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Abstract

KAKODKAR, ATISH PANDURANG. Interpolation and Extrapolation in Color

Systems. (Under the direction of Prof. Sarah A. Rajala and Prof. H. Joel Trussell.)

With the increased use of color in desktop publishing applications has come a

desire for greater control of the color quality. Colorimetric reproduction requires

calibrated color output devices. One approach to color calibration is to characterize

a color output device with a three-dimensional look-up table. The look-up table maps

the color specification values to the control values of the color output device.

This thesis looks at the problem of obtaining the look-up table. The problem can

be posed in the following manner. Given a set of control values {c.} on a regular

grid and the corresponding set of color specification values {t.} obtained from data

collection, find the {cg } for different {tg } on a grid in the color specification space.

This grid should be fine enough so that simple interpolation is adequate to obtain

control values for color specification values that are not in the table. The grid is

obtained from a relatively sparse data set with an appropriately defined interpolation

scheme. This interpolation scheme can be very complex since it is used only once

to compute the grid. This regular finer grid can be used in real-time to obtain the

control value for any color specification value located inside a given color gamut. Two

interpolation schemes are evaluated in this thesis.

One of the problems with constructing the fine grid of values for the LUT is

the determination of values that are near the edge of the gamut of the output device.



While the functions which represent the device are usually well behaved and smoothly

varying, the truncation of the data can cause a problem with interpolation methods.

An approach to solving the truncation problem is to extrapolate the data outside

the gamut. The extrapolated points are then used in the interpolation to estimate

the values for the fine grid. The use of extrapolated values permits the use of a

single interpolation algorithm over the entire gamut of the device, rather than using

a modified algorithm in regions near the edge of the gamut. The results of this method

are comparable to other interpolation methods but it is simpler to implement. Three

different extrapolation schemes are evaluated in this thesis and the best one is selected

to obtain the look-up table.

This thesis discusses the calibration of a thermal dye transfer color printer. Cali­

bration is carried out initially for a mathematical model. The behaviour of this model

is compared to the behaviour of the printer, both with and without the presence of

noise. This can be used to determine whether the model is a good representation of

the printer and can be used to predict the performance of the printer.
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Chapter 1

Introduction

1.1 Problem Description

Recently there has been an increased activity focused on solving the problems asso­

ciated with the transmission and display of high quality color image/video signals.

The objective is to generate an image or video signal whose quality is as high as pos­

sible at the output of a given system. Of specific concern is the characterization and

calibration of color output devices, for example printers or electronic displays such as

a CRT. In order to make accurate judgements about the images they produce, such

devices must be calibrated. To do this a relationship needs to be defined between a

set of output values and the control values of the output device. There are a number

of factors which impact the solution of this problem. They are:

• The model of the output device and its limitations

• The type and location of the measurement data

• The variability in the measurement

• The variability in the output device under normal operating conditions

• The interpolation and extrapolation methods used

• The perceptibility of errors.
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A simple method of calibrating an output device would be to characterize the

device with a three-dimensional look-up table. The look-up table maps a set of color

specification values {ti} to a set of control values {Ci} of the output device. The

look-up table could be built directly, unfortunately this would require an excessive

number of measurements. For a P X P X P table p 3 measurements would be required.

It is clear that P must be small relative to the number of distinct control values. If

the grid is fine enough, i.e. we have a look-up table for a large number of points, then

we can compute control values for different color specification values not on this grid

by simple interpolation schemes such as trilinear interpolation. If the look-up table is

generated for a small number of points then we could interpolate for color specification

points not on the grid by using complex interpolation schemes. An alternate approach

for creating the look-up table is to make measurements on a coarser grid and then

interpolate the values for a finer grid in the color space using complex interpolation.

The finer grid can then be used in real-time using simple interpolation.

The problem can be posed in the following manner. Using vector notation, let

C == [CI, C2, C3] be the three-dimensional vector of control values which map on to the

color specification values t == [tI, t 2,t3]. The functional form of the output device is

then given by:

t = F(c) (1.1)

where the purpose of calibration is to define an inverse mapping from the color spec­

ification values to control values. Although the function F(·) has no closed form, it

can be approximated by a closed form, e.g. polynomial. The forward mapping is

then defined by interpolation from a table of values. Likewise, the inverse mapping

is defined by tables.

The problem of obtaining the look-up table can be posed in the following manner.

For a set of control values {Ci} on a coarse, regular grid of size N x N X N in the

control value space, we obtain the corresponding set of color specification values {ti}
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by measuring the output produced by the control values. Using this measured data,

we create a finer, regular look-up table of size M x M x M (M > N) in the color

space, that is we find the control values, {cg } , for different color specification values,

{t g } , on this finer, regular grid. This grid in the color space should be fine enough so

that simple interpolation is adequate to obtain control values for color specification

values that are not in the table. The grid is obtained from a relatively sparse data set

with an appropriately defined interpolation scheme. This interpolation scheme can

be complex since it is used only once to compute the grid. The regular, finer grid can

be used in real-time with simple trilinear interpolation to obtain the control value for

any color value located inside the color gamut of the device.

One of the problems with constructing the fine grid of values for the LUT is

the determination of values near the edge of the color gamut of the output device.

While the functions which represent the device are usually well behaved and smoothly

varying, the truncation of the data can cause a problem near the edge of the gamut.

Special algorithms may be developed to take care of interpolation problems at the

edge of the gamut. However, another approach to solving the truncation problem

is to extrapolate the data outside the gamut. These extrapolated points can then

be used in the interpolation. The use of extrapolated values permits the use of a

single interpolation algorithm over the entire gamut of the device, rather than using

a modified algorithm in regions near the edge of the gamut (Figure 1.1).

A background in color science is important to understanding this work. The next

section discusses the basic concepts of color matching, a vector space approach to color

imagery and the mathematical basis for some subjective color phenomena. The last

section discusses uniform color spaces introduced by the C.l.E. and the perceptibility

of errors between two colors in these spaces.
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Figure 1.1: Extrapolation at the Boundary of the Gamut

1.2 Color Background

Color perception in humans is a process which has both a physiological and a psy­

chological component. The physiological component involves the sensing of the light

signal by sensors (rods and cones) in the eye. The responses of these sensors reach

the brain where the psychological component of color perception takes place. Color

perception is due to the three types of cones in the human eye which are the color

sensitive receptors. The receptor responses are functions of the incident light and can

be denoted by (lA, lA, and PA. These functions have maxima in the blue, green, and

red regions of the spectrum respectively.

1.2.1 Color Matching

All colors can be matched by a combination of three color primaries, but the primaries

may have to be changed in order to match certain colors [7]. Primary colors are colors

which are independent of each other in the sense that no primary color can be visually
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equivalent to a mixture of the remaining two primary colors. Matching a color means

that the additive combination of particular amounts of a red, a green, and a blue

light appears the same to the viewer as a given color. The reason for this is due to

the different color sensitive receptors in the human eye.

In a color matching experiment, the subject is shown the color to be matched on

one half of the visual field, and a combination of the three primaries on the other.

The observer is allowed to adjust the intensities of the primaries so as to obtain a

color match with the test stimulus, see Figure 1.2. Usually, the color to be matched

has its units normalized to unity in whatever units are being used. It is possible that

the units of one of the primaries may be negative which implies that the particular

primary with a negative intensity should be added to the test stimulus for a color

match with the other two primaries. The color, C, can be a pure spectral color

containing only a single wavelength of light, or it can be a combination of many

different wavelengths. The colors PI, P2 and P3 are the primaries. The coefficients

of these primaries are known as the tristimulus values of the color C relative to the

the primaries used. If the tristimulus values are allowed to take on negative values

then all colors can be matched. By performing a color match for all monochromatic

colors, three color matching curves can be created.

1.2.2 Vector Space Methods for Color Representation

If a continuous spectrum is sampled at a sufficient number of points, a vector space for­

mulation of the color matching problem can be obtained [15]. Let the N-dimensional

sampled spectrum be denoted by f = [1(1) f(2) ... f(N)]. As discussed earlier, the

human visual system has three cone sensors. It can be represented by a matrix,

S = [51 52 53], containing a set of three N-dimensional vectors. The response of the

eye to the spectrum f is then given by:

(1.2)



6

Observer

Figure 1.2: Color Matching Experiment

where c is a three-dimensional vector.

Let P == [PI P2 P3] denote the N X 3 matrix of primaries where PI, P2 and P3 are

three linearly independent, N-dimensional primaries. Let the monochromatic colors

be denoted by ei, i == 1, ... ,N, where e, has a one in the i t h component and zeros

in all others. We say that the stimulus ei is matched by [mI(i) m2(i) m3(i)] units of

primaries [PI P2 P3] respectively if

(1.3)

where m, == [mI(i) m2(i) m3(i)]T is the three-dimensional vector of the gains of the

pnmaries.

Matching all the spectral colors gives us the equation

(1.4)

where I is the N x N identity matrix. The N x 3 matrix M is known as the color

matching matrix. The columns of S are independent and the columns of P are also
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chosen to be independent. Both of them are rank three matrices. Therefore the

inverse (STp)-1 exists. Equation (1.4) can be solved for M giving

(1.5)

Post-multiplyingboth sides by P gives us

(1.6)

where I is a 3 X 3 identity matrix.

Using the color matching matrix, M, one can calculate the tristimulus values, tp,

of an arbitrary spectrum according to

(1.7)

where the subscript P in t p denotes the use of the primaries which form the columns of

P. The N-dimensional spectrum, f, is projected onto a three-dimensional subspace

that defines a particular color space. Equation (1.5) relates this subspace to the

human visual subspace. This reduction in dimension can make two different spectra

appear the same to an observer. These spectra are called metamers and the relation

is defined mathematically as

(1.8)

Mathematically, it is not necessary that the primaries P be realizable, i.e. all

elements of P are non-negative. We can choose any set of primaries and obtain the

corresponding matching functions M. Let Q == [ql q2 q3] be another set of primaries.

