 

difference in N was found between fields.  These fields were in close proximity, 

suggesting that rhizobia population mixing may have occurred.  Plant biomass and 

tissue N were linearly correlated to nodule mass (r
2
 = 0.80 and 0.50, respectively), while 

correlation to nodule number was low (r
2
 = 0.50 and 0.31 for biomass and N 



respectively), indicating nodule mass to be a better indicator of symbiotic efficiency 

than number.  A total of 519 Rlv strains were isolated from the root nodules of the HV 

genotypes.  Repetitive element polymerase chain reaction (rep-PCR) with BOX-A1R 

primer showed that diversity was most impacted by site, within a site however, history 

of HV cultivation was the major driver of diversity.  Cluster analysis of BOX-PCR 

banding patterns resulted in 36 genetic groups of Rlv at a similarity level of 70%, with 

15 of the isolates from fields with HV history and 2 from fields without history not 

belonging to any of the clusters.  The biggest cluster comprised 96 strains, 86 of which 

were from the Cedar Grove site.  This particular site was contained many strains 

grouping at >90% similarity level, indicating a high level of similarity among strains 

and suggesting low rhizobia diversity.  Except in one site, large clusters comprised at 

least 65% of strains from fields without history, suggesting lower diversity in fields 

with such histories.  Although different strain profiles were sometimes obtained from 

distinct HV genotypes, genotypes appeared to have little or no effect on diversity of Rlv 

isolated.  These results suggest that although rhizobia compatible with hairy vetch occur 

naturally in soils, past cultivation of HV enhances diversity of effective Rlv populations 

capable of high nodulation and effective N fixation.  Information gained from this study 

emphasizes the important of legume cover crops in agricultural systems.   
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Chapter 1:  

 Nodulation and rhizobia diversity of legume cover crops in agricultural systems, 

a review. 
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1. Introduction 

 Global population growth and food security, as well as increasing environmental 

and economic concerns associated with conventional farming, have necessitated 

development and adoption of alternative food production practices.  Sustainable soil 

fertility management is a key to food production without compromising environmental 

stability (Brussaard et al. 2007; Lal 2009).  Historically, cover crops have played an 

important role in soil fertility, particularly through addition of biologically fixed 

nitrogen (N) to the soil, enhancement of soil organic matter and prevention of nutrient 

leaching (Lyon and Wilson 1928).  A cover crop is a non-harvested plant grown to 

improve soil fertility by reducing soil erosion and nutrient leaching (USDA 2009).  

Cover crops are often called ‘green manures’ when they are used specifically for 

nutrient and organic matter contribution, in which case they are plowed under and 

incorporated into the soils before maturity.  The improvement of crop growth through 

legume production has been understood for many decades (Lyon and Wilson 1928) and 

although some studies have shown limited adoption of cover crops in certain areas 

(Mallory, Posner and Baldock 1998), there has been increased use in recent years due to 

their agroecological benefits (Blackshaw 2008; Fageria et al. 2005; Peoples et al. 2009 

and Snapp et al. 2005).  

Benefits derived from cover crop use depend on the needs of the grower, plant 

species, and the environment in which they are produced.  Many soil properties 

including soil mineral N and pH, and management practices such as tillage and 

fertilization, influence growth and biomass production of legume cover crops, making it 
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critical that careful attention be paid to species selection within any agroecological 

system.  Cereal cover crops such as barley (Hordeum vulgare), oat (Avena sativa) and 

rye (Secale sereale) are particularly important in reduction of nitrate leaching 

(Blackshaw 2008; Macdonald et al. 2005; Wang et al. 2005).  Other benefits of cover 

crop use include weed control, reduction in soil loss, organic matter contribution (Lenzi 

et al. 2009; Sainju et al. 2002), and soil moisture conservation (Wang et al. 2005; 

Dabney et al. 2001).  Weed suppression and erosion reduction during non-cash crop 

periods of the year is a common desired outcome of cover crop production, and both 

legume and cereal cover crops have been shown to have high rates of weed control 

(Brandsaeter and Netland 1999; Creamer and Baldwin 2000; Reddy 2001).  Rye in 

particular has been shown to produce large amounts of biomass and have high weed 

suppression abilities (Blackshaw 2008). 

Legume cover crops, including clover (Trifolium spp.), hairy vetch (Vicia villosa) 

and pea (Pisum sativum) fix atmospheric N through the process of biological nitrogen 

fixation (BNF).  Such crops can be a significant source of N in organic agriculture and 

low-input farming systems, important because organic certification prohibits use of 

synthetic chemicals such N fertilizers derived from Harbor-Bosch (Bellow, 2005).  This 

literature review summarizes the importance of symbiotic BNF between legume and 

rhizobia in farming systems and describes how nodulation and rhizobia diversity are 

modified by prevailing environmental and imposed agronomic conditions in 

agroecosystems.  It will focus on the symbiotic association between hairy vetch (Vicia 

villosa) and its rhizobia partner, Rhizobium leguminosarum biovar viciae (Rlv). 



4 

 

2. Biological Nitrogen Fixation 

 Biological nitrogen fixation (BNF) is a natural process through which several 

species of bacteria (Galloway et al. 2004) convert atmospheric nitrogen into plant 

available nitrogen, usually ammonium (NH4).  Total biologically fixed N from all 

ecosystems is estimated at 122 Tg N yr 
-1

 (Burris, 1980), with cultivated agricultural 

systems contributing about 25%, or 32 Tg N yr 
-1

, of the total BNF (Galloway et al. 

2004).  Nitrogen is an essential and often limiting plant nutrient in crop production. 

Nitrogen fixation resulting from mutual symbiosis of rhizobia and cultivated legume 

plants is therefore critical to food security as it directly affects agricultural production.  

Although the global contribution of non-harvested legumes such as cover crops is 

unknown, soybean, the major crop legume globally, has been estimated to fix 16.4 and 

5.7 Tg N yr 
-1 

globally and in the United States respectively (Herridge et al. 2008).  

Amount of N fixed varies widely within and between different legume cover crops, 

depending on species and environment (e.g. soil pH) and management (e.g. 

inoculation).  Legume cover crops have been reported to fix up to 450 kg ha
-1 

yr
-1

 

(Unkovich and Pate 2000).  

 There is a large body of literature documenting the usefulness of hairy vetch as a 

cover crop for improving and sustaining soil nitrogen (N) in agricultural systems 

(Anugroho et al. 2009; Kuo and Sainju 1998; Power et al. 1991; Utomo et al. 1990).  

Native to Europe or Western Asia (Undersander et al. 1990), the species has been 

domesticated in various geographic areas.  Recently, varieties with specific plant 

characteristics have been developed, such as the Madison variety, developed in 
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Nebraska to have greater cold tolerance; and Purple Bounty, developed to be early 

flowering and high in biomass production (Maul et al. 2011; USDA 2009).  Total 

biomass N in hairy vetch ranges from 100 kg ha
-1

 to 240 kg ha
-1

, with N derived 

through fixation of up to 150 kg ha
-1

 (USDA 2009; Wagger 1989). 

3. Nodulation 

 The legume-rhizobia symbiosis is highly specific (CleyetMarel et al. 1996); 

(Denarie et al. 1992) and depends on complex signaling processes between the host 

plant and rhizobia partner.  Symbiotic N fixation between legumes and rhizobia takes 

place in plant-derived root organs called nodules, and competent nodulation is critical 

for efficient BNF.  Molecular dialog or signal exchange between the legume and 

rhizobium (Denarie et al. 1993) is a complex process that involves both the legume 

symbiotic (sym) genes and the rhizobia nodulation (nod) genes.  In the beginning of the 

signaling process, legumes exude flavonoid compounds into the rhizosphere, which 

then trigger soil dwelling rhizobia to release highly specific reverse signal molecules, 

nod factors, only comprehended by specific legume species (Cooper 2004) to initiate 

nodule formation.  Rhizobia strains have a defined group of legumes species, or host 

range, with which they can nodulate, and in parallel, legumes select for specific rhizobia 

partner species (Denarie et al. 1992).  For example, Rhizobium leguminosarum biovar 

viciae (Rlv) nodulates plant species belonging only to tribe viciae, which includes the 

genera Vicia, Pisum, Lathyrus, and Lens.  Soybean is primarily nodulated by 

Bradyrhizobium spp., however some Rhizobium species also nodulate soybean hosts 

(Yamato et al. 1997).  Specificity can be variable among legumes and rhizobia, with 
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some legume species such as Phaseolus vulgaris known to associate with a wide range 

of rhizobia (Andrade 2002).  Nodulation, defined here as the number of nodules formed 

and the total nodule mass contained on a plant, is most related to soil rhizobial 

population size, with high nodulation occurring where compatible rhizobial population 

is high (Patrick and Lowther 1995).  While nodulation success is vital to BNF 

efficiency, excessive nodule formation without an associated increase in N fixed can be 

detrimental to plant growth as this process is energy driven and uses a large percentage 

of the host plant’s photosynthetic production to fuel the fixation of N.  Hence, most 

legume hosts have a mechanism to control the number of nodules and zone of nodule 

development called autoregulation of nodulation (Oka-Kira and Kawaguchi 2006).  

Legume hosts that lack this regulatory system are characterized by excessive nodule 

numbers and are said to be hypernodulating mutants (Ferguson et al. 2010; van Brussel 

et al. 2002).  

 Soil properties have been shown to affect legume nodulation either by impacting 

rhizobia population sizes and diversity, or interfering directly with the process of nodule 

formation.  Soil acidity has been reported by several researchers as one of the main 

factors influencing rhizobial population size (Chemining'wa and Vessey 2006; Evans 

2005; Lapinskas 2007), with extremely low population sizes of 10 cells g
-1

 soil or less 

being observed in cropped unlimed acidic soils (Coventry and Hirth 1992).  Others have 

reported positive effect of liming on rhizobial cells (Roesner et al. 2005), with liming 

being shown to improve both size of soil rhizobial populations and nodulation (Andrade 

et al. 2002b; Staley 2002).  Nodulation can also be restricted at very low soil moisture 
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levels (Leung and Bottomley 1994; Mahmood and Athar 2008), as moisture is 

necessary for overall plant germination and growth, and rhizobia viability, and also 

indirectly affects other soil properties such as salinity and soil temperature.  The vetch-

nodulating rhizobia species Rlv, in particular, when subjected to heat and moisture 

stress has been found to conserve its overall population size, but lose symbiotic 

efficiency with faba bean (Abdalla and Wahab 1995). 

