
ABSTRACT

PRESLER-MARSHALL, KAI. Supporting Computer Science Education Through Automation
and Surveys. (Under the direction of Sarah Heckman and Kathryn Stolee.)

Software engineering is a growing field, with ever-increasing demand for capable engi-

neers who can design, implement, and test the software that is needed for the modern world.

With this increasing demand for software engineers, there is a corresponding increase in

the demand placed on computer science programs that graduate these engineers. However,

the increase in undergraduate enrollment in computer science programs has generally

outpaced the increase in instructors. Unfortunately, this can have negative educational

impacts by reducing the support that instructors can offer each student. Automation has

resulted in significant benefits, allowing developers to work more efficiently and deliver

higher-quality software, but automation is not as prevalent within computer science educa-

tion as it is within industry. To help promote better educational outcomes, particularly by

improving the feedback that students receive on their work, I adopt software engineering

automation techniques into computer science education and evaluate their efficacy.

With ever more students enrolled in computer science programs comes a more wide-

spread use of team-based learning (TBL) and larger teams. While TBL has numerous

educational benefits, it is not an educational panacea. Larger teams increases the risk of

team challenges, including ineffective communication and non-participation, which has

the potential to hamper educational outcomes. To address this, I propose and evaluate

using survey techniques to gain insights into how teams work and the challenges that stu-

dents face in this environment, and enable just-in-time support for struggling teams. This

approach can provide instructors with feedback on team challenges, and also encourages

self-reflection on the part of students.

Together, these approaches support my thesis: Using software engineering automa-

tion and survey techniques in computer science education results in improved student

learning outcomes, early prediction of struggling teams, and more effective instructional

materials.

My first two research contributions focus on applying software engineering automa-

tion to support individual students. My test flakiness study investigates the impact that

configuration options have upon the stability of Selenium tests. This supports improved

educational outcomes by giving students more consistent feedback and greater confidence

in the code and tests that they write. My automated program repair study investigates

the mistakes that students make when learning SQL, and introduces an automated pro-



gram repair tool for SQL queries. It demonstrates that automated repair can be applied to

special-purpose languages such as SQL, and that students find automatically-repaired SQL

queries to be understandable, suggesting that they may have promise as an instructional

technique.

My final three research contributions use survey techniques and software engineering

automation to focus on supporting software engineering student teams. My collaboration

reflection study investigates the use of a team collaboration reflection survey (TCRS) for

identifying software engineering student teams that are struggling to collaborate effectively.

It shows that most (89%) teams which later receive poor grades can be flagged through

the TCRS, typically by the halfway mark of the project, and students appreciated that the

TCRS encourages self-reflection. In my team challenges study, to better understand team

challenges that were uncovered through the TCRS, I interview students who had recently

completed a team-based software engineering course about their teaming experiences. This

provides novel insights into how teams work together, and the types of issues that students

face and how they attempt to overcome them. It demonstrates that the issues student teams

face are largely in-line with educational theory, and informs improvements to instructional

materials to help students work together more effectively. Finally, in my contributions

analysis study I develop an algorithm and a tool to summarise individual students’ code

contributions to team-based projects. I then conduct a study to evaluate whether this

information can help TAs grade projects more consistently and provide students with

better feedback. My algorithm performs abstract syntax tree-based program analysis to

offer more meaningful summaries of individual contributions than state-of-the-practise

approaches. This study demonstrates that automated contributions summaries help TAs

grade more consistently and provide more actionable feedback to students. Additionally,

by helping instructors evaluate students more consistently, this can help identify teams

that are struggling to work together effectively.

Taken together, these studies demonstrate that software engineering automation and

surveys can result in benefits in computer science education. In particular, I demonstrate

that this can provide students with feedback that is more consistent, and thus more action-

able. Additionally, I demonstrate that surveys can provide insights into the challenges that

teams face working together, thereby helping instructors provide guidance on how to work

more effectively.
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CHAPTER

1

INTRODUCTION

The demand for professional software engineers has grown remarkably since the turn of

the 21st century. According to estimates from the Bureau of Labor Statistics, in 2021 there

were nearly two million software engineers working in the United States [Sejb], a nearly

three-fold increase compared to 2001 [Seja]. Additionally, the field is expected to continue

to grow rapidly, with US government estimates suggesting a growth of more than 20%

between 2021 and 2030 [Sejb]. The increasing demand for software engineers has resulted

in an increasing demand for computer science programs that can train them. Indeed, the

number of computer science bachelors degrees awarded in the United States has more

than tripled between 2010 and 2020, and enrollment from non-majors continues to grow

as well [Zwe21]. Taken together, this information shows an explosive growth in the fields of

software engineering and undergraduate computer science education.

However, faculty hiring has been unable to grow at the same rate as undergraduate

enrollment. The number of computer science PhDs awarded each year in the United

States has grown by only 20% since 2010 and has remained largely flat since 2013 [Zwe21].

Additionally, a majority of PhD graduates continue to enter industry rather than academia.

Consequently, although faculty hiring continues to grow [Wil20], it has done so at a slower

rate than the increase in enrollment [Zwe21], and a constrained supply of PhD graduates

puts further pressure on departments’ abilities to hire additional faculty going forward.
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The consequence of this is that instructors’ time is split between more and larger classes,

leaving them unable to offer students the individual attention they otherwise could. The

negative impacts of this manifest in multiple ways, impacting both individual students and

student teams.

To help alleviate this problem of large and growing classes, enable better learning

outcomes for students, and offer more support for instructors, I propose and evaluate two

novel approaches for improving computer science education. I argue that these techniques

can help both students and instructors, by helping students meet learning outcomes and

providing instructors with support to help them more effectively teach large and growing

courses. To do this, I use automation techniques from software engineering and surveys

that encourage students to self-reflect, a key component of self-regulated learning [Pan17].

Automation is widespread within software engineering, with developers taking ad-

vantage of tools and techniques that can help them design, implement, test, debug, and

maintain software more effectively than is possible working unassisted [des04; Vas15].

While the breadth of these tools is immense, they all have the same fundamental goal:

allowing developers to work more efficiently and deliver higher quality software by letting

them avoid tedious or error-prone manual portions of their jobs.

While not as prevalent as in industry, computer science education also draws on automa-

tion, with techniques and tools that enable automated grading [Edw08; Gul18; Yi17; Par17]

or automated team formation [Lou14]. Computer science education also uses some of the

technologies used by professional developers to assist instructors and students [Hec18a].

Beyond helping students work through problems more rapidly, automation also has a role

to play in helping students more effectively learn material. Through the lens of cogni-

tive load theory [Swe88], automation may help students focus their mental efforts toward

better long-term information storage. In this dissertation, I consider applications in ed-

ucation for three types of software engineering automation: automated testing [Kim13b;

Cha06; Mao16], automated program repair [Nod20; Mar19; Ngu13; Ke15], and program

analysis [Tra20; Sin17; Fei16; Fal14].

Another technique used within education is surveys, which can help promote self-

reflection, an essential component of self-regulated learning [Pan17]. This benefits students

by getting them to pause and reflect on their learning, taking stock of what is working and

what is not working. Surveys can also aide instructors, giving them regular, informal feed-

back on the progress and difficulties that students face which can then inform “monitoring

and arbitration” to help resolve complex issues teams are facing [Fra13; Bur03].

While surveys have been used to encourage self-reflection and reveal team challenges,

little has been done to evaluate whether these benefits can transfer to computer science
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education. In particular, I use surveys to gain insights into the challenges that teams

face. Prior work has shown that team-based learning offers substantial pedagogical bene-

fits [Hry12; Aya15], but is not an educational panacea. Previous research has demonstrated

that students may struggle to work effectively in teams [Taf16; Oak04; Dor12; Che15; Tuc06;

Abb17; Dzv18], thus depriving them of a positive, team-based learning experience. By using

surveys to gain insights into the challenges that students face working together, I help craft

more successful teaming environments. In this work, I consider team challenges through

the lens of Tuckman’s model of team development [Tuc65; Lea] to understand where teams

struggle to work together effectively.

In this dissertation, I propose and evaluate adapting additional automation techniques

into computer science education, and demonstrate the benefits that they can bring to

students. My work features automated testing (Chapter 3), automated program repair

(Chapter 4) and automated program analysis (Chapter 7). I study the impact of Selenium

configuration on test flakiness in the context of iTrust2 [Hec18b], and identify an optimal

configuration for running tests that eliminates flakiness and provides students with more

consistent feedback on the status of their projects. I also show that automated program

repair can produce repairs students find understandable, which may pave the way for their

use in intelligent tutoring systems [Cro18]. Finally, I use automated program analysis to

help teaching assistants (TAs) grade projects more consistently and provide students with

more actionable feedback. This can help students figure out what is expected of them in

team-based environments, and help instructors identify students who are not making the

expected contributions to their team.

Additionally, I draw upon survey techniques to offer novel insights on how software

engineering teams work and the challenges that they face. In Chapter 5, I propose and

evaluate a Team Collaboration Reflection Survey (TCRS) to proactively identify teams that

are struggling to work together effectively. Based off of the results observed, in Chapter 6, I

draw upon survey techniques to conduct more detailed interviews with students to better

understand the challenges they faced with their teams and how the course teaching staff

can best assist them. Finally, I use reflection surveys in Chapter 7 to understand how TAs

use automated contributions summaries and how improvements can be made to them to

improve their grading workflow.

Taken together, the information gained from these approaches leads to my thesis state-

ment:
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1.1 Thesis

Using software engineering automation and survey techniques in computer science

education results in improved student learning outcomes, early prediction of struggling

teams, and more effective instructional materials.

1.2 Research Questions

To support this thesis statement, the rest of this dissertation is structured around five studies.

Each subsequent chapter explains how that study contributes to the thesis statement.

1.2.1 Study 1: Test Flakiness

NC State University’s undergraduate software engineering course uses Selenium tests [Hun18]

to provide end-to-end testing of web applications. However, I have observed that Selenium

tests can be flaky [Fow11], with tests passing and failing with no changes to the underlying

code or tests. Flaky tests give inconsistent feedback, and deny students confidence in

the correctness of their code. This inconsistent feedback can frustrate student learning.

Additionally, when students are graded on maintaining a passing build, it can unfairly

impact their grades on the course project. In this study, I aim to identify a more stable

configuration for running Selenium tests in the course project. To do so, in Chapter 3, I

consider five research questions focused on how to achieve an optimal run configuration

for automated Selenium tests.

• RQ1: What is the impact of the WebDriver on Selenium stability?

• RQ2: Which Selenium wait methods are the most stable?

• RQ3: What is the impact of hardware (CPU and memory) on Selenium stability?

• RQ4: What effect does the host operating system have on Selenium stability?

• RQ5: What impact does restarting the browser between individual tests have on Sele-

nium stability?

To answer these research questions, I conduct an experimental study to determine the

impact of various factors on Selenium test stability. I identify that Selenium tests run faster

on more powerful hardware hardware. More importantly, they also run more reliably, with
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tests passing more consistently and experiencing fewer failures. I also identify that Chrome

outperforms other browsers in both test execution time and stability, and the manner in

which the test tries to wait for the page to finish rendering also impacts stability. Finally,

I identify that disabling browser restarts and using the same browser session to run all

tests in a suite results in faster runtime and completely eliminates test flakiness. This work

results in both a better understanding of how to configure Selenium for automated testing,

and a more stable application to use as a teaching tool in NC State’s Software Engineering

course. While this study does not evaluate improvements to student learning, prior work

has demonstrated that more consistent feedback improves learning outcomes [Vat21].

Answering these research questions supports the thesis statement by demonstrating that

software engineering automation, in particular improvements to automated testing, can

help provide more effective instructional materials.

1.2.2 Study 2: Automated Program Repair

Prior work has studied the types of mistakes that students make when first learning new

programming languages, which helps educators identify common pitfalls and tailor their

lessons accordingly [Bro14a; Alt15; Bro17]. Additionally, prior work has considered the use

of automated program repair within computer science education [Gul18; Yi17]. However,

neither of these techniques have been applied to SQL, the primary language used for

relational databases. As SQL is widely used by both computer scientists and end-user

programmers [Tai19; Mig20; Sos], I seek to better understand both the types of mistakes

beginners make and whether automated program repair can address them. In Chapter 4, I

consider three research questions related to the types of mistakes that students make while

learning SQL, and the ability of automated program repair to fix them and be used as a

teaching tool.

• RQ6: What types of mistakes do beginners make when working with SQL?

• RQ7: How well can SQLRepair fix errors introduced by beginning SQL programmers?

• RQ8: Do students find SQLRepair-repaired queries to be more understandable than

queries written by other students?

To answer these research questions, I conduct a controlled study where I teach un-

dergraduate computer science students basic database concepts and introduce them to

the language SQL. Next, I task students with using SQL to solve problems, asking them to

write queries that are capable of performing illustrated transformations from one table to
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another. I analyse the queries they wrote to understand the types of mistakes that students

make, and develop a tool, SQLRepair, to perform automated repair on SQL queries. I find

that students struggle with both the syntax and semantics of SQL, and that automated

repair is capable of fixing some of the queries that students write. Finally, I demonstrate that

students find repaired queries from my tool as understandable as queries written by other

students, suggesting that automated repair may be useful as an educational technique.

This study supports the thesis statement by demonstrating that software engineering au-

tomation, in this case automated repair, has the potential for improved learning outcomes

and more effective instructional materials.

1.2.3 Study 3: Collaboration Reflection

Practically without exception, professional software engineering is run in teams, bringing

together developers with disparate skills to solve complicated problems [Lay00; Ric12;

Ram20]. To prepare students for this, most computer science programs include team-based

learning opportunities [Wil00; Sim02; Iac20]. However, despite the educational benefits

of team-based learning, it introduces new challenges. Dysfunction in student teams can

impede the learning experience they offer [Tuc06; Oak04; Iac20; Mar16; Dzv18]. In Chapter 5,

I consider three research questions to focus on proactively identifying struggling software

engineering student teams.

• RQ9: Can weekly reflection surveys identify software engineering teams in need of

instructor assistance?

• RQ10: Can weekly reflection surveys identify software engineering teams that need

assistance sufficiently early?

• RQ11: Can weekly reflection surveys help support a better experience for software

engineering teams?

In this work, I develop a collaboration reflection survey that asks students to consider

how effectively they think their team is working together. I then conduct a classroom study,

where I integrate the TCRS into two projects in a junior-level software engineering course.

To ensure students take the time to self-reflect, the TCRS is made a mandatory component

of weekly project activities for both projects. The TCRS is delivered electronically via email,

and lightweight automated parsing provides a list of teams for the course teaching staff to

follow up with. I find that it is capable of identifying a large majority of teams (89%) that

go on to receive poor grades. Additionally, I find that a majority of students find the TCRS
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useful for self-reflection or helping keep them on track. This study also provides insights

into common issues that teams face, which can then be proactively addressed. This study

supports the thesis statement by demonstrating that survey techniques can result in early

prediction of struggling teams and more effective instructional materials.

1.2.4 Study 4: Team Challenges

In Chapter 5, I demonstrate that I can proactively identify a large majority of teams that go

on to do poorly. However, my work also suggests that the issues that teams face may be

broader than grades alone can reveal. Additionally, while it provides evidence that teams do

face issues, it does not reveal what issues they are facing. While prior work has studied team

challenges from the outside [Tuc06; Oak04; Iac20; Dzv18], to the best of my knowledge,

no prior work has studied these challenges from the perspective of the teams themselves.

In this study, I aim to address this shortcoming and help educators better understand

the types of challenges that teams face and how they sought to overcome them. To do

this, in Chapter 6, I consider four research questions to better understand how software

engineering student teams work, and what challenges they face along the way.