If N is the corresponding set of color matching functions then from Equation (1.4)

we have

ST == STpMT

ST == STQNT

=? STpMT == ST QNT

=? M T = (STp)-tSTQNT (1.9)
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Post-multiplying both sides of the equation by Q and setting NTQ to I (from equation

1.6), we get

(1.10)

Substituting back into Equation (1.9), we get

(1.11)

or

(1.12)

This transformation also gives us the mapping between the tristimulus values in the

two different color spaces

(1.13)

1.2.3 C.I.E. XYZ Space

One standard set of primaries is defined by the C.l.E. red, green, and blue primaries

consisting of single wavelengths at 700, 546.1 and 435.8 nm. It is seen in Figure 1.3

that the color matching function corresponding to the red primary has negative por­

tions in the blue end of the spectrum. This means that the light at these wavelengths

cannot be represented by an additive mixture of these three primaries. It is desirable

to have color matching functions which are realizable (i.e. their spectrum contains

only positive or zero values) since the tristimulus values can be obtained by optical

filters. The primaries however may be non-realizable which means that they contain

one or more negative values in their spectrum and are not physically realizable.

The e.l.E. in 1931 used a 3 x 3 linear transformation to convert the C.l.E. red,

green and blue color matching functions to a realizable set of color matching functions

x(,x), Y(A) and z(,x). The transformation from (R, G, B) to (X, Y, Z) is given by:

x
y

Z

0.49R +O.31G + 0.2GB
0.1767R + O.8124G + 0.0163B
O.OOR + O.OIG + O.99B

(1.14)
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Figure 1.4: C.I.E XYZ Color Matching Functions

This transformation implied a new set of primaries which were not realizable. Figure

1.4 shows the new set of color matching functions which are non-negative for all

wavelengths in the visible range. The samples are taken every two nanometers but

are connected in the plot. Each of these curves becomes one column of the color

matching matrix, denoted by A. If these columns are now denoted by aI, a2 and

a3 respectively, then the elements of each of the columns are given by the samples
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at regular intervals in the visible range, i.e. at = [at(l) al(2) ... al(N)]. Similar

sampling is done to obtain a2 and a3. The tristimulus values can now be computed

in the following manner:

(1.15)

where X, Y, Z denote the three-dimensional components of the tristimulus vector in

this color space.

1.2.4 Urriform Color Spaces

The CIE colorimetric system includes computational methods designed to aid in

the prediction of the magnitude of the perceived color difference between two given

object-color stimuli. The determination of a quantity that suitably describes the

color difference an observer may perceive between two given color stimuli rests on

the ability of the observer to judge the relative magnitude of t\VO color differences

possibly perceivable when viewing two pairs of stimuli. The observer's sensitivity

varies greatly with the conditions of observation and the kind of stimuli presented.

Sizes, shapes, luminances, and relative spectral radiant power distributions of the

test stimuli and the stimuli surrounding them are important factors affecting the

observer's judgement.

The eTE recommends the use of two approximately uniform color spaces and

associated color-difference formulae. The recommendations are all given in terms of

the CTE 1931 Standard Colorimetric Observer and Coordinate System [17].

1. CIE 1976 (L*u*v*)-Space and Color-Difference Formulae. This approx­

imately uniform color space is produced by plotting in rectangular coordinates
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the quantities L*,u* ,v* defined by:

L* 116(~ )1/3 - 16
Yn

u· 13L·(u'-u~)

13L*(v' - v~) (1.16)

with the constraint that Y/Yn > 0.01. If values of Y/Yn less than 0.01 occur,

a somewhat modified procedure is recommended for calculating L". For values

of Y/Yn equal to or less than 0.008856, the following L-:n formula is used:

L• Ym = 903.3Vn

Y
for Y

n
~ 0.008856 (1.17)

In Equation (1.16), the quantities u',v' and u~,v~ are calculated from:

u' = 4X

x + 15Y +3Z
V' = 9Y

x + 15Y + 3Z

V' =n (1.18)

The tristirnulus values X n, Yn, Zn are those of the nominally white object-color

stimulus. The total color difference ~E:v between two color stimuli, each given

in terms of L·, u", V· is calculated from

(1.19)

2. CIE 1976 (L·a*b·)-Space and Color Difference Formula. The second

approximately uniform color space, is produced by plotting in rectangular

coordinates the quantities, L * .a" ,b* defined by:

a*

b*

500[( -.:£ )1/3 _ ( Y)1/3]
X n Yn

200[( Y )1/3 _ (~)1/3]
~ z;

(1.20)
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with the constraint that XjXn 1 YjYn , ztz; > 0.01. in calculating L"', a* and

b" values of X/ X n, Y/Yn, Z/Zn < 0.01 may be included if the normal formulae

are replaced by the following modified formulae

and

L* == 903 3 Y
m • Y

n

Y
for 1: ::; 0.008856

where

a*
X Y

== 500[f(-) - f(_o )]m X n Yn

b*
y Z

== 200[f(-) - f(-)]m Yn z;

f(~) = 7.787(~)+ 111
66

f( Y) = (Y )1/3
Yn Yn

Y Y 16
f(-) == 7.787(-) + -

Yn Yn 116

f( ~) = (~)1/3
Zn Zn

Z Z 16
f( Zn) = 7.787(Z) + ill

~ > 0.008856

in < 0.008856

f. > 0.008856

f. ::; 0.0088.56

i,. > 0.008856

i,. ::; O.008856 (1.21 )

The tristimulus values X n, Yn, Zn are those of the nominally white object-color

stimulus. The total color difference ~E:b between two color stimuli, each given

in terms of L *, c", b" is calculated from

(1.22)
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The CIE color difference measure 6.E:b is often used as a measure of percep-

tual color difference [4, 17]. The average color tolerance accepted in printing

applications has been studied and found to be approximately a ~E:b of six.

The standard deviation in the accepted tolerance was 3.63 ~E:b [13].

1.3 Thesis Outline

The thesis is arranged in the following way. The second chapter discusses the mathe­

matical formulation of two different color output systems, a CRT and a color printer.

The additive principle is discussed followed by the development of a model for a CRT

monitor. This is followed by a discussion of the subtractive principle which is used

to develop the model for the color printer. The model limitations for both the CRT

and printer models are discussed.

The third chapter discusses the calibration procedure for the simulated printer

model developed in the second chapter. The ideal model with all its limitations is

used to test the calibration method. The bell function and the cubic B-spline interpo­

lation techniques that are used are discussed in detail. Three different extrapolation

techniques, namely, separable linear extrapolation, non-separable linear extrapola­

tion and band-limited extrapolation are discussed. The different interpolation and

extrapolation schemes are compared and the best ones are chosen for the actual

printer calibration.

The fourth chapter discusses the actual calibration of a KODAK XL7700 thermal

dye transfer printer. The entire calibration is carried out using one of each of the

interpolation and extrapolation methods discussed in the third chapter. The different

sources of error which come up in the calibration procedure are studied and discussed

in detail. Errors due to variability of the printer, the measuring device and the

interpolation method that is used are all studied in detail. The signal-to-noise ratio
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(SNR) of the printer is calculated and a similar noisy situation is simulated for the

mathematical model to see how the model compares to the actual printer. The

problem of making sure that all points in the printer gamut can be printed using the

look-up table is also discussed.

The final chapter contains a summary of the results that were obtained for the

printer calibration. The conclusions and the direction of further research are presented

at the end.



Chapter 2

Mathematical Models

Calibration of color output devices such as CRTs and color printers involve data inter­

polation techniques. A mathematical model of these output devices which simulates

the devices under certain assumptions helps us to study the behaviour of these output

devices. The effect of using different interpolation and extrapolation algorithms in

the calibration procedure can be studied by applying them to the calibration of the

simulated model. This chapter describes the development of mathematical models for

a CRT and a color printer. The basic assumptions made in the course of the model

development are listed and their validity explained. The basic principles of additive

and subtractive color reproduction are also discussed.

2.1 The Additive Principle

The experimental laws of color matching state that over a wide range of conditions of

observation, many color stimuli can be matched completely by additive mixtures of

three fixed primary stimuli whose radiant powers have been suitably adjusted. Other

color stimuli have to be mixed with one of the primary stimuli before a complete color

match with a mixture of the other two primary stimuli can be obtained. For some

other sets of primary stimuli, there are certain color stimuli that have to be mixed

with two of the three primary stimuli before a color match between this mixture and
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the third primary stimulus can be obtained. Every color stimulus can be matched

in color in one of these ways in terms of three primary stimuli whose radiant power

can be adjusted by the observer to suitable levels. This is the additive principle. The

choice of the three primary stimuli is not entirely arbitrary. Any set that is such

that none of the primary stimuli can be color matched by a mixture of the other two

may be used. The term additive mixture as used above represents a color stimulus

for which the radiant power in any wavelength interval in any part of the spectrum

is equal to the the sum of the powers in the same interval of the constituents of the

mixture. The additive primaries are represented by three color stimuli in the red,

green and blue regions of the spectrum.

The CRT is an output device which is based on the additive principle. In a CRT

the image is produced by what is called a picture tube. A picture tube in a color

monitor has three electron guns which produce three electron beams which excite

three different phosphors (primaries) on a fluorescent screen in front of the guns. The

color of the light output depends on the physical properties of the phosphor. The

phosphor screen is capable of emitting red, green and blue light. The intensity of

the light output depends on the velocity of the beam, the number of electrons in the

beam and the type of phosphor used.

2.2 Mathematical Modelling of a CRT

In a digital graphics system, the video buffer in the monitor drives the three digital-to­

analog converters (DACs) that provide the input to the electron guns. The voltages

which drive the electron guns are produced by these DACs which in turn convert the

code values in the red, green and blue frame buffers to analog voltage levels. To derive

a mathematical model for a CRT, it is assumed that the voltage outputs are linearly

related to the code values in the respective frame buffers. This has been shown to be
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a reasonable assumption in [3, 10]. A non-zero voltage is input to the electron guns

even at a zero code value, i.e. the black portion of the image has a corresponding

non-zero voltage level. For a black and white monitor, which has only a single electron

gun the mathematical relationship making use of the above assumption is given by:

L == K(n - xo)'"Y (2.1)

where L is the radiance of a black and white phosphor, K is a constant dependent

on the units of L, n is the count value in the frame buffer, and Xo is the cutoff count

value for the electron gun.

