
Sintulation of Two-way Computations
on Arrays with One-way Data Flow

Carla D. Savage
Matthias F.M. Stallmann

Anwer Z. Kotob

Center for Communications and Signal Processing
Departrnent of Computer Science
North Carolina State University

aasp·TR-87/20

October, 1987



Abstract

In this paper we describe a one-dimensional array model of computation which
is powerful enough to solve a wide variety of signal processing problems, as well as
combinatorial problems. In this model, input and output is done only at the first
and last cells of the array; computation is synchronous and two-way data flow is
allowed between adjacent processors. We show how any computation on an array
with two-way dataflow can be transformed into a computation on an array in which
data flow between adjacent processors is restricted to be one way. Specifically, a
two-way array with n cells computing for t time units can be simulated by a one
way array with 0 (n + t) cells computing for 0 (n + t) time units. If we allow the
one-way array to be circular, we can achieve this simulation with only 0 (11) cells,
even if we are required to keep the locations of the input/output cells fixed
throughout the computation.



2

1. Introduction

In recent years systolic arrays have received much attention and many algo
rithms were designed to solve various signal processing and combinatorial problems
on linear, as well as mesh-connected, systolic arrays. A significant portion of those
algorithms require a bi-directional flow of data between adjacent cells in the array
[Lei79, GL82, Kun81, Gue86, Rog82, and Kun85]o

In this paper we describe the results of our study of ways for transforming all
bi-directional linear array algorithms into uni-directional ones. This study was
prompted by the following two issues.

Fault Tolerance:
Systolic arrays are a natural candidate for wafer scale integration (W5I). The
fact that systolic arrays are made up of a large number of relatively small and
simple cells, and that only local interconnections (to the nearest neighbor) are
required, make them particularly suited for a WSI implementation.

However, with a WSI implementation, fabrication flaws are inevitable. For such
an implementation to be practical, the array should "tolerate" some defective
cells on a chip 0 A number of schemes have been devised to grant such arrays
the capacity to tolerate faulty cells [LL85, 5587, KL84, GNE84, SmiB1]. (In fact
some of those schemes, [LL85, GNE84, SmiB1], can be applied to almost any
thing implemented in W5I, not just systolic arrays).

A common approach is to provide redundant circuitry and then program the
interconnections to avoid the defective cells [GNE84, SmiBl], (laser
programming technology has been applied successfully for such purposes
[LL85]). This is a very effective scheme for combating faulty cells, however it
comes at a great cost in terms of wasted circuitry.

Another approach would be to program the interconnections to "skip over" the
faulty cells [LLB5]. This has the advantage that it does not require any redun
dant circuitry. However, it does mean increased wire length between electri
cally adjacent cells. Moreover, in such a scheme there is usually a tradeoff
between the utilization of live cells and two cost functions: channel width and
maximum wire length.

A fault tolerance scheme of particular interest [5587, KL84] bypasses a faulty
cell by a set of "bypass" registers (note that the input and output registers in a
cell could be used as bypass registers in case the cell fails, and therefore no
extra hardware is required to implement this scheme). This keeps the wire
lengths and the clock speed at their original value. Moreover, all the live cells
in the linear array are utilized. Kung and Lam [KL84] demonstrated that, with
slight modifications, this approach can be applied to two dimensional mesh
connected arrays while yielding a high utilization of the live cells.

When the bypass scheme is applied to uni-directional linear arrays it maintains
the throughput of the flawless array while suffering only slight degradation in
performance. A similar scheme could be applied to bi-directional linear arrays,



3

but the array's performance and throughput degrade rapidly with respect to the
number of consecutive failed cells that need to be tolerated [KLB4].

Recyclability:

The issue of decomposability arises whenever the available number of cells is
less than the ideal number required for solving the problem at hand (whether
due to failed cells or that the array is originally too small for the problem).

Usually the host computer is burdened with the task of decomposing the prob
lem into pieces small enough to fit on the available hardware and then recon
structing the final result.

