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ABSTRACT

Analysis of Means (ANOM) is a rational extension of the Shewhart control chart

for comparing products from different design configurations in off-line quality

improvement. ANOM is a powerful graphic-tool for engineers to present and interpret

experimental results. We apply the ANOM idea to the analysis of lifetime data

resulting from experiments planned for enhancing product reliability. The maximum

likelihood method is utilized to estimate parameters of the Weibull and lognormal

distributions for interval censored and accelerated life-tested data. Decision limits for

the ANOM chart are constructed using quantiles of the distributions of the pivotal

statistics. Asymptotic results are derived for comparison with the finite sample

inferences obtained by Monte Carlo simulations.

1. INTRODUCTION

The article published in Technometrics (Hoadley and Kettenring, 1990) shows

that statisticians have not done a good job communicating with engineers and physical

scientists. Graphical analysis serves as a powerful tool for statisticians to exchange

experiences with industrial practitioners. Nowadays, most engineers know how to use

statistical process control charts to monitor the process parameters. Ott (1967)

suggested the use of Analysis of Means (ANOM) to present and analyze experimental

results. ANOM is a rational extension of the Shewhart control chart and is an useful

supplement (or alternative) to the analysis of variance (ANOVA). Applications of

ANOM to solve various industrial problems are provided in Ott (1975). Recently, the

ANOM technique has been extended from the study of one-way layout (Raming, 1983)

to testing interactions from multifactor experiments (Nelson, 1988), and the analysis of



signal and nOIse (Ullman, 1989). Since ANOM is inherently a graphical procedure

similar to control charts, it is apt to receive increasing interest from engineers and other

industrial personnel for off-line quality improvement (see p. 170 of Hogg, et. al., 1985).

For comparison of mean responses in a one-way classification the ANOM chart

provides a central line, which is at the overall average, and the upper and lower decision

limits denoted as UDL and LDL respectively. Plotting individual means on the chart,

we can identify at a glance if one or more means are statistically different from the

overall average. With the ANOVA procedure, however, the experimenters will test

either that all of the means are equal, or that at least one of the means differs from the

others. The ANOVA table provides the sum of squares and F statistics without

revealing information about an individual sample average. In the analysis of mean

effects from two-level fractional factorial experiments, these two procedures give

identical results in detecting significance factors (see p. 410 of Ryan, 1989). The

intrinsic differences between ANOM and ANOVA are addressed in Ryan (1989, p. 399)

and Schilling (1973, p. 99-100). Nevertheless, one procedure needs not be used to the

exclusion of the other but rather, should be used as a supplement to the other.

Traditionally, ANOM and ANOVA are used to monitor the quality

characteristics, from which inferential procedures are derived based on a normal

distribution (with equal scales) and complete samples. Moreover, most of the

publications in ANOM are directed to the study of location effects. With the increasing

interest in reducing the variability of products (Taguchi and Wu, 1979), we should

apply the idea of ANOM to study dispersion effects (Ullman, 1989) as well as other

parameters of interest such as percentiles in the analysis of lifetime data. For

improving product reliability, engineers prefer to use simple graphical techniques to

present and interpret their life-testing results. For example, analyzing the fatigue

testing data given in Table 4.1, we compare product performances resulting from

different design configurations in a steel hardening process. Since the steel specimens

were quite durable, some experimental units still survived by the end of experiment

which results in several censored data points. Moreover, since the strength testings for

steel specimens were done at various stress levels, we utilize the regression technique to

unify the observations and compare steel types at a fixed stress, 40 ksi.

The objective of this article is to show how simple graphical procedures such as

ANOM can be used to compare the durability of products formulated from different

production plans. Various data types and model assumptions are considered in this

article. In Section 2, the router bit life data from Phadke (1986) (see Table 2.1) is used
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to construct an ANOM chart for the comparison of the mean lifetimes of four bit types.

The Weibull distribution is used to model the interval censored bit lives. Monte Carlo

simulation of size 5000 is employed to study the finite sampling distributions of the

pivotal statistics used in the construction of the ANOM chart. Normal approximation

are also provided for comparison with the exact results. In Section 3, the ANOM

procedure is extended to study dispersion effects based on the fatigue measurements of

rolling contact given in McCool (1983). Finite and large sample distributional results

are investigated for the pivotal statistics of the scale parameters. In section 4, the

aforementiqned steel data are used to illustrate the procedure of comparing the 10th

percentile lifetimes of steels in the case of possibly unequal scale parameters. The

conclusion and future work of this study is given in Section 5.

2. ANALYSIS OF MEAN TIME TO FAILURE

In this section we utilize the router bit life data given in Table 2.1 to illustrate

the procedure of analysis of mean time to failure. Note that the data points are

reported in time intervals and, moreover, 12.5% to 60% of the data are right-censored.

The choice of the underlying distribution for lifetime data analysis is based on the

following criteria cited in Lawless (1982, p. 29-30 and p. 468-470): knowledge of the

underlying aging process, empirical fit, availability of statistical method, etc. The SAS

(1988) procedure Lifereg is employed to perform the maximum likelihood (ML)

regression analysis for the most commonly used lifetime distributions such as the

lognormal, the Weibull, the generalized gamma (Prentice, 1974) and the logistic.

[ Please put Table 2.1 here]

In deciding the underlying distribution the two most commonly used models, the

lognormal and the Weibull, are fit to the router bit data and the likelihood ratio test is

conducted for equal scale parameters. For both models, we conclude that the scale

parameters of the distributions of the four bit types are all equal. The corresponding

p-values of the x2 distribution with five degrees of freedom are .1112 and .1827,

respectively. Given the scale parameters test equal, we compare the fit of the

lognormal and Weibull models to the data. Based on the ML estimates, the log­

likelihood of the lognormal model is slightly higher, - 52.117 compared to - 52.953 for

the Weibull model. However, the standard error for one of the parameter estimate, 1£2'

is considerably larger in the case of lognormal model. The p-values of the x2 statistics

for this particular estimate are .1825 and .0004 for fitting lognormal and Weibull

distributions, respectively. Hence, the Weibull is selected as the underlying distribution

to illustrate the application of ANOM to non-normal models. The SAS Weibull
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parameter estimates are provided in Table 2.2.