For a color monitor, the model takes a more complicated form. If we assume that

the chromaticity coordinates of the three phosphors remain constant then we get the

following equation:

K1,R(R - Ro)'YR + K1,a(G - Go)'"YG + K1,B(B - BO)'YB

K2,R(R - Ro)'"YR + K2,G(G - Go)'"YG +K 2 ,B(B - BO)'"YB

K3,R(R - Ro)'"YR + K 3 ,G(G - Go)'"YG + K 3 ,B(B - BO)'"YB (2.2)

where LR , La, LB are the radiance values for red, green and blue phosphors, R, G, B

are the red, green and blue count values, Ro, Go,Bo are the red, green and blue cutoff

count values, and ,R"a"B are the exponents for thee red, green and blue electron

guns. The terms Ki,R' Ki,G, Ki,B, i == 1,2,3 are constants. If the condition for gun

independence is met, then Equation (2.2) can be further simplified as:

K1,R(R - Ro)'"YR

K2,a(G - Go)'"YG

K3 ,B(B - BO)'"YB (2.3)

Equation (2.3) is the fundamental input/output relationship for a color monitor.
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2.3 Limitations of the CRT Model

A color monitor has four important properties which are assumed in developing a

mathematical model [3, 10]. These assumptions are true to varying degrees. They

are:

1. Temporal Stability: The monitor maintains its colorimetric parameters over

time, so that a calibration is not necessary frequently. In practice, this is true

over days but usually monitors should be calibrated about once a month.

2. Spatial Uniformity: The monitor has the same colorimetric parameters at

different points on its screen, so that a calibration can be done at one place

on the screen that will hold for the whole screen. Spatial uniformity is hard to

achieve. Sometimes there is as much as a 50 percent variation in the luminance

value between the color displayed at the center of the screen and the same color

displayed at the corners. This is due to the improper focusing of the electron

guns at the corners of the screen and the fact that electrons must travel a

longer distance to illuminate the screen corners compared to the center.

3. Gun Independence: The colorimetric properties of the monitor are truly

additive, so that it is possible to base the calibration scheme on the assumption

that the displayed color is the additive mixture of the color produced by each

of the three phosphor gun combinations. This property is assumed to hold in

most monitors.

4. Phosphor Constancy: The chromaticity coordinates of the red, green and

blue phosphors remain constant independent of the voltages applied to the

electron guns. Mathematically, if the spectral distribution of the phosphor is

given by <PI(A) at voltage VI, then the spectral distribution of the phosphor at
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voltage V2 is given by <P2(A) = a<pl(A) for some constant a. This property is

also assumed to hold in most monitors.

2.4 The Subtractive Principle

In additive methods of color reproduction, all colors are produced by the adding

together of different proportions of the light from three primary colors, a red, a green,

and a blue. Subtractive color reproduction is different in the sense that all the colors

are produced by different proportions of three different colorants, cyan, magenta and

yellow. It is characterized by the property that color is obtained by removing selected

portions of a source spectrum (Figure 2.1).

~ ~ - -
Red Red Red Red

ro ~

CD C +oJ ~
Q)

."t:: (Tj Green
c Green Green (/)

.c Green ~
Q) 0 ::J

~
o C'> Q) ~eu >- Ci

~
Blue Blue Blue

Blue

- ~ - -

Figure 2.1: Subtractive Model

A printing process is subtractive in nature. Each of the cyan, magenta and yellow

colorants removes an amount of its complimentary color. The function of the cyan

colorant is to absorb red light, that of the magenta colorant to absorb green light,

and that of the yellow colorant to absorb blue light. The transmission curves of each

of the three colorants vary over the entire spectrum as shown in Figure 2.2. The

amount of a particular color removed is related to the concentration of the colorant.

For the yellow colorant it is seen that, for all concentrations, the transmission in

the reddish part of the spectrum is high. In the greenish part, the variation of
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transmission with concentration is not large but, in the bluish part of the spectrum,

the transmission depends very markedly on the concentration of the colorant. This

shows that the amount of bluish light reflected from a piece of white paper, viewed

in daylight, would be altered by the concentration of a yellow colorant on its surface.

Similarly, the main effect of altering the magenta colorant is to vary the transmission

in the greenish part of the spectrum, while altering the bluish and reddish parts to

a smaller extent. Different concentrations of the cyan colorant alter the transmission

in the reddish portion of the spectrum and to a lesser extent the transmissions in the

greenish and reddish parts of the spectrum.

2.5 The Forward Model of the Printer

Each of the colorants can be characterized by their optical density spectra, the N x

3 matrix D. The optical density of a colorant is defined as -loglo(T), where T

represents the transmittance or reflectance of the colorant. The density of a colorant

is proportional to its concentration c. Thus we can write [7]

i == 1,2,3 (2.4)

where c; is the concentration of colorant i and Di,max is the density at unit concentra­

tion for colorant i. Transmission of a particular colorant, T; is related logarithmically

to its density as

i == 1,2,3 (2.5)

If we look at the density spectra for the different colorants, we see that the curves

should be linear in density, i.e. Di(Ci,l + Ci,2) == Di(Ci,l) + Di ( Ci,2) for different concen­

trations £;,1 and £;,2 of a particular colorant i. This can be seen in Figure 2.3. The

observed spectrum at a particular wavelength ,\ is given as [16]

(2.6)
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where Ti ( '\ ) is the transmission of the i th colorant at wavelength ,\ and 1('\) is the

intensity of the illurninant at wavelength X, This is the case for the colorants being

placed upon film. In the case where paper is used, the paper reflects the light and

the light passes through each layer of the colorant twice. Substituting Equation (2.5)

into Equation (2.6) we get:

(2.7)

Thus, the forward model can be written algebraically as [16]

(2.8)

where c is the 3-vector representing the concentration of the colorants, D m ax is an

N x 3 matrix of the densities at the maximum concentration, L is an N x N diagonal

matrix of the illuminant spectrum and g is the N-vector representing the radiant

spectrum. The concentration values must be between zero and unity. The exponential

term is computed componentwise i.e.

(2.9)

This model ignores non-linear interactions between colorant layers.

The tristimulus values XYZ are obtained by the equation

(2.10)

where A is a N x 3 matrix of the CIE color matching functions.

2.6 Limitations of the Printer Model

The mathematical rnodel for the printer described in the previous section represents

an ideal printer which makes a number of basic assumptions. The important proper­

ties which this model possesses are as follows:
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1. Temporal Stability: The amount of colorant that is printed onto the pa-

per (for a particular control vector) remains the same each time it is printed.

Therefore the colorimetric parameters do not change over time so that calibra­

tion needs to be done only once.

2. Spatial Uniformity: The printer behaves identically over different regions

of the printer sheet. The amount of colorant laid down on the sheet does not

depend on its spatial location on the sheet. In the case with printers which

have different printer heads, this implies that each of these heads are identical

in nature and there is no variation in the amount of colorant put down due to

variation of these heads. This would imply that the calibration can be done

for all the heads simultaneously.

3. Ideal Transmissions and Reflections: This is one of the most important

assumptions of the mathematical model. We assume that the paper reflects

all the light which is incident onto its surface without any absorptions. This is

followed by ideal absorptions and transmissions by each of the colorants. We

assume that there are no first-surface reflections at a dye surface when light

is incident on it, see Figure 2.5. We also assume that there are no multiple

internal reflections and \ve model the path that is indicated in Figure 2.5.

4. No Interaction Between Colorant Layers: A dye laid down on top of

another dye does not adhere as well as it would to paper. This is called dye

inhibition which we assume is absent in the model. In a thermal dye transfer

printer, the heating for a subsequent dye can melt the dye that has been

previously laid down. This is called back-transfer which we assume is absent

in this model.

5. Spectral Characteristics of Dye are not Changed by Interaction: We

assume that placing the dyes on top of one another does does change the
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spectral characteristics of each of the individual dyes.

The above properties represent an ideal printer. However, in reality, a printer may

behave quite differently. The assumption of having identical printing heads may not

be a reasonable assumption as was the case with the printer that was calibrated in the

course of this work. Each of the printer heads show a certain amount of variability.

This would imply different calibrations i.e. look-up tables, for each of the heads.

Incident Light
A Observer

Paper

Figure 2.4: Scattering of Light

Different optical effects may take place in a layer of dye placed on paper [18). The

major path of light is shown in Figure 2.4. The incident light passes through the

colorant layer, is reflected in all directions by the paper, passes through the colorant

layer again and emerges from the surface of the colorant. The observer sees that

portion of it which is travelling in the direction of his eye. There are several other

factors to be taken into account such as first-surface reflections, multiple internal

reflections, and absorption and transmission by the paper. First-surface reflections

and multiple internal reflections are shown in Figure 2.5. First-surface reflection is the
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path we are
modelling

Paper

First Surface Reflection

Paper

Multiple InternaJ Reflections

Figure 2.5: Other Paths of Light

reflection of the incident light at the surface of the dye. Multiple internal reflections

occur when some of the light reflected by the paper is reflected back toward the paper

by the upper surface of the colorant, passing through the colorant to be reflected again

by the paper. Eventually it either emerges or is absorbed.

Dye inhibition and back transfer are also problems which occur in printers. These

problems give rise to image dependent variations over different regions of the paper

onto which an image is printed. These and the other factors described above are the

main causes of the variability of any thermal dye-transfer printer.



Chapter 3

Mathematical Formulation

This chapter deals with the detailed description of the calibration procedure per­

formed for a simulated printer. The mathematical model developed in the second

chapter is used in the simulation. The calibration of this simulated printer will help

us understand and study some of the problems encountered in the actual calibration

of a printer which is described in the next chapter. This chapter describes in detail the

different interpolation and extrapolation techniques that are used in the calibration.