• RQ12: What team-related difficulties do students face on software engineering teams?

• RQ13: Why are some student software engineering teams able to overcome the issues

that they face, while others are unable to do so?

• RQ14: What support do students on software engineering teams want from the course

teaching staff for overcoming collaborative difficulties?

• RQ15: What are the characteristics of successful software engineering student teams?

To answer these research questions, I interview 18 students who had recently completed

a team-based software engineering course, and asked them about the processes their team

followed, what if any challenges they faced, and how they tried to overcome these challenges.

From this, I follow a grounded theory approach, identifying common sources of dysfunction,

steps that teams took to try and overcome the challenges they faced, and reasons why

some of these steps proved insufficient. This study reveals novel insights into how teams

work, and this study suggests improvements to project materials to help teams work more

effectively. This study contributes to the thesis statement by using survey techniques to

result in improved student learning outcomes and more effective instructional materials.
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1.2.5 Study 5: Student Contributions Analysis

Prior work has demonstrated that team-based learning (TBL) offers substantial educational

benefits [Hry12; Aya15], but is not without challenges. In order to discourage freerid-

ing [Hal13] and encourage engagement throughout the project, instructors must be able to

identify individual students’ contributions. Version control systems such as Git [Tor] have

made this process easier by associating each commit with its specific author, but there

is still manual effort required to accurately identify the totality of what each student has

contributed. Because this is a largely manual process, instructors or TAs may miss contri-

butions that students have made, providing inconsistent or contradictory feedback [JAC88]

that impedes learning [Vat21]. To help assist this process, in Chapter 7, I consider four

research questions to identify whether tool assistance can help TAs grade projects more

effectively.

• RQ16: Can automated summaries of student contributions enable faster grading by

TAs?

• RQ17: Can automated summaries of student contributions enable more consistent

grading by TAs?

• RQ18: Can automated summaries of student contributions enable less frustrating

grading from the perspective of a TA?

• RQ19: How do automated summaries of student contributions enable better feedback?

To answer these research questions, I develop an algorithm for summarising code con-

tributions individual developers make to team-based projects. I then develop a reference

implementation, AutoVCS, which targets projects written in Java, and conduct a study

to evaluate its efficacy. Through a controlled user study, I demonstrate that automated

summaries can help TAs grade student contributions more consistently, which can assist

with detecting teams with an unequal work distribution. Additionally, TAs that grade with

automated summaries provide students with more actionable and more nuanced feedback,

which can help students learn how to work more effectively in teams. This study contributes

to the thesis statement by demonstrating that software engineering automation can result

in improved learning outcomes and early prediction of struggling teams.

1.3 Contributions

The major contributions of this dissertation include:
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• A demonstration that software engineering automation can help provide students

with more consistent feedback (Chapters 3 and 7).

• A demonstration that automated program repair can be applied to SQL, and that

repairs can be made of sufficient quality to have promise in intelligent tutoring

systems (Chapter 4).

• A lightweight collaboration reflection survey for identifying struggling student soft-

ware engineering teams (Chapter 5) and an algorithm that helps with identifying

cases of nonparticipation (Chapter 7).

• A demonstration that surveys can encourage self-reflection and provide insights into

the challenges that student teams face (Chapters 5 and 6).

• A discussion of some of the the challenges faced by students in computer science,

including a classification of mistakes students make as they learn and first work with

SQL (Chapter 4) and the challenges that students face collaborating on software

engineering teams (Chapter 6).

1.4 A note on pronouns

The work in this dissertation would not have been possible without the tireless support

of my advisors, and the work in Chapter 3 would not have been possible without the

assistance of Eric Horton. In recognition of their contributions, the remainder of this work

uses first-person plural pronouns.

9



CHAPTER

2

RELATED WORK

The related work is organised into two sections. Section 2.1 discusses related work in

automation in software engineering. Section 2.2 discusses prior work on collaboration and

team-based learning, with a focus on computer science; common team challenges; and

the pedagogical foundations of team-based learning.

2.1 Software Engineering Automation

Automation is widespread within software engineering, with developers taking advantage

of tools and techniques that can help them design, implement, test, debug, and maintain

software more effectively than would be possible working unassisted [des04; Vas15]. Just

as few developers today would choose to implement a complicated piece of software in

assembly language, few would choose to do their job without some sort of automated

support. Automation techniques in software engineering vary widely, but perhaps the most

common is integrated development environments (IDEs) that offer intelligent code comple-

tion, automated refactoring, and code generation [Ngu19; Mic21; Ijc; Rob08]. Automated

testing [Ber05b; Kim13b; Cha06; Mao16] is also widely used, often run in combination

with a continuous integration environment [Seo14], which has helped practically eliminate

major integration issues [Sul16; Duv07]. Software engineers also make use of program
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analysis tools, which can help catch bugs without even running code [Nag05; Joh13] and

automated repair, which can help fix bugs that make their way through [LG12; Lou20;

Wei09; Mec16]. Despite the breadth of these tools, they all have the same fundamental goal:

allowing developers to work more efficiently and deliver higher quality software by letting

them avoid tedious or error-prone manual portions of their jobs. We consider three areas

of software engineering automation in further depth: automated testing (Section 2.1.1),

automated program repair (Section 2.1.2), and program analysis (Section 2.1.3).

2.1.1 Automated Testing

Automated testing is widely used in software engineering [Kim13b; Cha06; And10; Ber05b;

Mao16; Ngu14], where it is an integral portion of continuous integration environments.

Berner et al. [Ber05b] explain that automated testing is "intended to save as much money as

possible" by reducing the need for manual testing, and can help developers deliver higher-

quality software by testing at a greater scale than is possible with manual tests. Prior work in

testing has explored automation at all levels of the testing hierarchy, from unit tests [Kim13b;

Cha06; And10] through system tests, which typically test an application’s GUI [Ngu14; Vil17].

Prior research in automated testing has also explored automated test generation, using

tools not just to run tests in a repeatable fashion, but using them to generate testcases

as well. For example, Marinov and Khurshid [Mar01] explore automatically generating

inputs for Java tests. Buy et al. [Buy00] use program analysis to identify multiple methods

that interact with the same fields in a class, and then generate testcases to exercise these

methods in different combinations. Fully automated testcase generation complicates the

process of testing against an oracle, and as such automated testcase generation often uses

a simple oracle, focusing on ascertaining whether certain inputs will cause a program to

crash [Mao16; Ngu14].

End-to-end system testing of web applications is typically performed using Selenium, a

test framework for scripting actions against webpages, allowing a user to specify actions to

perform and the output that is expected. Vila et al. [Vil17] discuss the need for automated

system testing of web applications, and provide information on the use of Selenium as well

as common problems associated with it. One issue they discuss is that Selenium tests have

a tendency to run slowly. Kuutila et al. [Kuu16] consider this problem in more detail, bench-

marking Selenium tests using a variety of programming languages and automated browsers

to identify the performance tradeoffs, and report that the Chrome browser, controlled by

Python bindings, typically performs the best. Leotta et al. [Leo14; Leo13] discusses issues

with reliability and maintenance of Selenium tests, discussing approaches for improving
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the robustness of element locators [Leo14] and strategies for locators that are easiest for

developers to maintain over time [Leo13]. Other recent work has considered Microsoft

Playwright [Vei21], another tool for scripting web browsers for automated tests, although it

has yet to be as widely adopted as Selenium.

While automated tests can offer many benefits, they are also susceptible to nondeter-

minism, or flakiness. Fowler argues [Fow11] that flaky tests are "useless" because they no

longer serve as meaningful regression tests, and are a "virulent infection" that can com-

promise the effectiveness of an entire test suite as developers lose confidence in it. They

discuss that common causes of nondeterministic tests are asynchronous behaviour and

tests that are not properly isolated, and thus cause interference for each other. Luo et

al. [Luo14] conduct an empirical study of test flakiness, and conclude that is a relatively

common issue, often caused by asynchronous behaviour. To help researchers address the

impacts of flakiness, Cordy et al. [Cor19] present FlakiMe, a tool for introducing a controlled

degree of flakiness into test suites, to measure the impact it has on techniques such as

mutation testing and automated program repair. To help practitioners, Bell et al. [Bel18]

present DeFlaker, a tool which labels tests as flaky by using Java AST analysis to determine

when failing tests do not execute any recently-changed code. Meanwhile, Herzig and Na-

gappan [Her15] use association rule mining to associate test failures with code changes,

and thereby identify tests failures that are likely due to nondeterminism. By contrast, in

Chapter 3 we have already identified tests that are known to be flaky, and our goal is to

address the flakiness observed through modifications to the Selenium configuration or

underlying system configuration.

2.1.2 Automated Program Repair

Software engineering automation is also used in the field of automated program repair

(APR), or creating programs that can automatically find and patch bugs in other programs.

Past work in automated program repair has considered approaches for repairing C [Wei09;

LG12; Lon16] and Java [Jia18; Xua16; Lou20; Kim13a] programs, with some work done in

specialty languages such as Python [Dro20]. Automated program repair techniques can be

classified into two main approaches [Gaz17]. Generate-and-validate approaches generate

a large number of candidate repairs, and then evaluate their correctness by executing

testcases [Wei09; LG12; Kim13a; Lon16; Qi14; Sah17]. By contrast, correct-by-construction

(or semantics-driven) approaches [Mec16; Xua16; Ngu13; Ke15] encode the problem to

solve, and then attempt to solve it, often using a SMT solver such as Z3 [DM08].

Regardless of the approach, APR techniques produce repairs, or patches, that are at
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best plausible, in that they satisfy all provided testcases. Patches must then be evaluated

by human developers to ensure they actually solve the problem intended, and are not

merely correct by coincidence. As this manual process can be quite time intensive, several

APR techniques focus explicitly on the quality of the generated patch. In one approach,

Kim et al. [Kim13a]manually review over 60,000 developer-written patches for Eclipse,

and classify the types of repairs performed to generate patch templates. Their tool then

generates patches based on these templates, ensuring that all generated patches resemble

what developers write. Long and Rinard [Lon16] take a similar approach, focusing on

human-written patches to open source projects, and use a maximum likelihood estimator

approach to produce a statistical model of their characteristics. Patches generated by

their tool are then ranked by their resemblance to human-written patches, and tested

in that order, to save test execution time and prioritise returning a patch that resembles

what a developer would write. Both Kim et al. [Kim13a] and Long and Rinard [Lon16]

report producing patches acceptable to developers at a higher rate than state-of-the-art

approaches. Drosos et al. [Dro20] similarly focus on the quality of synthesised Python

code from their tool, Wrex, which helps data scientists by synthesising code to perform an

illustrated transformation. They demonstrate that data scientists are more productive with

Wrex than without it, demonstrating that their tool-generated code is of sufficient quality

to be useful.

While most APR techniques are used on small, open-source projects [Le 15], several

projects have considered their use in industrial settings. Marginean et al. [Mar19] at Face-

book Research have extended their automated testing tool Sapienz [Mao16] to perform

automated repairs, creating SapFix. They use SapFix to automatically repair crashes in

six applications that are each upwards of ten million lines of code, and reflect on their

experiences. They report that many bugs still require developer intervention to resolve,

but that SapFix can solve many crashes before users experience them. Meanwhile, Noda

et al. [Nod20] consider the use of automated program repair at Fujitsu. They report that a

state-of-the-art solution, ELIXIR [Sah17], works poorly in this context, producing few fixes

and even fewer that developers consider acceptable. Based on the experience, they create

ELIXIR+, which features several improvements that increase the rate at which developers

accept patches it generates.

To the best of our knowledge, no prior work has investigated automated program repair

for SQL queries, yet SQL queries are error prone [Tai19; Tai18]. The closest work to that in

Chapter 4 we am aware of is SCYTHE [Wan17], which synthesises SQL queries given a (source,

destination) table pair. However, SCYTHE is limited in that it does not support common

operators such as projection, and supports only a single (source, destination) pair,
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while SQLRepair supports arbitrarily many.

2.1.3 Program Analysis

Program analysis is the process of "analysing software to learn about its properties" [Ald19].

Consequently, program analysis is a broad field, and includes activities such as manual

code inspections, automated testing, and static analysis tools. At a high level, program

analysis can be broken down into static analysis, which is analysis done without running

a program, or dynamic analysis, which involves running the program and observing its

behaviour. While there is much interesting work on instrumenting programs to perform

dynamic analysis [Net07; Rav15; Luk05], we focus here on static analysis techniques. Static

analysis is typically performed on application source code, as the process is more difficult

to perform on compiled binaries [Kin08; Kin12]. Static analysis is often used to check for

bugs [Wög05; Aye08; Tra20; Sin17; Zam17] and enforce style guidelines [Bal13], and even

check for security vulnerabilities [Che04; Liv05; Oye18; Li20]. Additionally, static analysis

approaches may be integrated into a continuous integration pipeline [Zam17]. Because

static analysis tools do not rely on executing a program to analyse it, they can often run

much faster than dynamic analysis, and can discover problems in code that is difficult to

execute under normal conditions [Che04]. Conversely, however, static analysis tools report

bugs that a program may contain and consequently are prone to false positives, or reporting

problems that a program does not actually contain. To address this, Grech et al. [Gre18]

propose a technique that combines static and dynamic analysis techniques, and report a

substantial improvement in precision.

While primitive static analysis tools can rely on grep to perform simple keyword match-

ing, this approach is unable to distinguish between method calls, comments, and variable

names, and consequently offer limited capabilities [Che04]. Instead, most static analysis

tools integrate with a compiler, leveraging a stream of tokens or a full AST [Flu07; Fal14] to

better analyse a program. AST-based analysis has many applications beyond searching a

program for bugs, and has been used to explore API usage [L1̈1] and how code evolves over

time [Mar13; Meq20]. Most similar to our work in Chapter 7, Feist et al. [Fei16] provide an

AST-based analysis algorithm which traverses Git history and compares file revisions to un-

derstand changes. However, they focus their evaluation on open-source project evolution,

while we focus on understanding contributions in education, and consequently the types

of data extracted and how it is used is very different.
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2.2 Collaboration and Team-Based Learning in Computer

Science Education

Professional software engineering is a team-based activity, often drawing together a team

of diverse and distributed members [Lay00; Ric12; Ram20]. To help prepare students

for this reality, team-based learning is a key learning outcome assessed by ABET accredi-

tors [Abe], and is consequently taught in many computer science programs [Wil00; Sim02;

Iac20; Bat22]. Educational theorists have recognised that team-based learning (TBL) offers

substantial pedagogical benefits [Hry12; Aya15], so it is often used as teaching technique

regardless of the learning goals for the course [Bat22; Lin21; Har]. However, prior work

has demonstrated that student teams are at great risk of dysfunction, and many students

struggle to work together effectively [Abb17; Dzv18; Mar16]. In Chapters 5 and 6 we seek to

gain further insights into the challenges that teams face.

Substantial prior work has studied teaming in a variety of educational contexts. Abbasi

et al. [Abb17] studied the challenges that student teams face and their ability to resolve

them. Other work has studied student attitudes towards teaming [Pfa03; Owe15; Bur03;

Rud17], including focusing on how to improve students’ motivation and engagement with

their teams [Pau06; Che15]. Other work has focused explicitly on teaming pedagogy [Tuc06;

Gil13], focusing on improving pedagogical practise [Raf13], the educational theory be-

hind successful teams [Hry12; Aya15], and how to help students form the most effective

teams [Oak04].

Because of the pedagogical benefits that it offers, TBL is featured in many undergrad-

uate computer science programs, where it has been shown to offer numerous benefits.

