
ABSTRACT

FLETCHER, MATTHEW THOMAS. Balancing Talent and Cost: Multi-Objective Optimization
of US Army Officer Assignments. (Under the direction of Russell E. King and Brandon M.
McConnell.)

The assignment problem is well-studied with much of the literature in this area focusing

on applying new algorithms or heuristics seeking to find an optimal solution in polynomial

time. Yet these studies often assume a suitable objective function exists to capture the

quality of the assignments ("matches") without identifying one for use. The research is

also limited in that few applications relate directly to military or even US Army officer

assignments.

First, we develop and analyze a method for quantifying how well each officer matches to

a set of jobs. We use a generalized assignment problem as a framework to model the Army

Officer Assignment Problem (AOAP) as a mixed integer linear program and study how well

suited officers are to their assigned jobs and incorporate cost, which is often overlooked in

assignment problem applications. A set of constraints incorporates cost into our model

using real-world assignment data from the Defense Manpower Data Center. The constraints

ensure that each officer is qualified for their assigned job considering professional military

education, rank, civilian education, and other training. We examine the Pareto frontier

when maximizing suitability under different budget conditions and find that our model

results in a 50% cost reduction over the data-derived budget.

Next, we model the AOAP as a multi-objective optimization problem to maximize

suitability and minimize cost. Approaching the problem using linear relaxation to generate

feasible fractional assignments reveals the problem is very sensitive to input changes.

Computation times in Gurobi are fast enough on realistic-sized problems in the application.

Finally, we conduct a perturbation study by adding and removing officers, jobs, or both from

the previously optimal assignment to test how consistent our model is, which becomes

our third objective function. We compare our results to the well-known Stable Marriage



Algorithm (SMA) and find that our method improves on recent published studies, providing

an optimal solution with less than 6% of assignments changing post perturbation while

continuing to reduce the cost by over 50%.
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CHAPTER

1

INTRODUCTION

This research starts with a brief introduction to the of�cer assignment problem and why,

according to US Army senior leaders, it is essential to understand and solve. We then review

the regulations and unwritten rules that govern the assignment process to include the

recent shift to an online marketplace called the Active Duty Of�cer Assignment Interactive

Module Version 2 (AIM2) portal. Data is vital to this research to validate the results and

provide real-world context to the problem. We retrieved data from the Defense Manpower

Data Center, which we cover in Section 1.2. We also discuss random data generation for

model analysis and testing. We end this chapter with a guide for how this dissertation

progresses.
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1.1 Background

In his initial message as Chief of Staff of the Army, GEN Mark Milley stated that his top

priority was readiness [Mil15 ]. The Army Readiness Guidance he issued in 2016 states that

readiness is “the capability of our forces to conduct the full range of military operations

to defeat all enemies” [Mil15 ]. The Army Talent Alignment Process (ATAP) indicates that

readiness is a signi�cant component of the process and implementation of the AIM2

portal [OPM20]. During the ATAP, the catchphrase “right of�cer, right job, right time” comes

into play, but this is not the �rst time the Army focused on talent management. Talent

management came to the forefront for the US Army in 2009 with a series of publications

from the Strategic Studies Institute (SSI). The SSI looked at how the Army manages talent

and competes for industry talent [War09]. However, industry and the Army have inherent

differences when it comes to managing talent.

First and foremost is that the Army assesses of�cers through four commissioning

sources, including the United States Military Academy, Reserve Of�cer Training Corps,

Of�cer Candidate School, and direct appointments. Direct appointments are reserved for

those degreed professionals in legal, religious, or medical �elds and account for very few

lateral entries, as shown in Figure 1.1 [OEM12]. The Army cultivates talent internally to �ll

senior leadership positions.

Suppose the Army manages talent according to this new process. In that case, the right

of�cers will be slated into the best jobs for their career progression, which will increase

the Army's readiness over time. There will not be a need for the Army to react to emerging

talent needs if this process works as intended. This research focuses on the manning and

training aspects of readiness. Being able to assign of�cers based on their knowledge, skills,

and behaviors (KSBs) would help augment the assignment process and ensure the of�cer's

talent is used to the fullest.
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Figure 1.1 This �gure shows the talent model for Army of�cers [OEM12].

1.1.1 Past and Present Talent Management

Before the ATAP transition, the Army managed assignments through each branch's Career

Manager (CM). A branch in the Army is an area of expertise like Infantry or Military Intelli-

gence. The of�cer assignment process consisted of eight steps starting with identifying the

of�cers available to move. This process identi�es 85 to 90 percent of of�cers that need to

move [Ber15]. Steps two and three include identifying the total number of of�cers moving

and the number of billets or positions available during the subsequent permanent change

of station (PCS) cycle. In the next step, the CMs hold a conference where each branch drafts

billets in a randomly selected order. The results are a list of billets that each CM will �ll

during the PCS cycle. Step �ve, the �rst time the of�cer is formally involved in the PCS

process, consists of the CMs sending out billets to each of�cer identi�ed to move. The

of�cer then returns a preference list to the CM. Of course, of�cers would likely have been in

contact with their CM and potential gaining unit to ensure they align with the assignment,
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but this is not always the case. After receiving the complete preference lists, the CMs begin

the formal assignment process to consider of�cer preferences, unit preferences, and other

considerations to generate the complete assignment. The last two steps consist of notifying

each of�cer and generating orders to initiate the PCS moves [Ber15].

The pre-ATAP assignment process was labor-intensive and did not explicitly use the

KSBs each of�cer had. If an of�cer failed to provide input, the CM would assign them

according to the "needs of the Army," which could be anything. Each CM was responsible

for knowing their of�cers well enough to align each of them to the best job available for

their career development and advancement. Of�cers in the PCS cycle did have a card to

play, however. The of�cer could receive a by-name request from a unit, which circumvented

the regular assignment process given above. The by-name request was generally worked

out between the of�cer and the gaining unit and did not consider the Army's needs. Finally,

this process took well over a year from initiation to orders generation.

In 2010 the Army began the Green Pages Program to achieve “improved retention and

job satisfaction” [Ent19]. Green Pages was born out of a desire to reverse some unintended

consequences of Army talent programs of the past [OEM12]. Some consequences included

over-accessions, shortages of mid-career of�cers, internal talent poaching, and a decline

in educational opportunities. The program sought to capture of�cer talents and align

those talents to positions using Army Engineer of�cers as test subjects. This pilot program

consisted of 748 of�cers in the PCS cycle. As both of�cers and units engaged in the system,

they were able to align their preference lists better over time, and more than half of those

participating changed their initial preferences during the process [OEM12]. While Green

Pages did not remove Human Resources Command (HRC) as the decision-maker, it did

free up CMs to focus on managing talent and not requirements management.

Green Pages' success led to the current ATAP portal, where all Army of�cers list their

KSBs on a resume. Units review the resumes to identify of�cers to �ll vacancies during an

assignment cycle. The assignment cycle begins when HRC identi�es of�cers eligible to
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move based on the Active Component Manning Guidance (ACMG) from OPMD [OPM20],

which sets the priorities for what units and positions are �lled based on Chief of Staff of

the Army guidance. The priorities range from Category 1 to Category 4 and represent the

percentage of positions �lled by an of�cer. The percentage is commonly referred to as

"directed �ll." For example, all units assigned to US Forces Korea are Category 1, 100%

directed �ll, while 7th Army in Europe is Category 2 or 3, 90% or 70% �ll, respectively. Once

both of�cers and jobs are validated, they enter the marketplace and submit their preference

information. For of�cers, this means building a resume that captures their pertinent KSBs

and choosing jobs that align with their career development. For jobs or units, this means

unit details, command philosophy, mission, and other data along with the preference list

of of�cers that meet those criteria [Ent19]. HRC then executes the Deferred Acceptance

Algorithm (DAA) that creates an initial slate of assignments [OPM20]. CMs adjust the slate

based on Senior Leader guidance, and then orders are processed for the moves.

After generating orders, the ATAP process ends for those of�cers in the assignment cycle.

Their next step is to complete their move and in-process at their gaining units. However, the

resulting assignments considerably affect the Army's budget that past and current systems

do not consider.

1.1.2 Cost Considerations

As we manage Army of�cers' careers, each of�cer moves to a new base around the world ap-

proximately every three years. There is a signi�cant cost associated with each of those moves.

Transportation, lodging, food, and dislocation allowances account for the bulk of the trans-

portation costs. According to a 2015 GAO Study, the Department of Defense (DoD) spent

$4.3 billion on PCS moves for approximately 650,000 service members during 2014 [GAO15].

The DoD tracks six different types of travel [GAO15]. We are only concerned with accession

(moving an of�cer from their home to the �rst duty station) and operational travel (mov-

ing of�cers between duty stations). For the �scal year beginning in October 2019 (FY20),
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of�cer moves, the Army budgeted $154,260,000 for operational travel and $23,450,000 for

accessions, which is a little over 30.5% of the Army's total PCS budget [Com19]. With this

amount of money in play, �nding a way to save even 1% of the Army's PCS budget would

save millions of dollars. Thus, managing talent without analyzing the cost associated with

maximizing talent across the Army's formation leaves a signi�cant part of the problem off

the table.

1.1.3 Gaps in the System

Currently, the Army is not looking at the cost implications of a system-wide talent man-

agement program. A Google search of the Army's Talent Management website returns only

�ve results for budget or cost. In [US 16], the Army indicates that budgetary pressures and

inef�cient budgeting processes will affect talent management negatively. Nevertheless, the

current ATAP does not include a study of the costs associated with the system, nor does it

include how such an assessment could occur. The AIM2 portal has of�cers and potential

jobs input their preference lists [OPM20].

With the inclusion of preference lists, the Army must �nd a way to prevent of�cers

from gaming the system. Janis & Nagarkar [Jan12] discuss this issue at length concerning

the Medical Student Match. Results from OPMD [OPM20] indicate some of�cers did not

reference jobs realistically or truthfully since one-to-one matches increased by 27% in

the last week of the assignment window. While some of�cers and jobs entered the market

during this �nal week, those numbers alone do not account for the approximately 1,500 new

one-to-one matches. OPMD [OPM20] concludes by stating, "of�cers and units attempted

to improve their position in the marketplace." However, Janis & Nagarkar [Jan12] indicate

that both parties likely hurt their chances of getting the best match.

Finally, the marketplace does not provide automated prescreening. Only 7% of of�cer

assignments matched their KSB pro�le. OPMD [OPM20] also expressly states that increas-

ing the value of KSBs needs to be examined. We implement prescreening to require all
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professional military education (PME) to be complete for the of�cer's current rank. For

instance, of�cers in the 49A branch need to have intermediate-level education completed

as a MAJ. The data shows an average of 22 of�cers (roughly a quarter of all 49A of�cers)

that must go to intermediate-level education (ILE) for a total average cost of $381,940 each

year. This research aims to address these concerns by combining PCS costs and full talent

pro�le alignment into a model that provides a better picture of talent management and its

impacts on decision-makers of all levels.

1.2 Real-World Data

The data we use for this analysis comes from the Defense Manpower Data Center (DMDC)

Reporting Center by way of a formal data request [Def19b]. The data consists of 557,408

entries covering all active duty Army of�cers from 2012 to 2018. Over this period, the Army

tracked 118,774 of�cers. This data includes 83 attributes for each of�cer, which we used to

identify the KSBs for each of�cer and job. Figure 1.2 displays the distribution of of�cers by

rank. Note that the number of CPTs is approximately double that of 1LTs. If we read between

the lines, data in Figure 1.2 shows us some of the talent management issues mentioned

previously. The number of MAJs decreased over time. With no lateral-entry possible for the

majority of mid-career of�cers, the Army assessed more 2LTs starting in 2015 to make up

for the shortfall [Def21].