 Agricultural management practices have also been shown to affect nodulation. 

One common management tool practiced by growers is inoculation of legume seeds 

with compatible rhizobia strains at planting with the goal of increasing nodulation 

success.  In hairy vetch, inoculation with Rlv has been shown to improve productivity 

(Chemining'wa and Vessey 2006; Toro 1996).  However, resident soil rhizobia, 

including indigenous rhizobia and those naturalized through past inoculation, have also 

been shown to compete for nodule occupancy with introduced rhizobial strains, 

impacting inoculation success (Thies et al. 1991; Toro 1996; Denton et al. 2002).  

Symbiotic efficiency of Medicago sativa and Trifolium legume species with resident 

rhizobia have been measured to range from -6 to 82% and from 10 to 130%, of BNF 

with commercial inoculants, respectively (Ballard and Charman 2000), suggesting that 

resident rhizobia can be equally, or more efficient at BNF than inoculant strains.  

 Previous legume planting has also been shown to improve nodulation, with 

fields previously grown to pea having significantly higher nodulation than fields 

without pea cultivation history (Chemining'wa and Vessey 2006).  Tillage is a common 

practice in agricultural systems, serving to improve soil for seeds germination and 
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emergence, and also as a weed control measure.  No-till systems have been shown to 

improve size and effectiveness of rhizobial populations (Andrade et al. 2003; Ferreira et 

al. 2000; Kaschuk et al. 2006; Snapp et al. 2005), conceivably by increased organic 

matter content and reduced soil and water loss.  Synthetic agricultural inputs applied to 

soil, such as herbicides, Haber-Bosch N fertilizers, or pesticides can also affect 

rhizobial populations and legume nodulation (Caballero-Mellado and Martinez-Romero 

1999; Depret et al. 2004), with negative effects such as reduction in rhizobial cells and 

nodulation being more common (Abdalla and Omar 1993; Bunemann et al. 2006; 

Niewiadomska 2004).  

4. Rhizobia diversity 

 Many of the soil properties and agricultural management practices that affect 

nodulation also affect the genetic diversity of rhizobia found in a given site.  For 

example, soil texture, and specifically high clay soils, has been observed to reduce 

rhizobia diversity in soybean cropping (de Fatima Loureiro et al. 2007).  As with 

rhizobia population size, soil pH is also a driving factor in determining rhizobia 

diversity, where low diversity of Rhizobium leguminosarum has been reported in acid 

soils compared to limed, soils (Andrade 2002; Lapinskas 2007).  Studies have shown 

that soil pH can select for tolerant species or strains of rhizobia (Andrade et al. 2002a; 

Bala et al. 2001; Bala and Giller 2007), which suggests reduced population of acid-

intolerant strains in low pH soils.  Like nodulation, high rhizobia diversity has also been 

reported in no-till systems compared to conventional tillage systems (de Fatima 

Loureiro et al. 2007).  Monoculture of a non-legume grain crop has been shown to 
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affect rhizobia diversity, where long-term maize monoculture reduced diversity of 

resident Rlv populations present in the soil, but high Rlv diversity was reported in long-

term wheat monoculture (Depret et al. 2004).  Further, Ferreira et al. (2000) reported 

that maize/wheat rotation reduced Bradyrhizobia diversity, while rotation with soybean 

increased diversity, demonstrating that the effects of monoculture are crop species-

dependent and also that past cultivation of legume hosts can serve to increase diversity 

of compatible rhizobia. 

5. Hairy vetch-rhizobia interaction 

 An understanding of hairy vetch interaction with compatible soil rhizobia is 

critical to improve its N contribution to agricultural systems.  As previously indicated, 

hairy vetch is nodulated specifically by Rhizobium leguminosarum biovar viceae (Rlv), 

the same rhizobium that nodulates pea (Pisum sativum), faba bean (Vicia faba) and 

common vetch (Vicia sativa).  Like many cultivated legumes, HV is commonly 

inoculated with Rlv during planting with the aim of increasing efficiency of nodulation, 

BNF, and biomass produced.  While some studies on pea inoculation have reported lack 

of inoculation response (Ballard et al. 2004), others have reported higher symbiotic 

efficiency in inoculated systems (Chemining'wa and Vessey 2006).  Improvement of 

BNF has focused largely on development of competitive high N fixing rhizobial strains, 

with little attention on the symbiotic potential of resident soil populations.  Microbial 

genetics have a vital role in cell functioning, and to some extent control the amount of 

N a particular strain of rhizobium can fix in symbiosis with its host.  These concerns 

make our understanding of nodulation and rhizobia diversity critical for improvement of 
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cover crop BNF in organic systems.  This study sought to determine the effect of hairy 

vetch cultivation history on nodulation and diversity of Rlv across distinct hairy vetch 

genotypes.  We hypothesized that: 1) nodulation and Rlv diversity would be higher in 

fields with HV cultivation history compared to fields without history and ii) nodulation 

would vary across hairy vetch genotypes with genetically diverse rhizobial populations 

associating with distinct genotypes. 
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Abstract 

Presence of compatible rhizobia strains is essential for nodulation and BNF of hairy 

vetch (Vicia villosa, HV).  We evaluated how past HV cultivation affects nodulation 

and nitrogen fixation across host genotypes.  Five groups of HV genotypes were 

inoculated with soil dilutions from six paired fields, three with 10-yr HV cultivation 

history (HV+) and three with no history (HV-), and used to trap rhizobia.  Nodulation 

efficacy was equated to nodule number and mass, and nitrogen fixation efficiency to 

plant nitrogen.  Both HV cultivation history and genotype affected all nitrogen fixation 

parameters; with the exception of genotype effect on plant biomass.  Plants inoculated 

with HV+ soil dilutions averaged 60% greater nodule number (P<0.005) and 70% 

(P<0.005) greater nodule mass.  Such plants also had greater (P<0.005) plant biomass 

and plant tissue N than those inoculated with soil dilutions from HV- fields, except one 

site where no difference in N was found perhaps as a result of rhizobia population 

mixing between the fields.  Plant biomass and tissue N were strongly correlated to 

nodule mass (r
2
 = 0.80 and 0.50, respectively), while correlations to nodule number 

were low (r
2
 = 0.50 and 0.31, respectively), indicating nodule mass to be a better 

symbiotic efficiency indicator than number.  Although hairy vetch rhizobia occur 

naturally in soils, past cultivation of HV appears to enhance populations of effective 

rhizobia capable of high nodulation and effective N fixation.  
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1. Introduction  

 Hairy vetch (Vicia villosa Roth; HV) is widely used in agroecosystems as a 

cover crop, with benefits including erosion control, weed and pest suppression, and soil 

fertility improvement (Campiglia et al. 2010, Lu et al. 2000; Teasdale and AbdulBaki 

1997).  As a legume, a wide body of literature documents its specific usefulness to 

improve soil nitrogen (N) status (Anugroho et al. 2009; Kuo and Sainju 1998; Power et 

al. 1991; Utomo et al. 1990).  Native to Europe or Western Asia (Undersander et al. 

1990), the species has been domesticated in various geographic areas, including the 

United States where it is commonly used in organic agriculture as a nitrogen source.  

Varieties with specific plant characteristics have been developed for various regions, 

such as the Madison variety developed in Nebraska to have greater cold tolerance, and 

Purple Bounty developed to be early flowering and high in biomass production (Maul et 

al. 2011; USDA 2009). 

 Legume-rhizobia interactions are known to be a powerful determinant of BNF 

efficiency in legume species.  Many cultivated legume cover crops are commonly 

inoculated with compatible rhizobia at planting with the aim of increasing efficiency of 

nodulation, BNF and yield.  Inoculation is often recommended in environments where 

compatible rhizobia are absent, soil rhizobial population density has been reduced, or 

where the soil rhizobia are shown to be less effective and efficient (Chemining'wa and 

Vessey 2006).  In some cases, resident soil rhizobia, including native rhizobia and those 

naturalized through past inoculation, have been shown to compete for nodule occupancy 

with introduced rhizobial strains, impacting inoculation success (Thies et al. 1991; Toro 
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1996; Denton et al. 2002).  In contrast, resident rhizobia symbiotic efficiency, defined 

here as the quantity of N fixed by rhizobia occupying root nodules and transferred to the 

host plant, can vary greatly, and in some cases can have equal or greater efficiency than 

inoculant strains.  Symbiotic efficiency of Medicago sativa and Trifolium species with 

resident rhizobia has been measured to range from -6 to 82% and from 10 to 130%, 

respectively, of that resulting from recommended commercial inoculants (Ballard and 

Charman 2000; Drew and Ballard 2010). 

 Total biomass N contributed by HV ranges from 100 kg ha
-1

 to 240 kg ha
-1

 

(USDA 2009; Wagger 1989) depending in part on the efficiency of the rhizobia 

symbiosis (Toro 1996).  An understanding of how hairy vetch interacts with resident 

soil rhizobia is critical to improve the contribution of hairy vetch nitrogen to 

agricultural systems.  Hairy vetch is nodulated specifically by Rhizobium 

leguminosarum biovar viceae (Rlv), the same rhizobia species nodulating pea (Pisum 

sativum), faba bean (Vicia faba) and common vetch (Vicia sativa).  While some studies 

show Rlv inoculation to improve HV productivity (Chemining'wa and Vessey 2006; 

Toro 1996), others have reported lack of Rlv inoculation response (Ballard et al. 2004). 

From these contrasting observations emerge questions about the effect of cropping 

practices; particularly past history and use of host legume, on the infective ability and 

symbiotic efficiency of resident Rlv populations. 

Many soil properties including pH, texture and temperature, as well as 

agricultural practices such as inoculation, contribute to variation in BNF across the 

landscape (Drew and Ballard 2010; Toro 1996), with legume genotype and interaction 
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with resident rhizobia being a critical consideration.  Previous studies have shown large 

variation in BNF efficiency both between (Wagger 1989; Kitou et al. 2010) and within 

(Drew and Ballard 2010; Unkovich et al. 1997) cover crop species.  Efficiency of BNF 

has been shown to be higher in legume genotypes that are compatible with a wide range 

of rhizobial strains (Drew and Ballard 2010).  