[ Please put Table 2.2 here]

By taking the natural logarithm of th~ Weibull distribution, the Weibull is

transformed to the extreme-value (EV) distribution, which belongs to the location and

scale family. Let us denote the parameters of the EV distributions for router bit lives,

as (ui, b), i = 1, 2, ..., k, respectively, where k = 4 and the b/s are all equal to b. The

study of mean time to failure ui + ,b in EV distribution can be handled by studying

the location parameters u/s, where , = 0.5772.. · is Euler's constant. In the ANOM

procedure, the hypothesis Ho: 6i = 0, i = 1, 2, 3, 4 is tested against H1: at least one of

6i ::p 0, where 6i = ui - u, and u is the arithmetic average of location parameters ui's.

We propose to study the distributions of the statistics Vi = [(Ui - ;ft) - (ui - u)]Jb in

order to derive confidence intervals to test the null hypothesis, Ho' From Appendix G

of Lawless (1982), we note that the statistics (u i - uJ/ b, i = 1, 2, 3, 4, are pivotal

quantities. This implies that the statistics Vi's are pivotal. Let us consider the

marginal distribution of Vi in order to address the link between the decision limits of

the ANOM chart and the test of the hypothesis Ho' Denoting the lower and upper

quantiles of the distribution of Vi as LVi and Uvi ' we obtain the 100(1 - a i)%
confidence interval of the ui - U as (u i - ;ft - bUvi' ui - ;ft - bLvJ If the lower

bound ui - ;ft - bUvi is greater than 0, i.e. ui > ;ft + bUvi ' we reject the null

hypothesis Ho and conclude that ui ::P u. This gives the upper decision limit in ANOM

chart as UDL = ;ft + bUvi ' Similarly, we obtain the lower decision limit (LDL) as

;fr + bLvi '

The histograms of the Vi statistics, based on results from 5000 simulations, are

plotted in Figure 2.1. The summary statistics such as maximum, minimum, mean,

standard deviation (s.d.), coefficient of skewness J-l3/u3, coefficient of kurtosis J-l4/u4 and

various quantiles for Vi' ~ = 1, 2, 3, 4 are reported in Table 2.3, where

J-lr = E[(X - J-l)rJ is the rth central moment. Note that the means of V/s are very

close to zero and the s.d. 's are around 0.40. Except that histogram of V1 is slightly

skewed to the right, the other histograms are closed to normal with the kurtosis around

3.3. Denoting rij as the product-moment correlation coefficient between Vi and Yj, we

obtain r12 , r13, r14 , r23 , r24 , r34 as -.2340, -.2612, -.4217, -.1800, -.4371, -.4249,

respectively. We note that the correlations between V4 to other V/s are comparably

larger than the others due to the data for bit type 4 being heavily (60%) censored. The

pairwise scatter plots of these Vi statistics are given in Figure 2.2. All computations

and random number generations are done in S (1989) programs on Sun Spare station 1.
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[ Please put Figure 2.1, 2.2 and Table 2.3 here]

For computing decision limits in ANOM of non-censored normal samples, P. R.

Nelson (1982) and L. S. Nelson (1983) reported exact critical values of the

equicorrelated multivariate t-distribution for k > 2. The construction of a simultaneous

interval based on the empirical joint distribution of the V/s is rather complicated,

especially in this case of unequal correlations. Moreover, this procedure is not feasible

to give separate limits for individual sample in an ANOM setup. There are quite a few

publications in the direction of simultaneous interval estimation (see Seber, 1977, p.

125-134 for reference). The intervals based on Bonferroni inequality and maximum

modulus are the commonly used simultaneous interval estimation procedures. For a

100(1 - a)% overall coverage probability Bonferroni interval, one obtains the

100(1 - a/k)% confidence intervals for each of the k mean differences bi = ui - 'il, i =

1, 2, ..., k. For example, if one tests the hypothesis Ho, at significance level a = 0.05

with an ANOM chart, the decision limits (99.5% confidence interval) for U 1 of bit type

1 are calculated to be LDL = 3.5323 and UDL = 8.8915 with the estimates f£ = 6.2660,

b= 2.6106, LV1 = - 1.0472, Uv1 = 1.0057. Since u1= 6.4260 is inside its limits, we do

not reject u1 = 'il. The decision limits for' the other parameters bi , i = 2, 3, 4 are

(3.7039,8.7163), (3.6675,8.7659) and (3.1058,9.6291), respectively. Since the

parameter estimates (u 2 , U3 , u4 ) = (4.1128,5.3626,9.1726) are inside the decision

limits, we conclude that bi = 0, i = 1, 2, 3, 4 is not rejected at significant level 0.05.

For the interval based on maximum modulus, we need the 100(1 - a)%

quantiles Mv (reported in Table 2.3) from the simulated distribution of the statistics,

where Vs = max (I V11, IV2 1, IV3 1, IV4 1)· The decision limits then are computed as

f£ ± bMv for all four samples. Since the 95% confidence interval for bi is (3.4059,

9.1261), we reject ui = 'il, i = 1, 2, 3, 4 at a = 0.05.

The ANOM chart with 90% and 95% Bonferroni and maxImum modulus

intervals are plotted in Figure 2.3. We note that even though we have the same sample

size for all bit types, the distributions and variations of the Vi's are different due to the

censoring mechanism. Except for the case of Bit type 4, maximum modulus limits are

wider than the limits constructed from the Bonferroni intervals.