Of�cers tracked in the data moved to numerous different bases from Washington, DC,

to Germany, which we denote as either Contiguous United States (CONUS) or Outside the

Contiguous United States (OCONUS). We decided to follow the same framework shown in

the AIM2 brief where assignments were tracked by location [OPM20]. Figure 1.3 shows just

how many places Army of�cers PCS to around the world. The total number of moves shown

in Table 1.1 indicates that about a third of all of�cers move each year. OCONUS moves

slowed down in 2015 due to numerous base closures and a personnel draw-down [DoD15].
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Figure 1.2 The distribution of of�cers by rank for each year in the data.

The subsequent redeployment of OCONUS troops in 2016 slowed as a result, but numbers

returned to pre-2015 levels from 2016 on.

Table 1.1 This table shows the number of of�cers that moved each year. Between 6-7% of all
moves we classi�ed as local. OCONUS moves accounted for 24-28.5% of all moves.

Year Total Moves Local Moves ( <50miles) OCONUS Moves CONUS to OCONUS OCONUS to CONUS
2013 26,289 1,737 7,351 3,532 3,819
2014 27,115 2,091 7,349 3,810 3,539
2015 24,726 1,592 5,930 2,397 3,533
2016 24,356 1,624 5,859 3,632 2,227
2017 26,773 1,955 7,072 3,535 3,537
2018 27,312 1,771 7,771 4,219 3,552

As mentioned previously, the real-world data allows us to test our model against the

ground truth. One area we want to give a harder look is the cost of these assignments. For

each PCS, the Army gives the of�cer a weight allowance for their household goods that will

be shipped to their next duty station, which is given in Table 1.2. For example, a CPT moves

from Washington, D.C., to Wichita, KS, a distance of 1,292 miles, with 14,500 pounds of

household goods. The CWT rate would be $147.82, and we would calculate his or her move
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Figure 1.3 This �gure shows the worldwide presence of US Army of�cers.

cost as follows.

CWT rate (weight allowance)

100
=

$147.82(14,500)

100
= $21,433.9 (1.1)

This data comes from the General Services Agency and is current as of May 2018 [Age16].

Using this simple calculation, we can calculate an upper bound on the cost of all PCS moves

in the data. We assume each of�cer has dependents and moved their maximum allowable

weight. Next, we calculate move distance using great circle distance for all moves, including

overseas. We estimate PCS costs to be around $600 million, which is about four times the

current $150 million budget [Com19]. However, the proportions should remain consistent

regardless of the actual cost. Figure 1.4 shows us the proportion of the PCS budget used to

Table 1.2 Data used to estimate PCS costs [LS19; GSA18].

Rank
Weight Allowance
with Dependents

Weight Allowance
without Dependents

Miles Per Hundred Weight (CWT) Price

2LT 12,000 10,000 1 to 500 $123.70
1LT 13,500 12,500 501 to 1,000 $137.09
CPT 14,500 13,000 1,001 to 1,500 $147.82
MAJ 17,000 14,000 1,501 to 2,000 $158.96
LTC 17,500 16,000 2,001 to 2,500 $170.10
COL 18,000 18,000 Over 2,500 $181.24
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move of�cers by their rank. Captains take up about 40% of the budget even though they only

account for about 10% of the total number of of�cers. If we were to assign CPTs optimally,

that could have an enormous impact on the PCS budget.

Figure 1.4 From 2012–2018, each of�cer rank remained fairly consistent for the percent of the
total PCS budget. This shows us that optimizing CPT assignments could have a large impact on
the PCS budget.

We also generated a set of random data to run simulations. The random data was

created using Matlab and matches the real-world data's distribution and features discussed

in-depth above. For more details about the random data generation, see Appendix A.

1.3 Dissertation Organization

We develop this dissertation through a series of chapters focusing on each step of model-

ing this problem. Chapter 2 contains a literature review associated with similar research

areas for assignment problems and details how we develop the objective functions for this

assignment problem. Chapter 3 explores exact solution methods in the framework of a

mixed-integer program. Chapter 4 develops the heuristic methods mentioned in Chapter 1
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in detail and presents cases where the heuristics perform better than the exact methods.

Finally, Chapter 5 contains a summary of the work done thus far and presents the way

forward for this dissertation.

11



CHAPTER

2

MEASURING SUITABILITY FOR OFFICER

ASSIGNMENTS

When developing a method for solving the of�cer assignment problem, one must also

determine what features the objective function requires. The literature reviewed here

does not provide the objective function much beyond stating that a function exists. Here

we develop two different objective functions, one weighted and one unweighted, as a

framework for this research and other research in talent management and other assignment

problems. We then analyze the results using a mixed-integer program and a greedy heuristic

developed in the subsequent sections.
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2.1 Literature Review

For this research, we begin with a short description of the assignment problem. Then we

focus on three subject areas where suitability between the agent and task matter. First, we

review the medical student residency match problem, followed by the methods used in

organ allocation. We �nish the literature review by focusing on our subject area, which is

military applications. See Table 2.1 for a crosswalk of literature by subject and features.

2.1.1 Assignment Problem

The assignment problem is one of the fundamental optimization problems. The problem

consists of assigning tasks to agents, or for our problem assigning of�cers to jobs. The goal

is to minimize the cost or maximize the value of the assignment. We have the following

integer program [Wol98].

min
mX

i =1

nX

j =1

ci j xi j (2.1)

subject to
nX

j =1

xi j = 1 8 i = 1, . . . ,m (2.2)

mX

i =1

xi j = 1 8 j = 1, . . . ,n (2.3)

xi j 2 f 0,1g 8 i = 1, . . . ,m , j = 1, . . . ,n (2.4)

where

ci j cost coef�cients (i , j ),

xi j is 1 if assignment (i , j ) is selected and 0 otherwise.

The general assignment problem (GAP) ensures that each person i does one job, and each

job j is done by one person. All of the variables in this problem are binary. This problem is
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solvable in polynomial time since the constraint matrix is totally unimodular and is solvable

using the linear relaxation [Wol98].

2.1.2 Medical Student Residency Problem

In the early 1960s, researchers identi�ed and studied the stable marriage problem, which

is the classic form of the residency match problem. Gale & Shapley [Gal62] were the �rst

to describe the problem. Their research continues to make an impact today; see Deferred

Acceptance (DA) (Roth [Rot84b] Erdil & Ergin [Erd08] Kesten [Kes10] Erdil & Ergin [Erd08]),

the Nobel Award in Economics Nobel Committee [Nob12], and recent research comparing

results to the DA algorithm (Ferguson et al. [Fer20]). In the residency match problem, each

medical student provides a preference list of hospitals where they want to conduct their

residency. Each hospital also provides a preference list of candidates. This type of problem

relies on preference lists and does not have a standardized method to rank candidates

and hospitals [Rot84b]. However, issues with the residency match do come up, with the

most infamous case being when medical students tried to game the system, which com-

promised the results [Jan12]. Most research in this area focused on algorithm speed for

incomplete preference lists, but there have been no signi�cant updates to the algorithm for

stable matches [Rot84b]. See the survey paper from Iwama & Miyazaki [Iwa08] for more

information on the stable marriage problem.

For this research, we want to include the knowledge, skills, and behaviors (KSBs) in

the assignment problem to gain the most value from the assignments. While the stable

marriage and residency match problems provide a framework, they do not formulate an

objective function.

2.1.3 Organ Allocation

Organ allocation is another fertile research area that deals with assigning a donor organ to

a recipient that meets speci�c criteria. Organ allocation is similar to the GAP in that the
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organs are the agents, and the recipients are the tasks [Rai11]. However, only one organ

is allocated at a time, and we do not know what type of organ and attributes will arrive.

The process equates to a one-to-many matching by checking all of the hard constraints

associated with the match. Some hard constraints are blood type, tissue match, and panel

reactivity [Zen99]. This problem differs considerably from the previous problems since

the objective function focuses on maximizing the patient's quality of life, which is very

subjective and differs signi�cantly between states and countries [Rai11; Zen00]. Cutting

edge research in organ allocation consists of weighting factors according to fuzzy sets using

linguistic analysis of decision makers [Tah19].

We have very few hard constraints for this research since the Army allows for numerous

exceptions in assignments, and our objective function is not subjective. The priorities or

weights associated with an of�cer's KSBs are mission and readiness-driven. Again, the organ

allocation research does provide a method for choosing an objective function, but it is

subjective and rooted in ethics, which is beyond the scope of this research.

2.1.4 Military Applications

Two main areas dominate the literature when it comes to military personnel assignments:

sailor and airmen assignments. In Garrett et al. [Gar07] and Garrett et al. [Gar05], the authors

assume some measure of �tness (suitability) exists and that researchers or practitioners

will implement that measure in their research. Research on two-sided matching favors one

side over the other, as shown in Liebowitz & Simien [Lie05] and Gale & Shapley [Gal62].

Kleeman & Lamont [Kle07] include an excellent review of research areas, but the objective

function includes an unde�ned �tness matrix alongside a binary decision matrix.

In Siem & Alley [Sie95] the authors use a linear programming approach to classify Air

Force pilots into pilot categories. A subject matter expert assessed each pilot on their

quali�cations, which generated each pilot's performance. Garrett et al. [Gar05] only offer

an unde�ned measure of utility. Furthermore, Dasgupta et al. [Das08] give a set of jobs that
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each sailor is quali�ed for but does not state the quali�cations.

The research from Kleeman & Lamont [Kle07], Korkmaz et al. [Kor08], and Holder [Hol05]

are most related to this research. In Korkmaz et al. [Kor08], the authors propose using a

two-sided matching decision support system to assist each career manager. The system

takes into account both the position and personnel competence. Holder [Hol05] focuses

on creating a list of acceptable assignments for Navy personnel. His research is also the

only paper that includes a discussion of cost in the objective function. The author uses four

binary sub-scores to measure training, location, priority, and preference [Hol05]. According

to Kleeman & Lamont [Kle07], there are both hard and soft constraints. Hard constraints are

those constraints that we cannot violate. For instance, a 2LT cannot serve in a job for a LTC.

Hard constraints limit the possible assignment and could cause feasibility issues given a

relatively small problem or when m = n . Soft constraints, on the other hand, are constraints

that we can violate. These constraints could have varying levels of signi�cance. Ferguson

et al. [Fer20] is the most recent paper that develops solutions to the of�cer assignment

problem. The authors focus on solution robustness in the face of assignment perturbations.

In sum, there are numerous applications of the assignment problem and an equally

numerous set of solution methods. However, the research presented above does not analyze

the suitability or �tness measures in the objective function. We rectify this oversight by

giving two methods of developing an objective function for the of�cer assignment problem

and discuss each optimization's results using a MIP and a simple heuristic approach.

2.2 Suitability

Let O be the set of of�cers and J be the set of jobs, where jO j � jJ j or equivalently m � n .