Early work in collaborative learning in computer science education dates to work on pair

programming by Williams and Kessler [Wil00]. They demonstrated that students who

worked on tasks in pairs applied a positive "pair pressure" and motivated each other to

do their best. Consequently, students in this environment performed better than those

who worked on their own, producing higher-quality software that was capable of passing

more testcases. Students who engaged in pair programming regularly turned to each other

for help, thus easing the burden on the course teaching staff. While these conclusions are

now core to computer science pedagogy, they served as one of the first looks at team-based

learning (TBL) in computer science education. Lin et al. [Lin21] focus on collaborative

learning within an upper-level algorithms course. In their course, students are encouraged,

but not compelled, to self-select study groups to work through practise problems before

completing their own individual homework assignments. They report that students who
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chose collaborative learning outperformed those who did not. While stating that "any

collaboration improved individual performance", they concluded that groups of four or five

students performed the most effectively. Meanwhile, Harris studies the use of teamwork

in operating systems and assembly courses [Har] and reports that it "reinforced students’

learning" across the curriculum. Gitinabard et al. [Git20] study how small student teams

function, and build a classifier to label different types of collaborative behaviour. Their

work provides insights into how students work together, and may serve as an early warning

when teams are not working together effectively. Finally, Tafliovich et al. [Taf16] discuss

how to evaluate and grade students on teams, and student preferences for how their grades

are calculated depends on how effectively their team has been working together.

In many computer science curricula, software engineering courses used to teach stu-

dents how to work effectively in teams. Consequently, most prior work on teaming in

computer science focuses on upper-level project-based software engineering and senior

capstone courses. Most prior work in the area explicitly talks about project-based learning

as a way to teach the entire software engineering experience, describing these hands-on

activities as ones that offer the best learning experiences [P2́0; Sim02; Kha20; Par18; Hun21].

Several studies discuss having student teams work on projects where there is a real client

or customer that the teams work with [Hun21; Bat22; Abe09]. Hundhausen et al. [Hun21]

discuss the difficulties of evaluating projects fairly when each team works on a different

project. To address this, they propose a rubric based on the Goal-Question-Metrics frame-

work that focuses on the team’s process and product but is sufficiently general to work

regardless of the underlying project. A literature review of teaming in software engineering

by Groeneveld et al. [Gro19] recognised that many computer science students graduate

with solid technical skills, but poor communication, conflict resolution, and other inter-

personal skills (so-called "soft skills"). To address this, they report a growth of team-based

learning, often in the form of extensive project-based courses, including final capstone

courses. Other papers discuss using team-based learning to create a more engaging environ-

ment [P2́0], increasing students motivation, or broadening participation from historically

under-represented groups [Bat22].

2.2.1 Team Challenges

Prior work has identified that although team-based learning offers pedagogical benefits, it

also introduces new challenges. Possibly the best known issue is one of freeriding [Hal13],

where students contribute little and count on their teammates completing the project in

their absence. A common solution for addressing this is giving students individual grades
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in addition to a team grade; to assist with this, past work has considered approaches for

visualising contributions from individual members [Par18] or allowing students to provide

anonymous feedback for each other [Tuc06; Rob17; Din14].

However, other issues may cause teams just as much trouble. Sims-Knight et al. [Sim02]

discuss a view among educators that students will learn how to work on a team merely by

being on one, without explicit instruction on how to effectively work with other students.

More modern work has addressed this with activities to teach students how to function as

a team, as we discuss in Section 2.2.2.

Despite activities to teach effective teaming skills, many teams struggle to work to-

gether effectively. Prior work has demonstrated that up to 40% of teams in project-based

courses are characterised by "internal strife" and fail to work together effectively [Tuc06],

often caused by a lack of communication or effective project management [Oak04; Iac20].

Iacob and Faily [Iac20] report that dysfunction is a risk in student software engineering

teams, where low engagement or poor communication can hamper individual and team

outcomes, but do not go into detail about the issues that contribute to poor engagement.

Marques [Mar16] proposes having a "monitor" conduct weekly meetings with teams of

software engineering students, observing them work and providing feedback on the overall

team function and contributions of each member. They report mentored teams produced

higher-quality software, and performed substantially better on their final project, but pro-

vide little elaboration on the details of the challenges that students faced in either case. As

these approaches require mentors to help teams, Maguire et al. [Mag19] discuss how to

train mentors and ensure they have the skills to help teams overcome various challenges.

Meanwhile, Gitinabard et al. [Git20] focus on VCS data to identify how small teams collab-

orated, and cases where one member of a team failed to contribute. Most similar to our

work in Chapter 6, Dzvonyar et al. [Dzv18] explore team forming and success in software

engineering. They discuss considerations when forming teams for a project-based course,

and survey teams at the end of a software engineering course, asking questions about team

synergy and any challenges the team faced. They report that team synergy was generally

high, but some teams struggled with low motivation and performed poorly. While they

present a discussion of how the teaching staff formed teams, there is no discussion of how

the teams themselves operated and how this may have impacted any challenges faced.

2.2.2 Teaming Theory

Team-based learning (TBL) is a learner-centred pedagogy, where students direct their own

learning under the guidance of an instructor who serves as an "expert facilitator" [Hry12].
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TBL is grounded in constructivist theory, which argues that students cannot merely absorb

information passively, but must actively discover it. This theory says that learning is done

through dialogue rather than a dissemination of facts. Prior work has demonstrated that this

is typically a more effective pedagogy and results in better learning [Hry12; Aya15]. For these

reasons, many project-based courses use TBL extensively, as TBL teaches students not just

the skills of how to function in a team, but can teach other skills more effectively. However,

despite the benefits it offers, researchers have recognised that TBL is not an educational

panacea. Successful teamwork depends upon regular communication, particularly when

members work asynchronously [Gil13].

To work successfully together on teams, students must be capable of conflict resolu-

tion, which requires both identifying challenges, and successful resolution of them [Pau06;

Raf13]. Prior work has demonstrated that this can be a persistent issue that teams may

struggle to overcome [Tuc06; Oak04; Iac20; Mar16]. In order to help students navigate

these challenges and function more effectively in teams, many educators include team

forming activities [Rap07; Pin06; Hog08], self-and-peer assessment [Din14; Taf16], or dis-

cussions of teaming theory (such as Tuckman’s model of teaming [Tuc65; Tuc77], discussed

in Raferty [Raf13] and Hansen [Han06]). In Chapter 6, we use Tuckman’s model for char-

acterising where teams faced challenges. Tuckman argued that teams progress through

four stages: forming, as the members of the team meet each other but largely act inde-

pendently, storming, as conflicts and disagreements arise between members, norming,

where conflicts are resolved and the team starts to function as a cohesive whole, and finally

performing, where members are motivated and engaged and the team works together

effectively. Tuckman noted that some teams may skip the storming stage entirely, while

others may face more intense "storms" and never emerge from this stage. Later, Tuckman

and Jensen added a fifth stage, adjourning, where the group disbands upon the completion

of their tasks [Tuc77].

18



CHAPTER

3

EXAMINING FACTORS IMPACTING

SELENIUM RELIABILITY

This study1 explores the impact that Selenium configuration options have on automated

test stability. As a result, we found an optimal configuration, which contributes to more

effective instructional materials by providing a far more stable project for instructors and

their students in the software engineering course at NC State University.

Satisfies part of thesis: Using software engineering automation and survey

techniques in computer science education results in improved student learning

outcomes, early prediction of struggling teams, and more effective instruc-

tional materials.

3.1 Study Rationale

This work studies Selenium, a popular framework for automating web browsers for test-

ing [Hun18]. We study Selenium in the context of the undergraduate software engineering

1This study was published in substantial part as Presler-Marshall, K., Horton, E., Heckman, S. & Stolee, K.
“Wait, Wait. No, Tell Me. Analyzing Selenium Configuration Effects on Test Flakiness”. 2019 IEEE/ACM 14th
International Workshop on Automation of Software Test (AST). 2019, pp. 7–13.
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class project, iTrust2, at NC State University. In this work, we seek to improve the feedback

quality provided by the continuous integration environment by reducing test flakiness

and test execution time. iTrust2 is open source and designed to provide students with an

industry-like experience by exposing them to a large system and continuous integration

(CI) [Hec18b]. However, flaky tests are a source of frustration among students. While this

may reflect actual industry experiences, for an educational context that introduces stu-

dents to software engineering principles, ambiguous feedback from flaky tests can impede

effective learning. Psychologist and educational theorist Lev Vygotsky [Stu02] argued that

that the best way for students to learn material is through scaffolding. This approach ar-

gues that instruction must be guided by a teacher, and new material should be broken

down and gradually integrated into what the student already knows. This contrasts to an

approach of expecting a student to learn many new pieces all at once, where the extent of

the new material may overwhelm the student’s ability to learn any of it. While flaky tests

may be a fact of life in industry [Fow11; Luo14; Bel18], their presence in an educational

context is counter-productive to students’ learning. Flaky tests effectively serve to provide

students inconsistent, or even contradictory, feedback, as they make it unclear whether

the underlying application actually works correctly or not. Prior work suggests that in-

consistent feedback makes it more challenging for students to assess what they are doing

correctly, and consequently impedes their ability to integrate feedback and learn from

it [Vat21]. Vygotsky’s theories suggest that rather than having students grapple with all of

this at once, it is more helpful to students’ education for them to learn software engineering

skills in a consistent and predicable environment, and only then grapple with the additional

challenge of understanding and overcoming flaky tests.

There are many potential sources of flakiness, but a typical situation involves a test case

that attempts to verify the presence of a UI element before the browser has completely

loaded, causing it to fail. To expose the source of flakiness in iTrust2, we start by analyzing

the impact of the WebDriver (the automated browser controlled by Selenium) and waiting

strategy (how the test attempts to wait for the page to be ready. We then test the best

WebDrivers and wait strategies on three different hardware configurations and operating

systems.

In summary, this study provides the following contributions2:

• A more stable version of iTrust2 that is suitable for use as a teaching tool in undergrad-

uate software engineering classes and which performs well on our CI environment.

• A comparison of four methods of waiting for expected conditions on webpages when

2Study materials are available at http://github.com/ncsu-csc326/iTrust2-SeleniumAnalysis
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performing automated testing with Selenium.

• A comparison of runtime and stability of iTrust2’s Selenium tests on three different

hardware and operating system configurations.

• A recommendation on the optimal configuration of Selenium for applications similar

to iTrust2.

3.1.1 Introduction

NC State University (NCSU)’s undergraduate software engineering course uses iTrust2, a

large Java EE medical records application, as one of its primary teaching tools. A successor

to the original iTrust application that saw the course through ten years [Hec18b], iTrust2

was introduced to students in Fall 2017 as part of a larger course redesign. iTrust2 uses

the Spring and AngularJS frameworks used in many enterprise applications. It consists of

about 30,000 lines of Java and JavaScript code tested with nearly 500 Selenium tests.

Each semester, twenty five groups of students, working in teams of four or five, push their

work to GitHub, where it is then automatically built and tested using Jenkins CI [Hec18a].

When students develop far in advance of a deadline, Jenkins is able to return feedback

quickly (within 15 minutes); however, as the deadline approaches and load on the system

increases, feedback becomes less timely. This exacerbates the issue of test flakiness by

giving students less time to respond to any failures and ascertain their cause.

Consider the method in Figure 3.1, fillHospitalFields, extracted from iTrust2. It is

a subroutine in a test case which verifies that submitting the form results in a new hospital

record being registered with the system. The method starts with the implicit assumption

that the browser is currently on the page for creating a new hospital object. It then asks

Selenium to find and fill the input fields for name (lines 2-5), address (lines 6-8), state (lines

10-12), and zipcode (lines 14-16). Finally, it instructs Selenium to click the submit button

and trigger a form submission (line 18).

In this example, Selenium may fail because it cannot find the element it looks for (e.g.,

an element with an id called address). Such a failure could be caused by several mistakes

in the test or application: the wrong page was specified by the test case; the locator used to

select the element was faulty; or there was a bug in the underlying application being tested.

However, it is also possible that the test and application are both fine, and the befoe the

browser had finished loading the page, Selenium checked, and failed. Selenium has no way

of knowing if the UI will ever be ready, so this leaves it to developers to tell Selenium when

to check.
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1 public void fillHospitalFields () {
2 final WebElement name = driver.findElement( By.id( "name" ) );
3 name.clear();
4 name.sendKeys( "Tim Horton's" );
5

6 final WebElement address = driver.findElement( By.id( "address" ) );
7 address.clear();
8 address.sendKeys( "121 Canada Road" );
9

10 final WebElement state = driver.findElement( By.id( "state" ) );
11 final Select dropdown = new Select( state );
12 dropdown.selectByVisibleText( "CA" );
13

14 final WebElement zip = driver.findElement( By.id( "zip" ) );
15 zip.clear();
16 zip.sendKeys( "00912" );
17

18 driver.findElement( By.className( "btn" ) ).click();
19 }

Figure 3.1 A method from one of the iTrust2 Selenium tests that automates filling in fields on a
web page.

The motivation of this work is to proactively identify and remove test flakiness and

improve performance in iTrust2 by finding and implementing optimal Selenium and system

configurations. All tests are known to be capable of passing, but under the conditions of

student computers and our CI environment they do not all pass consistently.

3.2 Methodology

In this section, we provide background information on Selenium (Section 3.2.1), present

our research questions (Section 3.2.2) and discuss our study design (Section 3.2.3).

3.2.1 Background

A WebDriver class implements the Selenium interface WebDriver. Each driver provides

an interface for Selenium to control a single web browser. All WebDrivers in this study are

named for the web browser they control. For example, ChromeDriver is the WebDriver

implementation for the Google Chrome browser. Because WebDrivers have a 1:1 mapping

with their browsers, we refer to the driver and the browser interchangeably.
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3.2.1.1 Drivers

We use the drivers for Chrome, Firefox, PhantomJS, and HtmlUnit in this study. The HtmlU-

nit driver represents a headless browser designed specifically for automation; PhantomJS

is a more capable browser designed for the same purpose; Chrome and Firefox are two

popular and widely-used web browsers. The default configuration is used for HtmlUnit and

PhantomJS, as both are already headless. Chrome and Firefox are run in headless mode

(a requirement for our CI environment), with Chrome additionally specifying the options

window-size = 1200x600 and blink-settings = imagesEnabled = false, both

of which were selected to improve runtime. We omitted drivers for browsers not supported

by every major OS, such as Apple Safari and Microsoft Edge.

3.2.1.2 Wait Strategies

Several waiting strategies are considered. The first, No Wait is the default behavior of

immediately failing when an element is not found. No Wait informs a baseline against

which to compare other wait strategies. Thread Wait calls Java’s Thread::sleep, which

pauses thread execution for a fixed period of time.

Explicit Wait is a Selenium construct that tells the driver to wait for an explicit amount

of time or until some condition has been satisfied (whichever occurs first). Explicit waits

are supported by all drivers. We use explicit waits to verify the presence of elements. For

example, the following will wait for an element with the name of notes to appear:

1 WebDriverWait wait = new WebDriverWait( driver, 2 );
2 wait.until( ExpectedConditions .visibilityOfElementLocated( By.name(

"notes" ) ) );,→

Angular Wait is a Selenium construct that tells the driver to wait until the Angular web

framework has completed all requests. It is only supported by the Chrome driver, and can

be used as follows.

1 new NgWebDriver( (ChromeDriver) driver
).waitForAngularRequestsToFinish();,→

Unlike Explicit Waits, Angular Waits do not wait for a specific element to appear: rather

they wait until all dynamic requests are finished. This has the potential to work better if

the locator that would be passed to an Explicit Wait is overly general and thus would locate

an element before the page is truly ready.
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3.2.1.3 Current Configuration

The existing test suite for iTrust2 uses the HtmlUnit driver with a combination of No Wait

and Explicit Wait strategies to verify the correctness of elements. HtmlUnit has been used

for its reasonable runtime performance on our Jenkins CI systems, with 59 Explicit Waits

scattered through individual tests where the No Wait approach proved insufficient.