We have shown that an array with too few cells can still produce the correct

result if the output is "recycled" r~ 1times, where n is the number of cells

required by the algorithm and k is the number of cells available [5587]. This
result holds as long as the array algorithm (i) is uni-directional, (ii) has all cells
initialized to the same state, (iii) can tolerate an arbitrary delay between adja
cent cells, and (iv) still works if the array has more than the ideal number of
cells.

When applicable, our result relieves the host computer and the user from
decomposition issues, and offers a uniform method for treating all
decomposition/recycling tasks.

Note that a requirement for this recycling scheme to work is that the array be
uni-directional, The other three requirements are easier to satisfy than uni
directionality.

We note that some of t11ese results, obtained independently, were reported in
[CY85].

The remainder of this paper is organized as follows. Section 2 presents the
model of computation. In Section 3 we show how to simulate two-way (bi
directional) computation by one-way (uni-directional) computation for a particular
subclass of two-way arrays. In Section 4 the general case is broken down into sub
cases which are considered in sections 5 and 6.

2. Model of Computation

In this section we describe the models of computation for the one-dimensional
array and define what we mean by one-way dataflow and two-way dataflow. The
array consists of n cells, labeled 1,2, .. ..n . Each cell has a finite number of registers,
independent of the array size. Each register can hold a word and the length of the
word may depend on the size of the array (11) or the size of the problem to be
solved. (For this reason, cells cannot be regarded as finite state machines. How
ever, some of our results will hold as well for an array of finite state machines and
conversely. )



4

At any time during the operation of the array, each cell will be in a state com
pletely defined by the values in its registers. Input and output to the array may
occur only at cells 1 and n. Operation of the array is defined by a single program of
which each cell has a copy. This program, called the cell progra1n defines the state
of a cell i at a given time unit t in terms of the states of cell i and its neighbors at time
t - 1.

More precisely, let S(i,T) denote the state of cell i at time t and let Q be the
set of all possible states. For convenience, we imagine that al] input and output
values are elements of Q and that Q contains a special state, S . We further ima
gine the existence of a cell 0 and a cell n +1 such that

the input to cell 1 at time
S(O,t) = t+l, if any

S*, otherwise

and

the (rigl1t) input to cell n at time
5 (11 + l,t) = t + 1, if. any

S*, othenoise

The cell program defines the operation of the array. For an array with tl,vo-way data
flow between adjacent processors, the cell program, f, can be viewed as a
mathematical function

f : Q xQ xQ -+ Q

or, for example, as a PASCAL-like function

f (A , BIe: state) state

where, for t >0 and 1<i <11 ,

S(i,t) = f(S(i-l, t-I), S(i, t-I), S(i+l, t-I» .

When t =0, 5 (i,t) = 5 (i ,0) represents the initial state of cell i . The output of cells 1
and 11 at time t, if any, is 5 (l,t -1) and 5 (n,t -1), respectively.

An array with one-way data flOtU between adjacent processors is one in which the
program. f in a cell i depends only on the states of cells i and i -1 at the previous
time unit. In this case, f is a function of only two parameters,

f : QXQ -. Q

where for t >0 and 1<i <n,



5

5(i,t) = 1(5(i-1, t-l), S(i,t-l» .

In a practical sense, it is unnecessary and, in fact, wasteful to pass entire cell
states through the array as data. However, this formalism makes it easier to gen
eralize the notion of array computation and to simplify the generic transformations
of arrays. For a particular application, it is easy to prune out the extra information
so that only the essential data passes between cells.

3. Two-way Cellular Array to One-way Iterative Array

We first consider the case of cellular arrays with two-way data flow. This is a
restriction of the model of computation described in Section 2 in which the 71 input
values are initially stored in the 71 cells of the array. At the end of the computation,
the 11 cells hold the n output values.

An example of this case is the odd-even transposition sort [UI184]. Initially, n
numbers to be sorted are stored in the array, one per cell. On odd time steps, cells
2i -1 and 2i swap values, if they are out of order. On even time steps, cells 2i and
2i + 1 compare and swap, if necessary. After n time units, the values in the array
are sorted.