 Compatible resident rhizobia can exist in fields that have never been cultivated 

to a given host legume due to the presence of native legume species, transfer from 

adjacent fields or as part of the native microbiological soil community.  Rhizobia are 

saprophytic and in the absence of a host species utilize a wide range of organic soil 

compounds as energy sources, allowing inoculant rhizobia to survive in soils long after 

a host legume is absent.  Introducing a legume host to an environment lacking past or 

recent cultivation history presents an alternative survival strategy for already existing 

rhizobial populations, and has been shown to modify population size and symbiotic 

efficiency of existing resident populations (Andrade et al. 2002b; Chemining'wa and 

Vessey 2006).  We understand little about the compatibility of resident hairy vetch 

rhizobia with introduced hosts, or how past HV cultivation affects nodulation and N2 

fixation efficiency.  The objectives of the study were to: i) determine the effect of hairy 

vetch cultivation history on nodulation and BNF efficiency of resident soil rhizobia, and 

ii) determine the nodulation and BNF efficiency of distinct hairy vetch genotypes with 

resident soil rhizobia.  Our guiding hypothesis was that fields with history of HV 

cultivation will have higher nodulation and BNF efficiency than fields without 

cultivation history. 
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2. Materials and Methods 

2.1. Site selection and soil sampling 

 Soil samples were originally taken from five farms with history of hairy vetch 

cultivation, with selection criteria determined as a farm that had at least five seasons of 

HV since 1990.  Originally selected farm sites included locations of Asheville (2 

farms), Graham, Cedar Grove and Ivanhoe, all located in North Carolina.  The 

Asheville and Cedar Grove fields were inoculated with Rlv each season hairy vetch was 

planted, Graham was never inoculated, and Ivanhoe had not been inoculated since 2004 

(Table 2-1).  From each farm, one field never planted to hairy vetch nor observed to 

have wild hairy vetch plants (Personal communication with farmers), was also sampled. 

Sampling was carried out in February 2010, during which time all fields with hairy 

vetch history were currently planted to hairy vetch, in combination with pea and rye in 

Graham, rye in Cedar Grove, and monoculture in Ivanhoe.  Three of the five total farms 

(Graham, Cedar Grove and Ivanhoe) were eventually selected for further analysis based 

on frequency of HV and similar pH range between fields of the same farm.   

 Using a 2.5 cm diameter soil probe, 40 soil cores were randomly collected from 

each field to a depth of 15 cm, and thoroughly mixed in a composite sample.  Samples 

were then divided in two;  one for use as a microbial inoculant and the other for total 

inorganic N determination and standard nutrient analysis.  The microbial inoculant sub-

sample was kept cool during transport to NCSU campus and thereafter stored at 4
 o
C 

until processing.  All sampling materials were sterilized with 75% ethanol prior to 

sampling and during sampling and handling, taking precautions to avoid cross-
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contamination of soils of different fields and sites.  Soils for inorganic N determination 

were dried at 45°C for 2 days, ground and sieved to pass a 2mm screen.  For inorganic 

soil nitrogen (NH4
+
 and NO3

-
) analysis, samples were extracted using 1M KCl and 

shaken for 1 hour.  The samples were allowed to settle for 20 minutes before filtration 

through a #42 Whatman filter paper.  Extracts were frozen until analysis for NH4
+
 and 

NO3
-
 on a QuikChem 2000 flow injection autoanalyzer (Lachat Instruments, Loveland 

CO).  From each dried sample, an additional subsample was taken and sent to the North 

Carolina Department of Agriculture and Consumer Services, Agronomic Division for 

chemical analysis of soil pH, cation exchange capacity, base cations, base saturation, 

phosphorus, manganese, zinc, copper and humic matter (Table 2-2).   

2.2. Hairy vetch genotypes 

 Nodulation assessment of resident soil Rlv was evaluated using five groups of 

distinct hairy vetch genotypes, each group comprising two closely related genotypes 

(Maul et al. 2010).  Genotypes were previously collected from Afghanistan (two 

populations), Greece, Iran (two populations), Turkey (two populations), USDA Purple 

Bounty and Purple Prosperity early flowering varieties, (USA-MD 1 and USA-MD 2, 

respectively), and the Madison variety from Nebraska, USA-NE (Table 2-3).  Seeds for 

Afghanistan, Greece, Iran and Turkey genotypes were obtained from National Plant 

Germplasm System (Washington State University, Pullman, WA), and seeds for USA 

genotypes were obtained from USDA-ARS Sustainable Agriculture Systems Lab 

(Beltsville, MD).  
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2.3. Experimental design and plant germination 

 The ten HV genotypes were used to trap soil rhizobia over a period of six weeks 

in a growth chamber.  Two coupled magenta units (PlantMedia, Dublin, OH) were used 

(Tlusty et al. 2004);  the bottom unit contained N-free nutrient solution (Broughton and 

Dilworth 1971), the top unit contained equal volumes of sand and vermiculite 

thoroughly mixed, and was drilled at the bottom and a cotton wick inserted to source 

water and nutrients from the bottom unit.  Assembled magenta units were sterilized by 

autoclaving at 121
o
C for 15 minutes.  

 Hairy vetch seeds were surface sterilized with 3% sodium hypochlorite, rinsed 

five times in sterile deionized water, placed on a sterilized germination paper in Petri 

dishes and left to germinate at room temperature for six days.  Genotypes Turkey 1, 

Turkey 2, Iran 1 and Greece were scarified by soaking seeds in 80% H2SO4 for 30 

minutes, then rinsing 5 times with deionized water prior to sterilization to improve 

germination.  Germination rates for all genotypes were recorded.  Two hairy vetch 

seedlings were planted per magenta unit.  Each seedling was inoculated with 500 µl of a 

5
-1

 soil dilution prepared by mixing 20 g of the reserved soil with 80 ml of 0.85% (w/v) 

NaCl solution (Bala 2001).  A treatment was defined as a combination of each HV 

genotypes with soil inoculant from each of the six fields; with four replications in a 

completely randomized design.  Due to growth chamber space constraints, replications 

one and two were established first in May/June 2011 (run 1) and replications three and 

four second in September/October 2011 (run 2).  The growth chamber was set at 9 hr 

days with 22
o
C day temperature, and 18

o
C night temperature.  After 7 days, plants were 
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thinned to one plant per unit, and sterile N-free nutrient solution was supplied as 

needed.  

2.4. Assessment of symbiotic efficiency 

 Nodulation effectiveness, equated to nodule numbers and nodule mass, as well 

as symbiotic efficiency of resident rhizobia in each soil, were determined through 

evaluation of shoot biomass production and shoot tissue nitrogen.  After 6 weeks of 

growth plants were harvested, and shoots dried at 65
o
C for 24 to 48 hours then weighed.  

Due to low sample mass, shoots were manually ground using mortar and pestle, and 

samples sent to the Environmental and Analytical Testing Services Lab in the 

Department of Soil Science at N.C. State University for analysis of tissue nitrogen to be 

used as an estimate of N2 fixation.  Plant roots were harvested to assess nodulation, and 

nodule number per plant and total nodule mass per plant recorded.  Nodules were then 

dried using a desiccant (Drierite Desiccant-Anhydrous, W.A. Hammond Drierite Co., 

Xenia, OH), nodules weighed and total nodule mass per plant recorded. 

2.5. Data analysis 

Statistical analyses were performed using SAS ver. 9.2 Statistical Software (SAS, Cary, 

NC).  A combined analysis was performed for all replications.  Number of nodules, 

nodule mass, plant biomass and biomass N were analyzed using the mixed models 

procedure (PROC MIXED), with run and all run interactions as random effects, and site 

as a fixed effect. All parameters were square root transformed for analysis, and reported 

least squared means back transformed for data presentation.  Mean separations were 

performed using Tukey’s honestly significant difference (HSD) with α = 0.05.  
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3. Results  

3.1. Chemical soil properties 

Soil chemical characteristics varied more between sites than within sites (Table 2-2).  

Soil pH (H2O) was in the range of 6.6 to 5.4 in Cedar Grove HV+ field and Ivanhoe 

HV- field, and across all sites, HV- fields had lower pH values than HV+ fields.  Soil 

pH was nearly similar between paired fields within a site, except in Cedar Grove, where 

pH difference between the paired fields was 0.9.  Soil phosphorus (P) was highest at 

Ivanhoe and almost 10 times lower in Graham.  Similarly, the Graham and Cedar Grove 

copper levels were a little over a tenth those in Ivanhoe HV- field.  Notably, manganese 

levels were greatest in the Graham HV+ field, 26% lower in the HV- field, and over 

65% lower in all other fields.  

3.2. Effect of HV cultivation history on nodulation and symbiotic efficiency 

 There was a significant effect of hairy vetch cultivation history on all parameters 

tested, including number of nodules formed, nodule mass, plant biomass and plant 

tissue N. Across all sites, HV+ fields had significantly higher nodule number and mass 

(Figure 2-1a and 2-1b) than HV- fields.  The Ivanhoe HV- field had the poorest 

nodulation, with nodulation reduction of more than 80% compared to Ivanhoe HV+ 

field.  Averaged across all genotypes, HV- fields from Graham and Cedar Grove had 

32% and 35% reduction in nodule numbers, respectively, compared to the HV+ fields at 

those locations.  A positive effect of past hairy vetch cultivation on nodule mass was 

observed in all the three sites.  Nodule mass was reduced by 23% in the HV- field in 
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Graham, with greater reductions of 58% and 73% in Cedar Grove and Ivanhoe, 

respectively. 

 There was a strong site-by-field history interaction effect on plant biomass (p = 

0.0003) and shoot N (p < 0.0001).  Plants inoculated with soil dilutions from the HV+ 

field from Ivanhoe had nearly 70% more biomass than those inoculated with dilutions 

from the HV- field.  Overall, within a location, genotypes inoculated with soil with HV 

history had at least 20% greater shoot biomass than genotypes that were inoculated with 

soils with no HV history.  In general, plants inoculated with soil dilutions from HV+ 

fields had greater mean N content than those inoculated with soil dilutions from HV- 

fields, with significant differences observed in Cedar Grove and Ivanhoe, but not in 

Graham (Figure 2-4).  As with nodulation, N content from genotypes inoculated with -

HV from Graham had over 25% more N content than –HV from Cedar Grove and 

Ivanhoe.  As shown in Figure 2-2, shoot biomass was correlated with nodule mass and 

nodule numbers (r
2
 = 0.80 and 0.50, respectively). 

