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Introduction and sumary., *aximum likelihood estimates of the

parameters of a bivariate normal distribution are obtained for a sample
in which only those observations falling in a specific region can be
measured, all other observations being called "unmeasured observations™".
Two cases are treated, the number of unmeasured observations being un-
known (Case I) or known (Case II). Explicit expressions are obtained
when the region of truncation is a rectangle or an infinite strip, The
asymptotic covariance matrix is obtained simultaneously with the solution.
'le denote the bivariate normal density function with parameters
By Oys tys Ous and p (sometimes denoted LYROY XB, Xh’ Xs for con-
venience) by #(x,y). Then, in Case I, the likelihood of a sample of n

independent observations all in a region R is

1 n
"‘ﬁ II ¢(x-; }Y.; )
pi=l ~

where
p="Pr/(x,y) inR7 = g #(x,y) dx dy ;
R

and, in Case II, the likelihood of a sample of N independent observa-~

tions of which n observations occur in R and N-n elsewhere is
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The partial derivative of the logarithmic likelihood,L , with respect to

one of the parameters, say A\, is
L. tmp) P+ 2 gk log Ky
N = 1\n,p 3% i;la)‘ g WA\X;sYy

where f(n,p) = n/p in Case I and f(n,p) = (¥-n)/(1-p) in Case II. To
obtain the maximum likelihood estimates, all five partial derivatives

are equated to zero and solved for the unknown parameters.

Tterative solution of the maximum likelihood equations. To solve

the five estimating equations simultaneously, we propose a Newton itera-
tive procedure, Choosing an initial trial solution, we approximate the
system of equations by a linear system usinz the linear terms in a Taylor

geries expansion., Thus
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where a subscript (1) denotes evaluation at the first trial point and a

superscript (1) denotes the first trial value. In matrix notation we have



vhere { is the (column) vector with elements %i (3=1,..+,5), d(l) is
J

the (column) vector with elements (xj-xj(l)), and

2
§ = = - a L—.-.-
A (aij) ( W}\j) .

Second trial values are obtained from the first from

L o, -1
&= Ay A

(assuning 1(1) non-singular), and by substituting these values for the
1nitial ones further estimates are obtained, and so on until stability
is reached. (Tt nay not be necessary to recalculate the A matrix at
each step if its elements are sufficiently stationary. “hen it is recal-
culated, its inverse may be obtained quickly by iteration 179

npecision of Tstimates. The asymptotic covariance matrix is the
2

inverse of the matrix with elements (- 5%?%%70’ and thus may be estimated
LN

by A'l. This estimate is obtained simultaneously with the solution of the

estimating equations.
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Rectangular truncation. Here we develop explicitly the estimating

aquations for a rectangularly truncated population. Let the region R be a

rectangle, bounded by the lines x = h;, x = h,, ¥ = kl, Yy =k, (hl<h2, ky< k2).
Then |
h

ks By
p = % S #(x,y) dx dy .

kl hl

Now @(x,y) may be expressed as a power series in p with Hermite

functions as coefficlents-

foxyy) = =L 7 8o (S o (LEY)
X,y) = I D= C (=)0
’ 9%y yap V! TV 9 v Oy

where
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(See R. A. Fisher's introduction, pp.xxvi-xxviii, Zf2;7.) For negative sub-

scripts, the Hermite functions are defined by the two following relations:
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£ G (8) = v _(t) +a . (8) .

Since the series in p converges vniformly in x and y, and since $ G§(t) dt =

- Gv-l(t)’ we have
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v=0
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After calculating the derivatives of the Zr s function, we obtain the
s

following derivatives:
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all others being obtained by symmetry. (fThe interchange of x and y re-

quires the interchange of the order of the subscripts on the Zr s functions.)
2

In Case I,
(3) g; f(n,p) = ¢ n/p?" .
and in Case IT,

(L) gﬁ f(n,p) = (I‘I-n)/(l-p)2 .

Calculating the derivatives of log @(x,¥), we find-
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all others being obtained by symmetry; we have denoted

r . S
x1;HX) (Yv.éHV) (r,s = 0,1,2) .
i=1 X y

Using (1) and (5), we may now calculate the elements of the { vector:

n
g.% = ~f(n,p) %'XJ + 121 53—): log #(xy,¥3)

and using (1), (2), (3), (L), and (6), we may calculate the elements of the

. A matrix:
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(8) - aeL»-— = f(n )__320 + of o 3p  _ g 82 log P(xy,3:)
R P T B X, T s, e )

(The required zr,s functions may be computed from tables of the tetrachoric
functions /73 7, using the relation %1 T,(t) = a,_;(¢). )

The estimates for truncation over an infinite quarter~-plane may be
obtained by letting one of the h's and one of the k's in the discussion
above o0 to +oo,

Initial estimates may be obtained by approximating the region R by
an infinite strip and using the linear truncation estimation method which

follows.

Linear truncation. We shall consider independently the estimation

problem when the region R is an infinite strip, bounded by x = hy and x = hp
(hl< h2). Here, we shall distinguish three catcs+ (I) the number of un-
measured observations is unknown, (II) the numbers of unmeasured observations
in each truncated half-plane are known (say ny observations in Rl =

[ (x,y): x<hy_/ and n, in R, = [ (x,y) x:>h2;7, ny + np = N-n), and (III)
only the total number N-n of unmeasured observations is known.

Now the marginal distribution of x is independent of “y’ oy, and p,
and is simply a truncated univariate normal distribution. Thus, in all
three cases, My and o, may be estimated by the methods of A, C. Cohen th;7
for truncated univariate normal distributions, the three cases above corres-
ponding to the three cases enumerated by Cohen.

The likelihood functions in the three cases are:



-11-

1 n
( (1) =, I1(x1,y3)
p i=l
I’ll n2 n
(9) (1) ky by T b, _IIl¢(xi;y4_)
1=
Nen
t (111) ko(1-p) " IIP(x,3)

i=1

where

o
"

P/ (x,y) inR7 = B(Hadx) - §ia
5 .

£\

P/ (x,y) in By 7 = (M)

e
o=
I

P/ (6,y) in By 7 = 1 (-Z%)

o
n
L]

and

o+

kl and k2 are constants. Since p, Pq> and p, are all independent of “y’ oy,

and p , the maximum likelihood equations for these three parameters will be

the same in all three cases; namely, from (5) and (9),
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¥ o, (1-p")
gf? ) 'Hﬁ’?)‘éﬁ(mzo+m02-1+p2)-(1+p2) my/ = 0

where L denotes the logarithmic likelihood, L being defined by (7). Hav-
ing obtained estimates of by and I, by Cohen's method, these three equations
may be solved for estimates of “y’ cy, and p, yielding (after some algebraic

manipulation):

. 2
(myg' = Mgyt kg (mygt =) =gy mpyt = 2myt 0, ")

3
(myg' =)™ = (mgg' = 2mpt p +

(11) p = == el
cy ml()' My

where mrs' denotes sample moments about the origin, If Hy = mlO" then we
substitute

Myt T Mgt Mor Top' T My

5 for
Mayn! = 1, ! m, ' -
20 "0 10 x




in equations (10) and (11).

Since the estimates of by and o, are independent of “y’ cy, and p,
we find that the A matrix is now the direct sum of two sub-matrices, and
likewise for its inverse, The first inverse sub-matrix (corresponding to
by and cx) is given by Cohen Zrh;7, the second may be obtained by inverting

the matrix whose elements are given by (8).
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