These schemes are then implemented with the mathematical model and the results

compared so that the best schemes can be chosen for the actual printer calibration

which is discussed in the next chapter.

3.1 Interpolation Technique

Using the mathematical model developed in Chapter 2, a coarse 8 x 8 x 8 look-up

table mapping the control values to the output eTE L*a*b* values is generated with

the forward model of Equation (2.8). This forward model is used for testing only and

to help us predict how well each of the the interpolation functions that we use, will

perform for the actual printer calibration. We have from the forward model

t = F(c) (3.1)
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where c is a 3-vector of control values and t is a 3-vector of the eIE L*a*b* values.

The function F here refers to the interpolation function that is used to define this

mapping. The forward model is shown in Figure 3.1.

-

Control Values

t =F(c)

Color Space

Figure 3.1: 'I'he Forward Model

The mapping from the control value space to the CIE L*a*b* space is highly non

linear. Our problem now consists of creating a finer, regular grid in the CIE L*a*b*

space, such that each point on this fine grid in the color space has a known control

vector associated with it, i.e. for a certain CIE L*a*b* vector t g on this finer regular

grid the corresponding control vector cg is obtained. Since the forward mapping is not

defined for the actual printer, we make the same assumption with the mathematical

model and define the interpolation function as an approximation to the function F.

A fixed set of data points (8 X 8 x 8) are used taking into account the fact that it is

convenient to take only a small number of measurements from the printer.

Iterative techniques with interpolation are used to estimate the control vector

corresponding to every vector t g on the finer grid in the CIE L*a*b* space. The

mapping from the control value space to the Clf L*a*b* space is not given by an

analytic function. This non linear mapping is also a one-to-one mapping which helps
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us use a fixed point iteration. For a given ClE L*a*b* vector t g , an initial estimate

Co of the control vector is made and the corresponding CIE L*a*b* vector is obtained

by interpolating over the three-dimensional regular grid of control values. A special

form of Newton's method in three dimensions is used to obtain a new estimate of

the control value. This method is called Broyden's method [5] and is equivalent to

finding a root of the equation

F(c) == t g or F(c) - t g == 0 (3.2)

where the function F refers to the interpolation function that is used. This iteration is

continued until Equation (3.2) is solved to the selected degree of accuracy. Broyden's

method is described in Appendix A.

Two kinds of interpolation functions were used, the bell function and the cubic

B-spline function. They are described below:

1. Bell function: This function is obtained by the convolution of a triangle

function with a square function and is defined as [12]

The sample spacing is assumed to be unity.

-3 < x < -1
2 - - 2
.=.!<x<!

2 - - 2
!<x<~
2 - - 2

(3.3)

2. Cubic B-spline function: This function is obtained by the convolution

of the bell function with a square function. It is defined as [12]

(3.4)

The sample spacing is assumed to be unity. The bell and cubic B-spline wave­

forms are both shown in Figure 3.2.
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Three-dimensional separable interpolation is used to interpolate for the CIE L*a*b*

values t g = (tg,l' tg,2, tg,3) on the finer grid

L L L w/(i,j, k)S(Cl,p - i)S(C2,q - j)S(C3,r - k)
k j i

p,q,i == 1, ... ,8 I == 1,2,3 (3.5)

where Wl( i, j, k) are the weights used to interpolate, S denotes the interpolation func­

tion used and (CI, C2, C3) denotes the control vector. The weights Wl( i, j, k) are ob­

tained by solving three sets of linear equations, one for each 1, as shown above. The

values tg,l( Cl,i, C2,j, C3,k) are assumed to be equal to the value of the ijkt h scalar entry

in the given set of data points tg,I(Cl,i, C2,j, C3,k), for i,j,k == 1,2, .....8 and 1 == 1,2,3.

3.2 Extrapolation

These interpolation schemes assume the presence of a sufficient number of data points

close to the interpolated point. This condition is satisfied by points lying well within

the printer gamut. Truncation of the data can cause a problem with interpolations

near the boundary of the printer gamut. One way of solving this problem is to

develop special algorithms to take care of points close to the boundary. We can

make these methods as complex as possible since they will be used only once in the

development of the fine, regular LUT. However, in this research we wish to study

the effect of extrapolation in color systems. Therefore, an approach to solving the

truncation problem is to extrapolate the data set for points outside the gamut, see

Figure 3.3. These extrapolated points can then be used along with the known data

set in an interpolation algorithm which does not require treating the boundary as

a special case. Three types of extrapolation schemes were proposed (i) separable

linear extrapolation, (ii) non-separable linear extrapolation and (iii) band-limited
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extrapolation. The last scheme was investigated since the mapping from the CMY

colorants to the CIE L*a*b* space for a printer is usually well behaved and smoothly

varying.
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Figure 3.3: Extrapolation in the Control Value Space

3.3 Extrapolation Methods

The eIE L*a*b* components are each assumed to be separable functions of the control

values of cyan, magenta and yellow, i.e. we can write

a* == 9 (C1 , C2, C3) == 91(C1) 92(C2) 93(C3 )

b" = h(Cl' C2, C3) == h1(Cl) h2(C2) h3(C3)

(3.6)

(3.7)

(3.8)

Since we assume separability, the separable extrapolation schemes were implemented

in a one-dimension problem to compare the relative errors that occur in the interpola­

tion of points close to the boundary. A series of lines corresponding to the L* values,
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were created by keeping two of the colorants constant and varying the third. The

true L· values corresponding to these control values are then compared with the orig­

inal L * values to calculate the error. Two different separable extrapolation schemes

were used, linear extrapolation and band-limited extrapolation. These methods are

discussed in detail in the following subsections. The third method of non-separable

linear extrapolation is also discussed.

3.3.1 Separable Linear Extrapolation

Linear extrapolation is the simpler extrapolation of the t\VO and is carried out one

dimension at a time. The extrapolations were carried out along each of the colorants,

one at a time. The order, cyan, magenta and yellow was selected. Let ti, i = 1, ...8 be

the set of eight data points representing the L* values which correspond to different

concentrations of cyan in the range (0,1) and zero concentrations of magenta and

yellow. The extrapolated points, to and tg , corresponding to concentrations of -1/7

and 8/7 of cyan respectively, for the same concentrations of magenta and yellow are

obtained by simple linear extrapolation as follows:

(3.9)

Similarly,

(3.10)

In this manner, all the extrapolations are done along the cyan direction for dif­

ferent concentrations of magenta and yellow. These extrapolated points are now

included in the data set to perform extrapolations in the directions of each of the

other colorants. This then involves taking a set of eight data points for which the

concentrations of cyan and yellow are kept constant and magenta is allowed to vary

from (0,1). The extrapolation is carried out in the same way as before. These points
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are now included in the data set and extrapolations are carried out in the yellow di­

rection by selecting eight data points with constant cyan and magenta concentrations

but different concentrations of yellow in the range (0,1).

The same procedure as above is followed for the data points corresponding to the

a* and b" values. This gives us the final set of extrapolated data. In this process, the

8 x 8 x 8 grid is now augmented to a 10 x 10 x 10 grid. All these data points can now

be used in the interpolation algorithm.

3.3.2 Linear Extrapolation using Taylor Series Expansion

This method of linear extrapolation performs a non-separable vector extrapolation.

If Co is a measured control value point on the boundary of the control value space of

the printer then let the corresponding point in the eIE L*a*b* space, to, be denoted

by F( co). Using the Taylor series expansion we can make a linear approximation for

any point c, not in the control value space in the following manner:

(3.11)

where A is a 3 x 3 matrix and has the following form:

8L 8L 8L
aco 1 8co 2 8t:{) 3

A==
ad. ad. ad (3.12)

aCO.l 8CO.2 8co 3
8b 8b ab

aCO,l 8CO,2 8CO,3

A can be approximated by using least-squares. We first estimate A by using the

points neighbouring the boundary point Co of concern. Each of these points forms

a different c, and the corresponding measured value forms the F( c.), In the case of

a point which is at the corner of the cube we have seven neighbouring points which

means that we have to solve three sets of equations with seven equations each. Each

set of equations gives us the least-squares approximation of each row of the matrix A.

For a point on the edge of the gamut, the boundary point of concern, Co has eleven
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neighbours. This results in three sets of simultaneous equations with eleven equations

each. A least-squares approach is used again to solve for A. Finally, a point lying on

one of the faces of the gamut, is surrounded by seventeen neighbours. This involves

solving three sets of simultaneous equations with seventeen equations each. Again,

each set of equations solves for each row of the matrix A. Once A is known, we

can easily approximate F( Ci) for any c, just outside the printer range using Equation

(3.11). This gives us a set of extrapolated data. Using this extrapolation method

our 8 X 8 X 8 data set is augmented to a 10 X 10 X 10 data set. All these points can

then be used in the interpolation algorithm to build the finer, regular grid in the CIE

L*a*b* space.

3.3.3 Band-Limited Extrapolation

A well-known technique for solving the extrapolation problem is an iterative method

known as the Papoulis-Gerchberg algorithm. Before we discuss this algorithm, let us

state the band-limited extrapolation problem for a discrete periodic sequence. For a

one-dimensional problem, let g(m), m E Z be a discrete periodic sequence with a

period N == 2M + 1 (without any loss of generality) such that

g{m)=g{m+N) mEZ

Assume also that 9 is band-limited to [-ko, ko], so that

N-I
L g(m)e21rirnk/N = 0 if M:::: Ikl > ko

m=O

(3.13)

(3.14)

If we are given a piece of 9: g(m), m E [-L, L], our goal is to recover g(m), m rt

[-L, L]. We can now state the discrete-discrete band-limited extrapolation problem

as follows:

given g(m), m E [-L, L],
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find f(m), -M::; m ~ M, M > L, such that

f(m) == g(m), m E [-L,L];

f is band-limited to [-ko, ko].