[ Please put Figure 2.3 here]

Instead of using the Monte Carlo simulation procedure to find the finite sampling

distributions of the pivotal statistics Vi's, we can derive the asymptotic distribution of

the V/s to construct approximated Bonferroni intervals. We need the likelihood

function of the data (YijL' YijU) for i = 1, 2, 3, 4 and j = 1, 2, ... , 8, where L and U
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denote the lower and upper bounds of the interval data. The probability of the

log-lifetime Yij being III the interval (YijL' YijU) IS computed as

P( Yij > YijL) - P( Yij > YijU) = F(YijL) - F(YijU)' where F is the survival function. If

the data is censored at time t = log(1700), the probability of Yij being larger than tis

-::al.::ulated as F( t). Using the survival function F(z) = exp[- exp(z)] of the standardized

extreme-value distribution, we write the log-likelihood of the interval censored data as

follows:

k n
log L = .E ?: Di; log {exp[- exp(zi;L)] - exp[- exp(zi;U)]} (3.1)

1=1)=1

k n
- E E (1 - D.. ) exp(c.),

i=l j=l I) 1

where the indicator D.. is defined as D.. = 1 if y .. < t and D.. = 0 otherwise. The log-
I} I) I} I}

lifetimes y .. 's given in Table 2.1 are standardized to z.. = (y.. - u.)/b, m = Land
I) l}m l}m I

U,.and the standardized censoring time is written as ci = (t - ui)/b, for i = 1,2,3,4

and j = 1, 2, ..., 8. The asymptotic normal distribution for the MLE's of the model

parameters is obtained in the usual way. Specifically, to obtain the Fisher information

matrix l( u1' u2 ' u3 , u4 ' b) we require the expectations of the second derivatives of

- 10gL. Since the calculation of I(u'l' u'2' u'3' u'41 b) involves many numerical

integrations, we consider the following simpler and equally valid procedure for large

sample approximation (c.f. Lawless, 1985, p. 172):

(u'1' u'2' u'3' u'4' b) -- NS[(u1, U2' u3, u4' b), 101], (3.2)
where 10 is the observed information matrix, which IS composed of the second

derivatives of - log L evaluated at the ML estimates of the parameters. The derivatives

of the log-likelihood (3.1) are rather complicated and are therefore reported in the

appendix. To get the asymptotic distribution of the statistics V/s, we employ the delta

method to the following transformations of the MLE's (u'1' u'2' u'3' u'4' b):

fi(x1, X2 ' X3 ' X4 ' xs ) = [(xi - x) - (ui - u)]fxs' i = 1,2, ..., 5,

where x = (Xl + x2 + x3 + x4 )/4. Thus we concluded that the large sample

distribution of Vi' i = 1, 2, 3, 4 is normal with zero means and standard deviations

(.2721, .3466, .3498, .4514) with correlations (-.0647, -.2271, -.3771, -.2366, -.5456,

-.4564) for (r12 , r13 , r14 , r23 , r24 , r34 ). Note that the standard deviations and

correlations are quite comparable with the finite sample results.

The decision limits of the ANOM chart for the ith router bit life based on large

sample Bonferroni interval are then given as LDL. = ft + bL*. and UDL. = ft + bU*.,
I VI I VI

where L:i and U:i are the lower and upper a/(2k) quantiles of the marginal normal
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distributions of the ~ 'so The large sample 90% confidence limits are plotted in Figure

2.3. We observe that the estimates U2 and U4 are outside the large sample 90%

confidence limits, but are inside the finite sample Bonferroni intervals. The large

sample decision limits with 95% overall coverage probability are (4.4917,8.0403),

(4.0055,8.5265), (3.9848,8.5471) and (3.224, 9.2096) for U1, U2 , u3 and U4 , respectively.

These are shorter than the corresponding limits derived from the finite sample

simulations. This implies that, in finite sample, the overall coverage probability based

on the limits derived from large sample approximation will, in general, not reach the

desired level.

To check the coverage probability of the decision limits constructed for the

ANOM chart given in Figure 2.3, we simulate 1000 samples and obtain the MLE's of

(uim - Urn) and bm , for i = 1, 2, 3, 4, four bit types, and m = 1, 2, .H' 1000. The

empirical coverage probability is the proportion of the cases of all estimates from the

original data (u i - fi) that are inside their corresponding 100(1 - 0:/k)% confidence

interval (u. - fi m - hm U ., u. - fi m - hm L .), i = 1, 2, 3, 4. For the overall 90%
1m VI 1m VI

Bonferroni intervals, the decision limits constructed from the finite sampling

distribution have a 88.6450% coverage probability (C.P.), which is slightly higher than

the C.P. 87.6908% found for the limits derived from the maximum modulus, and is

much higher than the C.P. 77.0038% obtained for the large sample intervals. For 95%

overall coverage probability the C.P. 's for finite sample Bonferroni, maximum modulus

and large sample Bonferroni intervals are 93.1298%, 92.8435% and 82.5382%,

respectively. As expected, the large sample procedure does not provide an accurate

approximation and should be used with caution, especially on the charts for comparing

dispersion and percentile effects which will be discussed in next two sections.

3. ANALYSIS OF VARIATIONS OF FATIGUE FAILURE TIMES

Recently, there has been increasing interest in reducing product variability.