3.2.2 Research Questions

We explore the following research questions, measuring test flakiness and runtime perfor-

mance as the dependent variables, in the context of iTrust2:

• RQ1: What is the impact of the WebDriver on Selenium stability?

• RQ2: Which Selenium wait methods are the most stable?

• RQ3: What is the impact of hardware (CPU and memory) on Selenium stability?

• RQ4: What effect does the host operating system have on Selenium stability?

• RQ5: What impact does restarting the browser between individual tests have on Sele-

nium stability?

Our research questions can be grouped into three broad categories: the impact of

WebDriver configurations (RQ1 and RQ2), the impact of system configuration (RQ3 and

RQ4), and further optimization (RQ5).

3.2.3 Study

We refer to a single run of an application’s entire test suite as a build. A group of multiple

builds is referred to as an evaluation. All evaluations in this work contain 30 builds. An

evaluation is used to determine runtime performance, measured in seconds (i.e., average

test execution time over all the builds in an evaluation). Because we know that all tests can

pass, any test failure is seen as indicative of test flakiness. Thus, test flakiness is defined as

the sum of all test failures over an execution.

We refer to the choice of driver and the waiting strategy employed as WebDriver config-

uration. We refer to choice of CPU, memory, and operating system as system configuration.

When considering a combination of WebDriver and system configurations, we say Selenium

configuration, or just configuration if it is not ambiguous.
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Table 3.1 Selenium & System Configuration Options.

O p t i o n s

Factor 1 2 3 4 5

A Wait No Wait Explicit Thread.sleep Angular -
B WebDriver HtmlUnit Chrome Firefox PhantomJS -
C Memory 2GB 4GB 8GB 16GB 32GB
D Processor AMD C60 (NB) Intel E5-1620 (HP) - - -
E OS Windows 10 Linux 4.13 - - -

Table 3.2 Mapping Selenium & System Configuration Options to Research Questions.

Factor RQ1 RQ2 RQ3 RQ4 RQ5

Wait * * 2,4 2,4 2,4
WebDriver * * 1,2 1,2 1,2
Memory 2 2 * 3 3
Processor 1 1 1,2 2 1,2
OS 2 2 2 1,2 1,2

Our configuration options are summarized in Table 3.1. Rows A and B correspond to

WebDriver configuration and will guide RQ1 and RQ2 (Section 3.3.1), rows C and D are

hardware configuration and will guide RQ3, and row E guides RQ4 (Section 3.3.2). Table 3.2

maps configurations used (Table 3.1) to each research question we answered. For example,

RQ1 has a * for the WebDriver factor, meaning all four options are considered. For Memory,

RQ1 uses option 2, representing 4GB. Not all options are possible (e.g., HtmlUnit with

Angular waits), but this provides a general outline for how each RQ was evaluated.

3.2.3.1 Setup

To address RQ1 and RQ2, we modified the current iTrust2 codebase and introduced a

common superclass for all test classes. This superclass provides a WebDriver factory method

and a method for performing waits. To obtain a list of flaky tests, we mined the Jenkins test

logs from our undergraduate software engineering course in Spring 2018. Any Selenium test

failure observed that appeared unconnected to the Git commit that triggered the build was

considered a potentially flaky one and was included in our study. We manually analyzed

1,000 Jenkins test logs, and found 19 distinct locations in the source code where tests

appeared to be flaky. Before every flaky location, we inserted a call to the waiting method

in our superclass. We branched the codebase, implementing the WebDriver factory and

waiting method for every valid combination of driver and waits (see Table 3.1, rows A & B,
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yielding 13 valid configurations3).

To address RQ3 and RQ4, we procured two computers. First, an Acer netbook provi-

sioned with Ubuntu 17.10, known hereafter as “NB-Linux”. It was deliberately selected

for its poor performance, as it represents the lower end of what students have been ob-

served using. Second is an HP workstation system provisioned with Ubuntu 17.10 (known

hereafter as “HP-Linux”) and Windows 10 (known hereafter as “HP-Windows”). It was

selected for giving performance similar to most student systems and to evaluate the impact

of operating system when hardware is controlled for. Turbo Boost was disabled on both

platforms, and Hyper-threading on the HP Z420 (the Acer’s CPU does not support any form

of SMT4), to result in a more consistent execution environment. Evaluations on HP-Linux

were tested with 2, 4, 8, 16, and 32GB memory. Evaluations on HP-Windows were run at

8GB memory as a comparison against HP-Linux at 8GB.

To address RQ5 we reconfigured our WebDriver factory to not restart the browser be-

tween individual tests and retested on our three environments (NB-Linux, HP-Linux, and

HP-Windows).

3.2.3.2 Execution

After each build, the execution time and list of failing test cases were recorded. At the end

of an evaluation (30 builds), test flakiness was recorded as the sum of all failures seen in

each build, and runtime was computed by averaging the runtime of each build within the

evaluation.

We ran evaluations for each configuration on our procured systems, using performance

results on NB-Linux to inform our selection of run configurations on the HP workstation.

3.3 Results

The results from our study can be grouped into three broad categories: the impact of

WebDriver configurations (RQ1 and RQ2), the impact of system configuration (RQ3 and

RQ4), and further optimization (RQ5).

3(Chrome + Firefox + HtmlUnit + PhantomJS) * (No Wait + Thread.sleep + Explicit) = 12 + Chrome *
AngularWait = 13

4Simultaneous Multithreading, a hardware technique allowing the simultaneous execution of two or more
logical threads per physical CPU core. Hyper-threading is Intel’s implementation of the technology.
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Figure 3.2 Total failing test cases for supported waiting strategies with Chrome and HtmlUnit.
Each bar represents one evaluation. Evaluations were run on NB-Linux.

3.3.1 RQ1 & RQ2: WebDriver Configuration

RQ1 addresses the impact of WebDriver choice on test stability and runtime. This corre-

sponds to varying rows A and B of Table 3.1. Even on our fast HP-Linux system, running the

test suite with Firefox or PhantomJS took well over an hour a build, making them unsuitable

for use in a CI environment.

HtmlUnit, the least featured and least resource-intensive WebDriver used, experienced

fewer flaky tests overall than Chrome on NB-Linux. This was consistent across all wait

strategies on this system; not once did Chrome deliver a more stable testing experience.

These results are shown in Figure 3.2; the Y-axis reports the total number of tests that failed

across each evaluation. Because each test was run thirty times, a test that failed in multiple

builds will increase the count on each observed failure. Runtime differences between the

WebDrivers were minor; an average build time of 31 minutes for HtmlUnit and 35 minutes

for Chrome.
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RQ1 Summary: HtmlUnit yields fewer flaky tests than Chrome on NB-Linux, regardless of

wait strategy. HtmlUnit is approximately 10% faster than Chrome in terms of test runtime.

RQ2 addresses the impact of the specific waiting strategy on test flakiness. We evaluated

waiting strategy for Chrome and HtmlUnit by running both browsers with all supported

waits on NB-Linux. Figure 3.2 presents the total number of test flakes seen in each evalua-

tion.

We see that Thread Waits perform the best for both HtmlUnit and Chrome, while Ex-

plicit Waits performed the worst. The performance of Thread Waits was unsurprising –

by suspending test execution for a relatively long (5 second) period of time, we give the

browser hopefully ample time to catch up to where the test expects it to be. Surprisingly,

No Wait manages to perform better than Explicit Wait, particularly so for HtmlUnit, where

it resulted in under half of the flakes seen with Explicit Waits. Explicit Waits used the exact

same timeout (5 seconds) as Thread Waits, so we expected to see similar results for both.

While waiting approach had a sizable impact upon stability, its impact upon runtime was

minor on both browsers: no more than an 8%5 difference was observed between the fastest

(no waits) and slowest (explicit waits and thread waits) regardless of browser.

We also acknowledge that RQ1 and RQ2 were evaluated on poor hardware. As we show

in the next section, better hardware leads to better performance and less flakiness for

Chrome. At the same time, using a slower system for evaluation is valuable as it mimics

some students’ situations.

We note here that while Thread Waits provide the lowest flakiness score, the number

of unique tests impacted by the failures is actually the highest. That is, the Thread Wait

failures are more insidious, being both more likely to occur for any test and less predictable.

On the other hand, the Explicit Waits and Angular Waits are more predictable; a test failing

with an Explicit or Angular Wait is more likely to fail again within the evaluation. Since

we want to suggest a wait strategy that has predictable behavior, we move forward with

Angular and Explicit Waits when evaluating system configurations.

RQ2 Summary: Thread waits give the lowest flakiness for both HtmlUnit and Chrome,

with Explicit Waits giving the highest.

5Calculated as (Ts l o w −Tf a s t )/Tf a s t , where Tf a s t is the runtime of the faster build, and Ts l o w is the runtime
of the slower build
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3.3.2 RQ3 & RQ4: System Configuration

Anecdotally, we expected that slower hardware results in more unstable and slower builds.

We consider three types of system configuration: the CPU, the amount of RAM, and the OS

managing test processes. We prune our search space by focusing our testing on Angular

Waits and Explicit Waits.

3.3.2.1 RQ3a: Increasing CPU

Evaluations of flaky tests in Chrome and HtmlUnit on NB-Linux and HP-Linux (at 4GB RAM)

are presented in Figure 3.3. Note that there are no results for HtmlUnit and Angular Waits,

as Chrome is the only browser to support them. For both browsers, moving to HP-Linux

resulted in substantially fewer flaky tests across the evaluations, regardless of wait strategy.

The impact was particularly pronounced for Chrome, with test flakiness falling by over

70%6 in both configurations, but HtmlUnit still saw a very respectable improvement of 55%.

The average build time over all evaluations was reduced by 80-84% when moving to

faster hardware (i.e., D1 to D2). With Chrome, the average build times were reduced from

35 minutes to 7 minutes; with HtmlUnit, they dropped from 31 minutes to 5 minutes. Thus,

not only does Chrome give far more stable build results on fast hardware, it does so quickly

as well. Fast build times are imperative for CI environments, and better hardware is an easy

way to achieve this.

RQ3a Summary: A faster CPU results in a substantially faster build on both HtmlUnit

and Chrome.

3.3.2.2 RQ3a: Increasing Memory

Figure 3.4 shows the impact of manipulating the amount of available memory for each

of three configurations of driver and wait method. The Y-axis shows the sum total of test

failures over all 30 builds in an evaluation. The X-axis shows the memory configuration.

Each evaluation was run three times (totaling 90 builds of iTrust2 and its test suite), and

each data point on the graph is an average over the three evaluations. No significant outliers

were observed in any configuration. For example, with HtmlUnit + explicit, there were an

average of 61 test failures per evaluation with 2GB of memory. This is an average of two per

build.
6Calculated as (Fhi g h − Fl o w )/Fhi g h , where Fhi g h is test flakiness from the flakier build, and Fl o w is the

flakiness from the less flaky build
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Figure 3.4 Total number of test case failures for all builds in evaluations of Chrome with explicit
and Angular waits and HtmlUnit with explicit. All evaluations were run on the HP-Linux platform
(D2/E2).

There is no clear trend on flakiness for chrome + explicit or for htmlunit + explicit, but

the trend for chrome+ angular is decreasing flakiness as memory is increased. If we had cut

off the evaluation at 8GB, we would have concluded that chrome + explicit has fewer flakes

with more memory, but the behavior at and above 16GB is not clear. Further exploration is

needed.

HtmlUnit had more flakes, on average, with extra memory. It is the most lightweight

browser tested and does not appear require significant resources. However, our evaluations

do show the number of test failures varied wildly, suggesting that HtmlUnit may not give

consistent results, even with sufficient hardware. This is supported by the data for RQ2,

where the naive No Wait approach outperformed the Explicit Wait.

RQ3b Summary: More memory results in tests that fail less regularly for Chrome+Angular,

but not for the other configurations.
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3.3.2.3 RQ4: Host Operating System

RQ3 specifically considers hardware. However, all results are presented for systems running

Linux. Next, we turn to RQ4 to generalize past Linux. While the primary goal was to

improve the experience on the CI server used for automated feedback and grading projects7,

a secondary goal was to give students a more stable testing environment for their local

development.

Section 3.3.2.1 indicates that Chrome on a system with sufficient CPU and memory was

the most stable configuration for Linux. However, an attempt to replicate this on Windows

was unsuccessful. Our evaluations found 1923 test failures (across a 30-build evaluation)

on Windows (E1) vs 12 on Linux (E2) with other factors held constant (A4/B2/C3/D2). The

Windows build time was much higher, averaging 44 minutes versus six for Linux. Other

browsers and waits also performed poorly on Windows, giving either high runtime, flakiness,

or both. For instance, HtmlUnit was fast, but flaky, and Firefox and PhantomJS were still

too slow. We turn now to a solution that helped all platforms, but particularly Windows.

RQ4 Summary: Windows gives worse performance than Linux with respect to flaky tests

and runtime given comparable hardware.

3.3.3 RQ5: Restarts

Attempting to generalize our results to Windows worked poorly, with all configurations

resulting in high test failures, unacceptable runtime, or both. We consider now the impact

of restarting the browser between each test versus a configuration that does not do so.

By default, each test starts by launching a fresh WebDriver and logging in as a user of

the appropriate type. Here, we modified the test suite to share a single Chrome instance

across all tests rather than launching the browser between every test. To ensure a consistent

starting environment, we introduced a method that would log out of the iTrust2 web portal

if a user was logged in and ensured it was run before every test.

Figure 3.5 shows average test execution times when running with and without restarts

on each of our systems (NB-Linux, HP-Linux, HP-Windows). Our results show a decrease in

build time for every system under test. Even HP-Linux, which already saw the best runtime,

saw the tests run 49% faster. Similar to HP-Linux, on NB-Linux we saw a 46% reduction in

test execution time. However, HP-Windows saw the biggest proportional improvement,

from 44 to five minutes, an improvement of 89%. In addition to faster speeds, none of the

platforms had any flaky tests in this configuration. Results here did not generalize to other

7Our CI environment runs CentOS Linux 7.5
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Figure 3.5 Average build time, in seconds, of Chrome with Angular waits on each of the three
systems under test. Evaluations Without Restart used a single instance of a WebDriver across all
tests in a build. Evaluations With Restart created a new WebDriver instance before every test.

WebDrivers, where test flakiness and runtime both remained high. For instance, HtmlUnit

on Windows remained flaky (giving over a thousand test failures across a single evaluation),

while Firefox still was slow (with build time over an hour) on all platform configurations.

RQ5: By using Angular waits and not restarting the Chrome browser between tests, we get

substantially faster performance and no test failures.

3.4 Discussion and Future Work

Our work provides the first investigation of which we are aware into the effect of Selenium

configuration on both reliability and runtime. We end our investigation with an optimal

configuration for our use case of running a large Selenium test suite in a CI environment

for an undergraduate software engineering class: Chrome + Angular waits + no browser

restarts + Linux + fast processor. We have implemented this configuration in our current

version of iTrust2 and reconfigured our CI environment accordingly. Knowledge of this
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configuration has already proven a valuable resource for the class by providing us with

a substantially more stable teaching application that performs much better on our CI

environment. However, there is still much left for future work.

3.4.1 Explicit Waits

In Section 3.3.1, Explicit Waits give worse performance in terms of total test failures than any

other approach. We presumed that test flakiness resulted from the browser having insuffi-

cient time to load a page before the test started interacting with it, so any waiting approach

should perform better than none at all. We struggle to explain why performance here was

so poor, particularly in relation to the Thread Wait approach, so further investigation is

needed.