3.3. Effect of HV genotype on nodulation and symbiotic efficiency 

 Hairy vetch genotype had a significant effect on nodule numbers and nodule 

mass (Table 2-4).  Group 1 genotypes, Turkey 1 and Turkey 2, had the lowest mean 

nodule numbers, 32 and 49 nodules per plant respectively.  The highest mean nodule 

numbers were obtained from the Iran 2 genotype, with over 60% more nodules than the 

least-nodulated Turkey 1.  Moreover, the difference in nodule mass between Iran 2, 

with the highest mean nodule counts, and Turkey 1, with the lowest mean nodule 

counts, was over 70%.  The number of nodules found on Group 3 genotypes (including 
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Afghanistan 1 and Iran 2 genotypes) was more than three times the number found on 

Group 1. 

 We also observed differences in germination rates among genotypes, with a 

range from 16.7% in the Turkey 2 genotype to 95.5% germination in the USA-MD 1 

genotype.  The highest rates were observed in groups 3 and 5 with a mean of 89.6% 

(Table 2-4).  The hairy vetch genotypes used in the study were from geographically 

diverse origins and were chosen based on their distinct biochemical characteristics 

(Table 2-3).  A companion study provides further details on the plant biology 

characteristics of these genotypes (Maul et al. 2011).  Poor nodulation, and in some case 

no nodulation at all, was observed for all genotypes with poor germination, suggesting 

that the significant effect of HV genotype on nodulation may have been related to 

germination rate differences between the genotypes.  Although scarification increased 

germination rates by as much as 50%, there was no recorded increase in nodulation. 

 There was no significant genotype effect on biomass production (p = 0.1299), 

however, shoot biomass between cultivars varied from a mean of 390 mg plant 
-1

 in 

Turkey 1 to 1129 mg plant
-1

 in Iran 2;  with values as low as 20 mg plant 
-1

 (Turkey 1) 

and as high as 2271 mg plant 
-1

 (Iran 2) recorded.  Shoot nitrogen content varied 

significantly between genotypes (Fig 2-3, p <0.0001).  As with nodulation and biomass, 

highest N content, 5.38 % was obtained in Iran 2 and lowest N content, 4.01 %, in 

Turkey 1.  Overall, Group 3 genotypes showed the highest symbiotic efficiency, fixing 

nearly 20% more N than group 1 genotypes.  There was a close association between 

shoot biomass and % shoot N (Figure 2-3), with a significant correlation coefficient of 
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0.50.  The Turkey 2 genotype had high N content, nearly 90% of the maximum, 

surprising since this genotype was one of the least nodulated and had relatively low 

shoot biomass. 

4. Discussion 

This study showed that fields where hairy vetch had been cultivated at least five 

times in the past 20 years contained resident populations of rhizobia able to successfully 

nodulate and fix nitrogen with multiple hairy vetch genotypes without additional 

inoculation.  Hairy vetch plants inoculated with soil from fields with a history of hairy 

vetch cultivation were very well nodulated, while very poor, and in some cases 

negligible, nodulation was observed in plants inoculated with soil dilutions from fields 

having no history of HV cultivation.  The results are consistent with previous work 

(Chemining'wa and Vessey 2006) showing optimal nodulation of pea in fields with 

histories of pea cropping, and very poor nodulation in fields never planted to pea.  The 

reduced nodulation ability of these resident pea rhizobia was explained by a loss of 

symbiotic effectiveness over time without host legume (Chemining'wa and Vessey 

2006).  Rhizobia with high saprophytic efficiency, defined by their efficient use of 

available soil carbon resources for growth in the absence of a host plant, have been 

found to have a lower symbiotic efficiency when the host is subsequently introduced 

into the environment (Duodu et al. 2005).  Rhizobia population size is known to affect 

the efficiency of nodulation (Patrick and Lowther 1995), with larger populations 

enhancing nodule development.  Together these results suggest that despite infective 

soil resident rhizobia being present in all fields tested in this study, evidenced by nodule 
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formation on all genotypes, fields where hairy vetch had never been planted contained 

populations of rhizobia with possibly high saprophytic efficiency, yet low nodulation 

efficiency and/or population size.  

The Graham HV+ field was unique in that it had never been inoculated with Rlv 

so that no intentional introduction of rhizobia occurred.  This suggests that the 

significantly higher nodulation observed in the positive HV history field in Graham as 

compared to the Graham field never planted to hairy vetch can be attributed to previous 

hairy vetch cultivation.  However, the lack of difference in total plant N between 

vetches inoculated with soil with and without vetch planting history suggests that while 

previous HV cultivation may have increased population size of vetch-nodulating 

rhizobia present in the field, the symbiotic efficiency of resident Rlv populations, 

indicated by total biomass N, appears not to have been affected by previous cultivation 

of hairy vetch.  It is also possible that this is a result of rhizobia population mixing 

between the two fields as they were in proximity to each other. Across all sites our 

results provide evidence that in North Carolina farmers using hairy vetch regularly as a 

winter cover crop with or without inoculation, can increase the population size and 

nodulation ability of resident rhizobia, as well as in many cases improve N-fixation.  It 

is still not known whether this nodulation and N fixation efficiency of resident strains 

would match or exceed that of inoculant strains.  The role of inoculation in BNF 

improvement is less understood, and in some cases past inoculation may be a factor in 

further increasing high-fixing rhizobia populations in agricultural soils.  
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The Cedar Grove HV+ field had been inoculated with Rlv each season HV was 

planted, however nodulation was not significantly higher than the other two fields with 

HV history.  Likewise, (Ballard et al. 2004) showed that inoculation of pea did not 

significantly increase nodulation in over 20 of 30 tested soils.  This lack of significant 

differences between recently-inoculated and never-inoculated fields suggests that 

inoculation benefits may be minimal in systems that use legume hosts regularly.  

Although this study did not assess the effect of inoculation on nodulation effectiveness, 

questions remain regarding the need for inoculation in fields with history of HV, and 

further research on nodule occupancy and soil-resident strain efficiency in BNF is 

warranted. 

All hairy vetch genotypes assessed in this study nodulated when inoculated with 

soil from the six field-sites, indicating that tested soils contain at least minimal 

populations of effective Rlv needed for effective nodulation across genetically distinct 

populations of hairy vetch.  The differences in nodulation observed between HV- fields 

of different sites, with some clearly having less effective populations of resident 

rhizobia than others (for example, Ivanhoe), suggest impacts of site-specific factors on 

resident rhizobia populations.  In addition to low pH in the Ivanhoe field without 

history, this field also had the highest copper content.  Rhizobia, particularly Rlv, have 

been shown to be affected by soil copper levels, with high levels resulting in significant 

reductions in nodule numbers (Laguerre et al. 2006).  Within all three sites, HV- fields 

had slightly lower pH values than the HV+ fields.  Since pH is known to be a driving 

factor in rhizobia survivability in the field (Andrade 2002; Andrade et al. 2002a; 
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Lapinskas 2007; Hungria and Vargas 2000), this environmental factor may have 

impacted rhizobia survivability in soils where hairy vetch had never been cultivated, 

although the pH levels observed here are unlikely to induce conditions that challenge 

rhizobia survivability.  Wolff et al. 1995 reported significant reduction in nodule 

numbers of Phaseolus vulgaris in pH lower than 4.5, and several other studies have also 

shown significant effects of soil acidity on the rhizobial population size and nodulation 

(Chemining'wa and Vessey 2006; Evans 2005), supporting our finding of high 

nodulation in all sites with pH greater than 6.0.  Evidence provided in this study support 

that pH was not a driving factor in nodulation success in the assessed fields.  No 

significant difference in nodulation was observed between fields with sharply 

contrasting pH values, such as field one in Graham, with a pH of 6.5, and field five in 

Ivanhoe, found to have a much lower pH of 5.7, both soils with history of vetch 

cultivation.  Further, fields with similar pH values yet contrasting vetch histories, 

specifically fields five and six in Ivanhoe with pH values of 5.7 and 5.4, respectively, 

were found to have significantly different nodulation rates.  In combination these data 

suggest HV history and not pH to be the primary driver in vetch nodulation by resident 

rhizobia in this study.  Thus, agricultural systems that include legume hosts improve 

chances of optimal nodulation even if soil properties are not favorable.   

Rhizobia strains resident to soils in North Carolina (NC) were able to effectively 

nodulate hairy vetch genotypes from different centers of diversity, including 

Afghanistan, Greece, Iran and Turkey. Lei et al. (1987) suggest that when legume 

species from distant geographic locations are introduced to a new region they are likely 
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to have low nodulation.  This is supported by further research demonstrating that 

rhizobia nodulating hosts with no history of co-evolution with that particular symbiont 

have poor nodulation (Howieson et al. 2005).  Strains of R. leguminosarum have been 

shown to share a common phylogenetic origin, and some authors suggest them to have 

been spread trans-continentally with Vicia sativa seeds, including the continents of 

Africa, America and Asia (Alvarez-Martinez et al. 2009).  Alvarez-Martinez et al. 

(2009) further showed that Rhizobium leguminosarum from Vicia sativa isolated from 

soils in Spain were phylogenetically related to V. sativa rhizobia strains isolated from 

Africa, America and Asia.  This study provides evidence suggesting that NC resident 

Rlv strains are related to those found in the HV centers of diversity of Afghanistan, 

Greece, Iran and Turkey, and that through a process of co-evolution with HV, may have 

been introduced to NC along with populations of HV commonly cultivated in the 

United States. 