Various case studies are given in Taguchi and Wu (1979) and publications cited in Ryan

(1989, Chapter 14). Considering the fatigue failure times of rolling contact given in

McCool (1983) and Table 3.1, we develop a graphical procedure to analyze the

dispersion effects of lifetimes from the use of different testers. Following the notation

given in Section 2, we utilize the ML method to estimate the location and scale

parameters (ui, bi)' i = 1, 2, ... , 10 of the extreme-value distributions for failure times

obtained from tester 1 to 10 respectively. The estimation results are summarized in the

bottom of Table 3.1. The estimates of the scale parameters hi range from 0.0918 to
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0.3540..The likelihood ratio (LR) test for the equality of scale parameters, Ho: bi = b,

i = 1, 2, ..., 10, gives the test statistic as 29.4590. With the p-value .000542 computed

from x~ distribution, we conclude that. the scale parameters b/s are not equal for the

ten testers.

[ Please put Table 3.1 here]

Since the variances uf's of the EV distribution are equal to 1r
2 bf/6, the study of

dispersion effect can be handled by investigating the differences of the scale parameters

b/s. Since the statistics bJbi, i = 1, 2, ..., 10 are pivotal quantities (see Appendix G of

Lawless, 1982), we note that the quantities Z/s are pivotal, where

Zi = [ log bi - (Elog bi)/k] - [log bi - (Elog bi)/k], i = 1, 2, ..., 10,

where the summations range from i = 1 to k, k = 10. The choice of log bi in Zi is based

upon experience in reliability studies (see Lawless, 1982, p. 173): normal approximation

works better in log b. than in b.. We study the finite sample distributions of these Z.. , , I

statistics via a simulation study of 5000 replications to construct the chart for the

analysis of dispersion effects. The histograms of the Zi statistics plotted in Figure 3.1

do not show any special pattern other than normal curves. The means of Zi's are very

close to zero and their standard deviations are around .2600. We present the needed

quantiles in Table 3.2 for the Bonferroni and maximum modulus intervals for various

overall coverage probabilities, 80%, 90%, 95%, 98% and 99%.

Based on the Bonferroni intervals, the decision limits of the ANOM chart are

computed from the following formulas: central line = (ElogbJ/k,

LDL i = central line + ZiL' UDL i = central line + Zw' where ZiL and ZiU are the

lower and upper a/(2k) quantiles of the Zi statistic. Plotting the individual log bi on

the chart, one is able to see whether the difference log bi - (E log bJ / k is significantly

large. Of course, instead of plotting on the log-scale, one can transform the whole chart

back to the original scale of bi for ease of interpretation. For example, on the log-scale

for the first tester, the central line i:; calculated as - 1.7145 and the lower, upper

decision limits based on the Bonferroni intervals are - 2.5001 and - 1.0572, respectively.

On the original scale of b/s, the LDL, central line, and UDL are reported as 0.08208,

0.18005 and 0.34743, respectively. Since b1 = 0.18603 lies inside its decision limits, we

conclude that b1 = b = (.iI b.)I/Ie, the geometric average of b.'s. The ANOM chart for,=1 ' ,
the analysis of scale parameters is sketched in Figure 3.2 in the original scale of bi .

Based on the Bonferroni intervals, we note that the hypothesis Ho: log b. =
Ie '

(/~11ogbJ/k, i = 1, 2, ..., 10 is rejected at a = 0.10, but not rejected at a = 0.05.

[ Please put Figure 3.1 and Table 3.2 here]

-8-



If the maximum modulus intervals are used, the limits of the chart are given as

central line ± ZM' where ZM is the 100(1 - a)th quantile of the distribution of

max( IZil, i = 1, 2, ..., 10), which is reported at the bottom of Table 3.2. For example,

with a = 0.05 we have LDL and UDL calculated as - 2.4905 and - 0.9385 in the log hi
scale, and 0.08286, 0.39121 in the hi scale. The null hypothesis Ho is not rejected at a

= 0.05 or 0.10. Comparing the upper control limits derived from these finite sample

intervals, we note that all maximum modulus limits are outside the corresponding

Bonferroni limits. This pattern is reversed in the lower decision limits.

[ Please put Figure 3.2 here]

Next, we derive the large sample distribution of the pivotal statistics Z/s for a

comparison to their finite sample results. Relying on the normal approximation

(Lawless, p. 172) of MLE's of the parameters of the EV distribution, we obtain the

asymptotic distribution of MLE's hi' i. = 1, 2, ..., k, where k = 10, as normal with mean

(b b b) . d' b
A

2 [ k A2 (A)]-1vector l' 2' ... , 10' zero covarlances an varIances TJ· = . n +.E w .. exp Woo ,
I I 1=1 lJ lJ

i = 1, 2, ... , k, where n = 10 = number of failures, wii = (Yii - uJJbi , Yii = log­

lifetimes. Applying the delta. method on the transformations h(Xl' X2 ' ... , Xk ) =

[logx. -.f (logx.)Jk] - [10gb. - J (logb.)Jk], we obtain the asymptotic distribution
I 1=1 I I 1=1 I

of Zi' i = 1, 2, ..., k as normal with zero means, zero covariances and standard

deviations as (.2067., .1820, .2266, .2035, .2045, .2155, .2374, .2074, .2123, .1893). The

decision limits for the ANOM chart based upon the Bonferroni intervals are computed

as central line ± ZLi, where Z'i/s are the upper aJ(2k) quantiles of the marginal normal

distributions. The limits for 90% overall coverage probability are plotted in Figure 3.2

for a comparison to their finite sample derivations. Note that the lengths of the large

sample limits are considerably shorter than the ones provided from finite sample

simulations. In particular, the estimate of the scale parameter h6 is outside its large

sample limits but not its finite sample limits.

The empirical coverage probabilities for the finite sample Bonferroni, maximum

modulus and large sample Bonferroni intervals are computed for comparison. We

calculate the proportions that all MLE's (ei - e) lie inside the corresponding

100(1 - aJk)% confidence interval aim - em - ZiU' eim - em - ZiL)' i = 1, 2, 3, 4,

m = 1, 2, ... , 500, where ej = logbi • They are (88.5714%, 88.5%, 66.2857%) and

(97.8571%, 97.25%, 75.4286%) for 90% and 95% overall coverage probabilities for the

aforementioned three types of intervals. We find that the coverage probabilities for the

large sample intervals are considerably low compared the C.P. of the finite sample
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limits, and the C.P.'s of the finite sample Bonferroni, maximum modulus intervals are

quite close.