3.4.2 Hardware and Operating System

We see in Figure 3.4 that the number of test failures increases when going from 8GB to

16GB. Every other memory increase for Chrome, and all but one for HtmlUnit, resulted

in a decrease in number of failing tests. While the three evaluations performed at each

configuration suggests this is not due to random variation, we cannot be certain without

further exploration.

3.4.3 WebDrivers

We limited our search to WebDriver implementations which run on all major operating

systems. It remains open as to whether an untested driver performs better on any of the

operating systems included in the study. If this is the case, future applications may benefit

by detecting and using the best driver for the platform on which they are running.

3.5 Threats to Validity

The threats to validity of our experiments are as follows:

3.5.1 Conclusion Validity

Due to the time taken to run experiments, most of the conclusions on test flakiness in this

paper were drawn from a single 30-build evaluation (the conclusions to RQ3b were drawn

from an average across three evaluations). This may not be sufficient to observe all tests
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that could be flaky. However, it does represent a number of builds similar to the number of

teams in the software engineering course each semester. Still, extending the number of

builds per evaluation may lead to different conclusions.

3.5.2 Internal Validity

In our experiments, we were careful to vary only a single factor at a time (WebDriver, wait

strategy, CPU, memory, operating system, or browser restarts). We also controlled for other

factors, such as software versions, memory and disk performance, and internet connection.

All testing was performed in an automated and repeatable manner. We thus believe that

the differences we observed come from the experimental factor that was varied.

3.5.3 Construct Validity

We assume that test flakiness occurs because the test attempts to interact with an element

that has not yet appeared on the page; other factors, such as test order, may also impact

correctness. However, we eliminated all observed test case flakiness solely by changing

Selenium settings, and without changing the order in which the tests are run, which suggests

that our tests do not face this issue.

3.5.4 External Validity

Our study has focused on a single artifact, iTrust2. While the Spring and AngularJS frame-

works used in iTrust2 are widely used, we have not attempted to replicate our results past

iTrust2. We have, however, performed some generalization, applying our optimal configu-

ration to two expanded versions of iTrust2 that were developed in parallel to our work. Our

solution, when applied, eliminated all test flakiness and improved runtime. Replicating

our work on projects other than iTrust2 would see if the results generalize further.

3.6 Conclusions

Our work has implications for automated testing of web applications using Selenium. We

evaluated four WebDrivers and four different approaches for waiting on elements to appear

on a page. We demonstrated that there are differences between the studied WebDrivers:

HtmlUnit driver performs best where system resources are heavily constrained and the

browsers must be run in their default configuration, while Chrome works best on faster

systems or where configuration can be optimized. We demonstrated that hardware has a
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significant impact upon the runtime and reliability of a test suite and that a faster CI envi-

ronment makes a meaningful difference. Our work has already contributed a substantially

more stable teaching application to our undergraduate software engineering course, giving

students confidence in the tests they write and the results they see.
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CHAPTER

4

AUTOMATED REPAIR OF

STUDENT-AUTHORED SQL QUERIES

This study1 explores the types of mistakes that students make when first learning SQL,

investigates the possibility of applying automated program repair to SQL queries written

by students, and evaluates whether students find automated repairs to be understandable.

It does so to evaluate whether automation, in particular automated repair, can be applied

to student-authored programs, and demonstrates that in cases where peer instruction

is not available, students may be able to learn from automated repairs. Additionally, an

understanding of the types of mistakes that students make can help instructors produce

more effective instructional materials that counter common misconceptions.

Satisfies part of thesis: Using software engineering automation and survey

techniques in computer science education results in improved student learn-

ing outcomes, early prediction of struggling teams, and more effective instruc-

tional materials.
1This study was published in substantial part as Presler-Marshall, K., Heckman, S. & Stolee, K. “SQLRepair:

Identifying and Repairing Mistakes in Student-Authored SQL Queries”. 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). 2021,
pp. 199–210.
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4.1 Study Rationale

A common problem in education is that students may struggle to identify how to get started

on or how to finish a problem they are working on. While some confusion is good for

students, and is a necessary component of learning, students who continue to struggle

and remain confused are more likely to end up demoralised than they are to learn from

the experience [D’M14]. If instructor assistance is available, this is a problem that can

often by overcome by a back-and-forth discussion. This approach is best exemplified

by Socratic teaching techniques [Nel80; Del16], getting students to articulate what they

have accomplished so far, where they got stuck, and what they have tried to do next but

are struggling to do effectively. However, in large and growing classes, there may not be

sufficient teaching staff resources available to offer this. Consequently, automation has

a role to play in computer science education, where students can receive at least some

support regardless of whether teaching staff resources are available.

The most common automated educational support offered are hints, suggesting ap-

proaches for students on approaches that they can try, usually in order, to get closer to

get closer to a solution. Hints can be provided in two formats: a relatively static list of

steps to try, or more dynamic approaches, exemplified by Intelligent Tutoring Systems

(ITSs) [Bar10; Eag12; Pri18; And85; Cro18]. The breakthrough of ITSs is that they customise

hints based on where a student currently stands: hints are generated based on how past

students have gotten from the current challenge to a working solution [Bar10; Eag12]. These

approaches typically take "big data" approaches, and use information on how problems

have been solved in the past to offer feedback on how students might try to solve them now.

Consequently, they face a "cold start problem" – with insufficient data, they are unable to

offer students any suggestions on what to try. In this study, we explore the use of automated

program repair as a way of providing students with feedback and guidance as they learn to

solve SQL problems, which sidesteps the problem by generating a solution on the fly rather

than relying on past data. We demonstrate that automated repair is capable of fixing the

types of mistakes that students make when first learning SQL, and demonstrate that the

repair quality is sufficient that it has the potential to be used as an educational technique.

This study makes the following contributions2:

• quantitative and qualitative classifications of the types of errors introduced by begin-

ning SQL programmers,

• a tool capable of repairing 29.1% of the observed errors in SQL queries,

2Our tool, datasets, and study tasks are available at http://github.com/kpresle/sqlrepair
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• a benchmark dataset of realistic SQL errors gathered from undergraduate computer

science students, and

• a demonstration that tool-repaired SQL queries are equal in understandability to

human-written queries.

4.2 Introduction

Understanding how beginners work with a new programming language and the types

of mistakes that they make can help instructors better tailor their lesson plans to avoid

previous pitfalls [Chr19; Ani19]. We consider SQL, a widely-used language for interacting

with relational databases. SQL is taught in many undergraduate computer science pro-

grams [Tai19; Mig20], but may not be part of the core curriculum. It is regularly used by

professional and amateur developers alike [Sos], including those with little formal computer

science background [Har15a; Bau15].

While the types of mistakes that students make when working with languages such as C

and Java are relatively well studied [Bro14a; Alt15; Bro17], we know less about mistakes made

in special-purpose languages such as SQL. We seek to understand the types of mistakes that

undergraduate students, who are relatively familiar with Java, make when working with

SQL. Understanding these mistakes can help educators ensure that they have the resources

necessary to support computer science students and end-user programmers alike, which

may include automated support [Gul18].

In addition to an analysis of student mistakes, we propose a tool, SQLRepair, which

can automatically fix some of the errors students introduce.3 While there are tools for

automated repair of programs in languages such as C and Java [Jia18; Lon16; Mec16; Wei09],

to the best of our knowledge, no existing techniques attempt to repair errors in SQL queries.

Our repair process first attempts non-synthesis repair based on a predefined ruleset. As

needed, it uses a satisfiability modulo theory (SMT) solver [DM08] to further synthesize

repairs.

We frame our work around the following research questions:

• RQ6: What types of mistakes do beginners make when working with SQL?

• RQ7: How well can SQLRepair fix errors introduced by beginning SQL programmers?

3We adopt terminology used in existing work on SQL education: students make a mistake while solving a
problem, introducing one or more errors into the query. Note that this diverges from terminology frequently
used in testing literature where the term would be fault instead of error. We choose error for consistency with
existing work.
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• RQ8: Do students find SQLRepair-repaired queries to be more understandable than

queries written by other students?

To answer our research questions, we conducted an empirical evaluation to understand

student mistakes (RQ6), evaluate SQLRepair’s ability to repair the errors in the student-

written queries (RQ7), and determine the repair quality (RQ8).

Students in two undergraduate computer science courses at NCSU were given a short

introduction to SQL and then asked to write queries to solve problems associated with

a sample database. For each problem, students were provided an example (source,
destination) table pair that demonstrated the desired transformation (similar to pro-

gramming by example (PBE) techniques) [Gul16] and were asked to write a SQL query

that would complete the transformation. Incorrect queries were followed by additional

examples (up to three) to demonstrate the intended behavior. Any SQL query that did not

correctly solve the problem was analyzed for errors and considered a candidate for repair.

Students were then asked to evaluate up to four human-written or tool-generated queries,

judging each for understandability.

4.3 Methodology

To provide a dataset for analyzing mistakes (RQ6) and evaluating SQLRepair (RQ7, RQ8),

we conducted a two-phase study with students from two undergraduate computer science

courses.

In Phase 1, we conducted a study with students from the Summer 2019 offering of a

2nd-year Java programming course. This phase demonstrated the viability of our approach,

gave us preliminary data for RQ6 and RQ7, and motivated additional enhancements to

our tool. In Phase 2, we put repairs produced by SQLRepair directly in front of students to

understand whether our tool-generated repairs are understandable (RQ8). Students were

recruited from the Fall 2020 offerings of a 2nd-year Java programming course and a 3rd-year

Software Engineering course. This study was approved by the NCSU IRB Office as protocol

#19062.

4.3.1 Phase 1

We collected a dataset of SQL queries written by introductory programmers to understand

the type of mistakes students make by analysing the errors they introduce, and ascertain

SQLRepair’s ability to repair the errors.
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Table 4.1 Major concept in each problem and the total number of (source, destination)
tables in the problem specifications.

Problem Major Concept Number of Table Pairs

1 Single-condition select 3
2 Select with projection 2
3 Inequality 3
4 Projection and inequality 2
5 Compound select 2
6 Compound select with AND 2
7 Distinct 2
8 Ordering 2
9 Joins 2

10 Grouping 2

4.3.1.1 Design

Eighteen students were given a lecture on SQL functionality and syntax, including com-

pound select queries, various datatypes, JOIN, COUNT, DISTINCT, and GROUP BY. Students were

informed that we were interested in studying how beginners work with SQL and the types of

mistakes that they make. Next, they were given a ten-problems to solve; each problem had

a (source, destination) table pair and students were asked to write a SQL query that

would accomplish the transformation. Each problem had two or three pairs of (source,
destination) tables that acted as test cases that must be passed simultaneously for the

query to be considered correct. The major concept of each problem is shown in Table 4.1.

For example, the major concept introduced in Problem 10 was grouping, and there were

two sets of (source, destination) table pairs for evaluating the query. The problems

and data used were based on the UMLS dataset, a health and biomedical vocabulary dataset

made available free-of-charge by the NIH, which was chosen for offering a large amount of

structured data [Bod04].

Students were shown one (source, destination) table pair at a time. Each student

received a paper handout that contained the first pair for each problem. To avoid learning

effects, the problems were given in a random order. Students submitted their queries into a

web application. If the application detected that the first pair had been solved successfully,

the query was then tested against subsequent pairs. If a query failed a subsequent pair,

that pair was revealed to the student. Students spent approximately 40 minutes working on

all problems and were reminded every ten minutes to move on to the next problem if they

had been stuck for more than five minutes. Students were compensated with participation

credit.
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Figure 4.1 The application for students to submit SQL queries.

The web application is shown in Figure 4.1. In this example, a student submitted

the query SELECT * FROM alpha WHERE min < 2;, which was incorrect, as communicated

through the message, “Unfortunately, your proposed query didn’t solve the problem . . .";

the actual output from executing the query is shown alongside the expected output (desti-

nation table). If the query produces the correct output for all table pairs, the student was

congratulated and told to move on to the next problem. The application records the partic-

ipant’s unique ID, submission time, proposed query, and whether the problem was solved

correctly or not. At the end of the study, students completed a brief demographics survey,

which asked questions such as their prior programming experience, their experience with

SQL, and whether they had any comments on the introduction to SQL or the problems

themselves.

4.3.1.2 Participants

We recruited participants from a 2nd-year Java programming course (CS2). CS2 is the second

computer science course taken by majors and minors at NCSU. By this point, students are
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exposed to programming in Java. Eighteen students from the Summer 2019 offering of CS2

participated, but only 12 students submitted one or more SQL queries as part of the study.

Of the 12 active participants, three identified as female. Ten students said they had three or

fewer years of programming experience (min: 0, max: 8, average: 2.6) and none had more

than a year of professional programming experience. One student reported prior database

experience.

4.3.1.3 Dataset

We collected 362 SQL queries written by 12 different students. Of these, 35 were correct. Of

the 327 incorrect queries, 124 had syntax error(s) and 203 had semantic error(s). Students

submitted between 7 and 65 queries (average: 32.2, median: 28.5). Students made between

one and 21 attempts per problem (average: 4.6, median: 3.5) and attempted between two

and ten problems (average and median: 6.5).

4.3.2 Phase 2

In Phase 2, we build on Phase 1 and further evaluate SQLRepair by putting repaired queries

directly in front of students to assess query quality.

4.3.2.1 Design

Phase 2 was similar to Phase 1 in that students were given the same introductory SQL

lecture and the same set of problems to solve. However, some changes were made to the

study format and content, as follows:

Due to the COVID-19 pandemic, Phase 2 was performed online via Zoom. After the

introduction to SQL and the study, each participant was assigned to an individual breakout

room to work in for the remainder of the session. To ensure that each participant was

engaged and working, the first author rotated between each room at least once to answer any

technical questions that arose. Students could also use Zoom’s “Ask for help” functionality

to request assistance.

While the study problems were identical to Phase 1, we made operational changes to

suit the online format:

• Instead of a paper handout, each student received the randomly ordered problems

as a PDF.

• Instead of students entering their participant ID manually, the web application auto-

matically included each student’s random ID in each problem submission.
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• The post-study demographics survey was converted from a paper handout to a Google

Form. Students were asked to include their participant ID in their submission.

Additionally, after composing queries for a problem, students evaluated the understand-

ability of several solution queries for that problem (Section 4.3.2.2).

4.3.2.2 Evaluating SQLRepair

We wanted students to assess the understandability of tool-repaired queries by comparing

them against human-written queries. As a majority of software engineering effort is spent

on maintenance [Gla02], we consider understandability, as a proxy for ease of mainte-

nance, to be paramount. We seek a minimally-invasive way of gathering information on

students’ program comprehension as they evaluate queries without the feeling of being

watched [Wil01]. Thus, we opt for short surveys deployed after each question and separately

at the end of the study.

First, we populated a database with data from Phase 1, giving us 29 unique correct

queries and 19 unique repaired queries SQLRepair produced from incorrect queries. Next,

we modified the web application to use SQLRepair to attempt to repair incorrect queries

that students wrote during the study. We did this through brief post-problem surveys:

after solving each problem, students were asked to rate the understandability of up to

four different queries using a modified Likert scale, with 1 indicating the query was very

difficult to understand and 7 that it was very easy to understand. As an alternate workflow,

after making at least five attempts at a problem over at least five minutes, students were

presented with an “I’m tired of this problem” button. Upon clicking it, they would be given

the voting options shown, despite having never solved the problem correctly.

The four possible queries presented to students were:

• MyCorrectQuery: A correct query written by the student (available if they solved the

problem correctly).

• MyRepairedQuery: A repair of an incorrect query written by the student (available if

they got the problem wrong at least once, and SQLRepair was able to repair one of

their queries.4)

• OtherCorrectQuery: A correct query written by someone else (a participant from

Phase 1 of the study; a query from this category was always available).