Throughout this research we also assume that m � n . It is important that every of�cer

available for an assignment receives an assignment. Unassigned jobs occur all the time in

the US Army as we discussed with respect to the Active Component Manning Guidance. The
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Table 2.1 Crosswalk of literature by subject and features.
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Authors Year

G
A

P

M
ed

ic
al

O
rg

an
A

llo
ca

tio
n

M
ili

ta
ry

O
f�c

er
A

ss
ig

nm
en

t

m
=

n

m
�

n

m
�

n

P
re

fe
re

nc
es

O
ne

-t
o-

on
e

M
an

y-
to

-m
an

y

F
uz

zy
W

ei
gh

tin
g

E
th

ic
s

B
as

ed

R
eg

ul
at

io
n

B
as

ed

M
et

ho
do

lo
gy

F
itn

es
s

C
oe

f�c
ie

nt
s

This Research 2021 x x x x x x x x x
Ferguson et al. [Fer20] 2020 x x x x x x
Taherkhani et al. [Tah19] 2019 x x x
Janis & Nagarkar [Jan12] 2012 x x
Dasgupta et al. [Das08] 2008 x x
Korkmaz et al. [Kor08] 2008 x x x
Garrett et al. [Gar07] 2007 x
Kleeman & Lamont [Kle07] 2007 x x x
Garrett et al. [Gar05] 2005 x x
Holder [Hol05] 2005 x x x
Liebowitz & Simien [Lie05] 2005 x x x
Zenios et al. [Zen00] 2000 x x x x x x
Zenios et al. [Zen99] 1999 x x x x
Wolsey [Wol98] 1998 x x x x x
Siem & Alley [Sie95] 1995 x x x x
Roth [Rot84b] 1984 x x x x
Gale & Shapley [Gal62] 1962 x x x x x x

situation could arise where there are more of�cers than jobs. However, most operational

units are only �lled 80% to 90%, which makes it unlikely that m > n would occur [Mye19].

For each of�cer and job, there is a set of attributes or KSBs, K . Here we assume that

each of�cer's attributes and job combination must be equal for a match to occur. In later

chapters, this will not necessarily be the case. De�ne a matching between O and J as

follows.

De�nition 2.2.1. Let Oi k be the i th of�cer with KSB k and Jj k be the j th job with KSB k ,

where Oi k and Jj k are integer values representing the level of the KSB. If Oi k = Jj k , a match

exists since both of�cer and job have the same level of attribute k .

From De�nition 2.2.1, we generate Match k
i j = 1 for each matched KSB k between of�cer

i and job j . After determining whether or not a match exists for a particular of�cer and job

combination, we generate a measure of suitability using all of the KSBs. Here we de�ne
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suitability as a measure of how well an of�cer's KSBs line up with the required or desired

KSBs for a job. More formally, we have the following.

De�nition 2.2.2. Let L = f z 2 Z : 0 � z � jK jg . The suitability of of�cer i and job j is

Suitability i j , where Suitability i j 2 L. Thus, we have the suitability matrix, Suitability 2

Zm � n .

For each k 2 K , we have Match k
i j 2 f 0,1g. The suitability of of�cer i and job j is

Suitability i j =
P

k Match k
i j , where a value of jK j for Suitability i j means both of�cer and

job are perfectly matched and have the highest suitability.

To build Suitability , we must �rst understand what attributes or KSBs we want to include

in the model. For this example, we utilize �ve attributes: rank, job priority and type, profes-

sional military education (PME) level, military occupation specialty (MOS), and location

preference. Rank consists of of�cer ranks of Second Lieutenant (2LT) through Lieutenant

Colonel (LTC). Examples of an MOS would be 35D for Military Intelligence of�cer, 49A

for Operations Researcher, and 11A for Infantry of�cer. PME has three levels for Captains

Career Course (CCC), Intermediate Level Education (ILE), and Senior Service College (SSC).

Job priority and job type indicate what job the of�cer needs for career progression, such as

command, staff, broadening, and no preference. For this example, we use four different

Army aviator MOS': 15A, 15B, 15C, and 15D, which correspond to general aviator, com-

bined arms operation, all-source intelligence, and maintenance of�cers. Finally, we have

the locations. We align the preferences to 26 locations both in the US and overseas. The

complete list is given in Appendix A.

2.2.1 Unweighted Suitability

We begin by representing of�cer attributes with the O matrix and job attributes as J shown

below.
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O =

0

B
B
B
@

3 2 1 2 2

4 2 1 2 12

1 0 0 1 5

1

C
C
C
A

J =

0

B
B
B
B
B
B
@

3 2 1 2 2

1 0 0 1 18

4 1 1 3 1

3 2 1 2 23

1

C
C
C
C
C
C
A

For each matrix, the row corresponds to the of�cer or job, while the column corresponds

to the KSB. The �rst of�cer has the following KSBs: rank - Captain (3), job priority - Com-

mand (2), PME - CCC (1), MOS - 15B (2), location - Alaska (2). After generating the data, we

create the suitability matrix, Suitability , for the objective function. Suitability represents

the suitability of of�cer i assigned to job j . The following algorithm describes the process

of generating Suitability .

Algorithm 1: Algorithm for generating the suitability matrix.
Result: Suitability matrix, Suitability
Input the O and J attribute matrices each with k attributes;
for i = 1 to m do

Choose of�cer i ;
for j = 1 to n do

Choose job j ;
if Oi k = Jj k then

Match k
i j = 1;

else
Match k

i j = 0;

end
end

end
Suitability =

P
k Match k

i j

Using the example above, the suitability matrix would be
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Suitability =

0

B
B
B
@

5 0 1 4

3 0 2 3

0 4 0 0

1

C
C
C
A

.

In position Suitability 1,1, we see how well-suited of�cer one and job one are. Looking at

that of�cer and job combination, we see that for k = 1,2,3,4,5, O1k = J1K . The of�cer and

job have a suitability value of �ve, which is the number of attributes we use for this model.

An example of a completely incompatible match would be of�cer one and job two. For S1,2,

none of the attributes for that combination of of�cer and job match, so the suitability value

is set to zero.

2.2.2 Weighted Suitability

To determine the weights, we wanted to see how doctrine and CM priorities compared. For

doctrine, we looked to the Army's leader development publications, Of�cer Professional

Development and Career Management [Dep20]. Each branch lists the most critical jobs

for each rank. Depending on the of�cer's rank, there are different positions each of�cer

needs to have to develop their career. Table 2.2 shows how each type of assignment is

ranked based on the of�cer's rank and assignment need. Throughout Army publications

discussing the profession of arms, leadership and command positions go hand in hand. It

is no surprise that command positions hold the top priority for Captains and Lieutenant

Colonels [Dep20]. In the literature, other key developmental assignments depend more on

the speci�c branch. However, positions serving at a Combat Training Center as an Observer

are a top priority that aligns with the manning guidance from ACMG [HQD19].

2.2.2.1 Survey of Career Managers

To better understand how CMs balance Army doctrine and talent management, we con-

ducted an original opt-in survey in February 2020. The survey's goal was to see if the CMs

had different priorities for managing Army of�cers' careers concerning doctrine and what
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Table 2.2 Assignment priority for a given rank and assignment type.

Captain Major Lt. Colonel

Priority Assignment Type
Broadening /

Developmental
Key Developmental

Broadening /
Developmental

Broadening /
Developmental

1 Command Service School Instructor BN S3/ XO
CTC O/ C-T
(Combat Training Center)

CTC O/ C-T
(Combat Training Center)

2 Staff Positions
CTC O/ C-T
(Combat Training Center)

BDE S3
Doctrine or Training
Developer

ROTC Professor of
Military Science

3
Broadening
Assignments

USAREC Command/ Staff
Division / Corps Chief
of Plans or Operations

COCOM/ ACOM/
Division

Division / Corps Staff

4 Graduate School
Security Force
Assistance Assignments

Commissioning Source
Staff and Faculty

JIIM (Joint) Assignment

5 USMA/ ROTC Cadre
6 Assistant Staff

those differences were. We distributed the survey to all current CMs listed on HRCs Career

Manager website, which equated to 57 potential respondents. The survey was left open

for six weeks, and at the end of the survey window, we had 14 completed surveys with

two partially complete for a completed response rate of 24.6%. We asked the CMs to pro-

vide necessary demographic data like rank and MOS. The survey questions consisted of

rank-ordering the same data columns, as shown in Table 2.2.

If we compare doctrine to the survey results shown in Appendix B, we see there are some

differences. For instance, doctrine indicates that Joint assignments are a lower priority even

though each of�cer should seek out those positions [Dep20]. CMs, on the other hand, rank

Joint assignments at the top of the list. In light of these results, we chose to follow what the

CMs do since they continue to in�uence assignments.

2.2.2.2 New Algorithm

From the survey results and backed by the CMs, we want to weight assignment type accord-

ing to Table 2.2. Command jobs receive a weight of three while staff positions get two, and

broadening assignments are weighted one. For this example, we have a vector of length j

that has the weights for each job. Therefore, the weights are given as wk j , which corresponds

to the k t h KSB's weight for job j . We then incorporate the weights into Algorithm 1, which

gives a new suitability matrix, Ŝ.
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Algorithm 2: Algorithm for generating the weighted suitability matrix.

Result: Weighted suitability matrix Ŝ
Input the O and J attribute matrices each with k attributes;
for i = 1 to m do

Choose of�cer i ;
for j = 1 to n do

Choose job j ;
if Oi k = Jj k then

M̂ k
i j = wk j ;

else
M̂ k

i j = 0;

end
end

end
Ŝ =

P
k M̂ k

i j

2.3 Model Evaluation

In this section, we implement the proposed methods for building the suitability matrices.

Each method generates the objective function for the optimization function. First, we

generate the suitability matrix using the integer approach. Next, we generate a weighted

suitability matrix to prioritize command positions for the military assignment problem.

Using each objective function, we then compare the solution using three different methods.

The �rst is a simple greedy heuristic that sequentially assigns a random permutation of

of�cers to the available job with the highest value in terms of suitability. Next, we use

the same method but generate 10,000 random permutations for the of�cers and take

the maximum objective value from that set of solutions. Finally, we run a mixed-integer

program to �nd the optimal value. We then compare all three methods by looking at the

objective values and solution quality. The objective value tells us how well the assignments

match while the solution quality looks deeper by examining whether or not key KSBs are

matched. For instance, rank is very important and an assignment with mismatched rank

would not be allowed. Computation times and iteration counts are not considered here but
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will be explored further as the problem's complexity increases.

2.3.1 A Greedy Heuristic

This heuristic is based on the organ allocation algorithm [Zen99]. Although the organ

allocation algorithm is not perfect as a one-to-many search algorithm, it does have features

that we utilize here. We assume that the order of of�cers is random, which corresponds

to a random permutation of all of�cers. This method approximates what CMs execute

since they place of�cers one at a time based on the best current position or �t. To compare

the results, we used Algorithm 3 as our �rst and second methods mentioned above. We

generate a random permutation of the of�cers and execute the inner for loop to return an

assignment and objective value. We call this algorithm the one-at-a-time (OAAT) best �t

heuristic. We then execute the full algorithm, which we call the ensemble heuristic.