4. ANALYSIS OF PERCENTILE LIFETIMES OF STEEL STRENGTH

In this section, we me the ANOM chart to compare the strengths of four

different formulations of steel. The fatigue testing results for 42 steel specimens from

four types of steels are listed in Table 4.1, which is taken from page 313 of Nelson's

(1990) book on accelerated life testing. We note that the specimens are tested at

different stress levels and totally 26.2% of the observations are censored. Since the

lower percentiles, such as 5th or 10th percentiles, are of much interest in reliability

studies (Lawless, 1982, p. 251), we develop an ANOM chart to compare the 10th

percentile lifetimes of steel strength at normal use stress level, say 40.0 ksi.

The distributional result of percentile lifetimes depends on the choice of life

distribution. For instance, a study given in Lawless (1982, p. 250-1) illustrates the

differences of the point and interval estimations of the 1st, 10th and 50th percentiles of

normal, extreme-value and other life distributions. They observe that for the 1st

percentile lifetime Y.01' the MLE of Y.01 under the normal model is not even inside the

90% confidence interval for Y.01 under the extreme-value model. Fitting the lognormal,

Weibull and generalized gamma distributions to the steel strength data as in Section 2

for model selection, we found that the lognormal is the best choice for the analyses. In

Nelson's· (1990) study, he also assumed the lognormal model for the distribution of this

steel data. Based on log-transformed normal data, the likelihood ratio statistic for

testing the equality of scale parameters is computed as 0.82858. With p-value .93457

for the LR statistic from x~ distribution, we do not reject Ho: (j 1 = (j 2 = (j 3 = (j 4 at

significance level a = 0.01. Under the assumption of equal scale parameters, the study

of percentiles Ypi = J.1.0i + Zp (j in the normal distribution can be handled by studying

the location parameters J.1.0i' which has been addressed in Section 2. Henceforth, we will

develop the procedure of constructing an A~OM chart for percentile lifetimes for the

general case of scale parameters without restricting them to be equal. The estimation

results of the model parameters such as intercept, slope, scale, mean at Xo = 40 ksi and

Y.10 at Xo, of the normal distributions for the log-life of steel data are reported in

Table 4.2.

[ Please put Table 4.1 and Table 4.2 here]

With possible unequal scale parameters, there are no pivotal quantities for the

estimates y
A Y~ where Y~P = (.~ y

A .)/k and k = 4. The distributions of thepi - p, 1=1 pI
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statistics Ti = [(Ypi - Up) - (Ypi - yp)]Jui, i = 1, 2, 3, 4 are studied with the

parametric bootstrap technique to determine their finite sampling behavior, and are also

investigated with normal approximation for its large sample results. The histograms of

the estimates of intercepts, slopes and scale parameters do not show any unusual

pattern and appear normally distributed. Figure 4.1 presents the histograms of the T i

statistics based on 1000 simulations. The shape of the histograms of Ti are generally

not symmetric, for example, the histogram of T2 is skewed to the right with the

coefficient of skewness 0.7333 and the coefficient of kurtosis 5.2061 (more peaked around

its center than the density of the normal curve). Vari~us summary statistics such as

mean, s.d., and quantiles of the simulated Tj's are listed in Table 4.3. In general, the

means are not too far from zero. Since the second sample (steel A-I.H.) contains 40%

censored data, we note that its s.d. from the simulated data is considerably larger than

the s.d.'s of the other samples.

[ Please put Figure 4.1 and Table 4.3 here]

Taking the quantiles from Table 4.3, the central line and decision limits for the

ANOM chart based on Bonferroni intervals are computed as follows: Central line = Up,

LDL = Up + TiLui and UDL =UP + TWu i, where Up = (i!l Ypi)/k, TiL and Tw are

the lower and upper Ot/(2k) quantiles of the distribution of T/s and U/s are the MLE's

of o'/s given in Table 4.2. For example, from the first sample, we obtain the MLE's Ypl

= 13.3402, U1 = 1.3079 and the overall average Up = 20.2278 of 10th percentiles from

four samples. For the Bonferroni intervals, the quantiles T1L and T1U for the 95%

overall coverage probability are computed to be - 4.4958 and 3.7261 respectively. The

decision limits are then calculated as LDL = 14.3478 and UDL = 25.1012. Since the

10th percentile lifetime of the first steel type Ypl = 13.3402 lies outside the decision

limits, we conclude that Ypl =1= yp at the overall significance level Ot = 0.05. In Figure

4.2 we plot the ANOM chart for testing Ho: Ypi =1= yp, i = 1, 2, 3, 4 with Ot = .05 and

.10. In conclusion, considering the ANOM limits from various significance levels, we

reject Ho at Ot = .02, but not Ot = .01, where the corresponding limits for Ypl are

(14.0224, 26.9212) and (12.8623, 29.4321), respectively.

For the maximum modulus approach, the quantiles MT's for the 80%, 90%, 95%,

98% and 99% overall coverage probabilities of max( IT11, IT2 1, IT3 1, IT4 1) are reported

as 5.3848, 7.1593, 8.8251, 10.7814 and 12.3435, respectively. According to the decision

limits Up ± Ui M T plotted in Figure 4.2, we conclude that the hypothesis Ho is not

rejected at Ot = 0.10.