4Incorrect queries were considered starting with the most recent incorrect submission, and repairs were
attempted until a query was successfully repairable, or, to ensure sufficient responsiveness of the web
application, the repair process had failed ten times.

44



Figure 4.2 An example of how students voted on the understandability of queries.

• OtherRepairedQuery: A repair of an incorrect query written by someone else (a

participant from Phase 1 of the study; a query from this category was always available).

The queries were labeled A through D, and presented in a random order. An example

with three queries is shown in Figure 4.2. For queries written by others, query selection was

pseudo-random: each query was associated with a count of how many times it had been

shown to a student for voting, and each time a query was needed for voting, the application

selected the query with the smallest vote count. Identical queries were consolidated (for

instance, if the first and fourth queries were identical, the query would only appear once).

4.3.2.3 Participants

In Fall 2020, we distributed recruitment emails to students in two undergraduate courses:

CS2 and a 3rd-year Software Engineering course (SE). SE is a fifth-semester course, and by

this point, students have been exposed to Java, C, x86 assembly, and JavaScript. Additionally,

prior to our study, the SE students received an in-class lecture on SQL, although not hands-

on practice with it. Students in both classes were invited to sign up for one of four two-hour
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Table 4.2 A breakdown of all of the queries submitted.

Course
CS2 SE Total

Correct 157 94 251
Syntax Error 680 137 817
Semantic Error 1,185 529 1,714

Total 2,022 760 2,782

virtual lab sessions held. In all, 104 students signed up to participate in a session; 71

students attended and participated for at least thirty minutes. The first of four sessions was

used as a pilot for the improved SQLRepair tool and new format. Feedback was collected

and data from this group was discarded. Participants from Phase 1 could not participate in

Phase 2.

Seventy-three students from CS2 signed up; 46 ultimately participated. Thirty-one

students from SE signed up; 24 ultimately participated. After discarding data from the

pilot study, we retained data from 33 CS2 and 19 SE students. Students in CS2 reported up

to seven years of prior programming experience (average and median: 2); students in SE

reported up to eight years (average: 5, median: 4). Sixteen participants from CS2 and five

from SE identified as female.

4.3.2.4 Dataset

We collected 2,420 SQL queries from 52 students. Of these, 216 were correct; of the 2,204

incorrect queries, 693 had syntax error(s) and 1511 had semantic error(s). Students submit-

ted between 1 and 118 queries (average: 42.4, median: 37.5). Students attempted between

1 and 10 problems (average and median: 7) and made between 1 and 50 attempts per

problem (average: 6.4, median: 4).

The 33 students from CS2 submitted 1,660 queries. Of these, 122 were correct; of the

1,538 incorrect queries, 556 had syntax error(s) and 982 had semantic error(s). Students

submitted a median of 41 queries (max: 118) and attempted between 1 and 10 problems

(average: 6.8, median: 7.5).

The 19 students from SE submitted 760 queries. Of these, 94 were correct; of the 666

incorrect queries, 137 had syntax error(s) and 529 had semantic error(s). Students submitted

a median of 36 queries (max: 79). Students attempted between 1 and 10 problems (average:

7.4, median: 7).
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4.3.3 Data Summary

A summary of all of the queries collected across both phases of our study, and their correct-

ness or error category, is shown in Table 4.2. We performed a Mann-Whitney test between

the two CS2 courses (Summer 2019 and Fall 2020 from Phase 1 and Phase 2, respectively)

looking for significant differences on successes per problem. Our analysis revealed that

the differences between them were not statistically significant (p = .31), so the data from

both were combined for further analysis. The data from SE remained significantly different

(p = .0016) and was kept separate.

4.3.4 Analysis

We use the errors that students introduce into SQL queries they write as a proxy for the

mistakes made while solving the problem. To identify student mistakes for RQ6, we executed

each student-written query against the source and destination tables using a MySQL 5.7

database. Any query where the database returned an error message was considered to have

syntax error(s).5 For the remaining queries, we compared the actual output table to the

expected output for the problem. When they were different, the query was considered to

have semantic error(s).

To identify syntax error categories, we manually grouped queries with similar errors

together. For example, students submitted the queries:

SELECT CUI1, RUI FROM bravo where REL='RO', 'SY';
SELECT CUI1, RUI, FROM bravo WHERE CUI2 == C0364349;

Both queries have an extra comma, so were grouped together. We continued this process

for all queries with a syntax error. If there were three or more queries in a category, we

gave the category a name. Categories with fewer than three were grouped together into a

miscellaneous category.

For semantic errors, we manually investigated the query and the output table it pro-

duced and grouped together queries with similar errors. For example, students submitted

the queries:

SELECT LAT FROM juliett;
SELECT LAT, STT FROM juliett

5This understates the number of SQL syntax errors as MySQL 5.7 supports functionality not part of the
official SQL specification, such as wrapping strings in double quotes or using operators such as && instead of
AND. We are aware of no databases which follow the SQL specification exactly.
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item price quantity country seller

apples 7 500 US Joe’s Fruits
bananas 3 400 MX Nancy’s Produce
oranges 11 300 MA Ahmed’s Fruits
grapes 1 200 US Raj’s Vinyard

item price quantity country

grapes 1 200 US

Figure 4.3 Example source (top) and destination (bottom) tables.

Both queries return only a subset of the columns expected (LAT, STT, ISPREF) so they were

grouped together. A miscellaneous category was created by grouping together all categories

with less than three queries.

A single query can contain multiple errors (for instance, a broken operator and un-

quoted string literal) so some queries were counted for multiple categories. However, when

classifying errors, a single query could be counted towards either the syntax error category

or semantic error category, but not both.

4.3.5 SQLRepair

SQLRepair follows the correct-by-construction approach to automated program repair [Gaz17].

The subset of supported SQL includes queries with compound WHERE clauses, integer and

string datatypes, ORDER BY, and DISTINCT.

To explain how SQLRepair builds constraints from the (source, destination) ta-

bles and SQL query, consider the following example. A user of SQLRepair submits the source

and destination tables shown in Figure 4.3 and the SQL query SELECT * FROM fruitSellers

WHERE country=US && quantity < 800. SQLRepair proceeds in two steps: (1) non-synthesis

repair, and (2) synthesis repair.

4.3.5.1 Non-Synthesis Repair

SQLRepair attempts three types of non-synthesis repair over the following types of errors:

operator mismatches that result in parse errors, column mismatches that can cause an

otherwise correct query to be incorrect, and string repair where a string literal shows up

without proper quotes.
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4.3.5.1.1 Operator Mismatch

SQLRepair replaces any C/Java-style operators in the provided query with their SQL equiv-

alent. For example, C/Java use == for equality checks and && for logical AND. SQL uses =

and AND, respectively. SQLRepair thus replaces operators such as these. In the example, &&

is replaced with AND, giving us the query, SELECT * FROM fruitSellers WHERE country=US

AND quantity < 800.

4.3.5.1.2 Column Mismatch

SQLRepair attempts to repair any issues with the column list prior to the WHERE clause. When

a column does not exist, a syntax error occurs. However, column mismatch does not always

start with a syntax error. In the the running example, the source table has five columns while

the destination table only has four; however, the SQL query has a SELECT * clause, SQLRe-

pair detects and fixes this mismatch. Thus, the query is updated to SELECT item, price,

quantity, country FROM fruitSellers WHERE country=US AND quantity < 800. In addition

to correcting the column list following SELECT, SQLRepair can also rename columns to

match the destination table using AS.

4.3.5.1.3 String Repair

SQLRepair attempts to repair any issues where a string literal is present in the query either

unquoted or quoted incorrectly. SQL requires strings to be surrounded with single quotes.

Thus, SQLRepair removes double quotes and surrounds what appear to be unquoted string

literals with single quotes. The query is thus updated to SELECT item, price, quantity,

country FROM fruitSellers WHERE country='US' AND quantity < 800.

Resolving operator mismatch, column mismatch, and fixing strings resolves syntax

errors, but often synthesis is needed to fully correct the semantic errors.

4.3.5.2 Synthesis Repair

SQLRepair uses a SMT solver, Z3 [DM08] to synthesize parts of a query in need of re-

pair [Gaz17]. The synthesized parts, or patches, are composed of individual constants,

operators, and column names. The (source, destination) tables are used as test cases

that must be simultaneously satisfied for a query to be successfully patched.

For each query, SQLRepair builds a system of constraints to represent the query logic.

Given a set of example (source, destination) tables E and a SQL query q , SQLRepair
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checks that: ∀e ∈ E , q ∧ s o u r c ee → d e s t i na t i o ne . If the equation evaluates to true, Z3

returns S AT and q is correct; otherwise q is incorrect and a candidate for repair.

If q is a repair candidate, SQLRepair inserts holes into q , for example by replacing

a constant with CONST_i, forming q ′, and provides q ′ to the solver. If q ′ is repairable by

SQLRepair, Z3 returns S AT and the solver has identified values for the holes in the satisfiable

model. If q ′ is not repairable by SQLRepair, Z3 returns U N S AT . SQLRepair supports five

types of synthesis repairs. After each repair stage, the process terminates if a successful

repair can be made. Repairs are performed in the following order:

4.3.5.2.1 Constant Synthesis

For constants that are compared to columns, SQLRepair replaces each constant in the

WHERE clause with CONST_i. If a query contains CONST_1 OP_1 CONST_2, SQLRepair does not

replace either of the constants. Synthesis is supported for integers and strings, although

synthesized strings must be exact matches without wildcards.

4.3.5.2.2 Operator Synthesis

SQLRepair replaces each operator in q ’s WHERE clause with OP_j. SQLRepair supports syn-

thesising operators for both string and integer types. SQLRepair supports = and != when

dealing with strings, and =, !=, >, >=, <, and <= when dealing with integers.

4.3.5.2.3 Column Synthesis

SQLRepair inserts holes for the columns. For example, a query q = . . .quantity OP_1

CONST_1 is replaced with q ′ = . . .COL_1 OP_1 CONST_1, where COL_1 represents one of the

columns in the source table. If SQLRepair fails to find a solution, column synthesis is

repeated for each subclause in the original query, in order.

4.3.5.2.4 Clause Removal

SQLRepair will remove subclauses one at a time to attempt a solution. For a query with n
subclauses, if a correct solution cannot be found for n subclauses, but can be found with

1...n-1 subclauses, SQLRepair will remove subsequent clauses that impede correctness.

If this step fails, the removed clauses are added back to the query before proceeding with

Clause Synthesis.
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4.3.5.2.5 Clause Synthesis

Some queries require additional WHERE clauses or conditions. In this case, SQLRepair func-

tions most similarly to Scythe [Wan17], and will synthesize new subclauses. Suppose in

the column synthesis step, SQLRepair inserts holes such that q ′ = . . .WHERE COL_1 OP_1

CONST_1, but is not able to find any columns, operators, and constant values that result in

a solution. At this point, SQLRepair attempts to make a repair by synthesizing in a new

subclause. More formally, SQLRepair will take a clause . . .WHERE COL_1 OP_1 CONST_1 from

the previous step, and add a new subclause, giving q ′ = . . .WHERE COL_1 OP_1 CONST_1 BOP_1

COL_2 OP_2 CONST_2, where BOP_1 is a binary operator (AND or OR) and COL_2 OP_2 CONST_2

represents the abstracted form of a new subclause to be synthesized. If values can be found,

they are inserted into the query, and the repair is complete. If no such values can be found,

the query will be expanded again. This process repeats until either a solution is found, or

the query reaches the maximum of five subclauses, at which point the process is aborted

and the repair is marked as failed.6

In the example, after repairing Operator Mismatch and Column Mismatch and perform-

ing String Repair the query: q = SELECT item, price, quantity, country FROM fruitSellers

WHERE country='US' AND quantity < 800 is incorrect. Thus, SQLRepair creates: q ′ = SELECT

item, price, quantity, country FROM fruitSellers WHERE country = 'US' AND quantity

OP_1 CONST_1. When Z3 returns S AT , SQLRepair uses the satisfiable model to replace OP_1

→!= and CONST_1→ 500, creating a correct query.

4.3.5.3 Analysis

To identify queries to repair for RQ7, we considered any query that had a syntax error or

semantic error. We report on what SQLRepair can fix from Phase 1 and Phase 2. Unlike

with error classification, as discussed in Section 4.3.4, a repaired query could be counted

towards both the synthesis and non-synthesis categories, depending on precisely what

repair operations were performed.

With RQ8, we seek to understand the quality of the repairs produced by SQLRepair.

Students in Phase 2 were shown multiple queries simultaneously (see Figure 4.2) and asked

to rate the understandability of each one on a seven-point Likert scale. Because students

were shown multiple queries simultaneously, we are interested in the relative ratings given

to each one. Thus, we perform a series of paired Mann–Whitney U analyses to understand

how queries from one category compare to queries from another category.

6In our experiment, the maximum number of added clauses in a successfully patched query was three.
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Table 4.3 Classifications of syntax errors introduced by students across both phases.

Error Type
CS2

Number
(%)

SE
Number

(%)

Total
Number

(%)
Example

Broken oper-
ator

188
(27.6%)

29
(21.2%)

217
(26.5%)

SELECT RUI FROM bravo
WHERE CUI1 == 'C0000039'

Column ref-
erence error

118
(17.3%)

16
(11.7%)

134
(16.4%)

SELECT DISTINCT CUI FROM
juliett, india WHERE
juliett.CUI = india.CUI

Quotes on
strings

87
(12.8%)

40
(29.2%)

127
(15.5%)

SELECT * FROM foxtrot
WHERE TTY = PT

Incomplete
query

91
(13.4%)

6
(4.4%)

97
(11.9%)

SELECT DISTINCT WHERE
MRRANK_RANK < 384;

Wrong order
83

(12.2%)
14

(10.2%)
97

(11.9%)
select LAT, STT, ISPREF
distinct from juliett

Table refer-
ence error

68
(10.0%)

16
(11.7%)

84
(10.3%)

SELECT STT, ISPREF FROM juliett
WHERE india.CUI = juliett.CUI

Extra com-
mas

62
(9.1%)

13
(9.5%)

75
(9.2%)

SELECT CUI1, RUI, FROM
bravo WHERE CUI2 =
'C0364349'

Missing com-
mas

20
(2.9%)

9
(6.6%)

29
(3.5%)

SELECT RSAB TFR CFR FROM
delta WHERE TFR > 470

Miscellaneous
38

(5.6%)
1

(0.7%)
39

(4.8%)
SELECT CUI, STN, TUI from
hotelORDER BY TUI DESC
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4.4 Results

In this section, we present quantitative and qualitative results showing the types of errors

students introduce (RQ6), the types of repairs by SQLRepair (RQ7), and the repair quality

(RQ8).

4.4.1 RQ6: SQL Mistakes

The students in SE were more successful at solving the problems than the students in CS2

(see Table 4.2). Among queries submitted by SE students, 12.4% (94 of 760) were correct,

compared to 7.8% (157 of 2,022) from CS2 students. Additionally, perhaps due to exposure

to more programming languages, the SE students introduced syntax errors at a lower rate

(20.6% of all queries with errors, vs. 36.4% among CS2 students). We performed a test of

two proportions and found that the difference in overall success rates between groups was

statistically significant (p < .001). For this reason, results for students from each course are

presented separately.

Table 4.3 and Table 4.4 show the syntax and semantic errors students introduced, re-

spectively. Because individual queries can contain multiple errors, a query can be counted

in more than one category. Each row in the table shows one of the categories, how many

queries had errors of that type, a corresponding percentage, and a representative example

from the category. For example, the first row of Table 4.3 is our syntax error category of a

Broken operator; we saw 217 of these, representing 26.5% of the 817 queries with syntax

errors. The query SELECT RUI FROM bravo WHERE CUI1 == 'C0000039' was placed into the

Broken operator group because the query uses a == where it should have used a =.