Initially, the heuristic failed to run due to running out of memory. We ran the algorithm

on a Windows PC with an Intel Core i7-7700 CPU with 16GB of RAM. However, we utilized

Matlab's sparsefunction to store the permutation results for the maximal value. The error

we could not overcome was with the Gurobi implementation in Matlab. We consistently

ran out of memory for the optimization software to �nd a solution for the MIP once the

problem's size reached m = 10,000. This size problem is realistic for the entire assignment

cycle, where we could have more than 15,000 of�cers moving at one time [OPM20].
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Algorithm 3: Greedy Heuristic for Assigning Of�cers to Jobs
Result: Optimal decision variable and the objective value
Input desired number of permutations, k , and the suitability matrix, Suitability ;
for l = 1 to k do

Generate a random permutation of O (OAAT loop);
for i = 1 to jO j do

Find the maximum suitability for of�cer i , say job j ;
Assign xi j = 1;
Set job assigned value to 0 ;

end
end
Find the maximum objective value from all permutations

2.3.2 Mixed Integer Program

Using the GAP as the basis for this problem, we present a modi�ed version for the of�cer

assignment problem:

max
mX

i =1

nX

j =1

si j xi j (2.5)

subject to
nX

j =1

xi j = 1 8 i = 1, . . . ,m (2.6)

mX

i =1

xi j � 1 8 j = 1, . . . ,n (2.7)

xi j 2 f 0,1g 8 i = 1, . . . ,m , j = 1, . . . ,n (2.8)

where

si j suitability coef�cients (i , j ),

xi j is 1 if assignment (i , j ) is selected and 0 otherwise.

We want all of�cers assigned to a job, but not all jobs receive an of�cer. This is due to the

number of jobs, n , being higher than the total number of of�cers, m . We implemented the
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code using Matlab.

2.4 Results

To test the impact each objective function has on the results, we completed two different

test runs. Our �rst run consists of increasing the number of of�cers, m , and jobs, n over

four iterations to observe how the objective value and other metrics evolve. The second

run consists of choosing the number of of�cers as given in the 20-02 Executive Overview

(OPMD [OPM20]) while increasing the number of jobs. This let us compare the algorithm

performance when m = n and m < n .

2.4.1 Measures of Performance

There are many different ways to measure assignment quality generated by the algorithms

in Section 2.3. OPMD [OPM20] lists metrics including the number of one-to-one matches,

of�cers getting a match in their top 10, percent of KSB match, and brevet assignments.

Since the methodology we propose in this chapter does not include preference lists, we

have decided on the following metrics: assignment quality, brevet assignments (of�cer of

lower rank serving in a higher rank position), and rank mismatches. Assignment quality

refers to the proportion of matching KSBs between the of�cer and job. See Table 2.3 for an

example.

Table 2.3 Example scenario in which three of�cers are assigned to three jobs. Assignment quality
is shown for three KSBs.

Of�cer Job
Rank

Match
Skill

Match
PME

Match
Assignment

Quality
1 2 1 0 1 0.67
2 1 1 1 0 0.67
3 3 1 1 1 1
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We also looked at the proportion of assignments where rank was not a match between

the of�cer and the job. Some jobs allow of�cers of a lower rank (brevet) to hold the position

if they are senior or expect to get promoted soon. According to OPMD [OPM20], there are

225 brevet positions in the Army. In 2019, there were 96 brevet positions in the assignment

cycle, but only 19 of�cers of lower rank �lled those position [OPM20]. On the other side,

our models did produce assignments that were infeasible based on a review of rank. For

example, a LTC in a CPT job or vice versa would be an infeasible assignment. We will address

infeasible assignments in subsequent chapters.

2.4.2 Results Based on Different Assignment Scales

During the assignment cycle, many of�cers could be lumped together to compete for a

subset of open jobs. For example, the Operations Research and Systems Analysis branch has

512 of�cers, 44 of whom are Captains. During the 2019 AIM2 marketplace, the senior CPTs

numbered 1,505. Since we could face an assignment at any one of those scales, we decided

to choose the number of of�cers and jobs, as shown in Table 2.4, which also shows results

from the OAAT best �t. If we compare those numbers to that of the ensemble heuristic

and MIP displayed in Table 2.5, we see that the ensemble heuristic and MIP method were

able to get better results. Although the assignment quality is over 95% for m � 120, the

rank mismatches constitute a signi�cant concern. We aim to address this in subsequent

chapters.

Table 2.4 The complete results from the unweighted simulation.

Size
m n

Objective
Value

Assignment
Quality (%)

Brevet
Assignments (%)

Rank
Mismatch (%)

20 30 63 65 5 15
120 150 486 95 0.833 9.167
300 500 1275 96.667 2.667 1.667
1000 1200 4161 92.9 3 9.1
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For the weighted objective function, we have the results shown in Tables 2.6 and 2.7. The

assignment quality was immediately improved since we prioritized different positions with

weights in the objective function. However, the proportion of rank mismatches increased.

Upon further inspection, we effectively forced each method to get as many of�cers into

those positions as possible by weighting them. Only the ranks of CPT and LTC need to have

command positions, so those of�cers were often assigned to a command position not for

their rank.

2.4.3 Varying the Number of Jobs

From the tables in the previous section, we see that the OAAT best-�t algorithm could

provide good results, but the ensemble heuristic was superior. In this section, we focus on

our two remaining algorithms: the ensemble heuristic and MIP. We held the number of

of�cers constant for these tests while increasing the number of jobs from 1,505 to 2,085 in

increments of 20 jobs. See Appendix D for complete results.

From these results, we noticed three different trends. First, the objective value increased

as the number of jobs increased, leading to more jobs and better matches per of�cer.

Second, the assignment quality increased up to a point. After reaching that threshold, it

started to decrease for both the weighted and unweighted objective functions. Figure 2.1

displays this trend, and it also shows how close both the ensemble heuristic and MIP

tracked regardless of the objective function used. Finally, the proportion of brevet and rank

Table 2.5 This table shows the algorithm performance measures when using the unweighted
objective function. While the objective values are equal or very close, the heuristic has a better
assignment quality but more mismatched ranks.

Size Objective Value Assignment Quality (%) Brevet Assignments (%) Rank Mismatch (%)
m n Ensemble MIP Ensemble MIP Ensemble MIP Ensemble MIP
20 30 69 69 65 55 5 0 30 25
120 150 489 489 95.833 95.833 1.667 3.3 12.5 12
300 500 1280 1280 94.333 93.667 2 1.3 1 1
1000 1200 4197 4202 94.9 94.7 1.5 2.1 9 7.9
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Table 2.6 Results of OAAT best �t heuristic with a weighted objective function.

Size
m n

Objective
Value

Assignment
Quality (%)

Brevet
Assignments (%)

Rank
Mismatch (%)

20 30 79 80 10 20
120 150 618 99.167 0.833 10.833
300 500 1547 99.667 4 4
1000 1200 5023 96.5 2.7 10.5

mismatch assignments decreased as we increased the number of jobs except in the last

case, which we show in Figure 2.2. The weighted objective function does have a few more

brevet positions than the unweighted objective function, but the real issue is again with the

rank mismatched of�cers. Having anywhere between 6% to 10% of the of�cer population

in a position not suited for their rank is unacceptable. As stated before, we aim to correct

this feasibility issue in subsequent chapters.

2.5 Conclusion

In this work, we set out to do two things. First, we wanted to provide a standard way to

create a suitability framework for assignment problems. De�nitions 2.2.1 and 2.2.2 formally

de�ne a match and the measure of suitability for an objective function. The second goal

was to demonstrate a way to understand how well the given assignment aligned with the

commander's priorities or initiatives. We accomplished this by de�ning assignment quality,

which could be augmented to tailored to any decision-maker's priorities. This methodology

also demonstrates that achieving good results does not require the use of complicated,

Table 2.7 This table shows the algorithm performance measures when using a weighted objective
function. While the two algorithms perform about the same, there is a much higher assignment
quality when we weight rank.

Size Objective Value Assignment Quality (%) Brevet Assignments (%) Rank Mismatch (%)
m n Ensemble MIP Ensemble MIP Ensemble MIP Ensemble MIP
20 30 93 93 100 95 0 5 35 30
120 150 610 612 99.167 98.333 0 1.7 10 9.2
300 500 1573 1573 99.667 99.667 0.667 1 9 8.7
1000 1200 5054 5059 95.9 95.3 3 3 11.6 12
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(a) Here the heuristic equals or out performs the
MIP in 16 of 30 iterations.

(b) The MIP is the clear winner here with the
exception of two points.

Figure 2.1 For 1,505 of�cers, we increased the number of available positions in increments of 20
for 30 iterations and report the quality of assignments as a percentage.

hard constraints. We successfully avoided hard constraint feasibility issues by utilizing

the objective function and the suitability matrix we created. Although we achieved our

goals, we did observe where our two models fail at generating adequate assignments. In

future research, additional constraints will be introduced to the model to prevent infeasible

assignments.

29



(a) The number of rank mismatches decreases as
the number of jobs increase for the unweighted
objective function.

(b) The number of rank mismatches decreases
as the number of jobs increase for the weighted
objective function.

Figure 2.2 While both brevet and rank mismatches decrease for both objective functions, the
rank mismatches cause the assignments to remain infeasible. Correcting this infeasibility by
hand is also dif�cult since the percent of mismatches hovers around 10%.
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CHAPTER

3

MODEL DEVELOPMENT AND

OPTIMIZATION

This research seeks a better way to assign of�cers to jobs during an assignment cycle. We

model the assignment as a resource constrained assignment problem referred to as the

Army Of�cer Assignment Problem (AOAP).

This chapter is organized as follows. We begin with a review of relevant literature fol-

lowed by a discussion of the random data generated to validate our model and explore

the solution space. The features and distributional data gathered from the real-world data

discussed in depth in Chapter 1 are used here to generate instances of the problem. Next,

we develop constraints for the modi�ed generalized assignment problem, Equation 2.5.

Some constraints are relatively straightforward, but we take an in-depth look at others like
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valid inequalities and knapsack constraints. Finally, we implement the constraints and

test the different formulations by comparing run-times, objective values, and assignment

quality..

3.1 Literature

To ef�ciently solve an integer program, researchers look to a few well known methodologies

and algorithms. First, we have branch-and-cut methods. Researchers have used branch-

and-cut in traveling salesmen problems as in Padberg & Rinaldi [Pad91] and crew scheduling

as in Hoffman & Padberg [Hof93]. The branch-and-cut algorithm takes advantage of the

linearity of the problem, which we have in this research. Gomory cuts are another popular

method of reducing size of the polyhedron for a given integer program [Gom60a] [Gom60b].

However, the of�cer assignment problem has a well-de�ned block structure based on sets

of constraints. For example, rank constraints limit the number of feasible assignments for

a given set of jobs. Instead, branch-and-cut applies the block constraints globally, which

can lead to slow convergence. Recently, Ghoniem et al. [Gho16] introduce a generalized

assignment problem (GAP) with location / allocation considerations for placing items on

a store shelf, but the knapsack valid inequalities (VIs) introduced do not apply to this

research.

One way to take advantage of the block structure without getting bogged down in

convergence is to utilize Lagrangian Relaxation. Held & Karp [Hel70] use a Lagrangian

approach to solve the traveling salesmen problem from which others continue to develop

the method. Fisher [Fis81] states that a small set of side constraints complicate the integer

program and dualizing those constraints leads to an upper bound (maximization) for the

original problem. For the of�cer assignment problem, dualizing the equality constraint in

Equation 2.5 is one application of this research [Fis81]. Ali et al. [Ali93] discuss assigning

Navy personnel with en-route training. The authors utilize a restriction (decomposition)
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and relaxation procedure, which achieves gains in computational ef�ciency. They also state

that further enhancing their model to achieve geographic balance along with budgetary

constraints is ripe for future work.