[ Please put Figure 4.2 here]
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The large sample distributions of the Ti statistics are derived by the following

steps. First, we replace the regression parameters in the derivatives of log-likelihood

given in Eq. (6.5.6) of Lawless (1982, p. 315) by their MLE's (ai' Pi' o-J, i = 1, 2, 3, 4

to obtain the observed Fisher information matrix 10 , When sample sizes are large

enough, the joint distribution of MLE's is app;oximated by a normal distribution with

zero means and variance-covariance matrix 1"0 1• 'Ihe delta method is then employed to

transform the distribution of MLE's (ai' Pi' 0- i)' i = 1, 2, 3, 4 to the distribution of the

MLE's of Ypi' the 10th percentile lifetime of ith steel type at :to = 40.0 ksi. Now, the

distribution of the T i statistics can be rea~ily derived. Since several data points are

censored, the derivatives of log-likelihood involve the survival function of the normal

distribution, which needs to be evaluated numerically. The variances of the T/s and

the decision limits of the ANOM chart are computed in one sequence utilizing S

programs. We conclude that the distribution of T/s are closed to normal with zero

means and standard deviations (Ti = 1.0012, 2.3037, 1.1987, 1.1734 for i = 1,2,3,4

respectively. The correlation coefficients are -.7527, .4722, .2421, -.7127, -.6838, .1104

for r12 , r13 , r14 , r23 , r24 , r34 , respectively. We note that the standard deviation of the

2nd sample is quite large and the correlations of the 2nd sample to other samples are

considerably higher than the others due to the heavy censoring effect. This observation

matches the finite sample simulation results given in Table 4.3. Computing decision

limits YP ± o-i TLi' where T'L/s are the quantiles of the asymptotic normal distributions,

we have the 95% Bonferroni intervals (16.9567, 23.4989), (12.1456, 28.3100),

(16.4891, 23.9665), (15.9056, 24.5500) for the ith sample, i = 1, 2, 3, 4, respectively.

The 90% Bonferroni limits are plotted in Figure 4.2 for comparison with the limits

obtained from the finite sample simulations. Note that the lengths of the large sample

intervals are shorter than the intervals given by the Bonferroni procedure but are

slightly larger than the intervals given by maximum modulus in finite samples.

The empirical coverage probabilities for the finite sample Bonferroni, maximum

modulus and large sample Bonferroni intervals are computed fo" comparison of their

performances. We calculate the proportions that all MLE's (Ypi - Yp) lie inside the

corresponding 100(1 - a/k)% confidence interval (Ypim - Ypm - o-m TiU'

Ypim - Ypm - o-m TiL)' i = 1, 2, 3, 4, m = 1, 2, ..., 750. And, they are (91.6%, 90.0%,

51.3333%) and (95.0667%, 94.9333%, 57.2%) for 90% and 95% overall coverage

probabilities for the aforementioned three intervals. We find that the coverage

probabilities for the large sample intervals are considerably low compared the C.P. of

the finite sample limits, and the C.P. 's of the finite sample Bonferroni, maximum

modulus intervals are quite close. In general, the normal approximations of the

-12-



distribution of the scale parameters and percentile lifetimes are not as good as the

normal approximations for the location parameters (c.f. Lawless, 1982, p. 178).

However, the procedure of large sample approximation is easier to employ than the

procedures obtained through finite sample simulations.

5. CONCLUSION AND FUTURE WORK

With the acceptance of Shewhart control charts in engineering applications, we

believe that the ANOM charts will be widely used in the future to report findings from

all types of industrial experiments. In this article, we extend the ANOM idea to the

analysis of the reliability data for comparing the mean, variance and percentile lifetimes

of products in a one-way classification. It is interesting to see some applications of

ANOM charts to compare product lifetimes from multi-factor experiments, especially

from the screening experiments which are advocated by Taguchi (see the chapter of life­

testing in Taguchi and Wu, 1979). The decision limits are usually not the same across

all products due to the differences of sample size, degree of censoring and scale

parameters. The complications of censored data and non-normal life distribution are

possibly handled by simple procedures such as imputation from conditional means (c.f.

Schmee and Hahn, 1979) and Box-Cox transformation (c.f. Johnson, 1982). Henceforth,

the usual ANOM charts developed for normally distributed complete data can be used.

The performance of these simple methods needs to be investigated. The large sample

approximation is another alternative and is more convenient to use. However, the

performance of asymptotic approach depends on the sample size, the degree of censoring

and the parameter of interest.
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APPENDIX: DERIVATIVES OF LOG-LIKELIHOOD

OF INTERVAL CENSORED DATA

We introduce the following notations for the convenience of presenting the

derivatives of log-likelihood for interval censored data given in Section 2. The indicator

0ij is defined as 0ij = 1 if Yij < t = 109(1700) and 0ij = 0 otherwise. The standardized

observations are denoted as Z·o = (y.. -u.)/b, c· = (t - u.)/b, where y.. = Y;.jL and
JJm J]m J J J J]m'J
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YijU denote the lower and upper bounds of the interval data. We define Gi = exp(cJ,
EijL = exp(zijL) , EijU = exp(zijU)' DijL = exp( - EijL ), DijU = exp( -EijU ) and

W.. = D"L - D··u . Then, the writing of derivatives can be simplified as follows:
'1 '1 '1

olog£ _ n ( )-1 [ J n ( ) G /b-c- - Eo .. bW.. x D" L E" L - D..u E..u + E 1 - 0.. . ,
oUi j=1 '1 '1 'J 'J 'J 'J j=1 '1'

olog£ k n -1 [ J-b- = E E o..(b W .. ) x D"L E"L Z"L - D..u E ..u Z··Uo i=1 j=1 'J '1 '1 '1 'J '1 '1 '1

k n
+ E E (1 - 0..) G. c·/ b,

i=1 j=1 '1' ,

- 810/£ = _~ 0 ..(b2 W..)-1 x [D"L(E~'L - E ..L) - D"u(E~·u - E ..u)~
8u /-J 'J '1 '1 '1 'J '1 '1 '1

i 1=1

+ ~ o..(b W.. )-2 x (D"L E"L - D..u E" U)2 + ~ (1 - 0.. ) G./b2 ,
/-J 'J '1 'J '1 '1 '1 /-J '1'1=1 J=1