Our goal in this section is to transform a two-way cellular array computation
into a one-way iterative computation. A one-way iterative computation is a compu
tation on a one-way array in which input values enter the first cell of the array and
leave the last cell of the array as output. Further, all cells are initialized to the same
null state.

We assume we are given the cell program, f, of a two-way cellular array, TC,
and the initial states S i- 52' · · · ,sn of each cell of TC. The input value stored in cell
i of TC is part of the state si' Let f t- 12' · · · , f n be the states of the cells of TC at
the end of the computation. Our goal is to determine the cell program, g I of a
one-way iterative array, 01 I which accepts as input 51,52' · · · ,5n and produces as
output f 1, f 2' · · · , f n •

The idea of the two-way to one-way transformation is illustrated in Figures 1
and 2. Figure 1 represents a two-way cellular computation in which cells are initial
ized to A o, Bo, Co' Do, and Eo. After 5 time units, the cells are in states
As, Bs, Cs, Ds, and Es. As described in Section 2, we ~ssume the existence of ima
ginary cells 0 and 6 which contain a special state, say 5 . Figures 2a and 2b show a
simulation of the two-way cellular array of Figure 1 by a one-way iterative array,
OJ. Input to OJ is the sequence 5", A o, Bo, Co, Do, Eo,S". Note that for
i =1, ... ,5, cell i computes and outputs Ai' B,ICi , D], E, at time units
2i +1, 2i +2, 2i +3, 2i +4, 2i +5, respectively. Thus, the final states of the two-way
cellular array after t time units would be computed and output by cell t of the one
way array during time units 2t +1 through 2t +5.

To describe the operation of 01 in the general case, each cell of 01 stores two
values, old and neto. (Each of these values is a cell state of TC, the two-way cellular
array being simulated by OJ.) During a time unit, if x is the input value to a cell of



6

01, the cell does the following:

(1) computes the value f (old, neto, x) to be output. (f is the cell program of
TC)

(2) old 40- new

(3) new 40- x
Additional minor details are required in the cell program for 01 to handle the boun
dary cases and these are described fully in [Kot87]. TI,e result can be summarized
as follows.

Theorem: A two-way cellular array (with n cells) computing for t time units can be
simulated by a one-way iterative array with t cells computing for 2t +n time units.

Discussion: What is the penalty?

The penalty to be paid for achieving one-way versus two-way communication
can be very small. The one-way time is 2t +n , whereas the minimum time achiev
able by an n -cell iterative array computing an n -input, n -output function would be
2n. However, this time of 2t +n is latency and does not affect array throughput. Suc
cessive problem instances can be pipelined. In addition, the time t for the two-way
cellular array did not take into consideration the time to load and unload the array
with input and output.

As for the complexity of each cell in the one-way array, storage is increased by
about a factor of two and the complexity of the cell program is increased by a small
additive constant. This should be regarded as an upper bound on the added com
plexity since for any specific application it may be possible to prune substantially
the generic result of the two-way to one-way transformation.

A more serious concern is the number of cells required by the one-way iterative
array if t is large. If t = n , which is frequently the case (as in odd-even transporta
tion sort) then there is no increase in the number of cells for one-way computation.

On the other hand, independent of t, note that at most ln /2 J+ 1 consecutive cells

are used during a given time unit and that the rightmost cell moves one cell to the
right every two time units. Thus, by using techniques as described in Section 6, the
one-way iterative computation can be done on a circular array of roughly n /2 cells,
compensating for the increased cell complexity. (Actually, to maintain two fixed
I /0 cells for the circular array, the cell complexity may increase somewhat. See Sec
tion 6.) Since data is recirculated in this case, problem instances cannot be pipe
lined, but neither could they be for the original two-way celluar array.

In summary, then, not only is one-way data flow always achievable, but the
penalty for one-way versus two-way data flow is small, whereas the advantages, in
terms of fault tolerance, problem decomposition, and input delay tolerance, appear
to be very high.

4. Two-way to One-way in the General Case



7

In the most general case of computation on an array, each cell could be intital
ized to a different state. An example of this is the array in [Rog82, KRY8ll which
performs FIR filtering by storing a coeffcient of the convolution kernel in each cell.
In addition, input and output could occur in both the first and last cell as in [LipB5].