Results showed variation in symbiotic capacity (the potential of a legume or 

rhizobia to nodulate with the partner and result in high N fixation rates) of distinct HV 

genotypes with resident rhizobia.  Cultivar selection within the same legume species has 

been shown by others to affect nodulation and BNF in pea (Fettell et al. 1997; Abi-

Ghanem et al. 2011), and subterranean clover, with some cultivars being compatible 

with a wide range of rhizobium strains resulting in high BNF efficiency (Drew and 

Ballard 2010).  Due to great variation in nitrogen fixing ability of different rhizobial 

strains, and the difficulty in predicting the competitive ability of resident rhizobia, some 

have suggested selection of host genotypes as a means of improving the efficiency of 
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legume-rhizobia symbiosis (Ballard and Charman 2000; Drew and Ballard 2010; 

Ballard et al. 2002).  Our study shows differences in nodulation and nitrogen fixation 

rate between distinct populations of hairy vetch.  Such differences indicate that that 

these genotypes may possibly be able to be used as gene stocks in cover crop breeding 

programs, improving N2-fixation ability while developing plants with traits that make 

hairy vetch more amenable to inclusion as a winter cover crop in farming system niches 

where specific plant biochemical characteristics are desired.  Group 1 genotypes, as 

well as Iran 1 and Greece, expressed poor nodulation in all soils examined as well as 

lower germination rates.  The possibility exists that the poor nodulation of these 

genotypes is related to their poor germination and perhaps root development rather than 

ineffectiveness of symbiosis.  

 As a surrogate for N2-fixation, shoot N content results showed that resident 

rhizobia, particularly those from HV+ fields, are capable of efficient BNF.  Although 

results showed a low correlation coefficient of nodule numbers to shoot biomass, 

nodule numbers can be important predictors of improved legume performance and 

yield. Sprent et al. 1988 in Viosin et al. 2010 reported nodules to play an important role 

in the ability of host to tolerate and adapt to environmental conditions, and nodule mass 

to influence the amount of N fixed.  Thus, both nodule numbers and nodule mass are 

critical indicators of legume productivity, and mechanisms of how legumes regulate 

these parameters require further attention.  
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5. Conclusions  

 Hairy vetch is one of the most widely used winter annual cover crops in 

agricultural systems, especially among organic farms.  Among other benefits, it can 

contribute significant amounts of N through a mutualistic relationship with its symbiotic 

partner, R. leguminosarum biovar viciae.  This study determined the effect of hairy 

vetch cultivation history on symbiotic efficiency with resident rhizobia, and determined 

whether distinct HV genotypes vary in their symbiotic capacity when associating with 

resident rhizobia.  Results suggest that infective strains of Rlv present in North Carolina 

soils are indeed able to nodulate a diverse array of hairy vetch genotypes.  More 

importantly, decreased nodulation in fields without histories of HV as compared to 

fields where hairy vetch had been previously cultivated was observed, suggesting that 

Rlv population size in soils with no history is generally low and/or that populations 

have low symbiotic capability.  Comparably higher nodulation was found in fields with 

HV history, suggesting that use and history of host legumes enhances the population 

size of resident rhizobia and their ability to competently nodulate the host.  Variability 

in symbiotic efficiency of different genotypes provides evidence that BNF efficiency 

varies by plant biochemistry.  This suggests that hairy vetch may be improved using 

plant genotypes of diverse origin to breed for cultivars with high symbiotic efficiency.  

Understanding the effects of agricultural practices on plant-microbe interaction will 

improve agricultural stability globally, and result in systems that utilize ecological 

processes more effectively for optimal food production.
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Table 2-1: Characteristics of fields from which soils were collected for inoculation of the ten distinct HV genotypes. 

Site Soil Type Average temperature 

from 1990 to 2010 

(
o
C) 

Min             Max 

Field 

history 

Status during 

sampling 

Last inoculation  

with Rlv 

Other legume 

cover crops used 

       

Graham Appling Sandy 

Loam (Fine, 

kaolinitic, thermic 

Typic 

Kanhapludults) 

8.4 21.2 +HV Hairy vetch, 

pea and rye 

Never been 

inoculated 

Crimson clover, 

cowpea and pea 

-HV Asparagus 

grass 

--- --- 

Cedar 

Grove 

Appling Sandy 

Loam (Fine, 

kaolinitic, thermic 

Typic 

Kanhapludults) 

8.6 20.9 +HV Hairy vetch 

and rye 

Every season hairy 

vetch was planted 

Crimson clover 

-HV Grass 

 

--- --- 

Ivanhoe Chipley Sand 

(Thermic, coated 

Aquic 

Quartzipsamments) 

10.8 23.4 +HV Hairy vetch 

 

Not since 2004 Crimson clover 

-HV Weeds 

 

--- --- 

---Field does not have history of legume cropping or growth, therefore, no inoculation. 



36 

 

Table 2-2: Soil physiochemical properties for the 6 fields used in the study to test efficiency of resident rhizobia in nodulation 

of hairy vetch. 

 

Soil property Graham Cedar Grove Ivanhoe 

HV+ HV- HV+ HV- HV+ HV- 

pH (H2O) 6.5 6.1 6.6 5.7 5.7 5.4 

P (mg dm
-3

) 67.00 103.30 328.20 77.70 497.30 658.00 

K (meq 100cm
-3

) 0.34 0.27 0.22 0.22 0.82 0.85 

Ca (meq 100cm
-3

) 4.30 3.18 10.05 2.84 7.63 4.32 

Mg (meq 100cm
-3

) 1.04 1.12 2.03 1.40 1.92 1.38 

Na (meq 100cm
-3

) 0.0 0.0 0.1 0.0 0.1 0.1 

Mn (mg dm
-3

) 95.2 69.8 31.4 32.6 12.0 9.6 

Zn (mg dm
-3

) 15.5 18.9 7.1 2.3 18.2 13.9 

Cu (mg dm
-3

) 2.7 1.4 2.7 1.0 1.1 10.1 

Base saturation (%) 89.0 79.0 94.0 79.0 85.0 64.0 

Cation exchange capacity 

meq 100cm
-3

 

6.4 5.8 13.1 5.7 13.3 10.1 

Humic matter (g 100cm
-3

) 0.41 0.32 0.18 0.41 0.86 3.28 

Inorganic N (%) 2.96 9.58 4.42 5.92 2.97 5.54 
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Table 2-3: Hairy vetch genotypes used to evaluate symbiotic efficiency of soil resident rhizobia from North Carolina.  

Group Country of Origin PI number Germination by 

National Plant 

Germplasm (%) 

Germination 

in lab (%)** 

Code 

1 

 

Turkey 167259 88 33 Turkey 1 

Turkey 206493 90 17 Turkey 2 

      

2 Iran  229970 74 25 Iran 1 

USA-NE Nebraska nd 75 USA-NE 

      

3 

 

Afghanistan  317447 95 88 Afghanistan 1 

Iran  429408 99 92 Iran 2 

      

4 

 

Afghanistan  222217 95 79 Afghanistan 2 

Greece 289482 71 21 Greece 

      

5 

 

USA-MD  Bounty nd 96 USA-MD 1 

USA-MD  Prosperity nd 83 USA-MD 2 

nd Not determined for a given hairy vetch genotype. 

** A total of 50 hairy vetch seeds were used to determine germination rate, i.e. n=50. 
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 Table 2-4: Nodulation and biomass production of the hairy vetch genotypes. 

 

Group Hairy vetch 

genotype 

Nodule  numbers 

(plant
-1

) 

Nodule mass 

(mg plant
-1

) 

Shoot biomass 

(mg plant
-1

) 

Shoot N 

(%) 

Sample size 

(n) 

1 Turkey 1 32b 18.8c 390.3a 4.01b 12 

Turkey 1 49ab 29.3bc 483.3a 4.82ab 17 

       
2 Iran 1 50ab 34.4abc 632.2a 4.33ab 24 

USA-NE 70ab 51.3ab 854.0a 5.11ab 24 

       
3 Afghanistan 1 70ab 62.2a 876.3a 5.35a 24 

Iran 2 87a 70.2a 1129.5a 5.39a 24 

       
4 Afghanistan 2 84a 62.2a 974.4a 5.21ab 24 

Greece 49ab 38.3abc 527.0a 4.50ab 14 

       
5 USA-MD 1 58ab 43.4abc 790.7a 4.96ab 24 

USA-MD 2 78ab 50.6ab 929.1a 5.07ab 24 

Within a column, different letters following least squared means indicate significant differences at α = 0.05. 

Within a column, same letters following least squared means indicate non-significant difference at α = 0.05. 
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Figure 2-1a. Effect of hairy vetch cultivation history on 

nodule numbers. 
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Figure 2-2a. Correlation of hairy vetch shoot biomass and 

nodule numbers. 
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Figure 2-2b. Correlation of hairy vetch shoot biomass and 

nodule mass.
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Figure 2-3. Shoot biomass and nitrogen content of the 10 hairy vetch genotypes.  
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Figure 2-4. Hairy vetch shoot N content across the three sites. 
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Abstract  

Hairy vetch (Vicia villosa Roth) is widely grown as a legume cover crop throughout the 

U.S.A., with biological nitrogen fixation (BNF) through symbiosis with Rhizobium 

leguminosarum biovar viciae (Rlv) being one of the most sought after benefits of its 

cultivation.  This study determined if HV cultivation history and genotype have an effect 

on the genetic diversity of resident Rlv.  Soil samples were collected from within 

farmers’ fields at Graham, Cedar Grove and Ivanhoe sites in North Carolina.  Using ten 

distinct hairy vetch genotypes as trap hosts, a total of 519 Rlv strains were isolated from 

soil dilutions of six paired fields, three with and three without histories of HV 

cultivation.  A total of 46 strains failed to PCR-amplify the nifH gene; however nodC 

PCR amplification of these nifH-negative strains resulted in amplification of 22 of the 

strains.  Repetitive element polymerase chain reaction (rep-PCR) with BOX-A1R primer 

showed that diversity of rhizobia varied greatly within and between fields.  Over 30 

BOX banding patterns were obtained across the six fields.  There was evidence of strain 

domination for both the fields at Cedar Grove.  Cluster analysis of BOX-PCR banding 

patterns resulted in 36 genetic groups of Rlv at a similarity level of 70%, with 15 of the 

isolates from fields with HV history not belonging to any of the clusters.  The biggest 

cluster comprised 96 strains, 86 of which were from the Cedar Grove.  Rlv tended to 

group based on site from which they were isolated, and within a site by field history.  

Hairy vetch genotypes appeared to have little or no effect on diversity of Rlv isolated, 

particularly in fields with no HV cultivation history.  Our results show that HV 

cultivation history changes and increases the genetic diversity of resident Rlv in soils.  
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Although different strain profiles were sometimes obtained from distinct HV genotypes, 

a consistent impact of HV genotypes on diversity is not pronounced.  