-810g
b
£ =_~ 0.. (b2 W.. )-1 x [D ..LE..L(E"Lz"L- z:'L -1) - D"uE"u(E..uz ..u - z .. u -1)~

8U 8 /-J '1 '1 '1 '1 '1 '1 'J '1 '1 '1 '1 '1
i J=1

+ ~ o..(b W.. )-2 (D ..LE"L - D"uE..u ) (D ..LE"Lz"L - D"uE..uz..u)/-J '1 '1 'J '1 'J '1 'J 'J '1 'J '1 'J
J=1

+ t (1 - 6ij ) Gi(ci + 1)/b2 ,
J=1

- 810g£ k n (2 )-1 {{ [ ( )~}8b2 = -iJ;.JjJ;.1 6ij b Wij DijL EijL Zij+ EijL ZijL - ZijL + 2 j

- {DijU EijU ZijU [EijU ZijU - (zijU + 2)J}}
+ tt o..(b W.. )-2 (D"LE"Lz"L-D"uE"uz"u)2

i=Jj=1 '1 '1 11 11 11 11 11 11

k n
+ b-2 E E (1 - 0..) G. c.(2 + b-1).

i= Jj=1 '1"
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Table 2.1. Lifetime of Rou.ter Bits

Replications Bit 1 Bit 2 Bit 3 Bit 4

1 [3.0, 4.0] [0.0, 1.0] [0.0, 1.0] [17.0, 00]

2 [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [2.0, 3.0]

3 [3.0, 4.0] [0.0, 1.0] [2.0, 3.0] [17.0,00]

4 [2.0, 3.0] [0.0, 1.0] [3.0, 4.0] [0.0, 1.0]

5 [17.0, 00] [0.0, 1.0] [0.0, 1.0] [17.0, 00]

6 [14.0, 15.0] [0.0, 1.0] [0.0,1.0] [17.0, 00]

7 [3.0, 4.0] [17.0, 00] [3.0, 4.0] [17.0, 00]

8 [3.0, 4.0] [0.0, 1.0] [17.0, 00] [0.0, 1.0]

NOTE: The data is reported in units of 100 inches.



Table 2.2. Parameter Estimation for Life Distribution of Router Bits

Weibull Distribution Lognormal Distribution

Log-Likelihood = - 52.9534 Log-Likelihood = - 52.1168

Parameter Estimate Std. Err. Pr>Chi Parameter Estimate Std. Err. Pr>Chi
u1 6.4260 0.9884 .0001 u1 6.0273 0.9944 .0001

~ 4.1128 1.1592 .0004 ~ 2.1899 1.6426 .1825

1L;3 5.3626 1.0151 .0001 1L;3 4.4381 1.1207 .0001

u4 9.1626 1.5874 .0001 u4 7.5128 1.1777 .0001

b 2.6106 0.6313 b 2.7167 0.7407



Table 2.3. The Summary Statistics of Vi' i = 1.2, H" 5 for Router Bit Data

Statistic VI V2 V3 V4 V5

m~n -1.7098 -1.6129 -1.6516 -1.6231 .0187

max 1.9220 1.3118 2.0621 1.7801 2.0621

mean 0.0080 -0.0063 -0.0021 0.0004 .5762

s.d. 0.4007 0.3816 0.3856 0.4996 .2728

JJ3/u3 -0.0015 -0.0577 -0.0067 0.2410

JJ4/u4 3.3709 3.0719 3.3326 3.0461

Quantiles#

99%L -1.3612 -1.1836 -1.3069 -1.4197 .7938(1)

98%L -1.2101 -1.1041 -1.1668 -1.3675 .9582(2)

95%L -1.0472 -0.9814 -0.9954 -1.2105 1.0956(3)

90%L -0.9194 -0.8841 -0.8814 -1.0574 1.2455(4)

80%L -0.7971 -0.7753 -0.7615 -0.9156 1.3517(5)

80%H 0.8069 0.7215 0.7564 1.0858

90%H 0.9056 0.8272 0.8582 1.2016

95%H 1.0057 0.9386 0.9576 1.2883

98%H 1.1637 1.1163 1.1268 1.4197

99%H 1.2423 1.1708 1.2552 1.4279

NOTE: #: 100(1 - O')%L is the 100[0'/(4 x 2)] quantiles of 5000 simulated samples

The statistics Vs is the maximum module Vs = max(IV11, IV2 1, ..., IV41).
The quantities (1) to (5) are SOth, 90th , 95th , 9Sth and 99th quantiles of

Vs'



Table 3.1. Fatigue Failure Times (in Hours) for Ten Different Testers

Tester

Replications 1 2 3 4 5 6 7 8 9 10

1 140.3 193.0 73.5 196.5 145.7 171.9 183.2 244.0 187.4 186.0

2 158.0 172.5 263.7 218.9 116.5 188.1 222.4 179.2 202.0 202.0

3 183.9 173.3 192.3 196.9 150.5 191.6 197.5 176.2 175.0 200.9

4 132.7 204.7 37.1 253.3 141.6 154.3 211.0 207.7 171.7 137.1

5 117.8 172.0 160.3 212.5 129.0 171.3 178.0 148.2 230.5 195.8

6 98.7 152.7 159.2 239.6 178.4 157.4 130.5 121.6 174.2 162.4

7 164.8 234.9 133.5 181.3 133.4 132.2 160.9 195.0 220.2 134.6

8 136.6 216.5 200.7 193.0 120.2 156.7 197.6 133.6 166.3 174.5

9 93.4 422.6 189.6 178.3 192.6 194.8 90.0 167.2 239.8 272.9

10 116.0 262.6 157.1 262.8 179.0 173.3 213.0 98.5 223.7 173.8

Parameter Estimation

u· 4.980 5.507 5.167 5.421 5.072 5.178 5.263 5.210 5.351 5.296I

b· .1860 .3406 .3540 .1260 .1578 .0918 .1630 .2215 .1178 .2057I



Table 3.2. Quantiles of Zi Statistics from 5000 Simulations

C.I.+ 99% 98% 95% 90% 80% 80% 90% 95% 98% 99%
%-tile# .05% .1% .25% .5% 1% 99% 99.5% 99.75% 99.98% 99.95%