A two-way array in which I 10 is done at both the first and last cell can be
"folded" to obtain a two-way array in which 110 is done only at the first cello This
array ean be further modified to force output values arriving at cellI to bounce back
to the last cell of the array and leave in proper sequence. Details of this are
described in [Kot87].

It suffices, then, to consider two-way arrays in which input occurs only at the
first cell and output only at the last cell. In the next section it is shown that any
such array in which cells are required to be initialized to different states can be
simulated by a two-way array (input first cell, output last) in which cells need not
be initialized- or in which all cells can be initialized to the same state.

The remaining case to consider is that of a two-way iterative array, that is, a
two-way array with input first cell, output last cell and all cells initialized to the
same state. We can show the following.

Theorem: A two-way iterative array with n cells computing for t time units can be
simulated by a one-way iterative array with n + t - 1 cells in time 2t + 1.

Proof: The simulation is illustrated in figures 3 and 4. Basically, the computations
are "shifted right" every other time unit, with details included to pass input right to
the "first" cell and shift output right to the output cell. See [Kot87] for details.

In contrast to two-way cellular arrays, in many applications on two-way itera
tive arrays, especially to signal processing, t may be very large compared to n so
that using n + t -1 cells to achieve one-way data flow would be unreasonable.
Because of this, it is more appropriate to consider simulation on a one-way circular
array_ In Section 6 we show how to simulate a two-way iterative array with a one
way circular array with no increase in the number of cells.

5. Initialization of a Two-Way Computation

The following simulation converts a two-way computation in which cells are
initialized to different states into a two-way computation in which cells are all ini
tialized to the same state. In the original two-way computation, input comes from
the left and has the form S .x I' · · · .x.;,E, where Sand E are two symbols that do
not correspond to any data (in fact, Sand E may be the same symbol; we distin
guish between them only for clarity). Cell i is initially in state qi for i = 1, · · · ,11.

Details that are specific to the computation are encapsulated by the function
{(A,B,C), where A, B, and C are the states of three adjacent cells. [(A,B,C)
computes a new state for the cell whose current state is B I and whose left (resp.
right) neighbor is in state A (C). In a typical computation, f only needs to access
part of the internal states A and C - Two special cases of fare the computation that
takes place in the first and last physical cells. In the case of the first cell, A is taken



8

to be the input data (padded appropriately to make it of the same "type" as a state).
For the last cell, C can either be the same as B or can have some special value such
as NULL (this is dependent on the computation and does not affect our simula
tions).

Aside from f we assume that each cell has some mechanism for turning itself
on at the beginning and off at the end of the computation. We view such a
mechanism as being essentially equivalent to a control flag with values OFF and
ON (this flag is part of the state of each cell). When a cell is ON, it computes f
using the states of its two neighbors (which are transmitted at the end of the previ
ous step). WIlen a cell is OFF, it either retains its internal state or turns itself on.
The symbolS in the input is used to tum cells on, while E turns them off. We
assume that f is defined when the first parameter is E (to allow the computation to
"know" when the end of input has occurred). We also assume that cells are reini
tialized if necessary as they are turned off. A generic program for cell i during a
single time unit is described below.

/* program for cell i; A, B, and C are "registers" holding the internal states
of cells i-I, i , and i + I, respectively *1

if cell i is OFF then
if cell i -1 is ON then

Itt (or i = 1 and input is S) *1
change to ON end if

else Itt cell i is ON "l
B := [(A,B,C)
if cell i -1 is OFF then

/'fa (or i = 1 and input is E) *1
change to OFF end if

end if

When the above computation is simulated by one in which cells need not be
intialized, the initial state of each cell becomes part of the input. Input to the
transformed computation takes the form 5 ,qI' · · · ,qn,M,x l' · · · ,xn1,E, where qi is
data representing the intial state of cell i and M is an additional special symbol
(again,S, E, and M can all be the same symbol; we distinguish only for clarity).
There are now three control states: OFF, ON, and ACTIVE. When a cell is ON, it
merely transfers the data representing initial' states. The first data item to reach a
cell becomes its intial state. Subsequent data items are moved to tile right, T11is
ensures that cell 1 receives q1 as its initial state, cell 2 receives q2' and so on. In
order for the transfer of initial state data to be accomplished, each cell must have an
additional register TRANS capable of holding state data. When a cell is ACTIVE,
however, it performs the computation associated with f. The simulation ensures
that when a cell becomes ACTIVE both of its neighbors l1ave received their initial
state. The program for a cell during each time unit is described below.