1. Introduction 

 Hairy vetch (Vicia villosa Roth, HV) is a winter annual legume whose cultivation 

as a cover crop is common in the US, particularly in organic and low input farming 

systems.  Through symbiosis with Rhizobium leguminosarum biovar viciae (Rlv), HV 

can contribute significant quantities of nitrogen (N) to farming systems (Power et al. 

1991; Sainju et al. 2001), and inoculation of HV with effective Rlv strains to increase N 

fixation is a common practice.  R. leguminosarum biovar viciae are capable of 

nodulating several legume species belonging to tribe viciae (Laguerre et al. 2003), 

including pea (Pisum sativum), faba bean (Vicia faba) and common vetch (Vicia sativa).  

In the absence of legume hosts these soil-borne saprophytic bacteria survive on 

decomposed organic compounds, and environmental variables and management 

practices have been shown to affect the Rlv population structure and diversity of Rlv 

existing in the field in the absence of a legume host (Andrade et al. 2002a; Bala et al. 

2001; Depret et al. 2004; Kaschuk et al. 2006).  

 Although, several studies have reported that already-existing resident soil 

rhizobia negatively affect successful symbiotic relationships with legume hosts through 

competition with inoculant strains (Lima et al. 2009), other studies have shown resident 

rhizobia to form effective associations, both nodulating and fixing nitrogen with their 

legume hosts.  Resident rhizobia can be defined as those existing in a given soil, 

including native rhizobia and those previously introduced and naturalized over time. 
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Ballard (2002) reported symbiotic efficiency, in which N is fixed and subsequently 

translocated to the host for improved growth and production, between resident clover 

rhizobia (Rhizobium leguminosarum biovar trifolii) and balansa clover (Trifolium 

michelianum Savi) to be as high as 128% of that of the recommended inoculant strain.   

Other studies have shown symbiotic efficiency between resident rhizobia and pasture 

medics to range between -6 and 72% of the inoculant strain (Ballard, 2000).  

Understanding how resident rhizobial populations are affected by management 

and environmental changes is critical for improved N fixation in managed 

agroecosystems where legumes are used for N contribution.  Soil pH has been shown to 

greatly affect rhizobia survival and diversity in soils (Andrade et al. 2002a; Bala et al. 

2001; Frey and Blum 1994; Graham et al. 1994), and fields with low pH have low 

nodulation (Chemining'wa and Vessey 2006).  Reduced diversity of Rhizobium 

leguminosarum biovar phaseoli has been reported in acid soils compared to limed soils 

(Andrade 2002; Lapinskas 2007).  Soil management practices have also been shown to 

affect rhizobial populations, including reports of reduced diversity in long-term 

monocultures as compared to crop rotation with legume host (Depret et al. 2004), and 

high diversity of bean rhizobia in no-till fields compared to conventional till fields 

(Kaschuk et al. 2006).  Past cultivation of a legume host in a field has been shown to be 

particularly important in impacting resident rhizobia population size in beans (Andrade 

et al. 2002a) and peas (Chemining'wa and Vessey 2006).  

 Hairy vetch cultivars adapted to specific environmental conditions have been 

developed in order to utilize them in particular agroecological management systems.  
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Examples include cold-tolerant Madison variety from Nebraska, and recent early-

maturing USDA-ARS varieties Purple Bounty and Purple Prosperity, which reach peak 

biomass one to two weeks before standard varieties and allow for early/timely planting 

of cash crops (Maul et al. 2011).  Previous reports assessing diversity among strains of 

Rlv in agricultural systems demonstrated higher diversity in no-till compared to 

conventional tillage systems (Andrade et al. 2003; Ferreira et al. 2000; Kaschuk et al. 

2006) and higher diversity in arable lands compared to grassland (Palmer and Young 

2000).  However, little attention has been given to diversity of rhizobia associating with 

distinct HV genotypes.  Numerous studies have shown that the presence of a legume 

host can affect population size and structure of compatible rhizobia in agroecosystems 

(Hynes and Oconnell 1990; Laguerre et al. 2003; Laguerre et al. 2007; Depret and 

Laguerre 2008; Mutch et al. 2003; Mutch and Young 2004).  Some Rlv hosts, such as 

faba bean, appear to be highly specific and symbiotically associate with only a specific 

nod type of Rlv strain (Hynes and Oconnell 1990; Mutch and Young 2004; Laguerre et 

al. 2003; Laguerre et al. 2007).  Even subtle differences in host genotype at the sub-

species level can select for different populations of rhizobia in a soil (Depret and 

Laguerre 2008). 

 High rhizobial diversity is important to soil health and productivity (Ferreira et 

al. 2000; Kaschuk et al. 2006).  Although many organic growers utilize hairy vetch on an 

annual basis in their fields, we do not yet understand how past planting of this species 

might impact the population structure and diversity of resident Rlv populations.  In this 

study we evaluated genetic diversity of Rlv isolated from root nodules of ten distinct HV 
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genotypes inoculated with soil dilutions from fields with and without HV cultivation 

history. Our specific objectives were to: i) determine the effect of HV cultivation history 

on the genetic diversity of soil resident Rlv and ii) to determine genetic diversity of 

resident Rlv populations able to nodulate distinct HV genotypes.   

2. Materials and Methods 

2.1. Field sites and soil sampling 

 The field study was conducted in 2010 in North Carolina an agriculturally 

important area located in the Southeastern region of the U.S.A. with numerous certified 

organic farms.  Soil samples were originally taken from five farms with histories of hairy 

vetch cultivation, including at least five seasons of HV since 1990, located in the cities 

of Asheville (2 farms), Graham, Cedar Grove and Ivanhoe (Table).  On each farm a 

paired field never been previously planted to hairy vetch and never observed to have had 

wild hairy vetch varieties (Personal communication with farmers) was also sampled.  

Inoculation history on the fields with hairy vetch differed among farms, with Asheville 

and Cedar Grove fields being previously inoculated with each past hairy vetch planting, 

Graham having no history of inoculation and Ivanhoe not being inoculated since 2004.    

 All fields with vetch histories were planted to hairy vetch at the time of sampling, 

some in mixtures with grass species.  Forty soil cores to a depth of 15 cm and diameter 

of 2.5 cm were randomly collected at each field, thoroughly mixed into a representative 

sample and then stored at field condition at 4
o
C in the laboratory.  All sampling 

materials were sterilized with 75% ethanol prior to sampling; during sampling and 

handling, precautions were taken to avoid cross-contamination of soils of different fields 
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and sites.  From each representative sample, a subsample was taken, dried at 45
o
C and 

sent to North Carolina Department of Agriculture and Consumer Services, Agronomic 

Division for chemical analysis.  Three of the five farm soils were subsequently chosen to 

be included in this study in order to maximize number of past hairy vetch cultivations 

since 1990, and to standardize pH values between fields on the same farm. 

2.3. Rhizobia isolation  

 Ten distinct hairy vetch genotypes (Table) were used to trap soil rhizobia over a 

period of six weeks in a growth chamber.  A modified Leondard jar construction 

comprising of two coupled magenta units (PlantMedia, Dublin Ohio, (Tlusty et al. 2004) 

were used; the bottom unit containing N-free nutrient solution (Broughton and Dilworth 

1971), the top unit containing equal volumes of thoroughly-mixed sand and vermiculite, 

and drilled at the bottom to hold a cotton wick inserted to source water and nutrients 

from the bottom unit.  Assembled magenta units were sterilized by autoclaving at 121
o
C 

for 15 minutes.  

 Five groups of distinct hairy vetch genotypes were used as Rlv hosts (Table), 

each group comprising two genotypes closely related in biochemical characteristics 

(Maul et al. 2010).  Seven of the ten total genotypes were previously collected from 

Afghanistan, Greece, Iran, Turkey, and three were varieties recently developed for use as 

cover crops in U.S. based systems, including USDA releases Purple Bounty and Purple 

Prosperity early flowering varieties, (USA-MD 1 and USA-MD 2, respectively), and the 

Madison variety from Nebraska, USA-NE.  Seeds for Afghanistan, Greece, Iran and 

Turkey genotypes were obtained from National Plant Germplasm System (Washington 
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State University, Pullman, WA), and seeds for US varieties were obtained from USDA-

ARS Sustainable Agriculture Systems Lab (Beltsville, MD).  

 Hairy vetch seeds were surface sterilized with 3% sodium hypochlorite, rinsed 

five times in sterile deionized water, placed on a sterilized germination paper in Petri 

dishes and left to germinate at room temperature for six days.  Seeds showing low initial 

germination rates were scarified by soaking in 80% H2SO4 for 30 minutes, then rinsing 5 

times with deionized water.  Two hairy vetch seedlings were planted per magenta unit. 

Each seedling was inoculated with 500 µl of a 5
-1

 soil dilution prepared by mixing 20 g 

of soil with 80 ml of 0.85% (w/v) NaCl solution (Bala et al. 2001).  A treatment was 

defined as a combination of a HV genotype with soil inoculant from one of the six fields.  

The 60 combinations were evaluated in the growth chamber in a randomized complete 

block design with four replications.  Due to growth chamber space constraints, 

replications one and two were established first in May/June 2011 (run 1) and replications 

three and four second in September/October 2011 (run 2).  The growth chamber was set 

at 9 hr days with 22
o
C day temperature, and 18

o
C night temperature.  After 7 days, 

plants were thinned to one plant per unit, and sterile N-free nutrient solution was 

supplied when needed.  

 Plant roots were harvested after six weeks of growth.  Three nodules were 

randomly selected from each root system, surface sterilized with 3% sodium 

hypochlorite and rinsed 5 times in sterile deionized water.  The surface sterilized nodules 

were crushed onto yeast mannitol agar media plates (YMA, Vincent 1970) containing 

0.1% Congo red and incubated at 28
o
C for 3 days.  Cultures were repeatedly streaked on 
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YMA to ensure purity and obtain single colonies.  A single typical colony was then 

transferred into tryptone yeast (TY, Vincent 1970) and shaken for five days at 180 rpm. 

Resulting colonies were centrifuged, supernatant discarded, and isolates placed in 300 µl 

sterile water and stored at -20
o
C.  Each nodule was assumed to contain a single strain, 

and each colony was assumed to represent a single strain (Vessey and Chemining’wa, 

2006).  Live cultures were maintained on YMA slants at 4
o
C.  