Testers

1 -.8751 .8403 -.7855 -.7485 -.7088 .5783 .6299 .6574 .7086 .7578

2 -.9881 -.9366 -.8379 -.7957 -.6720 .5286 .5628 .6948 .7370 .9623

3 -1.0406 -.9993 -.8686 -.8059 -.7427 .5800 .6245 .6890 .7274 .8419

4 -1.0878 -.9007 -.8911 -.7569 -.6515 .5531 .5781 .5939 .6861 .7170

5 -.9784 -.9518 -.8621 -.7427 -.6612 .5665 .6242 .7067 .7319 .8659

6 -1.2246 -1.0030 -.9292 -.7503 -.6755 .5346 .5849 .6763 .7113 .8162

7 -.9923 -.9658 -.8674 -.7679 -.7032 .5409 .5937 .6617 .7354 .7717

8 -1.0225 -.9641 -.8502 -.7656 -.6401 .5654 .6910 .7716 .7981 .8016

9 -1.1334 -.9163 -.8823 -.7530 -.6977 .5642 .6463 .6899 .7218 .8255

10 -.9941 -.9034 -.8427 -.7462 -.6674 .5137 .5695 .6039 .6481 .6848

NOTE: +: The overall coverage probability for ten confidence intervals.

#: The quantiles of individual Vi' i = 1, H., 10 statistics.

The 80th, 90th, 95th, 98th and 99th quantiles of the max (I VII, IV2 1, H" IVIOl)

are computed as .6046, .7024, .7760, .8824, .9623, respectively.



Table 4.1. Steel Strength Data (in 100,000 Cycles)

Steel A (Std) Steel A (1. H.) Steel B (Std) Steel B (1. H.)

Stress Cycles Stress Cycles Stress Cycles Stress Cycles

57.0 0.036 85.0 0.042 75.0 0.073 85.0 0.126
52.0 0.105 82.5 0.059 72.5 0.115 82.5 0.165
42.0 10.+ 80.0 0.165 70.0 0.144 80.0 0.313
47.0 0.188 80.0 0.223 67.5 0.184 75.0 0.180
42.0 2.221 75.0 0.191 65.0 0.334 65.0 10.+
40.0 0.532 75.0 0.330 62.5 0.276 70.0 10.+
40.0 10.+ 74.0 10.+ 60.0 0.846 91.6 0.068
45.0 0.355 72.0 10.+ 57.5 0.555 72.5 1.020
47.0 0.111 70.0 10.+ 57.5 3.674 75.0 0.6009
45.0 0.241 65.0 10.+ 57.5 10.+

55.0 0.398
55.0 10.+
55.0 10.+

NOTE: The symbol + denotes Type I censored data.



Table 4.2. Estimation of the Model Parameters of Steel Strength Distribution

Estimates Standard Error

Sample Intercept Slope Scale jjo Y: Intercept Slope Scale

1 27.5106 -0.3124 1.3079 15.0166 13.3402 3.8192 0.0826 0.3488

2 51.1589 -0.4870 1.4044 31.6788 29.8788 9.0050 0.1150 0.4396

3 28.0825 -0.2316 1.2485 18.8196 17.2193 3.3731 0.0534 0.2989

4 30.6623 -0.2235 0.9756 21.7235 20.4730 3.6376 0.0452 0.2772

NOTE: +: jjo is the mean at stress level Xo = 40.0 ksi.

#: Yp is the 10th percentile of life distribution at stress Xo'



Table 4.3. The Summary Statistics of Simulated Ti , i = 1, 2, 3, 4 Quantities

T1 T2 T3 T4

mean -0.5220 0.6724 0.1233 0.1098

s.d. 1.3420 5.0568 1.7985 2.9473

skewness+ 0.2782 0.7333 0.3208 0.0936

kurtosis# 5.9084 5.2061 3.4982 4.0183

max~mum 7.0711 22.2659 6.6499 13.5563

minimum -6.2457 -10.9680 -5.4869 -9.0730

Quantiles

99%£* -5.6316 -10.7194 -5.3175 -8.5298

98%£ -4.7446 -10.5318 -4.5794 -8.1881

95%£ -4.4958 -8.9734 -4.1470 -7.4853

90%£ -3.7524 -7.2227 -3.8111 -6.7090

80%£ -3.2705 -6.3497 -3.3377 -5.5910

80%H 2.0823 9.5048 4.1585 6.3247

90%H 2.5560 12.0582 4.5995 7.3486

95%H 3.7261 14.8509 5.3297 8.1950

98%H 5.1177 18.3894 6.2948 11.5459

99%H 7.0375 19.4132 6.5651 12.8217

NOTE: +: Coefficient of skewness JJ 3 / (T3 j #: Coefficient of kurtosis JJ4/ (T4 j

*. 100(1 - a)%L means the 100 [a/(4x2)] quantiles of 1000 simulated

samples.
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Figure 4.1. Histograms ofStatistics T; =1, 2, 3, 4 for Percentile Lifetimes

of Steel Strengths.
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Figure 4.2. Analysis of 10th Percentile Lifetimes of Steel Strengths.