We notice similarities between our categories in Table 4.3 and those reported by Taipalus

and Perälä [Tai19]; for instance, we both observed a column reference error, wrong ordering

of SQL keywords, and miscellaneous syntax errors. Likewise, there is overlap between our

categories and those of Ahadi, et al. [Aha16]; the column reference error rank high in both

lists, and their general syntax error category appears similar to our broken operator category.

Unfortunately, because they do not offer examples of their categories it is impossible to

map our categories to theirs precisely. The types of semantic errors that we saw are shown

in Table 4.4. The most common issue was Wrong subclauses in the WHERE clause; this is the

first row in the table and was observed in 1,234, or 72%, of queries. The prevalence here

indicates that students had difficulty precisely describing the rows they wanted to include. A

Missing or extra operator was the second most common issue, particularly among students

in CS2. In contrast to our categories of semantic errors, which represent cases where the
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analyzed query returns an incorrect result, Brass and Goldberg [Bra06] focus on queries

that are correct but complicated or difficult to read. There is, however, overlap between

our categories and those of Taipalus and Perälä [Tai19], such as a missing join. In addition,

their category of duplicate rows is similar to ours of a Missing [or extra] operator.

The breakdown of successful queries and submitted queries on each problem is shown

in Table 4.5. We note that certain problem types proved to be particularly challenging.

For example, Problem 9, which necessitated use of a join, was widely attempted (with

a total of 350 attempts from 42 different participants) but was solved correctly by only

a single student. Problems involving compound WHERE clauses (Problems 5 & 6) proved

difficult as well, with less than a third of students managing to solve each one correctly. The

lower success rates on these problems compared to single-condition selects (Problems 1 &

2) likewise suggests that students struggle with understanding the interactions between

multiple columns.

RQ6 Summary: Students made eight main types of syntax mistakes, including misusing

an operator and ambiguity with referenced columns, and seven main types of semantic

mistakes, including using the wrong column(s) in a WHERE clause, using wrong constants,

and missing operators such as GROUP BY or DISTINCT. Joins and compound clauses proved

difficult for all students.

4.4.2 RQ7: SQLRepair

Our evaluation dataset consists of 2,531 incorrect SQL queries. Of these, SQLRepair was

able to find a repair for 737, giving an overall repair success rate of 29.1%. The different

types of repairs made are shown in Table 4.6. The table is organized based on the repair

types: the first three correspond to the three non-synthesis repairs supported, and the last

five to the synthesis repairs. For example, the first row, Column Mismatch, is described in

Section 4.3.5.1.2; this repair is made to 67 (13.7% of 488) queries from CS2 and 40 (16.1% of

249) from SE, totaling 107 (14.5% of 737) of all repaired queries. The representative example

modifies the SELECT clause to return three columns instead of two.

4.4.2.1 Repaired Queries

The most common repair type observed was Column Synthesis (made to 393, or 53.3% of

737, queries), where SQLRepair synthesizes an expression using a new column, replacing an

existing expression. The second most common repair type observed was Clause Removal,

where SQLRepair identifies and removes a WHERE subclause that results in incorrect output.
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The third most common synthesis repair type is Clause Synthesis, where a new subclause is

generated for the WHERE clause. Together, these three repairs correspond to the very common

Wrong subclauses in WHERE clause error observed across both classes (see Table 4.4), where

the resolution is to add, fix, or remove an incorrect clause.

We also observe that while the majority of repairs performed (982 of 1,192 repairs, or

82.4%, from Table 4.6) involve a synthesis repair, non-synthesis repairs play an important

part in success as well. In 107 cases, our tool fixes a Column Mismatch error by identifying a

query that is returning the wrong set of columns and rewrites the SELECT clause accordingly.

Although this is a non-synthesis repair, it fixes queries from the Column reference error

category in Table 4.3 and the Column mismatch category in Table 4.4, thus covering both

syntax and semantic errors. Fixing unquoted or misquoted string literals (String Repair)

and incorrect C/Java style operators (Operator Mismatch) happen less often, but a fix from

one of these categories is still made to 75 and 28 queries, respectively. Additionally, making

non-synthesis repairs also opens up new possibilities for synthesis repairs: queries must

be well-formed for synthesis repair to proceed, and non-synthesis repair fixes some cases

where they are not.

More often than not, repaired queries requires a combination of repair operations. In

fact, 433 (58.8%) of the successfully repaired queries contained multiple repair operations.

For example, the query select * from delta WHERE CFR < 1696was repaired by fixing both

the columns to return (a Column Mismatch repair and changing the 1696 to an 1865 (a

Constant Synthesis repair).

4.4.2.2 Not Repaired Queries

The remaining 1794 queries that could not be repaired fall into two major categories:

4.4.2.2.1 Unsupported functionality

Some functionality necessary to solve the problems in Table 4.1 is not supported in SQLRe-

pair, such as GROUP BY or joins. Students also used functionality that was neither necessary

nor supported (such as BETWEEN and LIMIT), which rendered their queries unfixable.

4.4.2.2.2 Miscellaneous syntax errors

SQLRepair can fix some but not all syntax errors. Errors such as a misspelled SQL keyword

(e.g., . . .GROUPED BY. . . ) clauses placed in the wrong order (e.g., SELECT * DISTINCT. . . ) are

not fixed automatically by our tool.
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4.4.2.3 Performance

We tested the performance of SQLRepair on an Intel i7-6700HQ running Linux Mint 18.

Successful repairs are found in a median of 231 milliseconds (max: 1,602) and unsuccessful

repairs in a median of 196 milliseconds (max: 1,912).

RQ7 Summary: SQLRepair automatically fixes 29.1% of student queries with errors,

covering both syntax and semantic errors.

4.4.3 RQ8: Repair Quality

To understand the quality of the repairs produced by SQLRepair, once students in Phase 2

found a solution for a problem (or gave up), we presented them with several alternative

solutions (see Section 4.3.2). Students rated each query on a scale of 1 (very difficult to

understand) to 7 (very easy to understand) and optionally provided a free response rationale.

We received a total of 281 voting responses (CS2: 183, SE: 98) and 81 rationales (CS2: 50, SE:

31).

Each query was from one of four categories (Section 4.3.2): MyCorrectQuery (MCQ),

MyRepairedQuery (MRQ), OtherCorrectQuery (OCQ), OtherRepairedQuery (ORQ). On

average, students found their own queries (MCQ) to be more understandable than their

repaired queries (MRQ) (5.58 vs. 5.35, see Table 4.7), but the difference is not significant.

Thus, a student’s repaired query could be used as an alternate way to solve a problem

without sacrificing understandability, a divergence from prior work in automated program

repair suggesting that machine-repaired code is less understandable than human-written

code [Fry12].

Looking more closely at the data, a pairwise analysis can determine the within-participant

differences in understandability between each query category. Using the four query cate-

gories, we ran six paired Mann–Whitney U tests. As all the p-values are above 0.1, the data

show that there is no statistical difference in understandability between human-written and

machine-repaired SQL queries. For example, comparing the student’s own query (MCQ)

with their repaired queries (MRQ) yielded p = 0.662. While there is a 0.23 difference in

averages, representing a quarter of a level on the 7-point Likert scale, the difference is

not significant. Comparing a student’s own correct query (MCQ) against a correct query

written by others (OCQ) also reveals no difference in understandability. Therefore, we find

evidence that repaired queries and queries written by others are all viable candidates for

presenting students with alternate implementations of SQL queries.

Qualitatively, we observe that some students preferred their own solutions over all
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others; we received written responses such as “I literally wrote [this query]” and “I chose

[this query] because it was exactly my solution”. However, this was not universally the case:

one student remarked “I can’t believe how [bad]my answer is”. This suggests that automated

repair can help students identify better solutions even after solving a problem correctly.

RQ8 Summary: Queries repaired by SQLRepair are rated as equal in understandability

compared to queries written by the students themselves, suggesting repaired queries could

be useful for presenting students with alternate queries.

4.5 Discussion

Here, we discuss the implications of our results, present opportunities for future work, and

discuss threats to validity.

4.5.1 Implications

By analyzing the SQL queries written by students new to SQL, we see that certain topics

are particularly challenging; most students struggled with joins, ordering, and compound

clauses. When SQL is used, it is typically with more than one table, so teaching joins is a

necessity [Lu93]. By contrast, students had less difficulty with operators such as GROUP BY.

All concepts were introduced to students in a similar way, with background information

provided through slides and live examples showing how they work in practice. These results

suggest that some topics remained more difficult for students to understand and thus may

require additional instruction.

To the best of our knowledge, SQLRepair is the first automated repair (APR) tool for SQL

queries, and our results provide preliminary evidence that this can be useful in education.

Patitsas, et al. report that presenting students with multiple solutions side-by-side can

improve learning outcomes [Pat13]. In cases where peer instruction is unavailable, our

results suggest repair tools may be able to provide alternative solutions for students to

visualize. Providing hints or iterative refinement rather than just a new solution may further

improve the process.

While the overall repair rate of SQLRepair is lower than many general-purpose repair

tools, this is a first step and the availability of our dataset should allow future SQL repair

tools to improve on our efforts reported here for educational and professional audiences.
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4.5.2 Future Work

We have identified several promising directions for future work in program repair to support

learners.

The single most challenging problem for students was one that involved joining two

different tables together on a common column. This suggests that students struggle to see

the big picture and how their data connects together. Tools such as MySQL Workbench

allow reverse-engineering an entity-relation diagram from an existing database schema,

and the produced diagrams can be used much like UML class diagrams to introduce new

developers to an existing design. A database IDE that automatically shows the relationship

between tables when two or more are included in a query could help users see and utilise

the connections in their data.

We observed, and several students affirmed in their comments, that it is challenging

to identify patterns within a table and thus pick out desired rows (i.e., forming queries

from examples is challenging). Tooling that highlights similarities and differences between

selected columns of two or more rows could help the user better identify relevant patterns.

More generally, our results suggest that program repair may be a useful educational tool

for presenting alternate solutions to a problem. Notebooks such as Jupyter have become a

popular way for performing exploratory data analysis, particularly among end-user pro-

grammers, because they allow intermingling code, written descriptions, and results [Ker18].

While most such notebooks focus on Python or R, SQL has a place within the data science

world as well, and integrating synthesis or repair tools could help make the learning process

easier for many students.

All of the repairs produced by SQLRepair follow the steps listed in Section 4.3.5. The

order in which repairs are performed has the potential to impact the query that is ultimately

produced. Future work could study whether performing repairs in a different order impacts

the quality of the query produced by potentially producing more concise or understandable

solutions.

4.5.3 Threats to Validity

In this section, we discuss different types of threats to validity.

4.5.3.1 Conclusion Validity

We performed statistical analysis using Mann-Whitney U tests, a non-parametric test for

calculating a difference-of-means that is resilient to skewed data. To ensure consistency
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across study sessions, we performed our SQL introduction using a common slide deck and

set of examples. Despite the difference in the format of study sessions between Phase 1 and

Phase 2, a statistical test showed no significant difference in how effectively each group of

students solved problems.

4.5.3.2 Internal Validity

Students who participated in our study did so under two different incentive structures.

In Phase 1, students participated in the study as part of an in-class activity. In Phase 2,

students were offered extra credit for participating in an out-of-class activity. Consequently,

there may be a selection bias for the students who participated in Phase 2.

4.5.3.3 Construct Validity

In this work, we use the understandability rating that a student gives a query as a proxy

for the quality of the query that has been produced. However, this merely asks students

to read the query and then offer a vote on it; we do not ask them to integrate the queries

produced into a larger application or modify the query to solve a problem that is similar

but not identical. Consequently, students who are using the queries in a different context

may have different priorities for what makes a query understandable or not.

4.5.3.4 External Validity

The problems we had students complete were based off of the UMLS dataset; it is unknown

whether the nature of the dataset contributed to the difficulty students faced when solving

problems. The specific errors that students faced may not generalize to different problems.

It is possible that the context of the data made problems more difficult than if students had

been working with more familiar data. However, we expect the data to be equally unfamiliar

to all students.

4.6 Conclusion

In this work, we have analyzed the mistakes that undergraduate students make when

working with SQL for the first time by studying the errors they introduce. We found that the

majority of queries contain one or more syntax or semantic error, and that semantic errors

make up a majority of errors introduced. We found that junior-level students perform

better than sophomore-level students, solving more problems correctly and introducing

syntax errors at a lower rate. Among the more advanced SQL topics covered, students
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particularly struggle with joins, thus suggesting a need for teaching students to see and

utilise patterns in data. We have also demonstrated that SQLRepair can fix 29.1% of queries

with errors. By demonstrating that APR techniques are applicable to SQL, we pave the way

for additional automated repair of special-purpose programming languages. Finally, our

results suggest that automated repair may support students as they learn SQL. Students

rate our tool-produced repairs as good as queries written by themselves or other students,

and thus automated repairs may make a compelling teaching tool when peer instruction

and feedback is unavailable.
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Table 4.4 Classifications of semantic errors made by students across both phases.

Error Type
CS2

Number
(%)

SE
Number

(%)

Total
Number

(%)
Example

Wrong sub-
clauses in
WHERE

828
(69.9%)

406
(76.7%)

1,234
(72.0%)

SELECT * FROM charlie

Missing or
extra operator
(GROUP BY,
DISTINCT,
etc)

369
(31.1%)

122
(23.1%)

491
(28.6%)

SELECT LAT, STT, ISPREF
FROM juliett, india WHERE
juliett.CUI = india.CUI
GROUP BY LAT

Wrong values
in WHERE

241
(20.3%)

74
(14.0%)

315
(18.4%)

SELECT DISTINCT SVER FROM
golf WHERE SVER < 2000

Wrong order-
ing

209
(17.6%)

68
(12.9%)

277
(16.2%)

SELECT DISTINCT * FROM
echo ORDER BY MRRANK_RANK
DESC

Column mis-
match

70
(5.9%)

46
(8.7%)

116
(6.8%)

SELECT * FROM juliett
a, india b WHERE a.CUI =
b.CUI

Wrong opera-
tor in WHERE

83
(7%)

27
(5.1%)

110
(6.4%)

select LAT, STT, ISPREF
from india a, juliett b
where a.CUI = b.CUI AND
a.CVF = 256

Missing join
(implicit or
explicit)

43
(3.6%)

21
(4.0%)

64
(3.7%)

SELECT LAT, STT, ISPREF
from juliett where
TS='S';

Miscellaneous
31

(2.6%)
3

(0.6%)
34

(2.0%)
SELECT DISTINCT SVER FROM
golf;
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Table 4.5 Successes per problem and per course. Each cell represents the ratio between the num-
ber of correct attempts and the total number of attempts. Success per participant represents the
ratio between the number of students who attempted the problem and the number of students
who solved it successfully. Success per attempt represents the sum of correct attempts to total
attempts across CS2 and SE.