An iterative extrapolation technique is discussed by Papoulis in [11]. However,

this technique has to be modified when only sampled data is available [6]. A possible

technique of implementing the iterative technique is by means of the DFT. The first

iteration is given with the DFT

M
G(m) == L: g(j)e-21rijm/N

j=-M

The nth iteration step proceeds as follows. We form the function

where

(m) _ {I ImI< ko
p - 0 Iml > ko

(3.15)

(3.16)

(3.17)

This is equivalent to band-limiting Gn - 1 to the band-limit of f. We then compute

the inverse DFT of E: as below:

We next form the function

. {g (j ) Ij I ~ L
gn(J) = fn(j) Ijl > L

(3.18)

(3.19)

obtained by replacing the segment of fn(j) in the interval [-L, L] by the known

segment g(j) of f(j). The nth step ends by computing the transform

M
Gn(m) = I.: gn(j)e-27riim/N

j=-M

(3.20)
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of the function 9n(j) so formed. The iteration is carried out until the selected degree

of accuracy is achieved i.e. until 9n ~ 9n+t.

The method described above is used to extrapolate the data that we have. One­

dimensional band-limited extrapolation is carried out, one dimension at a time. As

in the case of separable linear extrapolation, the extrapolation are done first in the

cyan direction, i.e. the concentrations of magenta and yellow are kept constant while

those of cyan are allowed to vary. This is followed by extrapolations in the magenta

and yellow directions.

To compare the separable linear and band-limited extrapolation schemes, a series

of lines of the luminance (L*) values are chosen by keeping two of the dyes constant

and varying the third. Each of these lines consists of eight points (by varying one of

the dyes from 0 to 1 in steps of 1/7, and keeping the concentrations of the other two

dyes constant). Extrapolations are carried out for one point on either side to give

us a set of ten points. These ten points are then used in an interpolation routine

to estimate the control value for different values of the luminance which lie within

the range of the original eight data points. Figure 3.4 shows a typical comparison of

interpolation errors using points generated by both these extrapolation schemes.

It can be seen from the figure that separable linear extrapolation gives better

results than band-limited extrapolation in all simulations. Linear extrapolation is

more attractive than band-limited extrapolation since it is easier to implement and

takes less time. Band-limited extrapolation has the advantage of allowing physical

constraints to be imposed. However, since an iterative algorithm is used, it has

the disadvantage of taking a long time and not giving significantly different results

obtained by separable linear extrapolation.
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Figure 3.4: Errors due to Different Extrapolation Methods

3.4 Interpolation Methods

The points obtained by linear extrapolation are then used along with the data points

from the mathematical model to create a finer, regular LUT in the CIE L*a*b* space.

The bell and spline interpolations functions described in section 3.2 are used in the

interpolation routine to create the grid. A simple algorithm was used to divide the

CIE L*a" b" space into an equi-spaced grid. A minimum grid size of 32 was used in

each direction. The spacing in the grid was calculated in the following manner

• Divide the range in each of the L * .a" and b* directions (obtained from the 8 X

8 X 8 LUT) by the minimum grid size i.e. form the spacings (L':nax - L':nin)/31,

(a~ax - a~in)/31 and (b~ax - b':nin)/31.

• Choose the minimum of the spacings formed above as the spacing between the

two points on the finer grid in the CIE L·a"b* space.
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This algorithm gives us a regularly spaced grid such that the spacing in each of the

L*, a* and t: directions is the same.

Each of the CIE L*a * b" points on this regular grid are fed through the interpolation

routine to obtain a corresponding control vector. The ~E errors for each of these

points can be easily calculated since the mathematical model gives us the 'true' CIE

L *a*b* value corresponding to the control vector which is obtained by the interpolation

routine. In the case of the actual printer, this would correspond to the actual color

that the printer prints on the paper as opposed to the color it is supposed to print.

The bell and spline interpolation functions perform almost identically for the

mathematical model. Figure 3.5 and 3.6 show the histograms of the ~E errors for

each of the two cases. The histogram includes all the points which have converged to

control vectors which lie within the range of the printer i.e. each of the control values

lie in the range (0,1). It can be seen from the two figures that the bell function shows a

smaller average 6.E error. As a result, the bell function was the interpolation function

chosen for the actual printer calibration which is discussed in the next chapter.

Another comparison was performed using the bell interpolation function. Both

the linear extrapolation schemes discussed in the previous sections were used with the

mathematical model and the results compared. Histograms of ~E errors are plotted

for both cases in Figures 3.7 and 3.8. Both these histograms now also include the

points outside the gamut which converge in the iterative interpolation routine. The

mean ~E errors have increased because of the larger errors associated with points

which lie outside the gamut and converge in the interpolation routine. However, the

use of vector extrapolation shows slightly better results than the case where separable

linear extrapolation is used, see Figures 3.7 and 3.8.
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3.5 Signal-to-Noise Ratio Description

The results obtained in the previous section describe the performance of the interpo­

lation routine under the assumption that no noise is present in the data collection.

However, in reality, a color printer will not be noise free and the noise will manifest

itself as a positive or negative variation about the true value of the data that is col­

lected. The primary causes are the variability of the printer, the interactions between

the colorant layers and the variability in the measuring device.

To simulate this environment, noise is added to the data from the mathematical

model and its effect on the change in ~E errors is observed. The noise is added in

the XYZ tristimulus space. The XY Z values of the data points are generated from

the mathematical model as described in Chapter 2. If Xi, i == 1, ... , 512 is the set

of data points without the noise then the signal power is calculated in the following

manner:
512

2 " 2O'signal == Z:: Xi
i=l

(3.21 )

The noise power depends on the SNR (in db) that is desired and is calculated in the

following manner:

2 2 -SNR

U noise == 0' signal 10 10 (3.22)

The signal and noise power are calculated separately for each set of X values, each

set of Y values and each set of Z values. The noise power thus calculated is used to

calculate the standard deviation of the noise sequence which is to be added to the

original signal. The noise sequence is chosen to originate from a Gaussian distribution.

One of the problems with using Gaussian noise is that there is always a finite

probability of obtaining large values for the noise which may cause very large .6.E

errors while creating the LUT. This may not be very realistic. One way to reduce the

noise variance is to use correlated noise. This process is described in the next chapter.
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Another problem with using the Gaussian distribution is that care must be taken to

see that the XYZ values do not fall below zero when the noise component is added

to the original signal, since the XYZ values are non-negative. It makes sense to test

the mathematical model with the addition of noise only after we have an estimate of

the SNR of the printer that we want to calibrate. This will enable us to compare the

performance of the printer with the mathematical model and to observe whether the

mathematical model is a sufficiently accurate representation of the printer.
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The basic thermal dye transfer process consists of transferring the dye which is

on a carrier ribbon to another substrate, paper or transparency [14]. The ribbon is

made with successive strips of yellow, magenta and cyan dyes. The yellow image is

laid down first; the paper is repositioned; the magenta image is then laid down; the

paper is repositioned and the final cyan image is laid down. The paper and ribbon are

moved simultaneously over a thermal head which melts or vaporizes the dye and thus

transfers it to the paper (Figure 4.1). The printing head consists of one individually

controlled heating element for each pixel on a line. This allows the thermal printers to

produce high resolution images. The XL7700 head contains 2048 individual heating

elements. Thermal control of each element drives the appropriate amount of dye from

the ribbon onto the paper or transparency material, thus forming a continuous tone

picture.

Printer Ribbon

Paper or
Transparency

Print
Head

Drum

Figure 4.1: The Thermal Dye Transfer Process
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A number of problems can a.rise with the thermal dye transfer methods. These

include:

• variability of the heating elements

• variable warm-up time and behaviour of the heads

• variation caused by ambient conditions

• hysteresis of the heating elements

• dye inhibition, a dye laid down on top of another dye does not adhere as well

as it would to paper

• back transfer - the heating for a subsequent dye can melt the dye that has

been previously laid down

In addition to these errors, errors are also introduced due to the calibration method

that is used. These errors will mainly be errors due to measurements and interpola­

tion schemes that are used. All these errors will be discussed in greater detail with

reference to the calibration of the XL7700.

4.2 Data Collection and Observations

A calibration chart was generated from the the Kodak XL7700 by varying the con­

centrations of the cyan, magenta and yellow dyes in a uniform manner. The control

value space was divided into eight equispaced samples in each direction (from 0 to 1 in

steps of 1/7) to generate 512 color patches. A GRETAG SPM-50 spectrophotometer

was used to measure the eIE L*a*b* values of these color patches. This set of eIE

L*a*b* values forms the known coarse 8 x 8 x 8 data set.

As seen in Figure 4.2, there are a number of steps In the calibration process

which coupled with the variability of the printer, contribute to the total error. Before
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proceeding further with the calibration process, it was important to determine if

there were any variations in the printouts produced by the XL7700. Different factors

contribute to the error during the calibration process of the printer. These errors

appear at every stage of the process. One of the important contributions to this error

is the inherent variability of the printer. Four kinds of inconsistencies were observed

due to the printer variation. These variations of the printer were used to give us an

estimate of the noise for the SNR calculation of the printer.

Printer Calibration
Procedure

Calibration
Chart

CIE L*a*b*
Image

CIE L*a*b*
to

CMY
Look-Up
Table

Printer

Figure 4.2: Processing the Image for Printing

1. Initial Warrn-Up Time: The XL7700 has an initial warm-up time.

Several identical images of the calibration chart were printed out in succession

as soon as the printer was ready for printing. However, after measurements of

the first two charts were made, it was noticed that there was an appreciable

color difference between the CIE L*a"b' values of the color patches on the first

chart as compared to those on the second. ~E errors of the order of 10 or
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more were observed between the first print and the second print. However,

when successive prints were compared with these two initial prints they were

much closer to the the second print than the first. ~E errors of the order

of 10 were still observed between each of these prints and the first. It was

concluded that the first print produced by the XL7700 after it is switched on

is an inaccurate representation of the true image. An initial print was the

warm-up time assumed for the printer for all future measurements i.e. only

the prints after the first were used in the calibration process.

2. Measurernents on Different Heads: The CIE L*a*b* values pro­

duced by identical control values varied depending on the position of the color

patch on the paper on which it was printed. Preliminary data collected on

several patches (corresponding to the same control value) printed at different

positions on the sheet typically gave ~E errors greater than 3.5. Since the

XL 7700 has four heads printing over different areas of the paper, a natural

explanation for the error was that the amount of dye printed on to the paper

was also a function of the particular head that printed it. This led to the

conclusion that the calibration should be carried out for each individual head.