9

/. program for cell i */
if cell i is aFF then

if cell i -1 is ON then
/. (or i = 1 and input is S) */
B := S
change to ON end if

else if cell i is ON then
if B = S then

B := TRANS (i -1) (or input data if i = 1)
TRANS (i) := S

else /. B contains valid state info *1
TRANS (i) := TRANS(i-1) end if

if cell i -1 is ACTIVE then
Iff. (or i = 1 and input is M) */
change to ACTIVE end if

else /* cell i is ACTWE *1
B := f (A,B ,C)
if cell i -1 is OFF then

l" (or i = 1 and input is E) "l
change to OFF end if

end if

6. Simulating a Two-Way Iterative Computation on a One-Way Circular Array

A circular array (with one-way dataflow) has n cells arranged in a circular confi
guration, each cell having the ability to "read" the state of the previous cell. Cells
are numbered 0 through n -1 so that cell i has the ability to read the state of cell
(i -1) mod n. CellO is the only cell that has the ability to read input and write out
put. A typical cell program is a function h: Q x Q ... Q. Cell i (for i = I, · · · .n -1)
computes /1 (A,B), where A is the state of cell i -1 and B is the state of cell i . CellO
computes a slightly different function h ': Q x Q x 2: ... Q X 2:, i.e. h' also takes input
into account and produces output as part of the result.

In our simulation there are three distinct "tracks" along which the computation
takes place. The input track ensures that input gets from cellO to the cell that actu
ally "reads" the input in the simulated computation. The output track ensures that
output produced by the simulated computation reaches cell 0 in the correct
sequence. The computation track accomplishes the actual simulation.

The input track of each cell has two data registers. Cur_Input is the current
input data for the cell. Cur_Input remains unmodified until the computation track
of the cell "reads" input. Then it is transferred to the computation and replaced by
input from the cell to the left. NetoInput is input data that is still moving to the
right (has not reached its destination). Because later input are consumed farther to
the right (within the circular. order), the input track allows more recent input to
overtake less recent input and move farther to the right. The part of h dealing with



10

the input track, 111, can be described as follows.

function ItI(A,B) returns INPUT_STATE is
/* If the computation requires data from the input track during this time

step, CurInput (B) = empty by the time this function is executed.
Note also that cellO, instead of reading New_Input (A), always reads
actual input data. */

if Cur_Input (B) = empty then
Cur_II1put(B) := Netulnput iA)
New_Input (B) := enlpty

else
Neuilnput (B) := Neuilnpu: (A)
(Cur_Illput (B) stays the same)

end if
end hI

The output track is handled similarly by a function ho . The output state of a
cell includes two data registers. Netv_Out is output produced by the most recent
computation at the cell. New_Out stays in place until all output produced at cells
immediately to the left has overtaken it (such output was produced earlier and must
therefore reach cellO sooner). Pass contains output which is moving right toward
cell O.

function ho(A,B) returns OUTPUT_STATE is'* If the computation in this cell produced output during the current
time step, New_Out now holds the value of that output. The Pass
register of cell 0 is always empty when seen by cell 1 (its contents
become actual output from the array). */

if Pass (A) = empty then
Pass (B) := New_Out (B)
New_Out (B) := empty

else
Pass (B) := Pass(A)

end if
end 110

We are now ready to describe how the computation track of the cells functions.
Aside from the details having to do with startup and boundary conditions
(described below), each step of the two-way computation is simulated by two steps
of the one-way computation (this part of the simulation is identical for linear and
circular arrays). Each cell has two registers, each capable of holding state informa
tion for the original two-way computation (we assume all the cells in the two-way
computation are initialized to the same state -- see Section 5). The registers are
called Middle and Right, and their contents correspond to the state of this cell and
the one to its right, respectively. Each cell also has a register C_State holding its
control state. The different control states are introduced below. In every case, the



11

new state of a cell is a function of its current state and the Middle and C_State regis
ters of the cell to its left .