One area of research in economics that is related to the GAP is school choice. According

to Kesten [Kes10], school choice is the term used to describe the multitude of programs

parents can choose from to school their children. The problem consists of a preference

list from the students and a priority list of schools, which is reminiscent of Gale & Shapley

[Gal62]. Kesten [Kes10] focuses on equity in the assignment and gives an algorithm. Equity is

further studied in Dur et al. [Dur13]. The authors discuss the precedence order of assigning

students to school and the number of priority seats at a school and stress the need to avoid

random number bias in precedence order. Erdil & Ergin [Erd08] discuss tie-breaking in the

deferred acceptance algorithm. Finally, Dur et al. [Dur19] consider allowing violations of

priorities to improve the welfare of the student. See Table 3.1 for a crosswalk of literature by

subject and features.

3.2 Subsetting Data for Testing

As discussed in Section 1.2, DMDC provided the data, which have the distributions shown

in Figure 3.1 and Table 3.2. We then subset the data into two instances of the problem to

test our models in subsequent sections. The �rst instance is all of�cers in the Operations

Research/ Systems Analysis (ORSA) branch, which is listed as 49A in the data. We chose this

subset because it's small ( m = 134), and it only includes of�cers of rank Captain and higher.

The second instance is the Military Intelligence branch or 35D. This subset is much larger

with m = 1,617, which will highlight the differences in using continuous (linear relaxation)

versus binary constraints with computation time and solution quality.
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Table 3.1 Crosswalk of literature by features.

Authors Year
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This Research 2021 x x x x x x x x x x
OPMD [OPM20] 2020 x x x
Dur et al. [Dur19] 2019 x x
Ghoniem et al. [Gho16] 2016 x x x
Dur et al. [Dur13] 2013 x
Arora [Aro12] 2012 x x
Kesten [Kes10] 2010 x x
Erdil & Ergin [Erd08] 2008 x x x
Marler & Arora [Mar04] 2004 x x
Ali et al. [Ali93] 1993 x x
Hoffman & Padberg [Hof93] 1993 x x x x
Padberg & Rinaldi [Pad91] 1991 x x x x
Aboudi & Jørnsten [Abo90] 1990 x x x x
Fisher [Fis81] 1981 x x
Stadler [Sta79] 1979 x x
Held & Karp [Hel70] 1970 x x x
Gale & Shapley [Gal62] 1962 x x x
Gomory [Gom60a] 1960 x x x
Gomory [Gom60b] 1960 x x x

3.3 Constraints

The assignment process has numerous constraints both written (i.e. regulations and of�cial

guidance) and unwritten (i.e. career manager or senior leader guidance) [Dep20]. See

Table 2.2 and Appendix B for one such example of written versus unwritten guidance

con�icts. As we did in Chapter 2, we default to CM guidance where necessary since it

represents a more accurate picture of how and why of�cers are assigned.

Table 3.2 List of KSB distributions by level, probability, and cumulative sum.

Rank PME Education
Level P Cumsum Level P Cumsum Level P Cumsum

MO01 (2LT) 0.12 0.12 SSC 0.03 0.03 Bachelors 0.54 0.54
MO02 (1LT) 0.16 0.28 ILE 0.24 0.27 Masters 0.29 0.83
MO03 (CPT) 0.38 0.66 CCC 0.30 0.57 Doctorate 0.13 0.96
MO04 (MAJ) 0.22 0.88 BOLC 0.33 0.90 Other 0.03 0.99
MO05 (LTC) 0.12 1 UNK 0.1 1 UNK 0.01 1
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(a) Rank distribution from the
DMDC data.

(b) Professional military education
levels from the DMDC data.

(c) Degree distribution from the
DMDC data.

Figure 3.1 Distribution data for three of the categories of data on of�cers in the DMDC data.

Our initial formulation shown in Equation 2.5 includes constraints on the assignment

itself. Those constraints ensure that each of�cer is assigned a job and each job is not

assigned more than once. To be more realistic, however, we must include constraints that

capture the real-world regulations that CMs must follow. The 20-02 Executive Overview

from OPMD [OPM20] indicates that there are certain criteria that must be met for an

of�cer to be considered for a job. They include rank, PME status, and MOS. As long as an

of�cer meets those minimum requirements they are cleared for the position. Thus, we alter

De�nition 2.2.1 as follows:

De�nition 3.3.1. Let Oi k be the i th of�cer with KSB k and Jj k be the j th job with KSB k ,

where Oi k and Jj k are integer values representing the level of the KSB. Let the non-empty

set R j k be the acceptable levels for KSB k and job j . If Oi k 2 R j k for Jj k , a feasible match

exists.

Despite the clear minimum requirements for an assignment, many of�cers do not meet

the PME requirements. If we write the PME constraint as

mX

i =1

nX

j =1

PMEi j Assignmenti j = m , (3.1)

we will have an infeasible problem. Writing the constraint to simply be greater than zero is

similarly unhelpful. Therefore, we set the lower bound on PME according to the number
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of of�cers that do have the requisite PME for their rank. See Appendix C.4 for the proce-

dure that identi�es of�cer needing PME. We further re�ne the bound by ruling out those

assignments where the of�cer is currently. Using the KSB matrices from Algorithm 1, the

new PME constraint is de�ned as

PLB =
mX

i =1

nX

j =1

(Match P M E
i j Match r ank

i j ) OldAssigni j , (3.2)

mX

i =1

nX

j =1

PMEi j Assignmenti j � PLB . (3.3)

To address rank and MOS for large data sets like the Infantry branch ( m � 3,000), we

subset the data such that only those of�cers of a particular rank and MOS are included in the

input data. For smaller data sets, we utilize a constraint to prevent rank mismatches from

occurring. This is generalized in the following constraints where Rk includes the required

(i , j ) pairs and Ek are the excluded (i , j ) pairs for each KSB, k :

X

j 2Rk

Assignmenti 2Rk , j = 1

where Rk =
�
(i , j )ji has KSBk for job j for each KSB, k

	
(3.4)

X

j 2Ek

Assignmenti 2Ek , j = 0

where Ek =
�
(i , j )ji has KSBk for job j for each KSB, k

	
(3.5)

Being Airborne quali�ed, skill 5P, is required for many Airborne units in the Army. In the

opposite case, the Army has the requirement that new instructors in Reserve Of�cer Training

Corps (ROTC) units not have skill 5K (instructor quali�ed). They earn the 5K identi�er

as they teach through their �rst year. Decomposing the jobs by those requirements or

disquali�cations, we implement the constraints as de�ned in Equations 3.4 through 3.5.
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3.3.1 Model Formulation

Our �rst formulation of the Army Of�cer Assignment Problem (AOAP) is shown below.

maximize
mX

i =1

nX

j =1

Suitability i j Assignmenti j (3.6)

subject to
nX

j =1

Assignmenti j = 1 8 i = 1, . . . ,m (3.7)

mX

i =1

Assignmenti j � 1 8 j = 1, . . . ,n (3.8)

mX

i =1

nX

j =1

Costi j Assignmenti j � Budget (3.9)

mX

i =1

nX

j =1

OldAssigni j Assignmenti j = 0 (3.10)

mX

i =1

nX

j =1

PMEi j Assignmenti j � PLB (3.11)

X

j 2Rk

Assignmenti 2Rk , j = 1 8 (i , j ) pairs 2 Rk (3.12)

X

j 2Ek

Assignmenti 2Ek , j = 0 8 (i , j ) pairs 2 Ek (3.13)

Assignmenti j 2 f 0,1g 8 i = 1, . . . ,m , j = 1, . . . ,n (3.14)
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where

Suitability i j is the suitability of assignment (i , j ),

Costi j is the non-negative cost of assignment (i , j ) in terms of miles traveled,

OldAssigni j is the previous assignment of of�cer i ,

PMEi j is the set of assignments that meet PME requirements,

Budget is an upper bound for the total PCS cost calculated from the DMDC data,

Rk , Ek are sets of required and excluded assignments,and

Assignmenti j is 1 if assignment (i , j ) is selected and 0 otherwise.

Equations 3.7 and 3.8 are the typical assignment constraints. Equation 3.10 ensures that

each of�cer moves to a new job, not necessarily a new location, during the assignment cycle.

The PME constraint, Equation 3.11, ensures that each of�cer has the requisite PME level

for the assigned job. The required or disqualifying skills are captured in Equations 3.12 and

3.13. Equation 3.9 is the budget constraint derived from the DMDC data, which requires a

more thorough discussion.

3.3.2 Pareto Optimal Budget

To generate a Pareto frontier that demonstrates the trade off that exists between suitability of

an assignment and the cost of that assignment, we iterated the optimization using a random

integer valued budget. The budget is bounded between 25% and 80% of the calculated

budget from the data. Using FA49 as an example, the calculated budget to move all of�cers

in 2012 was $2,747,652. Therefore, we uniformly chose a random value between $686,913

and $2,198,122. Similarly for 35D the budget range was $7,608,499 to $24,347,198. For each

branch, we randomly chose 1,000 budget values uniformly between 20% and 80% of the

budget from the data. The 49A branch resulted in a maximum suitability of 419, while the

35D branch ended up with a suitability of 4,984. At approximately 55% of the DMDC data
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Figure 3.2 With a maximum budget of $2,747,652, the maximum suitability for 49A is 419. This
plot shows the feasible region along with the Pareto optimal points.

budget, there was no improvement in suitability. For 49A, feasibility became an issue at

around 37% of the budget. The Military Intelligence branch hit feasibility issues at a lower

value of 28%. We also optimized assignment for CPTs in the Infantry (11A) branch that

included 1,278 of�cers. In general we expect the optimization of a larger number of of�cers

to �nd feasible solutions over a larger range of budgets. Figures 3.2, 3.3, and 3.4 display the

complete Pareto frontier with the suitability and budget scaled from zero to one using to the

maximum budget and suitability. Note that optimization for 11A of�cers found numerous

dominated solutions. This is due to the homogeneity of the 11A CPT population. However,

we did �nd that the budget gleaned from the data for 11A CPTs was over three times higher

than our results.

3.4 Single Objective Formulation: Maximize Suitability

In this section, we discuss our initial AOAP formulation, results of the linear relaxation using

two different problem instances, development of a valid inequality, and our �nal model

formulation. The �nal model is the same AOAP with the inclusion of a partial assignment
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Figure 3.3 With a maximum budget of $30,433,998, the maximum suitability for 35D is 4,984. This
plot shows the feasible region along with the Pareto optimal points.

Figure 3.4 The Pareto frontier for each problem described in this section.
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cover (PAC) inequality. For each solution method, we run the optimization 30 times to get

average performance data on runtime and iteration count. Based on the Pareto analysis

above, we set the budget to 50% and 60% of the budget gleaned from the DMDC data. The

50% budget lets us achieve over 98% of the maximum suitability. The 60% budget gets us to

the maximum suitability while remaining a non-binding upperbound for the optimization.

3.4.1 Linear Relaxation of ( P ) and Results

We �rst consider the linear relaxation (LR) of (P) or (P)LR. This relaxation gives us an upper

bound by relaxing the binary constraints on Assignmenti j such that

0 � Assignmenti j � 1 8 i = 1, . . . ,m , j = 1, . . . ,n .