In the calibration procedure used, the calibration chart was printed only under

the second head.

3. Measurernerrts on Different Sheets of Paper: The XL7700

also displayed a certain amount of variability when the same color patch was

printed at the same location on different sheets after the first sheet. The

standard deviation over different sheets ranged from 1.06~E to 1.93.6.E. This

provides a lower bound on the accuracy of the calibration. This indicated

the need to measure the calibration chart over several printouts and to study

the average ,6.E errors that are observed due to this anomaly. Therefore, the
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measurements of the calibration chart were measured over several printouts

and the average values over all the sheets were used as the points of the known

8 x 8 x 8 coarse data set. Another problem arose at this stage since the entire

calibration chart (which consisted of 512 color patches) could not be printed

on one sheet under the second head only. Each color patch had to be large

enough for it to lie completely under the aperture of the GRETAG SPM-50

spectrophotometer. This meant that the calibration chart had to be printed

on two separate sheets, each sheet containing half the total number of color

patches on the chart. Since all the color patches were generated sequentially by

changing the concentration of the cyan, magenta and yellow dyes successively

in that order, it was obvious that the measured errors would incur a block

change when half of the chart was printed on a new sheet. Therefore, larger

errors would occur in the regions where adjacent color patches of the calibration

chart were printed on different sheets. To keep this error random and not just

in one region of the CIE L*a*b* space, the calibration chart was printed out

in a random manner. These measurements were then averaged over several

printouts to obtain average CIE L*a*b* values for all the 512 points of the

coarse LUT. Figure 4.3 shows the calibration chart which was printed out in

an ordered fashion under the second head.

4. Error due to the Measuring Device: Another source of error is

due to the measuring device itself. The GRETAG SPM-50 spectrophotometer

was used to measure the CIE L*a*b* values of the color patches on the cali­

bration chart. The GRETAG has a certain amount of error when measuring

the same color patch. This is known as the reproducibility of the instrument.

The specifications from the GRETAG manual mention a reproducibility of ~E

::; 0.2. To average out this error and to take care of variations under the same

head, each color patch was measured five times at different regions in the same
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Figure 4.3: Both (a) and (b) form the calibration chart and are printed on separate
sheets under the second head
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patch and the average of these was taken as the eIE L*a*b* value for that

particular patch on a particular sheet under the second head.

4.3 Interpolation Error (Creating The Look-Up

Table)

The next step of the calibration process involves creating the finer, regular LUT from

the coarse set of 512 measured values. The errors discussed in the previous section

were errors introduced in the calibration process due to the variability of the XL7700

and the measuring instrument used. However, in trying to create a finer, regular grid

in the eIE L *a JII t: space interpolation is used over the known coarse 8 x 8 x 8 set of

data that was measured. This introduces an additional error component.

As discussed in Chapter 3, interpolation problems occur for points close to the

boundary. To overcome this problem, linear extrapolation was used to estimate the

eIE L*a*j* values for points outside the printer gamut. The printer gamut was thus

augmented to a 10 x 10 x 10 grid. These extrapolated points are used along with the

measured 512 data points in the interpolation process to create the finer LUT.

To measure the average interpolation error that was obtained, a test pattern of

343 points (corresponding to all combinations of the three dyes by varying their

concentrations from 0.2 to 0.8 in steps of 0.1) was used. The testing procedure is

described schematically in Figure 4.4. The test pattern whose control values are

known is printed and its eIE L * a*t: values are measured by the spectrophotometer.

These eIE L*a*b* values are then used in the interpolation routine to obtain the

corresponding estimate of the control values. These control values are then used to

generate a new print. The eIE L*a*b* values of the color patches on this sheet are

then compared with the eIE L*a*b* values of the test chart. The bell interpolation

function was used in the interpolation process since it gave a smaller ~E error for the
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Figure 4.4: Testing the Interpolation Scheme

mathematical simulation.

The same algorithm that was used in the mathematical model was used to divide

the CIE L *a*b* space into an equi-spaced grid. A minimum grid size of 32 was used in

each direction. The spacing in the grid was calculated in the same manner as before

I.e.

• divide the range in each of the L*, a* and b* directions (obtained from the 8 x

8 x 8 LUT) by the minimum grid size i.e, form the spacings (L:nax - L~in)/31,

(a~ax - a~in)/31 and (b:nax - b:nin)/31.

• choose the minimum of the spacings formed above as the spacing between two

points on the finer grid in the CIE L*a*b* space.

Using this algorithm a grid size of 32 x 48 x 59 was created in the CIE L*a*b* space.

Only a fraction of these points were within the boundary of the the printer gamut.
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The points which fell outside the gamut and did not converge in the iteration were

flagged. The LlE errors which arise due to the interpolation algorithm are tabulated

in Table 4.1. These errors here indicate a lower bound on the errors obtained by

the calibrated printer since the errors for arbitrary points will include additional

interpolation error caused by a less accurate interpolation scheme such as trilinear

interpolation. Figure 4.5 shows a histogram of these ~E errors.

Table 4.1: ~E Errors Due to Interpolation

Statistics Bell Function
Max~E 5.5391

Average ~E 2.0452
Variance ~E 0.5776

HIStogram of dE Errors
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Figure 4.5: ~E Errors Due to Interpolation
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4.4 Trilinear Interpolation

Once this LUT (mapping points on a finer, regular grid in the eIE L*a*b* space to

the control value space) is created, we can use it with simple trilinear interpolation

to estimate the control values for any CIE L *a"t: point in the printer gamut. If

the mapping from the control value space to the eIE L*a*b* space is assumed to be

smoothly varying, and if the size of the uniform grid in CIE L*a*b* is sufficiently fine

then we can assume that the contribution to the error due to the trilinear interpolation

will not be large. Since both these conditions are satisfied in our case, we hope to

observe that trilinear interpolation does not increase the LlE errors by a large factor.

The process of trilinear interpolation is described in Appendix B.

To test out our hypothesis, we use the same test print consisting of 343 equi­

spaced samples and measure their CIE L *a"b* values. Using trilinear interpolation

over the fine, regular grid that we have created we estimate the control values for each

of the test points. To do this, the CIE L*a*b* value of each test point from the image

is used and the corresponding cube containing this point is located in the fine LUT

that has been created. A simple trilinear interpolation as described in Appendix B

is performed using the eight points on the corners of the cube as data points. This

gives us a control value for each of these test points. These control values are then

used to print a new chart whose CIE L * a" b" values are measured again. The CIE

L*a*b* values of the color patches on this sheet are compared with the CIE L*a*b*

values of the color patches of the test sheet and the LlE errors are calculated. These

results are discussed in the next section. The procedure is described in Figure 4.4.

The interpolation procedure now, refers to trilinear interpolation.

We can predict that the error that is added by trilinear interpolation will not be

significantly large if our assumptions that the forward mapping is well behaved and

smoothly varying and that the grid size is fine enough to make linear approximations
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are valid. The relevant statistics of the ~E errors are shown in Table 4.2. It is

observed that the average errors for the test data set that was used did not change

appreciably after trilinear interpolation. However, the variance of the ~E errors

increased almost two-fold. The histogram of .6.E errors is plotted in Figure 4.6 and

should be compared to Figure 4.5.

Table 4.2: ~E Errors Due to Trilinear Interpolation

Statistics
Max~E 6.9392

Average ~E 2.1939
Variance ~E 0.9849

Histogram of dE Errors
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Figure 4.6: ~E Errors Due to Trilinear Interpolation

Trilinear interpolation may not be feasible for points close to the boundary if all the

eight corner points of the cube in which the test point lies, do not have corresponding

control values (Figure 4.7). This would imply that in the process of creating the grid
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these points did not converge in our iteration. This is a serious problem since we

would like to make sure that we can print at least all the points lying in the printer

gamut. An easy initial solution to this problem was to augment our data set further

from a 10 x 10 x 10 set to a 12 x 12 x 12 set. This would involve another set of

linear extrapolations at the boundary of our already augmented (10 x 10 x 10) data

set. This gives us a wider range for the test point to converge to some control vector,

each element of which can now lie between (-2/7,9/7) which is greater than the range

(-1/7,8/7) which we had for our smaller augmented grid (10 x 10 x 10).

I1JI Gamut Surface

Control value for b is to be
obtained by extrapolation

• Grid Points

C: Test Point

Figure 4.7: Extrapolation to Cover Entire Gamut

The smaller augmented grid of 10 x 10 x 10 gave convergence problems for points

on the grid which were in the darker (low L* values) regions of the gamut. A test

pattern of 54 points consisting of color patches close to the boundaries was printed

on the XL 7700. These points corresponded to all combinations of control values

ranging from 0.03 to 0.09 in steps of 0.03, and another combination of control values

ranging from 0.91 to 0.97 in steps of 0.03. The former set gives us colors of high
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luminance while the latter set consists of the darker colors. The smaller (10 X 10 x 10)

augmented grid gave convergence problems for points on the grid which were in the

darker regions. Most of the test points in this region did not lie in cubes for which all

the eight corner points had converged. However, by augmenting the size of the data

set to 12 x 12 x 12 by another linear extrapolation at the boundary, the corner points

containing the same test points had converged to their corresponding control values.

This occurred for all but one point of one cube containing one of the test points. This

would have been a problem in the lighter regions of the gamut since a small change

in control values gives a corresponding large change in 6E between the two colors.

However, in the darker regions small changes in control values would imply a small

~E error between the two colors. This means that it is reasonable to do simple linear

extrapolations for such corner points of the cube knowing that the 6E error in doing

so would not be large.

The histogram corresponding to this test set is shown in Figure 4.8. The errors

below three correspond to errors in the darker regions of the gamut (high control

values), whereas the errors larger than three correspond to the lighter points in the

gamut (low control values).