2.3. Confirmation of isolates: nifH-PCR 

A total of 519 rhizobia were isolated from the hairy vetch genotypes across all treatment 

replications.  Isolates were assumed to be Rhizobium leguminosarum biovar viciae (Rlv) 

due to the high specificity between hairy vetch and Rlv.  To further support the inclusion 

of only Rlv in the study, nifH PCR was performed.  Amplification of nifH was 

performed using primers nifH-1 and nifH-2 (Table 3-1) from New England Biolabs 

(Ipswich, MA).  The PCR reaction contained 1 µl DNA template, 3.3 µl Taq 

polymerase, 0.2 µl nifH-1 and 0.2 µl nifH-2, made up to final volume of 10 µl with 

sterile water.  Amplification was carried out in a Mastercycler
ep

 thermocycler 

(Eppendorf, Germany), using the following PCR cycles: initial denaturing at 94
o
C for 5 

min, 30 cycles of, denaturing 94
o
C for 1 min, annealing at 60

o
C for 1 min extension at 

72
o
C for 1 min, and final extension at 72

o
C for 5min. nifH-PCR products were examined 

via electrophoresis using 1% agarose gel containing 5% ethidium bromide (EtBr), run at 

100 V for 40 min.  Gels were viewed under UV radiation.  



55 

 

2.4. NodC-PCR amplification 

NodC-PCR amplification was performed on a total of 117 isolates, 71 of which were 

amplified by nifH and 46 were not.  Primers nodC-forward and nodC-reverse (Table 3-1) 

from New England Biolabs were used.  The PCR reaction contained 1 µl DNA template, 

3.9 µl Taq polymerase, 0.2 µl nodC-F and 0.2 µl nodC-R, made up to final volume of 11  

µl with sterile milliQ water.  Amplification was carried out in a Mastercycler
ep

 

thermocycler, using the following PCR cycles: initial denaturing at 94
o
C for 3 min, 30 

cycles of, denaturing 94
o
C for 1 min, annealing at 55

o
C for 1 min extension at 72

o
C for 1 

min, and final extension at 72
o
C for 7min.  NodC-PCR products were examined via 

electrophoresis using 1.5% agarose gel containing 5% ethidium bromide (EtBr), run at 

100 V for 40 min.  Gels were viewed under UV radiation. 

2.5. PCR amplification with BOX A1R primer 

 Isolates confirmed to contain the nifH gene were amplified by repetitive element 

polymerase chain reaction (rep-PCR) using BOX-A1R primer to assess genetic diversity.  

The PCR reaction contained 1 µl template, 8.75 µl Taq polymerase, 0.5 BOX-A1R 

primer, made up to final volume of 25 µl using water.  The following thermocycler 

settings were used: initial denaturing at 94
o
C for 5 min, 30 cycles of, denaturing 94

o
C for 

1 min, annealing at 60
o
C for 1 min extension at 72

o
C for 1 min, and final extension at 

72
o
C for 5min.  Products obtained using BOX-PCR were analyzed using horizontal gel 

electrophoresis in a 3% agarose gel containing 5%  EtBr. A 10,000 bp molecular marker 

(Quick Load DNA Ladder III, ApexTM Bioresearch Products) was loaded alongside 
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BOX-PCR products to estimate the size of band patterns.  Gel was run at 300 V for 5 

min followed by 18 hours at 80 V and visualization under UV radiation.  

2.6. Cluster analysis 

 Cluster analyses performed on the BOX-PCR patterns using the GelCompar II 

program version 6.1 (Applied Mathematics, Belgium) was used to construct a 

dendrogram of similarity for all isolates.  One analysis across all sites was performed, 

followed by three separate analyses, one for each site.  The unweighted pair-group 

method with arithmetic mean (UPGMA) algorithm and the Jaccard coefficient were 

used.  Grouping of isolates into clusters was based on 70% level of similarity (Loureiro 

et al. 2007; Kaschuk et al. 2006; Grange and Hungria 2004; Giongo et al. 2007).  

3. Results 

3.1. NifH-PCR and NodC-PCR 

 A total of 519 isolates were obtained from root nodules of 10 distinct hairy vetch 

genotypes inoculated with soil dilutions from six fields (Table 3-2).  The nifH gene of 

473 Rlv isolates could be PCR amplified, and despite characteristics corresponding to 

rhizobia phenotypes, 46 of the isolates failed to amplify, and are henceforth referred to 

as nifH-negative strains (Table 3-3).  Nearly 60% of the nifH-negative strains were from 

Ivanhoe, and across all sites, 50% were from fields with HV history (Table 3-2).  

Interestingly, 22 of the nifH-negative strains were able to be positively amplified using 

PCR for the nodC gene, supporting characterization as rhizobia.  The fewest nifH-

positive isolates were obtained from the Iran 1 and Turkey 1 hairy vetch genotypes, 



57 

 

whereas the most isolates were obtained from the USA-NE genotype.  Averaged across 

groups, most nifH-positive isolates were obtained in Group 5 genotypes.  

3.2. Cluster analysis of BOX-PCR patterns 

 Site was found to be the main driver of isolate diversity overall (data not shown), 

however within sites, history of vetch cultivation was shown to be a strong determinant 

of grouping patterns.  Over all three sites, number of BOX-PCR bands obtained per 

strain ranged from 3 (strain 557, isolated from Iran 2 inoculated with soil from Graham 

field with HV history) to over 25 (strains isolated from genotypes inoculated with soil 

from Cedar Grove) (Figures 3-1a and 3-1b).  Great diversity was observed across all 

sites, with a total of 36 clusters identified that contained isolates with greater than 70% 

similarity to each other.  Fifteen isolates from fields with HV history, and two from 

fields without HV history were found to have distinct banding patterns differing from a 

majority of the collected strains, and did not belong to any one cluster, with their most 

closely related cluster similarity levels ranging from only 28.8 to 55.9%.  Significant 

diversity was observed across the sites, with almost 30% of the clusters (11) being small, 

containing only a few strains that were at least 80% similar to each other.  The largest 

cluster comprised 96 of the total strains, with 90% of these strains originating from the 

Cedar Grove site.  Within this cluster, there were 21 subgroups (defined as strains that 

are >90% similar within a cluster) with 2 to 6 strains each that grouped at 100% 

similarity level. Further, 16 of these subgroups contained only strains from -HV field 

from Cedar Grove, indicating high similarity level among Cedar Grove isolates.  In 

addition, over 60% of the strains with 100% similarity were isolated from distinct HV 
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genotypes, suggesting that hairy vetch genotypes have little effect on the banding 

patterns, thus genetic diversity of strains.  Except a few cases with the USA-MD 

genotypes, it was only when inoculated with soils from different sites and different field 

histories that genotypes were nodulated by unique Rlv strains.  The second largest 

cluster across all 519 strains comprised 77 strains, with 44 strains from Graham, 8 

strains from Cedar Grove and 25 strains from Ivanhoe. 

 Separate cluster analyses performed by site (Figures 3-2, 3-3 and 3-4) showed 

that except Ivanhoe, fields with HV history had higher levels of diversity than fields 

without history, with more identified clusters related at 70% similarity or higher in the 

fields with history (Figures 3-2, 3-3 and 3-4).  The greatest number of clusters was 

identified at Ivanhoe, with 20 clusters identified, followed by Cedar Grove with 18, and 

Graham with 16 (Table 3-2).  A few strains from each site did not fit into any identified 

cluster, including 9 from Graham, 4 from Cedar Grove and another 9 from Ivanhoe.  The 

Graham site in particular contained one very large cluster comprised of 51 of the total 

161 strains at that site, of which a  little over half (65%) were from the field with no HV 

history.  This mixing of strains from both field types within a cluster demonstrates 

genetic similarity of rhizobia found in both fields at this site.  Cedar Grove contained a 

large cluster of 91 isolates of the total 173 grouping at greater than 70% similarity, of 

which 85% came from the field with no HV history and suggesting great rhizobial 

similarity in fields where no HV has been planted.  Within this large cluster, 33 

subgroups were identified that clustered at 100% similarity, and 24 subgroups clustering 

at >92% similarity level, again indicating a high level of similarity and low genetic 
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diversity among resident rhizobia strains at this site.  Contrary to Graham and Cedar 

Grove, data suggest that Ivanhoe soils contained a higher level of diversity in the no HV 

field than in the HV history field.  In Ivanhoe, only 12% of the isolates in the largest 

cluster (40 of 139 strains) were from fields with no HV history, and the majority of 

strains were from fields with a cultivation history of vetch and quite similar in their 

genetic makeup.  Moreover, 8 of the 9 strains not belonging to any cluster were from no 

HV history field, further supporting our finding of greater diversity in the no history 

fields as compared to the field with HV history at this site.  As previously mentioned, 

across all site-fields specificity of the different HV genotypes with particular strains was 

not pronounced.  For example, a small number of strains isolated from across genotypes 

Iran 1, Afghanistan 2 and USA-MD2 were found to be 100% similar in Cedar Grove, 

and others isolated from USA-NE and Greece were also found to be 100% similar in 

Graham. 

4. Discussion 

 Our results showed high Rlv diversity between sites, demonstrated by others to 

often result from prevailing site-specific environmental variables imposing general 

genetic adaptations on soil rhizobia (Bernal and Graham 2001; Farooq and Vessey 2009; 

Mutch et al. 2003; Tian et al. 2007; Yang ChengYun et al. 2008).  There was great 

variability in soil phosphorus (P) content and soil pH among the 3 sites.  The importance 

of soil P on legume-rhizobia symbiosis is well understood (Leite Silva et al. 2010; 

Wielbo and Skorupska 2008; Zaman-Allah et al. 2007), and soil P status has been shown 

to specifically affect diversity of Rlv in the field (Labidi et al. 2003).  As well, there is a 
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large body of literature on the effect of soil pH, particularly acidity, on the diversity of 

rhizobia populations (Aarons and Graham 1991; Andrade et al. 2002a; Bala et al. 2001).  