We use Matlab R2019a to code the model, and we solve with Gurobi 9.0.0 on an Intel ® Core™

i7-8700 CPU with 6 cores. Gurobi has many options available to speed up computation

times. However, we set the parameters for presolve and cuts equal to zero while setting the

heuristics parameter to 0.1. This allows the solver to spend twice as much time on heuristics

than the default setting.

(a) At 50% budget, the LR gives us 16 frac-
tional variables.

(b) At 60% budget, the LR gives 14 fractional
variables.

Figure 3.5 Variable values from the linear relaxation 49A of�cers ( m = 134).
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The LR at either budget level returns over a dozen fractional values for 49A of�cers and

more than 66 in one case for 35D of�cers. It is important to note how sensitive the LR is to

input changes as you can see in Figures 3.5 and 3.6. A CM might �nd it dif�cult to move this

number of of�cers around since each move requires two changes at a minimum. Therefore,

we look to reinstate the binary constraints as well as speed up the computation time by

implementing a valid inequality on the budget.

(a) At 50% budget, the LR gives us 18 frac-
tional variables.

(b) At 60% budget, the LR gives 66 fractional
variables.

Figure 3.6 Variable values from the linear relaxation of 1,617 35D of�cers.

3.4.2 Budget Valid Inequality and Results

Consider the set of all feasible solutions Q,

Q =

�

Assignment2 Bmn :
nX

j =1

Assignmenti j � 18 i = 1, . . . ,m ,

mX

i =1

Assignmenti j � 18 j = 1, . . . ,n ,
mX

i =1

nX

j =1

Costi j Assignmenti j � Budget

�

.
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From Aboudi & Jørnsten [Abo90], we can say that, given

T =

(

Assignment2 Bmn :
mX

i =1

nX

j =1

Costi j Assignmenti j � Budget

)

,

all the cover inequalities that are valid for the convex-hull of T, conv (T ), are also valid for

conv(Q) [Abo90]. Let us then permute the rows and columns of ci j for some q < m such

that
qX

i =1

Costi i > Budget. (3.15)

Practically, this means that we are able to permute the cost matrix in such a way as to put the

maximum distance traveled for each assignment on the main diagonal of the cost matrix.

In this case, if we used xi i for all i as our assignment, the assignment would be infeasible.

However, we only use up to q < m of those assignments. Then the inequality below is valid

for conv (Q).
qX

i =1

Assignmenti i � q � 1 (3.16)

If the cover is also an assignment, we strengthen Equation 3.16 to

qX

i =1

Assignmenti i � q � 2 (3.17)

since two different assignments must differ on at least two different entries [Abo90]. We

de�ne the set of decision variables that would be infeasible by way of violating the budget

constraint as

d i j = max
j

f Costi j g, i = 1, . . . ,m . (3.18)

Thus, Equation 3.16 is modi�ed as

mX

i =1

nX

j =1

d i j Assignmenti j � q � 1. (3.19)
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From the valid inequality de�ned above, we give the following new formulation, (P).

max
mX

i =1

nX

j =1

Suitability i j Assignmenti j (3.20)

s.t.
nX

j =1

Assignmenti j = 1 8 i = 1,2, . . . ,m (3.21)

mX

i =1

Assignmenti j � 1 8 j = 1,2, . . . ,n (3.22)

mX

i =1

nX

j =1

Costi j Assignmenti j � Budget (3.23)

mX

i =1

nX

j =1

OldAssigni j Assignmenti j = 0 (3.24)

mX

i =1

nX

j =1

PMEi j Assignmenti j � PLB (3.25)

X

j 2Rk

Assignmenti 2Rk , j = 1 8 (i , j ) pairs 2 Rk (3.26)

X

j 2Ek

Assignmenti 2Ek , j = 0 8 (i , j ) pairs 2 Ek (3.27)

mX

i =1

nX

j =1

d i j Assignmenti j � q � 1 (3.28)

Assignmenti j 2 f 0,1g 8 i , j (3.29)

where

d i j is the set of decision variables from Assignmenti j , see Equation 3.18, and

q is the number of non-zero entries in d i j , j d i j > 0 j.

3.4.3 Suitability Results

To show that the valid inequality does improve performance of the solver, we report the

average performance measurements for 100 iterations of each instance and modi�cation

in Tables 3.3 and 3.4. For the 49A of�cers, the LR was faster, but it took more iterations on
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average. Switching to binary decision variables increased the runtime, but the addition of

the VI did not have a major impact on this small problem instance. We see some major

Table 3.3 This table displays the average results for 49A of�cers ( m = 134). Performance is fairly
similar between the integer programs.

Criteria LR No VI VI
Budget Percent 50 60 50 60 50 60
Objective Value 417.7072 419 417 419 417 419
Runtime 0.0703 0.0651 0.2062 0.1073 0.1890 0.1229
Iteration Count 3161 3031 1522 2571 1544 2243

improvements when we look at the results from the 35D instance. From Figure 3.6, we know

that the LR might return too many fractional variables to be useful. By implementing binary

decision variables and adding in a VI, we see computation times drastically reduced for

integral solutions. The VI case at 60% budget has a run-time on par with that of the LR. Note

that the iteration count is much higher, but the heuristics Gurobi uses in the background

can take advantage of the VI formulation.

Table 3.4 This table displays the average results for 35D of�cers ( m = 1,617). Despite a higher
iteration count, the VI does reduce the computation time.

Criteria LR No VI VI
Budget Percent 50 60 50 60 50 60
Objective Value 4,937.71 4,984 4,936 4,984 4,936 4,984
Runtime 109.86 52.25 374.64 335.04 304.89 111.82
Iteration Count 280,154 224,752 447,007 197,906 1,863,961 1,935,190

3.5 Multi-Objective Formulation

Now that we have results from solving (P), we focus on getting to a Pareto optimal solu-

tion for the AOAP. We accomplish this by solving a multi-objective optimization (MOO)
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model using a manual and automated lexicographic approach. We impose an ordering

on the objective functions according to their importance, which we set as suitability �rst

followed by cost. The Pareto analysis completed above indicates that cost and suitability

are two competing objectives. Optimizing only one of those objectives would result in a

less desirable solution compared to incorporating both into an optimization model. Cost is

the lesser of the objectives since we already discovered that the budgets involved in the

assignment problem are in�ated by as much as three times. According to Arora [Aro12],

some advantages of the lexicographic approach include that it is a unique approach to

specifying preferences, which is advantageous for the ever changing priorities of DoD, and

that it always provides a Pareto optimal solution. See Stadler [Sta79] and Marler & Arora

[Mar04]for more details on MOO.

3.5.1 Methodology

To compare the different optimization approaches, we start with our problem instances.

Of�cers from 49A (ORSA) and 35D (Military Intelligence) are utilized over the entire as-

signment horizon from 2012 through 2017. This allows us to compare different problem

sizes over time to see how each model responds to the changing inputs. For each year, we

solve the problem three times. We begin with a manual approach shown in Algorithm 4.

We solve (P) to optimality (single objective optimization, SOO) then minimize the cost of

the assignment (manual lexicographic optimization, MLO) using a warm start from (P).

However, we do not want to reduce the suitability of the assignment. Therefore, we include

the suitability as an equality constraint equal to the optimal suitability from (P), z � . The
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goal is to move the solution to the Pareto optimal front.

Algorithm 4: Sequential Multi-Objective Optimization
Solve (P) to optimality then minimize the cost subject to suitability as a constraint.

if (P) optimal with z � then

Solve Updated model

min
mX

i =1

nX

j =1

Costi j Assignmenti j

s.t. g (X ) � 0, inequality constraints from (P)

h (X ) = 1, equality constraints from (P)
mX

i =1

nX

j =1

Suitability i j Assignmenti j = z �

end

end

The third method (automatic lexicographic optimization, ALO) utilizes Gurobi and

objective priorities along with the warm start from (P) [Gur21]. We set the priority for

suitability to two and give cost a priority of one. A higher integer value indicates priority

not numerical order. We represent the Gurobi model as Equations 3.30 through 3.34. For

all three methods, our chosen metrics are run-time, objective values (suitability and cost),

and assignment quality.
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max
mX

i =1

nX

j =1

Suitability i j Assignmenti j (3.30)

min
mX

i =1

nX

j =1

Costi j Assignmenti j (3.31)

s.t. g (X ) � 0, inequality constraints from (P) (3.32)

h (X ) = 1, equality constraints from (P) (3.33)

Assignmenti j 2 f 0,1g 8 i , j (3.34)

3.5.2 Results

Table 3.5 summarizes the results from the 49A assignments. Each method results in a nearly

identical suitability and match. The run-times displayed are purely optimization times and

do not include problem setup times. The suitability averages are shown as a percent of the

suitability upperbound for the 49A assignments.

To ensure these results were statistically signi�cant, we conducted a two sample paired

t -test of the means for computation time, suitability, and cost. We utilize the t -test since

we only have six data points for each metric and the population variance is unknown. Our

null hypothesis is that the means for each metric and method are the same. For the 49A

of�cer assignments, we rejected the null hypothesis in each case. All of the means by metric

and method are not equal. See Appendix D for more detail. The ALO with warm start has a

signi�cant cost improvement while being faster than the MLO. The ALO improves on the

assignment cost by 48.79% on average ($2,940,855 compared to $1,516,340) while being

fractionally faster.

The results from the 35D assignments mirror that of the 49A data. Table 3.6 shows that

the average metrics for suitability are identical or close to it. The differences manifest in the

run-time and the cost improvement. The ALO in this case is about 30 seconds slower than
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Table 3.5 This table shows the arithmetic mean of the data captured from optimizing 49A of�cers
(m � 115) from 2012 to 2017.

Method Time (sec) Max Suitability (%) Cost (% improvement) Suitability = 5 (%) Suitability � 4 (%)
SOO 0.112 97.16 27.32 85.17 99.33
MLO-Warm 0.211 97.16 42.17 85.11 99.39
ALO-Warm 0.177 97.16 48.79 85.17 99.33

MLO, but the ALO increases the cost savings by an additional 7.7% or almost $2.5 million.

That savings is very much worth the extra 30 seconds of work. The two sample paired t -tests

for suitability and cost indicate that the means are different for each method. However, the

we failed to reject the null hypothesis that the mean computation times for MLO and ALO

are the same. Appendix D has the complete t -test report for the 35D assignment data.

Table 3.6 This table shows the arithmetic mean of the data captured from optimizing 35D of�cers
(m � 1500) from 2012 to 2017.

Method Time (sec) Max Suitability (%) Cost (% improvement) Suitability = 5 (%) Suitability � 4 (%)
SOO 32.149 93.59 42.92 71.88 92.04
MLO-Warm 87.973 93.59 48.34 71.44 92.20
ALO-Warm 111.787 93.59 55.64 71.88 92.04

3.6 Conclusions

In developing a model for the AOAP, we began to understand the dif�culty of capturing

all of the assignment processes nuances. The constraints developed in this chapter aim

to encapsulate many of those rules and regulations. Our model, (P), demonstrates that

any number of exclusions or inclusions can be accounted for in the formulation by sub-

setting the data by the criteria required. One example of this was to ensure no of�cer with

an instructor quali�cation, 5K, went to a job that resulted in that skill being developed.