.The .main ~dea behind the simulation is that a computation that took place in
~ell 1 at tune t In the two-way array takes place in cell (i + t +u) mod 11 at time 2t + (3
In the on~-way arra~1 where Cl and (3 are constants related to how the startup
sequence IS accomplished. If we ignore boundary cases, the computation track
works as follows. Note that g is the function computed by each cell in the original
two-way computation.

function he(A,B) returns COMPUTATION_STATE is
if C_State (B) = MAIN then

Middle (B) := g (Middle(A ),Middle (B ),Right (B»
C_State(B) := INTERMEDIATE

else /* C_State(B) = INTERMEDIATE */
Right (B) := Middle (B )
Middle (B) := Middle(A)
C_State(B) := MAIN

end if
end he

The actual computation is performed during the MAIN control state. The INTER
MEDIATE state is needed to route data to the right.

Figure 5 shows one possible implementation of the full computation state calcu
lations, including startup sequence. This implementation, while not being ideal
(some problems and their solutions are noted below), illustrates all of the issues that
need to be dealt with.

As in the two-way computation, a cell is initially in the OFF control state. A
special START state moves around the circle once to turn all cells on (control state
ON). In the ON state (or the START state), only the input track of a cell is active.

After the start state has travelled all the way around the circle, it prompts cellO
to begin its' computation track in a state called FIRST. FIRST is exactly like MAIN
except that the cell uses the value in its own Cur_Input register instead of the previ
ous cell's Middle register. When a cell is in state FIRST it is simulating cell 1 of the
original two-way computation.

Every time step after cell 0 begins the computation, a new cell activates its com
putation track in either the MAIN or INTERMEDIATE state. Meanwhile, the con
trol state FIRST passes on to a new cell every other time step. WIlen all of the cells
on the circle have become activated, the cell in state FIRST sees a cell in state MAIN
to its left. In the next time step I the same cell takes on control state LAST -- it is
now behaving as the last cell of the original two-way computation and producing
output. We assume for simplicity that the circle has exactly the right number of
cells. If not, we either have to assume that the exact number of cells was not critical
to the two way computation (as long as there are enough) or a moving counter has
to count the number of active cells to determine when to enter state LAST. TIle



12

computation track in state LAST behaves like INTERMEDIATE, except that the cell
moves data to the output track.

Because the circular array performs a computation of the original two-way array
every other time unit, the rate of input and output for the array must be one item
every other time unit. Use of the algorithm in Figure 5 along with the algorithms
for input and output tracks actually forces input and output to be staggered: cellO
reads n items during the first n time units, then no items during the next n time
units, then n items again, and so on. Output behavior is similar.

If input needs to be read at a steady rate of one item every other time unit, the
actual computation should not begin until exactly 2n time units have elapsed. This
is to ensure that the first n items get beyond cell 0 before cellO consumes the first
input so that the n + 1st input takes the place of the first in cellO. Allowing the
start marker to move around the array twice before initiating the computation is one
way to accomplish this goal (this requires a new control state START' for the second
iteration of the start marker).

Staggered output can be remedied by having each cell produce a dummy out
put after each real output it produces. The array then generates a dummy output
between every two real output values.

Another problem related to output is that the first real output arrives in the
output track of cell n -1. This means that the first and second output values exit
through cellO almost immediately after they are produced while the remaining out
put must traverse around the circle. The result is a large gap in time between when
the second output value leaves cellO and when the third value leaves cell O. Several
remedies are possible. One is to redesign the circular array so that cell n - 2 instead
of cell 0 has the output port. Another is to shift the startup sequence so that com
putation begins in cell 2 instead of cellO (and adding two dummy inputs to the
beginning of the input sequence). A third possibility is to mark the first two out
puts in some special way so that they are passed from cell 0 to cell 1 instead of leav
ing the array. All solutions but the first require additional control states and a more
complicated algorithm.