Changing soil pH through liming can modify existing rhizobia populations (Andrade et 

al. 2002a), and high acid conditions have been found to select for strains that are tolerant 

to high acid conditions (Bala et al. 2001).  Consequently, as strains become more suited 

to a given environment, they also become distinct from strains in other environments 

resulting in increased diversity between sites.  Our research, in combination with 

previous findings, suggests that soil characteristics present in a site may have influenced 

population structure of resident Rlv between sites sampled in this study. 

 With the exception of the Ivanhoe site, there was greater rhizobia diversity in 

fields with histories of HV cultivation than in fields without history.  Although studies 

have shown past cultivation of legume species to increase the population size of 

compatible rhizobia (Andrade et al. 2003; Chemining'wa and Vessey 2006), this is the 

first report documenting the effect of legume cultivation history on genetic structure of 

compatible rhizobia.  Field inoculation with compatible rhizobia is known to increase the 

genetic diversity resident rhizobia (de Fatima Loureiro et al. 2007) likely by introducing 

new rhizobia strains into the environment with the potential for transfer of genetic 

material between strains.  Several studies have suggested horizontal gene transfer to be a 

major factor contributing to rhizobia diversity (Aoki et al. 2010; Barcellos et al. 2007).  

The higher diversity observed in our field with HV history that had received past 

rhizobia inoculation (Cedar Grove) relative to the paired fields with no vetch history, 

may possibly be attributed to introduction of Rlv through inoculation.  However, this 
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idea is contrary to our finding that the field with HV cultivation history field in Graham, 

with no history of inoculation, was also found to have a greater diversity of rhizobia 

strains than the paired no HV history field, suggesting that it is the presence of hairy 

vetch roots, or perhaps strains introduced to the field inadvertently on the legume seed at 

planting, that serve to increase diversity in this field rather than inoculation alone.  There 

is no identified reason why horizontal gene transfer between existing strains cannot also 

occur in fields with no HV history (Zhang et al. 2001), and the mechanism through 

which legume cultivation increases diversity requires further attention.   

 The high diversity in the Ivanhoe field that had never been planted to hairy vetch 

was unexpected, particularly since this field had the lowest pH, which often is linked to 

reduced diversity as compared to similar fields with higher pH values.  The Ivanhoe field 

with no HV history had never been cultivated.  Studies have reported high levels of 

diversity in uncultivated sites under native vegetation compared to cropped areas 

(Hungria et al. 2006).  Some agricultural management practices such as tillage have been 

shown to reduce the diversity of resident populations of rhizobia relative to untilled 

fields (Ferreira et al. 2000; de Fatima Loureiro et al. 2007).  We have shown here that in 

two of the three sites, past use of hairy vetch increased genetic diversity of Rlv.  

Additionally, we observed extremely low diversity of rhizobia in the Cedar Grove field 

with no history of hairy vetch, a field that had been intentionally planted to grass for 

over 20 years, with almost all Rlv isolates showing great similarity in their genetic 

makeup.  The low pH of the Cedar Grove field could also result in selection of particular 

strain types adapted to acidic conditions, (Andrade et al. 2002b; Hungria and Vargas 
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2000; Zahran 1999).  Our findings are consistent with Hungria et al. (2006), 

emphasizing that the rhizobia diversity in uncultivated soils may either be maintained or 

increased by agricultural practices such as no-till and crop rotations including a legume 

host, or reduced by practices such as tillage and monoculture.   

 Our results indicate HV genotype to be less important in determining diversity of 

associated rhizobia than site or a field having a history of vetch planting.  In general, 

legume species in the tribe viciae are known to be specific in their symbiosis, and are 

particularly capable of selecting preferred rhizobia strains from diverse populations in 

the soil (Laguerre et al. 2003).  Faba bean species (Vicia faba), another host species for 

Rlv, is more discriminative than pea in strain selection, such that it is consistently 

nodulated by Rlv nod type g (Laguerre et al. 2003).  Pea genotype has also been 

suggested to influence diversity of Rlv isolates (Depret and Laguerre 2008).  Our 

observed lack of diversity in Rlv as related to host genotype may have been related to 

the use of BOX-PCR technique for characterization, a less discriminatory technique as 

compared to the use of gene-specific primers.  Using REP-PCR techniques, (Laguerre et 

al. 2003) showed that vetches are less discriminative of Rlv genomic backgrounds than 

pea or faba bean.  It is possible that the use of techniques targeting more specific 

functional symbiotic genes such as nif and nod genes could reveal more information on 

rhizobia diversity associated with the distinct hairy vetch genotypes.  
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5. Conclusions 

 In this study we evaluated genetic structure of rhizobia isolated from fields with and 

without history of HV cultivation.  Ten different HV genotypes were used as trap host 

for resident Rlv across paired fields from three farms.  Our results showed that strain 

diversity depended greatly on site conditions, with greater diversity observed between 

sites than by field management of vetch history.  Past history of hairy vetch cultivation 

was found to increase diversity of Rlv.  In general there appears to be little distinction 

between the Rlv trapped by different HV genotypes, particularly where initial soil 

rhizobial diversity is low.  However, techniques that evaluate diversity of symbiotic 

genes such as nif, nod and fix genes could be used to gain more information on the 

influence of host genotypes.  Overall, understanding how previous cultivation of hairy 

vetch has important and far-reaching economic and ecological implications for farmers 

interested in using hairy vetch as a winter annual cover crop, as strain genetic structure 

can ultimately affect the amount of N2 fixed by cover crops used across agroecosystems.
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Table 3-1: Oligonucleotides used as PCR primers 

 

Primer 5' - 3' Nucleotide sequence Target gene Reference 

nifH 

Forward 

GCTGCCTATGCAGACGATG nifH Kaschuk et al. 2006 

nifH 

Reverse 

TTACTGGCTTTCATTTGGC nifH Kaschuk et al. 2006 

nodC 

Forward 

GCTGCCTATGCAGACGATG nodC Sarita et al. 2005 

nodC 

Reverse 

GGTTACTGGCTTTCATTTGGC nodC Sarita et al. 2005 

BOX-

A1R 

CTACGGCAAGGCGACGCTGACG DNA located 

between BOX 

sequences 

Kaschuk et al. 2006 
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Table 3-2: Number of rhizobia isolates obtained from nodules of HV genotypes inoculated with soil dilutions from field with 

and without hairy vetch cultivation history from Graham, Cedar Grove and Ivanhoe 

 

 Graham Cedar Grove Ivanhoe  

 +HV -HV +HV -HV +HV -HV Total 

Turkey 1 6 3 6 5 3 3 26 

Turkey 2 5 9 9 6 6 6 41 

Iran 1 5 3 6 6 3 0 23 

USA-NE 11 12 12 12 11 9 67 

Afghanistan 1 5 9 8 9 9 7 47 

Iran 2 7 12 10 12 11 12 64 

Afghanistan 2 11 12 8 12 9 7 59 

Greece 6 6 2 6 3 3 26 

USA-MD 1 10 10 12 12 12 6 62 

USA-MD 2 10 10 9 10 12 6 57 

Total 76 86 82 90 79 59 472 
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Table 3-3: Isolates of Rlv that did not PCR-amplify the 

nifH gene

Location 
Field 

History 

Genotype 

group 
Genotype 

Graham +HV 2 USA-NE 

Graham +HV 3 Afghanistan 1 

Graham +HV 5 USA-MD 1 

Graham +HV 5 USA-MD 1 

Graham -HV 5 USA-MD 1 

Graham -HV 5 USA-MD 1 

Graham -HV 5 USA-MD 2 

Graham -HV 5 USA-MD 2 

Cedar Grove +HV 2 USA-NE 

Cedar Grove +HV 3 Afghanistan 1 

Cedar Grove +HV 3 Iran 2 

Cedar Grove +HV 4 Afghanistan 2 

Cedar Grove +HV 5 USA-MD 2 

Cedar Grove +HV 5 USA-MD 2 

Cedar Grove +HV 3 Iran 2 

Cedar Grove +HV 4 Afghanistan 2 

Cedar Grove +HV 4 Greece 

Cedar Grove -HV 1 Turkey 1 

Cedar Grove -HV 2 USA-NE 

Ivanhoe +HV 1 Turkey 1 

Ivanhoe +HV 1 
Turkey 2 

 

Location 
Field 

History 

Genotype 

group 
Genotype 

Ivanhoe +HV 1 Turkey 2 

Ivanhoe +HV 2 Iran 1 

Ivanhoe -HV 1 Turkey 1 

Ivanhoe -HV 2 USA-NE 

Ivanhoe -HV 3 Iran 2 

Ivanhoe -HV 4 Afghanistan 2 

Ivanhoe -HV 4 Afghanistan 2 

Ivanhoe -HV 5 USA-MD 2 

Ivanhoe -HV 5 USA-MD 2 

Ivanhoe +HV 1 Turkey 1 

Ivanhoe -HV 2 USA-NE 

Ivanhoe -HV 3 Afghanistan 1 

Ivanhoe -HV 3 Iran 2 

Ivanhoe +HV 3 Afghanistan 1 

Ivanhoe +HV 4 Afghanistan 2 

Ivanhoe +HV 4 Afghanistan 2 

Ivanhoe +HV 4 Afghanistan 2 

Ivanhoe -HV 3 Afghanistan 1 

Ivanhoe -HV 4 Afghanistan 2 

Ivanhoe -HV 4 Afghanistan 2 

Ivanhoe -HV 4 Afghanistan 2 
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Figure 3-1a. Gel image of BOX-PCR products isolated from nodules of distinct hairy 

vetch genotypes inoculated with soil dilutions form a no hairy vetch history field from 

Cedar Grove 

 

 

 
Figure 3-1b. Gel image of BOX-PCR products isolated from nodules of distinct hairy 

vetch genotypes inoculated with soil dilutions form a field with hairy vetch history from 

Cedar Grove 
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Figure 3-2. Dendrogram of rhizobia strains isolated from ten hairy vetch genotypes 

inoculated with Cedar Grove soil from fields with and without a history of hairy vetch 

cultivation. 
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Figure 3-3. Dendrogram of rhizobia strains isolated from ten hairy vetch genotypes 

inoculated with Graham soil from fields with and without a history of hairy vetch 

cultivation. 
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Figure 3-4. Dendrogram of rhizobia strains isolated from ten hairy vetch genotypes 

inoculated with Ivanhoe soil from fields with and without a history of hairy vetch 

cultivation. 
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