This prevented a redundant utilization of KSBs. We then shifted to solving (P)L R, which

demonstrated how incredibly sensitive the optimization is to changes . A CM cannot simply

�x hundreds of fractional assignments; we explore this further in the next chapter by mea-
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suring the solution robustness. Finally, the valid inequality we modi�ed and implemented

came from Aboudi & Jørnsten [Abo90]. That implementation saved computation time,

which is a precious resource when solving large integer programs.

We then explored the Pareto points of our model by iterating over random budgets

and optimizing the suitability of the assignments. This led us to explore multi-objective

optimization and lexicographic ordering of the objective functions. From the results of the

multi-objective optimization comparison, we determined two things. First, it is necessary to

treat this problem as multi-objective optimization. We cannot consider the best utilization

of talent without also looking at how that affects the travel budget. This leads us to giving

the decision makers more �exibility in the assignment process by allowing them to see the

trade-offs that exist when balancing talent and budget constraints. Second, we utilize the

automatic lexicographic optimization model for all of our analysis moving forward. It is

suf�ciently fast and returns results that are consistent with the single-objective model but

with a signi�cantly reduced PCS cost.
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CHAPTER

4

PERTURBATION STUDY

Having completed a thorough analysis of the Army's assignment data from 2012–2018 and

compared it to the Army of�cer Assignment Problem (AOAP) using Automatic Lexicographic

Optimization (ALO), we now attempt to understand and test our methodology when facing

perturbations. In this context, a perturbation could be an of�cer or job no longer in the

assignment cycle which then prompts assignment changes. We aim to test our model

with different perturbations in this chapter. First, we introduce a modi�ed ALO model to

maximize the number of assignments that remain constant post-perturbation. Then we use

the Stable Marriage Algorithm (SMA) as a baseline as proposed by Ferguson et al. [Fer20]

and show some of the same metrics the Army uses to measure satisfaction [OPM20].
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4.1 Literature Review

The motivation for conducting a perturbation study of the AOAP is to replicate the many

realistic nuances of assigning of�cers to jobs. Recently, Ferguson et al. [Fer20] conducted

a parametric analysis of a similar matching problem. In that paper, the authors utilize

the SMA, as �rst described by Gale & Shapley [Gal62], as a baseline comparison for other

methods. Following from the seminal work of Gale & Shapley [Gal62] are a series of papers

that focus on different aspects of the matching problem including school choice, preference

lists, ties (preference and assignment), and stability and consistency; Table 4.1 provides a

complete crosswalk of subjects and features in the literature.

4.1.1 Distributional Constraints and Preferences

Hylland & Zeckhauser [Hyl79] introduce constraints that focus on diversity and on assign-

ments with unknown preferences. Hylland & Zeckhauser [Hyl79] describe distributional

objectives as treating everyone equally in some cases or favoring others in some systematic

way. Irving et al. [Irv87] and Agoston et al. [Ago18] also work to achieve equitable matching

based on preferences. Shepsle [She75] maximizes preferences when assigning Congres-

sional committees, which is similar to the school choice problem. Biro & McBride [Bir14]

work on school choice, but they also include distributional constraints. In Chartier et al.

[Cha14], the authors address diversity and preferences using a multi-objective integer pro-

gram, unlike the former papers that focus on a stable matching approach. In this research,

we do not deliberately focus on distributional constraints. Instead, we center the assign-

ments on talent utilization or match level as a way to retain diverse talent per Army Talent

Management guidance [Ent19].

Much of the research also focuses on dealing with preference lists. Roth [Rot82] states

that when agents (of�cers in this case) give their honest or true preferences we have a stable

match. Preferences that attempt to game the system or incentives that do not reveal true
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Table 4.1 Crosswalk of literature by subject and features.

Research Area Features Preferences

Authors Year
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This Research 2021 x x x x x x x x x x x
Ferguson et al. [Fer20] 2020 x x x x x x x
Delorme et al. [Del19] 2019 x x x x x
Spagnol et al. [Spa19] 2019 x x
Agoston et al. [Ago18] 2018 x x x x x
Dur & Morrill [Dur18a] 2018 x x x
Dur et al. [Dur18b ] 2018 x x x
Afacan & Dur [Afa17] 2017 x x
Cechlarova et al. [Cec15] 2015 x x x
Biro & McBride [Bir14] 2014 x x x x
Chartier et al. [Cha14] 2014 x x x
Firat et al. [Fir14] 2014 x x x
Kwanashie & Manlove [Kwa14] 2014 x x x x
Dur & Kesten [Dur14] 2014 x x x x
Klaus & Klijn [Kla13] 2013 x x
Soenmez [Soe13a] 2013 x x x x x
Soenmez & Switzer [Soe13b] 2013 x x x x x
Castillo et al. [Cas08] 2008 x x
Abdulkadiroglu & Sonmez [Abd03] 2003 x x x x
Ergin [Erg00] 2000 x x x
Bonnans & Shapiro [Bon98] 1998 x x
Abeledo & Blum [Abe96] 1996 x x
Tan & Hsueh [Tan95] 1995 x x x x
Roth et al. [Rot93] 1993 x x x
Francis [Fra87] 1987 x x x
Irving et al. [Irv87] 1987 x x x
Roth [Rot84a] 1984 x x
Hylland & Zeckhauser [Hyl79] 1979 x x x
Shepsle [She75] 1975 x x
McVitie & Wilson [McV71] 1971 x
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preferences result in sub-optimal matches [Jan12]. Having a truthful preference list is key to

getting a reliable and fair assignment [Dur14; Dur18a; Dur18b ]. True preferences also make

the SMA immune to manipulation [Dur14]. Other forms of preference lists include unknown,

incomplete, complete, and strict, the latter of which leads to guaranteed stability for the

SMA [Rot84a]. In this work, we do not have true or provided preference lists. However, we do

generate preference lists according to a procedure that we outline in subsequent sections.

See Francis [Fra87], Abdulkadiroglu & Sonmez [Abd03], Firat et al. [Fir14], Kwanashie &

Manlove [Kwa14] and Delorme et al. [Del19] for more work and analysis on the many

aspects of preferences lists. The only other works directly tied to a military application are

Soenmez [Soe13a] and Soenmez & Switzer [Soe13b]. In both papers, the authors describe a

bidding process and assignment mechanism. Army of�cers would bid for assignments to

compete for a higher preference when choosing a branch. They propose that their method

could incentivize the Army's diversity objectives as well as increase service time through

contracts [Soe13b].

4.1.2 SMA and Tie Breaking

Since Gale & Shapley [Gal62], the SMA has been the subject of numerous other academic

works. Some researchers have worked on the integer or linear programming versions of

SMA ([Fra87], [Rot93], [Del19]). Others have worked on modifying the SMA to describe

properties or present new applications. For instance, McVitie & Wilson [McV71] break

some of the SMA marriages to �nd all of the stable marriages in a given set. Fractional

matches from the LP relaxation described by Abeledo & Blum [Abe96] and Roth et al. [Rot93]

are re�ned by the preference list or objective function. Dur & Kesten [Dur14] identify a

shortcoming that we overcome with this research: sequential assignments. Sequential

assignments are susceptible to preference manipulation. SMA, on the other hand, selects a

fair outcome that is stable and immune to manipulation (given true preferences). Dur &

Morrill [Dur18a] focus on choice with preferences (i.e., a student's priority at a school is
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only valuable if it gets them into the school). For example, a student ranked 201 at a school

with 200 slots is the same as being ranked 800 for the same school. Dur et al. [Dur18b ]

ensure suitability is prioritized (max number of students get top choice). In this research,

we generate preference lists in order to use the SMA as a baseline comparison. We break

ties utilizing data-derived priorities, which we describe in detail below.

4.1.3 Parameter Versus Variable Consistency

In Ferguson et al. [Fer20], the authors give �ve types of perturbations typically encountered

during an assignment cycle: assignment restriction, directed assignment, rejected match,

unforecasted assignment, and removal of an of�cer. These perturbations all deal with

changes to the assignment or decision variable. However, sensitivity analysis research

usually investigates the objective function's parameters or coef�cients. See Bonnans &

Shapiro [Bon98], Spagnol et al. [Spa19] or Castillo et al. [Cas08] for more research into

parameter sensitivity. We are concerned with how consistent the perturbed optimization

remains for the assignment. An assignment is consistent when, having removed a matched

pair, the remaining assignments are unchanged after running the mechanism again [Afa17].

In this research, consistency is important since each new assignment means an of�cer

moves their family and household goods. Any changes that occur after the assignment has

been issued would cause undue stress on a family, which could impact whether or not the

of�cer decides to remain in the Army.

Afacan & Dur [Afa17] state that stability is not Pareto ef�cient. Furthermore, they prove

that no stable mechanism (i.e., SMA) is consistent, which we will demonstrate in the subse-

quent parametric analysis. Ergin [Erg00] ensures consistency exists for housing allocations

and is not in�uenced by sequence. Finally, Klaus & Klijn [Kla13] conducts some work on

school choice and de�ne necessary and suf�cient conditions for global consistency, but

that only exists for a variable population.
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4.2 Updated Model and Objective Priorities

Following Section 3.3, we now update the automatic lexicographic optimization (ALO)

model to include an objective function that maximizes the number of assignments that

remain the same as in the original ALO. Similar to Kojima & Ünver [Koj14], we track the

assignment robustness through the decision variables. Starting with the optimal solution

to problem (P), we determine how consistent the new assignment is compared to the

assignment from the unperturbed model, which corresponds to Objective 4.3 in the ALO2

model:

max
mX

i =1

nX

j =1

Suitability i j NewAssigni j (4.1)

min
mX

i =1

nX

j =1

Costi j NewAssigni j (4.2)

max
mX

i =1

nX

j =1

Assignmenti j NewAssigni j (4.3)

s.t. g (X ) = 0, equality constraints from (P) (4.4)

h (X ) � 1, inequality constraints from (P) (4.5)

NewAssigni j 2 f 0,1g 8 i , j (4.6)

where

NewAssigni j is the set of perturbed decision variables

Assignmenti j is the set of decision variables from the ALO model

As in Section 3.3, we must also set the priorities for each objective in Gurobi [Gur21]. Instead

of testing all permutations of the priorities, we only tested the cases in Table 4.2. Cost is the

lowest priority since we have previously shown that we consistently beat the data derived
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Table 4.2 Objective priorities for evaluating ALO2. Higher numbers indicate higher priority.

Variant Objective 4.1 Objective 4.2 Objective 4.3
P0 1 1 1
P1 2 1 2
P2 2 1 3
P3 3 1 2

Figure 4.1 A comparison of objective values for 2012 assignments for 49A of�cers.

cost by over 50%. Therefore, we only change the priority of the Objectives 4.1 and 4.3.

As you can see in Figure 4.1, setting each objective function to have equal priority,

(Variant P0), does not produce desirable results. While the cost is very low, the suitability

and number of changes are signi�cantly worse that the other cases. Therefore, we drop

Variant P0 from consideration. Figures 4.2a and 4.2b display the average suitability versus

the number of changes from 2012 to 2017 for both 49A and 35D, respectively. As the �gures

indicate, P2 and P3 are nearly the same while P1 is clearly dominated. See Table 4.2 for each

optimization priority. The difference in suitability and cost for 49A of�cers is less than 0.4%

for each year when comparing priorities P2 and P3. The number of changes works out to

less than one of�cer assignment being different between the priorities. The results for 35D

of�cers are similarly close. There is less than 0.2% difference between suitability and cost
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while the number of changes is less than two between the different priorities. Iterating

over the six years of data, P2 saved 25.3 minutes of computation on average. Therefore, we

continue our analysis utilizing priority P2 for the optimization.