[CYSS]

[Fis81]

[GL82]

[GNE84]

[Gue86]

[KL84]

[Knu73]

[Kot87]

[KRY81]

[Kun81]

[Kun85]

[Lei79]

[Lip85]

13

References

K .Culik II, and S. Yu, "Translation of Systolic Algorithms Between Sys
tems of Different Topology", Proceedings of the 1985 International Conference
on Parallel Processing, D. Degroot editor, Computer Science Press, (1985,
pp. 756-763).

Allan L. Fisher, "Systolic Algorithms for Running Order Statistics in Sig
nal and Image Processing", Proceedings of CMU Conference on VLSI Systems
and Computations, H. T. Kung, R. F. Sproull, and G. L. Steele editors,
Computer Science Press, (1981, pp. 265-272).

Leo J. Guibas, and Frank M. Liang, "Systolic Stacks, Queues, and
Counters", Proceedings of 1982 Conference on Advanced Research in VLSI,
MIT.

Jan Grinberg, Graham R. Nudd, and R. David Etchells, 1/A Cellular VLSI
Architecture", Computer, Vol. 17, No.1, (Jan. 84, pp. 69-81).

Concettina Guerra, "Systolic Algorithms for Local Operations on Images",
IEEE Transactions on Computers, Vol. c-35, No.1, (Jan. 86, pp. 73-77).

H. T. Kung, and Monica S. Lam, "Wafer-Scale Integration and Two-Level
Pipelined Implementations of Systolic Arrays", Journal of Parallel and Dis
tributed Computing, Vol. I, No.1, (Aug. 84, pp. 32-63).

D. E. Knuth, liThe Art of Computer Programming Vol. III: Sorting and
Searching", Addison-Wesley, Reading, Mass. (1973).

Anwer Z. Kotob "Transforming bi-directional computation to uni
directional computation on linear systolic arrays", Master's Thesis, Com
puter Studies, NCSU, 1987.

H. T. Kung, Lawrence M. Ruane, and David W. L. Yen, "A Two-Level
Pipelined Systolic Array for Convolutions", Proceedings of eMU Conference
on VLSI Systems and Computations, H. T. Kung, R. F. Sproull, and G. L.
Steele editors, Computer Science Press, (1981, pp. 255-264).

H. T. Kung, "Why Systolic Architectures?", Technical report CMU-CS
81-148, Carnegie-Mellon University, Computer Science Department, (Nov.
81).

S. Y. Kung, "VLSI Array Processor for Signal Processing", In Modern Sig
nal Processing, Thomas Kailath editor, Hemisphere Publishing Corp.,
(1985, pp. 393-440).

Charles E. Leiserson, "Systolic Priority Queues", Proceedings of Conference
on Very Large Scale Integration: Architecture, Design, Fabrication, California
Institute of Technology, (Jan. 1979, pp. 199-214).

Richard]. Lipton, and Daniel Lopresti, /IA Systolic Array for Rapid String
Comparison", Proceedings of the 1985 Chapel Hill Conlerence on Very Lqrge
Scale Integration, H. Fuchs editor, Computer Science Press, (1985, pp. 363-



14

376).

[LL85] Tom Leighton, and Charles E. Leiserson, ''Wafer Scale Integration of Sys
tolic Arrays", IEEE Transactions on Computers, Vol. c-34, No.5, (May 85,
pp. 448-461).

[Rog82] M, H. Rogers, "Specification of Algorithms for Systolic Array Elemenets" I

In VLSI Architecture, B. Randell, and P. C. Treleaven editors, Prentice-Hall
International, (1983, pp. 212-224).

[Smi8I] Robert T. Smith, James D. Chlipala, John F. M. Bindels, Roy G. Nelson,
Frederick H. Fischer, and Thomas F. Mantz, "Laser Programmable
Redundancy and Yield Improvement in a 64K DRAM", IEEE Journal of
Solid State Circuits, Vol. sc-16, No.5, (Oct. 1981, pp. 506-514).