From the mathematical model, in Chapter 3 (Figures 3.7 and 3.8), it was seen

that the average ~E errors were smaller using non-separable linear extrapolation.

To test whether the same result applies to the actual data, the measured data set

was augmented to a 10 X 10 X 10 grid using linear extrapolation by Taylor series

expansion. The same set of color patches which were used in the previous case were

tested for the LUT created by using this new set of extrapolated points. It was

seen that all the 54 test points near the boundary were located in cubes for which

each of the corner points had converged in the process of creating the LUT. This is

a definite improvement over the previous LDT that was created by using separable

linear extrapolation. Furthermore, extra extrapolations were not required, unlike the
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previous case. It was concluded that non-separable linear extrapolation was more

accurate than separable linear extrapolation. The histogram of ~E errors that were

associated with these color patches after trilinear interpolation is similar to Figure 4.8.

The LUT that was created using the extrapolated points generated by this method

was the final LUT.

Histogram of dE Errors for Points at the Boundary of the Gamut
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Figure 4.8: ~E Errors for Points Close to the Boundary of the Gamut Using Separable
Linear Extrapolation

4.5 Signal-to-Noise Ratio of the XL7700

As described earlier, the coarse 8 x 8 x 8 data set was measured over seven different

sheets and an average value over these sheets was taken as the measured value. An

additional averaging was done over each sheet. Due to the variation of the printer on

the same sheet, an average of five different measurements was used for each of the 512

color patches that were printed out. This was done for all the seven sets of 512 color

patches which were measured. Finally an average over all these seven sets was then
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used as the measured value. Measurements were made in the CIE L*a*b* space by

using the GRETAG SPM-50 spectrophotometer. The SNR calculation is done in the

XYZ tristimulus space since the GRETAG makes measurements in this space and

then converts it to the CIE L*a*b* space. The kind of averaging that was used gives

rise to the fact that two different kinds of printer variations give rise to two different

SNR calculations

(i) SNR calculation due to inter-sheet variations

(ii) SNR calculation due to variation on the same sheet.

In each case the SNR is calculated for the single head under which measurements are

made.

4.5.1 SNR calculation due to inter-sheet variations

The measured value of each of the 512 color patches is the average over seven different

sheets, all measured under the same head. These average values are defined as the

signal value associated with each color patch. Let:

Xk(i) i==1, ... ,7 k==1, ... ,512 (4.1 )

represent the X tristimulus value of the kt h color patch on the it h sheet. Then the

average X value of the kt h color patch is given by:

- 1~X (0)X k == - L..J k Z
7 i=l

The signal power corresponding to the X value only is given by:

The noise variance for the kt h color patch is given by:

(4.2)

(4.3)

(4.4)
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The average noise power is calculated by taking the average over all the 512 color

patches as follows:

(4.5)

The signal to noise ratio is then given by:

(4.6)

Similar SNR calculations were done using the average Y and Z values as the signal

components. Corresponding noise powers were calculated as above and a SNR was

obtained.

Using the data that was measured, the SNR was calculated for each of the three

components of the tristimulus values i.e. X, Y and Z. The SNR values that were

obtained are shown in Table 4.3.

Table 4.3: SNR of the XL7700 due to Inter-Sheet Variations

SNR
X 59.4382
Y 58.7063
Z 56.9435

4.5.2 SNR calculation due to variation on the same sheet

To calculate the SNR of the printer due to the variation of the printer over one par­

ticular sheet (under a single head), we need to make multiple measurements for each

color patch on a sheet. In making the measurements for the 512 data points, an

average of five measurements for each color patch was used as the measured value.

However, each of these measurements was not recorded since the averaging was done
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by the GRETAG while the measurements were made. Therefore a subset of the data

set corresponding to 14 different colors were printed again. Each of these color patches

were measured at eight different regions in the patch and these values were recorded.

As before, eIE L*a*b* values were measured and converted to XYZ tristimulus val­

ues. The SNR calculation was done as before except that the averaging is now done

over the values measured on the same sheet. As before let

Xk(i) i == 1, ... ,8 k == 1, ... ,512 (4.7)

represent the i t h measured value of the X tristimulus value of the kt h color patch on

the same sheet. The average signal power and noise power is calculated in the same

way as before except that the averaging is done over the eight different measurements

that are made.

The SNR calculations are again done separately for the X,Y and Z values. Table

4.4 shows us the SNR that was obtained for each of the three components.

Table 4.4: SNR calculation due to variations on the same sheet

SNR
X 53.4497
Y 52.5841
Z 50.5775

4.5.3 SNR calculation taking into account both kinds of

variations

Two more sheets with the same 14 color patches were printed out. These color patches

were measured again in the same way as the first sheet that was printed. As before

eight measurements were made at different locations of the same color patch on each

sheet. Each of these measurements also showed variations about the mean. These
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variations are plotted in Figure 4.9 for each of the three sheets. The y-axis denotes

the luminance(L*) value for each of the 14 color patches. The x-axis has an arbitrary

numbering sequence.

An attempt was made to calculate a SNR for the XL7700 using all the data that

we now have of the 14 different color patches, each set of which is printed on three

different sheets. Each color patch on each sheet has an average luminance value

associated with it. The mean of these average values over all the three sheets is used

as the luminance value for each color patch. Variations of luminance for each patch

are compared to this mean level and an SNR calculation is done using this data set.

The SNR is again calculated in the XY Z tristimulus space since the GRETAG makes

measurements in this space and then performs the conversions.

Let Xk(i,j) i == 1, ... ,8 j == 1,2,3 k == 1, ... ,14 be the X value of the it h

measurement of the kt h color patch on the jth sheet. The average signal value for the

kt h color patch is given by:

X; = 8 ~ 3 ~~Xk(i,j)
1 ]

The signal power is given by:

The noise power for each color patch is calculated as follows:

The average noise power is now given by:

(4.8)

(4.9)

(4.10)

(4.11)
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Figure 4.9: Variation of L* values on Different Sheets
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The SNR is given as before:

(4.12)

Figure 4.10 shows a plot of the mean luminance values for each color patch on the

three different sheets. Variation is observed between the means on different sheets.

However, if we assume that this variation is small compared to the variation on

each sheet about its own mean then the above calculation seems to be a reasonable

calculation for the SNR. We do, however, expect that the SNR calculated as above

will be smaller than an individual SNR calculation for each sheet. This is because

by taking the mean over the three sheets as the signal level, and all variations about

it due to the noise, we are assuming a larger noise variance. This would give us a

smaller SNR. The SNR that was calculated in this case is given in Table 4.5. As

expected the SNR showed a slight decrease.

Mean Values of Color Pa~ 'Of' the 3 Sheets
120r----~---r----,,.....__-___r_--_r__-____,

....... sne.t1

100-

80

-I 60

40

20

ahMt2

40 60 80
Dtffef9nt Color Patc:ne.

-shMt3

100 120

Figure 4.10: Mean L* Values for Each Sheet

An attempt was made to relate the noise variance to the luminance level of the

color signal. For the 343 points which we had measured earlier to test the interpolation
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Table 4.5: SNR calculation with both variations

SNR
X 49.9488
Y 49.8337
Z 49.6174

scheme, the ~E errors corresponding to each of the color patches were plotted against

the luminance level of the color signal. Figure 4.11 shows the corresponding plot,

which shows a positive correlation between the two. The correlation coefficient was

calculated between the ~E values and the corresponding L* values. This gave us

a value of about 0.44 which shows a distinct positive correlation i.e. an increase

in the luminance level of the signal would most likely increase the ~E error after

interpolation.

Seatter Diagram of dE vIs L
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Figure 4.11: Luminance v/s 6E Errors
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4.6 SNR Simulation with Mathematical Model

Now that we have an estimate of the SNR of the XL7700 color printer, we can use

the mathematical model developed in chapter 2, to simulate a printer with the same

SNR. This is done by adding noise to the set of XYZ tristimulus values as described

in chapter 3. If Xi i == 1, ... ,512 is the set of X values of the simulated data points,

then the signal power is given by:

512

a~ == EX?
i=l

The noise power is calculated using the knowledge of the SNR that is desired,

(4.13)

(4.14)

The noise power is used to calculate the standard deviation of the noise sequence that

is to be added to the original signal. This corrupted signal is now used as the set

of X values of the data set. Similar manipulations are done for the Y and Z values

of the simulated data. The noise sequence is chosen to originate from a Gaussian

distribution.

The SNR of the XL 7700 was estimated to be in between 55 to 60dB. The mathe-

matical model is simulated with a noise power of 60dB that is added according to the

method described above. The LUT is constructed and the ~E errors are calculated.

The distribution of ~E errors for the grid points which lie in the color gamut of the

simulated printer are shown in the histogram in Figure 4.12. As can be seen from

the figure, the variance of the errors is quite large. This is because the noise that

was added to the XYZ data was uncorrelated Gaussian noise and results in a larger

~E error that would be obtained if the noise on each channel were correlated as it

actually is.

To generate correlated noise for the simulation, for each XYZ triple generate a

31-vector (since the spectrum is sampled at steps of JOnm between 400nm and 700nm)
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of white Gaussian noise of standard deviation an. Let this vector be denoted by n.

The noise for each channel is obtained from the dot product of the corresponding

color matching function with the noise spectrum. The simulated measured value is

then given by:

X m = X +xTn, (4.15)

where X m is the simulated measured value, X is the actual value and x is the color

matching function corresponding to the X value. The same procedure is carried out

with the actual Y and Z values to get Ym and Zm. The value of an has to be adjusted

to get the appropriate SNR.

Correlated noise was added to the XY Z data such that an SNR of 61dB was used.