(a) Average suitability versus cost objective values
for 49A of�cers between 2012 and 2017.

(b) Average suitability versus cost objective values
for 35D of�cers between 2012 and 2017.

Figure 4.2 Average objective values for 49A and 35D of�cers by priority.

4.3 Parametric Analysis of Army Of�cer Assignments

Having established our ALO2 model with Variant P2 priorities, we introduce and present

the results for a parametric analysis of the assignments. This section introduces the pertur-

bations and an implementation of the Stable Marriage Algorithm (SMA), which we use as a

comparison to our model. Table 4.3 lists each of the perturbations and models mentioned

in this section. Finally, we describe the results and discuss some key takeaways.

4.3.1 Perturbations as Modi�ed Constraints

Assignment restrictions, directed assignments, and rejected matches encompass numerous

cases where an of�cer can or cannot be assigned to a particular job based on their attributes

or decision-maker guidance. The �rst perturbation type is T0 for which we subset the data

58



Table 4.3 Description of methods and perturbation types.

Designation Abbreviation Description
Type 0 Perturbation T0 Up to 1% of of�cers removed
Type 1 Perturbation T1 Up to 1% of jobs removed
Type 2 Perturbation T2 Up to 1% each of of�cers and jobs removed
Stable Marriage Algorithm, Random SMA-R SMA with randomized preferences
SMA, Lexicographic SMA-L SMA with preferences ordered by suitability and cost
Automatic Lexicographic Optimization 2 ALO2 Optimization with three prioritized objectives
ALO2 with warm start ALO2-Warm ALO2 with a warm start from the unperturbed optimization

by �nding those of�cers that must be excluded or included in the �nal solution. First, we

subset the pool of removed of�cers into a separate group, G2, while the remaining of�cer(s)

are put in G1. Then we update Constraint (3.7) to Constraint (4.7) (required assignments),

nX

j =1

NewAssigni j = 1 8 i 2 G1, (4.7)

and add in Constraint (4.8) (excluded assignments),

nX

j =1

NewAssigni j = 0 8 i 2 G2. (4.8)

The job openings left by removing the set of of�cers could cause a cascade of moves in

the assignment process. All of the previous optimal assignments could be different after

another optimization cycle. The cascading assignments are why we maximize the number

of assignments that remain the same in ALO2. A job perturbation, T1, works in the same

manner. We modify Constraint (3.8), which results in the following new constraints.

mX

i =1

NewAssigni j � 1 8 j 2 G3, (4.9)

mX

i =1

NewAssigni j = 0 8 j 2 G4. (4.10)

Finally, there is the potential for both of�cer and jobs to change at the same time (perturba-

tion T2). In that case, we use all of our new perturbation constraints, Constraints 4.7 though

4.10.
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4.3.2 Stable Marriage Algorithm: Attribute Tie-Breaking

To benchmark this study, we rely on the work from Gale & Shapley [Gal62] where the authors

introduce the Stable Marriage Algorithm (SMA) outlined in Algorithm 5. See appendix E

for the complete implementation. The SMA is a well-known and understood method for

assignment problems that we can compare our model to in order to see how well performs

.

Algorithm 5: Gale-Shapley Stable Marriage Algorithm
Result: Stable matching of of�cers to jobs
Preference lists for Of�cer and Jobs, O_pref and J_pref;
m is the set of Of�cers;
n is the set of Jobs;
matched is a vector of zeros of length m ;
(m ,n ) current matching pair;
while 9 0 2 matched do

if n =2 (m ,n ) for some pair in matched then
matched = (m ,n )

else if n prefers m to current match then
remove (m ,n ) from matched;
matched = (m ,n );

else
do nothing

end
end

Despite having a rich dataset, we do not have the preference information for the of�cers

that moved. To generate the preference lists required to execute the SMA, we sort the

potential matches according to their suitability and break any ties using assignment cost.

This allows us to approximate the priority we utilize in the optimization algorithm, ALO2.

We also include the hard constraint for rank by zeroing out any of�cers who do not meet

the assignment's rank requirement.

Figures 1 and 2 in Ferguson et al. [Fer20] show the percentage of of�cers that match a
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top three preferred assignment and the method's robustness, respectively. We can make a

direct comparison to their data using our SMA-L data. They compute the top three match

and robustness for the SMA-Lex, which breaks ties by the ordering in the preference lists

the authors use [Fer20]. We follow a similar logic by breaking ties as described previously.

Ferguson et al. [Fer20] show that the median percentage of of�cers that match a top 3

assignment is 18%. Figure 4.3a shows that our method is in line with Ferguson et al. [Fer20]

for each perturbation type we use. Furthermore, Ferguson et al. [Fer20] show that approxi-

(a) Percentage of of�cers matched to a top three
assignment by perturbation type.

(b) Percentage of of�cers that change after a
perturbation.

Figure 4.3 Reported top 3 assignments and changes for 49A of�cer between 2012 and 2017.

mately 44 out of 161 of�cers change when using their SMA-Lex method, which is a median

value of 27.3% of�cers changing assignments. Our method show similar results as given in

Figure 4.3b.

4.3.3 Test Design

Table 4.3 lists the variants of the problem along with the perturbation types we utilize for the

rest of this chapter. First, we execute the SMA using a randomized preference list (SMA-R).

Randomized indicates that each of�cer's preference order for all of the available jobs is
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random and equally preferred. Then we use an ordered preference list (SMA-L). Next, we

optimize (P) to get an optimal baseline solution. Finally, we introduce the perturbations

to each model. Note that each perturbation type removes or adds up to 1% of the of�cers

and/ or jobs in the assignment set. For instance, if we have 155 of�cers, m = 155, we could

remove up to two of them, which we arrive at by rounding 1% of m to the nearest integer.

Then the number of of�cers and / or jobs that are removed or added are chosen uniformly

at random. We measure computation time, suitability, cost, and the number of changes for

each of the methods and perturbation types. These metrics are also tracked for each year

in this research, 2012 through 2017.

4.4 Results and Analysis

Table 4.4 summarizes the computation times for each variant and perturbation of the 49A

of�cer assignments in 2012. The SMA variants run very quickly, and although the ALO2

variants took two orders of magnitude longer, each run took less than one second. The

computation times for 2012 are representative of the remaining years. When looking at the

computation times for 35D of�cers, SMA-R remains very fast at under three seconds. The

remaining variants take well over one minute to execute. For SMA-L, the sort procedure

adds to the time, and the number of iterations increases since many of�cers prefer the

same jobs. However, SMA-L takes about the same computation time to get to an optimal

result as both ALO2 methods. The computation times shown here demonstrate why we

chose priority P2 since it saves 10% on the computation times. See Appendix D, Tables D.13

and D.12 for the complete data.

Looking at the 49A of�cer assignments in 2012, Table 4.6 compares all methods for

perturbation T0. The Top 3 assignment percentages are in line with previous data, but

now we see that the optimization did not fair well with matching preferences. This is the

result of two assumptions. First, we chose to generate preference lists as a stand-in for
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Table 4.4 Computation times with 95% CIs where we have 49A of�cers in 2012.

Solution Method Perturbation Type 95% CI for mean times (s)

SMA-L 2012
T0 0.0028� 0.0243
T1 0.0027� 0.0001
T2 0.0028� 0.0001

SMA-R 2012
T0 0.0029� 0.0001
T1 0.0028� 0.0001
T2 0.0027� 0.0001

ALO2 2012
T0 0.4728� 0.0243
T1 0.4367� 0.0145
T2 0.4255� 0.0484

ALO2-Warm 2012
T0 0.4910� 0.0285
T1 0.4235� 0.0136
T2 0.3546� 0.0097

true preferences. Second, when generating the preferences, we prioritized suitability and

cost, but that did not truly approximate the optimization. The preference lists (and SMA)

prioritized a level 5 match costing $15,000 ahead of a level 4 match costing $1,000. The

SMA matched the of�cer and job with all �ve KSBs, but the optimization had to balance

both suitability and cost. Regardless, the optimization gave excellent results for both. For

complete results, see Appendix D. For 35D of�cers, Table 4.7 compares all variants in 2012

with perturbation T0. SMA-L performs the best when matching the preference, but ALO2

again trumps it for suitability and cost. ALO2 and ALO2-Warm beat out the SMA-L method

by reducing the budget by half. They also increased the four and higher suitability by nine

times. The Top 3 and Top 10 percentages for both ALO2 methods are quite low. However,

Table 4.5 Computation times with 95% CIs where we have 35D of�cers in 2012.

Solution Method Perturbation Type 95% CI for mean times (s)

SMA-L 2012
T0 68.56� 4.79
T1 75.94� 3.84
T2 65.80� 2.51

SMA-R 2012
T0 2.83 � 0.06
T1 2.63 � 0.03
T2 2.46 � 0.01

ALO2 2012
T0 65.00� 0.98
T1 71.43� 2.95
T2 73.20� 2.91

ALO2-Warm 2012
T0 64.18� 2.47
T1 64.18� 1.71
T2 74.07� 2.81
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Table 4.6 Top 3, Top 10, and suitability levels in 2012 for 49A of�cers (m =119) and all Variants.

Variant ( T0) Top 3 (%) Top 10 (%) Suitability =5 (%) Suitability � 4 (%) Cost
SMA-R 2.52 8.40 8.40 14.29 $3,564,681
SMA-L 19.33 37.82 5.04 14.29 $2,277,830
ALO2 0 3.36 56.30 65.55 $1,561,124
ALO2-Warm 0.84 4.20 56.30 66.39 $1,561,124

there are 1741 jobs available for the 35D dataset in 2012, which explains why the methods

are lower for top matches than for 49A of�cers.

Table 4.7 Top 3, Top 10, and suitability levels in 2012 for 35D of�cers (m =1578) and all Variants.

Variant ( T0) Top 3 (%) Top 10 (%) Suitability =5 (%) Suitability � 4 (%) Cost
SMA-R 0.317 0.824 1.901 4.879 $40,867,496
SMA-L 10.076 15.462 1.394 5.133 $26,985,523
ALO2 0.126 0.190 29.594 47.845 $13,919,333
ALO2-Warm 0.126 0.190 29.341 47.655 $13,919,333

Finally, we compare all of the methods and perturbations across robustness, cost, and

suitability. Figure 4.4 shows the number of changes as a percent of total of�cers in each year.

SMA-R performs the worst since it uses a random preference list where all jobs are equally

preferenced. SMA-L fares better with the median changes at 26.9%. This matches the SMA-

Lex data from Ferguson et al. [Fer20], which shows the median changes at approximately

27.3%. The optimization algorithms, ALO2 and ALO2-Warm, performed the best, which

was expected since robustness had the highest priority, P2, of the objective functions. Both

ALO2 algorithms also outperformed the SMA-Lex, Warm, and SMA, Warm methods in

Ferguson et al. [Fer20]. Our methods for each perturbation type are lower than the 6.21%

median changes shown in Ferguson et al. [Fer20]. We also measured the total suitability for

each variant, which is given in Figure 4.5. For each of the SMA variants, we only achieve

approximately 25% of the maximum suitability. The ALO2 methods are nearly identical

and reach over 90% of the maximum suitability of a given assignment. Finally, the major
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