[5587] Carla D. Savage, and Matthias F. M. Stallmann, "Fault Tolerance &
Decomposability Issues in One-dimensional Array Architectures" , in
preparation.

[UI184] J. D. Ullman, "Computational Aspects of VLSI", Computer Science Press,
(1984).



AO 80 co DO EO Time. a

Time • 1

Time • 2

Time • 3

Time - 4

AS 85 C5 05 E5 Time • 5

Figure 1: A Two-Way Cellular Array computing
for 5 time units. Arrows indicate
functional dependencies.



- -• -, - -, - -, - -. - Time-O

Time-1

Time.2

Time-3

Time-4

Time-5

Time-6

Time-7

Time-S

Figure 2a: A One-Way Iterative Array simulating
the Two-Way Cellular Array of Figure 1.
Time units 0 through 8.



Time-10

Times11

Times12

Time-9

E5

Time-16

S·

D5

Time-15

C5

Time-14

85

Times13

AS

S·

-

-, . S·, E1 D2,C2 83, A3 S·, -
~-- ".E2 "'4C3 ~A4 '~.

·, · -, S· 52, 02 C3, B3 A4, S·

~. ~S· ~D3 ~B4 ~;

·, · · · S·, E2 D3,C3 84, A4,

~. ~- ".E3 "-C4 ,,~,

·J · · · -, S· E3,D3 C4,B4,

~- ~- "-S· ".04 ~.

-, - · · - - S·, E3 D4, C4J ,

~- ~- '.- ".E4 ~I

·J · · · · · -, S· E4, 04, •

"'-- ':Il- '.- '.5· ~.

·J · ., - · · ., . S*, E4,

'.. ~_.

~- '.-

·• - -, - · · ., . ., S·,

~~

Figure 2b: A One-Way Iterative Array simulating
the Two-Way Cellular Array of Figure 1.
Time units 9 through 16.



Time =6

Time =5

'Time =0

a

Time::z1

b

Time =2

c

Time =3

d

Time =4

Figure 3: A Two-Way Iterative Array computing
for 6 time units. Arrows indicate
functional dependencies.



Figure 4: A One-Way Iterative Array simulating
the Two-Way Iterative Array of Figure 3.



funetion hc(A,B) returns COMPUTATION_STATE is
it C_State(B) = OFF then

if c.su« (A) = STAR T then
start input track
C_State (B) := START end if

else if C_State(B) = START then
C_State(B):= ON

else if C_State(B) = ON then,* Stay in control state ON until the cell to the left is a.ctive (or in the special
START state) *,

if C_State(A) = OFF or ON then
no change

else if C_State (A) = STAR T then
C_State (B) := FIRST

else if C_State (A) = INTERMEDIA TE then
Right(B) := 0
Middle (B) := Middle (A)
O_St4te(B) := MAIN

else if C_State (A) = MAIN or FIRST then
Middle (B) := 0
C_State(B) := INTERMEDIATE end if

else it C_State(B) = FIRST then
,. Perform computation as cell 0 of the two-way array. Then either become

inactive or turn into the last cell or the computation. *,
Middle (B) := g(Cur_Input(B),Middle (B),Right(B»
if C_State(A) = ON then

O_Stllte (B) := ON
else if C_State (A) = MAIN then

O_State(B) := LAST end if
else it C_State(B) = LAST then,* Output da.ta from previous computation (in the cell to the left]. *,

initiate output track it not already active
1V~w_Out(B) := Middle (A)
Middle (B) := Middle (A)
Right(B) := 0
C_State(B) := MAIN

else it C_State(B) = MAIN then
Middle (B) := g(Middle(A),Middle(B),Right(B»)
O_State (B) := INTERj'JEDIA TE

else it C_State(B) = INTERMEDIATE then
Righ,t(B) := Middle (B)
Middle (B) := Middle (A)
if C_State(A) = INTERMEDIATE then

C_StAte (B) := MAIN
else It C_State (A) = ON or LAST then

C_StGte(B) := FIRST end if
end if

end he

Figure 5: Circular array algorithm.