This data that was generated by the addition of correlated noise was run through the

interpolation routine to generate the LUT. Control values were obtained for these

points and the ~E errors were calculated. The histogram of these ~E errors is shown

in Figure 4.13. It can be seen that the variance of the ~E errors reduced appreciably

with the use of correlated noise.
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Histogram of dE Errors for MathematicaJ Model with Noise
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Figure 4.12: ~E Errors for Model with 60dB Uncorrelated Noise

Histogram of dE Errors for MathematicaJ Modal with Correlated Noise
1200~-_r_--~--r__---r"--__r__--r__-__r_--__r___.,

1000

SNR - 61db

mean - 1.9226

variance - 2.8763

#I of points in the gamut - 17585

800

~c
~ 600
~u:

400

200

2 4 6 8 10
dE

12 14 16

Figure 4.13: ~E Errors for Model with 61dB Correlated Noise



Chapter 5

Summary and Conclusions

5.1 Summary

Chapter 1 discussed the research problem and the motivation for looking into it. The

fundamentals of color science were necessary to understand the work. The basics

of color matching, a vector space approach to color imagery and the mathematical

basis for some subjective color phenomena were discussed. The CIE L*u*v* and the

CIE L*a*b* uniform color spaces were discussed. The CIE L*a*b* space was used to

calculate ~E errors between colors in all future work.

Mathematical models for a CRT and a printer were developed in Chapter 2. The

additive and subtractive principles on which the CRT and the printer are based

respectively are discussed in detail. The properties of an ideal CRT and a printer

are mentioned along with the limitations of each of the mathematical models. The

mathematical models help us to simulate these output devices and understand their

behaviour under the model limitations.

For the purpose of this thesis, we chose to calibrate the KODAK XL 7700 thermal

dye-transfer printer. Before the calibration of the actual printer was carried out,

the calibration of the mathematical model was performed in Chapter 3. In this

chapter, the different interpolation and the extrapolation techniques that were used

were discussed and implemented in the calibration of the mathematical model of the
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printer. Two types of interpolation functions were used, the bell function and the

cubic B-spline function. Extrapolation of the data set was carried out to reduce

interpolation errors for points at the boundary of the color gamut. Three types

of extrapolation were looked at, separable linear extrapolation, non-separable linear

extrapolation and band-limited extrapolation. It was shown that non-separable linear

extrapolation gave us the best results. The LUT for the mathematical model was

developed without taking into account the presence of noise. The bell and the cubic

B-spline interpolation functions performed almost identically. The bell function gave

a lower average 6E error of 0.4179 in the creation of the LUT and was therefore

selected as the function to be used in the calibration of the actual printer.

The actual calibration of the KODAK XL7700 was discussed in Chapter 4. The

calibration procedure involves a number of factors which contribute to the error in

the calibration procedure. The different errors that were studied were those due to

the initial warm-up time of the printer, measurements being made on different heads

and on different sheets of paper and finally due to the measuring device that was

used. It was determined that the printer had an initial warm-up time of one print.

Since there was considerable variation between different heads, it was decided that

the calibration be carried out separately for each head. The calibration procedure was

carried out for the second head only. Since there was a variation between different

sheets, an average of seven different sheets was used in the data collection. To average

out errors due to the measuring device and to take care of variations under the same

head, each color patch was averaged over five measurements on each sheet.

The data that was collected in this manner was then used to create the LUT.

The bell function, which gave better results than the cubic B-spline was used in the

interpolation routine. The interpolation error in creating the LUT was estimated

for 343 points in the color gamut. An average ~E error of about 2.05 was obtained

as the interpolation error which is lower than the threshold value of 3, above which
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color differences can be detected. This value of 2.05 provides us with a lower bound

on the errors obtained by the calibrated printer since additional interpolation error

is introduced when trilinear interpolation is used to estimate the control values for

points not on the grid. Once the LUT is created, we use trilinear interpolation to

estimate the control values for points not on the grid. Using the same 343 points, a

total average error of 2.19 is obtained which is again less than 3.

The data that was available was then used to estimate the SNR of the printer. The

SNR calculation was done in different ways and these values are tabulated in Tables

4.3, 4.4 and 4.5. This estimate of the SNR value is then used in the mathematical

simulation to generate Gaussian noise with the required power. It was seen that

a large variance was observed in the interpolation errors using uncorrelated noise

indicating that it is an inappropriate model. To reduce the variance, correlated noise

was used which reduced the noise variance appreciably.

5.2 Conclusions

The XL 7700 printer was calibrated for a single print head. The procedure is the

same for the other three heads. The extrapolated points were used along with the

measured values to reduce the interpolation errors for points close to the boundary of

the printer gamut. The look-up table method with trilinear interpolation worked well

and showed that little could be gained by using more precise interpolation methods

for all points. The average ~E errors are of the same order as the variability of

the printer. Therefore, no significant improvement in the average ~E errors may be

expected by changing the interpolation scheme.

Simulations using the mathematical model showed close resemblance to the per­

formance of the printer. However, since white Gaussian noise was used to add noise

in the model, the variance of the noise was quite large. This was reduced by using
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correlated noise. This showed that the mathematical model could be used to predict

the performance of the printer.

5.3 FUture Work

The work that has been carried out can be extended by looking at certain problems

that come up in the course of the research. We have assumed that the printer that

was calibrated possessed the property of temporal stability. However, in reality the

colorimetric parameters may change over time thus requiring the printer to be cali­

brated every once in a while. To facilitate this process we should consider adaptive

updating methods for the LUT.

Another interesting problem is to determine the correlation of quantitative error

with subjective ratings of errors. We should try and extend the determination of error

for a pixel of concern by using the colorimetric properties of the pixels that surround

it. The method of calibration developed in this research could be used along with the

improvements suggested to calibrate other color output devices.
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Appendix A

Newton's Method when Derivatives are
Unavailable

In one-dimension, our basic problem of solving a non-linear equation involves the

following:

given f : R ~ R, find x ; E R such that f(x*) == 0

In many practical applications, f(x) is not given by a formula. Since f'(x), the

derivative of f( x) is not available then, Newton's method must be modified to require

only values of f(x). In the case where the derivative is available, f'(x) is used in

modelling f near the current estimate X e by the line tangent to f at xe • When f' (x)

is unavailable, we replace the model by the secant line that goes through f at X e , and

some nearby point X e + he' The slope of this line is:

f(x e+ he) - f(x e)

he

So the model we obtain is the line [5]:

(A.I)

(A.2)

This is equivalent to replacing the derivative in the original model Me(x) == f(x c ) +

f'(xc)(x - xc) by the approximation a.:

In multi-dimensions, the problem reduces to the solution of a system of non-linear

equations:
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given F : R" --+ R", find x, E R" such that F(x... ) 0

In multiple dimensions, the analogous affine model is [5]:

(A.3)

which satisfies M+(x+) == F(x+) for any A+ E nnxn. In Newton's Method (where

the derivative is available) A+ == J(x+), where J refers to !the Jacobian. If J(x+) is

not available, the extension of the one-dimensional secant method is M+(xc ) == F[x.},

that is,

(A.4)

or

(A.5)

This is referred to as the secant equation. Let s, == x., - x, denote the current step

and Yc == F(x+) - F(xc) denote the yield of the current step, so that the secant

equation is written as:

(A.6)

We choose A+ by trying to minimize the change in the affine model, subject to

satisfying equation A.6. The difference between the new and old affine models at any

x E R" is

F(x+) + A+(x - x+) - F(xc ) - Ac(x - xc)
F(x+) - F(xc ) - A+(x+ - x.) +(A+ - Ac)(x - xc)

(A.7)

using equation A.5, we get

For any x E nn, let

x - x, == os, + t

(A.8)

(A.9)
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where t T s == o. Then the term we wish to minimize becomes

(A.IO)

We have no control over the first term on the right side, since the secant equation

implies (A+ - Ac)sc == Yc - Acs c However, we can make the second term zero for all

x E nn by choosing A+ such that (A+ - Ac)t = 0 for all t orthogonal to s.. This

gives us

(A.II)

as the least change in the affine model consistent with the secant equation. This

update was proposed by C.Broyden and is known as the Broyden's update or the

secant update. The resultant algorithm for 13royden's method is as follows:

Given F : R" ---t R"; Xu E nn, A o E Rnxn

where Xo is the initial approximation to the solution

and A o is the initial approximation to the Jacobian

Do for k = 0, I, ......

We use finite differences to get the initial approximation A o to the Jacobian J(xo).



Appendix B

Trilinear Interpolation

In trilinear interpolation, the sample function values may be arranged into a three

dimensional table which are indexed by the independent variables [8], e.g. x, y and

z. The range of each input variable is usually evenly sampled. Let x be in the range

Xo ... Xa , Y be in the range Yo . . . Yb, and z be in the range Zo ... z.: One possible

sampling would be (Xi, Yj, Zk), where 0 < i ~ (L, 0 ~ j ~ band 0 :::; k :::; c and

Xu - Xo .
Xi == Xo + i

a

Yb - Yo .
Yj == Yo + b J

Zc - Zo
Zk == Zo + k

c

(B.l)

(B.2)

(B.3)

Then the function F, may be approximated for a target point (r, s, t) as follows:

F(r,s,t)

where

d {(I - ds)[(l - dt)/"(Xi,Yj,Zk) +dt F (Xi, Yj , Zk+l )]
(1 - T) +d,,[(l - ddF(Xi, Yj+l, Zk) + dtF(x;, Yj+l, Zk+l)]

d { (1 - dj)[(l - dt)F(Xi+I,Yj,Zk) +dt F (Xi+l , Yj , Zk+l )]
+ T +d,,[(1 - dt)F(Xi+1, Yj+h Zk) + dtF(x;+l, Yj+l, Zk+l)]

(B.4)
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Xi ~ r < Xi+l (B.5)

Yi ~ S < Yi+1 (B.6)

Zk ~ t < Zk+1 (B.7)

and

d; ==
T - Xi

(Bo8)
Xi+l - Xi

d, =
S - vs

(Bog)
Yi+l - Yj

d, ==
t - Zk

(BolO)
Zk+l - Zk

(\ Yj+1 Z ktl ) (x, 1 Y, 1 Z k 1)
1+ J + +

(r,s,t).

(Xi +1 Yj-'-l Zk)

(x 1 Y . Z k )
it J

(\ Y:J+1 Z k )

.....................................
...

...............

(x y , Z k )
1 J

z

~x
Figure B.l: Trilinear Interpolation Geometry