Course

Problem
Major

Concept
CS2 SE

Success per
participant

Success per
attempt

1 Single-
condition
select

31/115
(27.0%)

14/25
(56.0%)

45/51
(88.2%)

45/140
(32.1%)

2 Select with
projection

17/233
(7.3%)

9/163
(5.5%)

26/49
(53.1%)

26/396
(6.6%)

3 Inequality
17/140
(12.1%)

13/55
(23.6%)

30/41
(73.2%)

30/195
(15.4%)

4 Projection
and in-
equality

23/145
(15.9%)

12/39
(30.8%)

35/41
(85.4%)

35/184
(19.2%)

5 Compound
select

4/304
(1.3%)

7/101
(6.9%)

11/51
(21.6%)

11/405
(2.7%)

6 Compound
select with
AND

6/256
(2.3%)

8/113
(7.1%)

14/44
(31.8%)

14/369
(3.8%)

7 Distinct
23/153
(15.0%)

11/38
(28.9%)

34/52
(65.4%)

34/191
(17.8%)

8 Ordering
19/201
(9.5%)

12/80
(15.0%)

31/49
(63.3%)

31/281
(11.0%)

9 Joins
1/280
(0.4%)

0/70
(0.0%)

1/42
(2.4%)

1/350
(0.3%)

10 Grouping
16/195
(8.2%)

8/76
(10.5%)

24/45
(53.3%)

24/271
(8.9%)

Successful
attempts

-
157/2022

(7.8%)
94/760
(12.4%)
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Table 4.6 Types of complete repairs from SQLRepair. Non-synthesis repairs are presented first,
followed by synthesis repairs. Each section is sorted by the total number of repairs; percentages
are computed over the total number of repaired queries. Because many successfully repaired
queries contain two or more repairs, the totals in each column sum to more than 100%. The
identifier associated with each repair type corresponds to the description in Chapter 4.3.5.

Repair
Type

CS2
Number (%)

SE
Number (%)

Total
Number (%)

Representative
Example

N
o

n
-S

yn
th

es
is

Column
Mismatch
(4.3.5.1.2)

67 (13.7%) 40 (16.1%) 107 (14.5%) SELECT CUI, TUI
FROM. . .→ SELECT
CUI, TUI, STN FROM
. . .

String
Repair
(4.3.5.1.3)

33 (6.8%) 42 (16.9%) 75 (10.2%) . . .WHERE CUI2 =
C0364349 → . . .WHERE
CUI2 = 'C0364349'

Operator
Mismatch
(4.3.5.1.1)

28 (5.7%) 0 (0%) 28 (3.8%) . . .WHERE min==0 →
. . .WHERE min = 0

Sy
n

th
es

is

Column
Synthesis
(4.3.5.2.3)

252 (51.6%) 141 (56.6%) 393 (53.3%) . . .WHERE REL = 'RO';
→ . . .WHERE CUI2 =
'C0364349';

Clause
Removal
(4.3.5.2.4)

109 (22.3%) 98 (39.4%) 207 (28.1%) . . .WHERE CUI2 =
'C0364349' OR REL =
'RO'→ . . .WHERE CUI2
= 'C0364349'

Clause
Synthesis
(4.3.5.2.5)

131 (26.8%) 65 (26.1%) 196 (26.6%) SELECT CUI1, RUI
FROM bravo → SELECT
CUI1, RUI FROM
bravo WHERE CUI2 =
'C0364349';

Constant
Synthesis
(4.3.5.2.1)

114 (23.4%) 21 (8.4%) 135 (18.3%) . . .WHERE CFR < 1834
→ . . .WHERE CFR <
1865

Operator
Synthesis
(4.3.5.2.2)

39 (8.0%) 12 (4.8%) 51 (6.9%) . . .WHERE TFR <
1850. . .→ . . .WHERE
TFR <= 1965. . .
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Table 4.7 Average Likert-scale understandability scores per course and per query type, where 1
maps to Very Difficult and 7 maps to Very Easy; 4 is a neutral response (neither easy nor difficult).
Query categories are defined in Section 4.3.2.

Course
CS2 SE Overall

MyCorrectQuery (MCQ) 5.62 5.54 5.58
MyRepairedQuery (MRQ) 5.32 5.41 5.35
OtherCorrectQuery (OCQ) 5.04 5.41 5.17
OtherRepairedQuery (ORQ) 5.03 5.38 5.15
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CHAPTER

5

IDENTIFYING STRUGGLING TEAMS

THROUGH WEEKLY REFLECTION

SURVEYS

This study1 explores whether struggling teams in a software engineering course can be

predicted early in a project using a weekly collaboration reflection survey. Additionally,

the collaboration reflection survey has revealed some common challenges that can offer

more effective instructional materials to proactively ward off common problems.

Satisfies part of thesis: Using software engineering automation and survey tech-

niques in computer science education results in improved student learning

outcomes, early prediction of struggling teams, and more effective instruc-

tional materials.
1This study was published in substantial portion as Presler-Marshall, K., Heckman, S. & Stolee, K. “Identi-

fying Struggling Teams in Software Engineering Courses Through Weekly Surveys”. Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education. SIGCSE ’22 [2022].
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5.1 Study Rationale

Computer science education is increasingly focused on team-based learning, where stu-

dents work collaboratively to achieve the learning goals for a course [Abe]. Such an approach

provides an educational environment that more closely resembles professional software

engineering workplaces [Ric12].

A team’s success depends upon many factors, including good-faith participation, equi-

table contribution, and effective communication [Taf16]. When a team lacks these char-

acteristics, the impact on the team can be negative: students are left frustrated by under-

performing teammates or confused about the team’s progress [Oak04]. Teams that are

unable to communicate effectively will be at a disadvantage throughout the project [Dor12].

Furthermore, poor teaming experiences can harm a sense of engagement or belonging

with the Computer Science community, particularly among historically under-represented

groups [Che15]. Consequently, while grade adjustments can be made at the end of the

project, a better approach is to identify and mitigate problems before the project ends.

Tuckman’s model of teaming [Tuc65] is a prominent theory of teaming and group dy-

namics, and argues that teams move through four largely sequential stages. The fist stage,

forming, is where the team originally starts to take place, and individual members figure out

their place on it. In the storming, the team is typically characterised by conflict or friction

as each member seeks to work in their preferred approach. As conflict gradually give way

to working together effectively, the team moves into the norming stage, where members

establish how to work together effectively. Finally, in the performing stage, the teams work

in a smooth and cohesive unit, with each member playing their role to accomplish the

necessary outcomes. Later, Tuckman and Jensen revisited the model and added a fifth stage,

adjourning where the team disbands after having accomplished its goals [Tuc77]. Tuck-

man’s model has remained influential in education and project management for capturing

the stages that are practically universal to team experiences [Bon10]. However, practitioners

have recognised that the storming phase is the most difficult one for teams to overcome,

and the teams that are unable to successfully move through this phase continue to perform

poorly for the remainder of their interaction [Lea].

In this work, we seek to understand whether weekly collaboration reflection surveys

can effectively identify struggling teams in our software engineering course. Drawing upon

teaming theory, we seek to identify teams that are unable to successfully navigate the

storming phase and emerge as a coherent and successful group. In particular, we seek to

understand whether we can observe several commonly-observed issues: (1) students whose

work quantity or quality does not rise to the expected standards, (2) teams where members

66



are uncertain about what they should be accomplishing, and (3) teams where members are

not attending meetings or following expected communications patterns [Tuc06; Abb17].

While peer evaluations can identify students who fail to contribute adequately to the

success of their team, or who go above and beyond to ensure success [Bru10], these tend to

focus on evaluating individual teammates rather than the dynamic of the entire group. By

contrast, our survey focuses on whole-team collaboration, as a team is more than the sum

of its members. Finally, taking time to reflect on what is working and not working is a key

component of self-regulated learning and may promote better learning outcomes [Pan17].

Our results show the survey is effective at identifying struggling teams, and by the

halfway mark of the project in most cases. A majority of students reported the TCRS helped

keep them on track.

The contributions of this study are as follows:

• A weekly team collaboration reflection survey (TCRS) suitable for undergraduate

software engineering courses, and an approach for flagging struggling teams based

upon it (Figure 5.1),

• A demonstration that the TCRS is capable of identifying teams that later face difficul-

ties, and can in most cases do so by the halfway mark of the project, and

• A blueprint for an intervention that may be helpful for engaging with teams that are

struggling to collaborate effectively.

5.2 Methodology

In this section, we start by introducing our course context (Section 5.5) and research ques-

tions (Section 5.2.2). We also discuss study design (Section 5.2.3), including the TCRS, and

the intervention that we attempted (Section 5.2.4).

5.2.1 Background

At NC State University, a research-intensive university in the south-eastern United States,

undergraduate Computer Science students are required to take a Software Engineering

course, typically during their third year. The course covers fundamentals in software

engineering, such as how to design, implement, and test a medium-sized object-oriented

system; how to write requirements; and how to appropriately break down a project into

manageable components, all in the context of team-based projects that each span several

weeks. The first project, an onboarding project (OBP), introduces the process expectations
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and technology stack. The second, a larger team project (TP), asks students to complete

a more comprehensive project with a larger team. The OBP is completed in teams of

two or three students; the TP in teams of five or six. Projects are broken into iterations,

each typically lasting one week, that cover different learning objectives: requirements and

planning, design, testing, and implementation. Students are evaluated in five categories:

technical deliverables (including both code and technical documents); technical processes;

project management; team collaboration; and peer review. Each of these high-level grade

categories includes both team and individually graded components. At the end of the

project, the course teaching staff reviews peer evaluations and contributions to determine

whether individual adjustments are needed (positive or negative). We seek to supplement

the peer evaluations with a more informal metric for identifying struggling teams.

The software engineering course at NC State University typically has between 120 and

160 students a semester, led by one PhD professor and three to five teaching assistants

(TAs). Consequently, the student:teaching staff ratio is typically between 30:1 to 25:1. This

necessitates light-weight approaches for detecting struggling teams. To support the project-

based learning, the course features weekly lab sessions; led by the TAs, the labs provide

time for teams to review technical deliverables from the previous week and plan tasks for

the next week. Lab sessions are typically conducted in-person, but due to the university’s

response to the COVID-19 situation were conducted online via Zoom from Spring 2020

through Spring 2021.

To this end, with the backing of the DELTA Center, a Teaching Technology group at NC

State University that offers support for educational technologies and course redesigns, we

introduced weekly reflection surveys (TCRS) into both class projects. The TCRS, discussed

in further detail in Section 5.2.3.2, provide students an opportunity to reflect on how their

project is going, and gives the teaching staff regular, in-situ feedback on how teams are

working together. Surveys have been administered sporadically, with inconsistent followup,

from Fall 2017 to Fall 2019. We have recently revised the survey, and, starting with Fall 2020,

administered the survey every week to enable drawing more reliable conclusions.

5.2.2 Research Questions

We frame our work around the following research questions:

• RQ9: Can weekly reflection surveys identify software engineering teams in need of

instructor assistance?

• RQ10: Can weekly reflection surveys identify software engineering teams that need

assistance sufficiently early?
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Table 5.1 A summary of the participants involved in our study across the Fall 2020 and Spring
2021 semesters. OBP and TP are the two projects in our course, as discussed in Section 5.2.1.

Fall 2020 Spring 2021

Students 120 162
IRB Opt-Outs 2 5
Teams - OBP 42 57
Teams - TP 21 28
Struggling Teams - OBP 9 13
Struggling Teams - TP 8 8

• RQ11: Can weekly reflection surveys help support a better experience for software

engineering teams?

These questions evaluate the utility of a weekly team collaboration reflection survey

(TCRS) we developed, based on prior work in teaming and collaboration [Owe15; Pfa03;

Rud17; Bur03]. We administered the survey on a weekly basis to students in the junior-

level software engineering course at NC State University. We then analysed the results

of the TCRS, comparing against grades and peer evaluations [Ada18] to understand its

effectiveness.

5.2.3 Study Design

In our study, we deployed the TCRS to each student weekly throughout both course projects.

This section describes the survey design, participants, analysis, and an intervention to help

struggling teams. This study was approved by the NCSU IRB Office as protocol #12876.

5.2.3.1 Participants

We ran our study in Fall 2020 and Spring 2021, using the class described in Section 5.2.1.

Of the 120 students in the course in Fall 2020, two students declined to let us analyse their

data for research purposes. As data within a team cannot be separated for our purposes,

their entire teams were excluded from further analysis. The Spring 2021 semester had

162 students enrolled; five students opted out of letting us analyse their data. A summary

of the participants from each semester is shown in Table 5.1. The final two rows of the

table describe the number of teams that we identified as “struggling” in each semester, as

described in Section 5.2.3.3.
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Weekly tasks questions, answered with checkboxes in response to This week I have:
Q1: □ Designed a usecase (or a portion of one) □ Fixed a bug in the system □ Implemented a
usecase (or a portion of one) □Written black-box tests
□Written automated tests □Other: ____________
Q2: □ Completed all my assigned tasks □ Completed some of my assigned tasks □ Asked a
teammate for help completing my tasks □Helped a teammate complete a portion of their tasks
Q3: □Met live with my team □ Participated in checkins with my team
□ Opened a pull request and asked my team for feedback on my code □ Asked my team for
feedback on my non-code work □ Reviewed technical artifacts for my teammates

Planning questions, answered with a five-point Likert scale: # Much less # Less # About as much
as # More # Much more
Q4: This week, I have gotten done __ than I think I should have
Q5: This week, my team overall has gotten done __ than I think we should have
Q6: Next week, I intend to get done __ than I did this week

Collaboration satisfaction questions, answered with a five-point Likert scale:
# Strongly disagree # Disagree # Neither agree nor disagree # Agree # Strongly agree
Q7: This week, I knew what I needed to get done
Q8: Overall, I think that everyone has been contributing adequately to the success of the project
Q9: In our team we relied on each other to get the job done
Q10: Team members kept information to themselves that should be shared with others
Q11: I am satisfied with the performance of my team
Q12: We have completed the tasks this week in a way we all agreed upon

Miscellaneous questions:
Q13: My progress this week has been impeded by:
□Difficulties with technologies or course materials □Demands of other classes □ Other personal
responsibilities or distractions □ Teammates who didn’t complete their responsibilities □
Communication difficulties with my teammates □ Difficulty scheduling tasks so that I wasn’t
waiting for my team to complete their work □Other: ____________ □None

Q14: How do you feel about your team’s collaboration process in this project?

Figure 5.1 Team Collaboration Reflection Survey.

5.2.3.2 Surveys

The survey was originally developed by the DELTA Center at NC State University using prior

work in teaming and collaboration [Owe15; Pfa03; Rud17; Bur03]. The survey was revised

prior to Fall 2020 to add additional questions on what students were working on and to

focus on key questions from prior work on identifying struggling teams. The questions on

the survey are shown in Figure 5.1. The survey was deployed through Qualtrics, and all

questions other than Q14 were mandatory. Weekly response rates were approximately 90%;

for example, for the TP in Spring 2021 response rates ranged from 87% to 93%, averaging

91% across the project.

To support a repeatable way of flagging teams, we needed a way to quantify TCRS
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responses. To do this, we broke down the survey into “positive questions” (ones where we

would expect a successful team to answer either “Agree” or “Strongly Agree”, such as Q7) and

“negative questions” (where we would expect a successful team to answer either “Disagree“

or “Strongly Disagree”) and assigned numerical scores to the Likert scale responses. For

positive questions, an answer of “Strongly Agree” was assigned a score of 4, “Agree” a score

of 2, and so on down to -4 for “Strongly Disagree”. For negative questions, this scale was

reversed, with “Strongly Disagree” receiving a score of 4. The process was repeated for each

question, and the scores for each were summed. Questions that did not fall into either the

positive or negative categories, such as asking students what they had accomplished over

the week, were excluded from the scoring process. Any survey where the overall score was

0 or less, indicating that the student felt that more things were going wrong than right, was

flagged as indicating issues.

5.2.3.3 Observed Struggle Oracle

The surveys are intended to flag, or predict, teams that are struggling. To determine if

the survey correctly identifies such teams, we need an oracle, which we formed from two

metrics:

Low Project Grades: Most teams typically do well on the Team Project, with approximately

90% scoring an A or B. The Onboarding Project has more variability in project grades. In

both cases, we use a cutoff of one and a half standard deviations below the mean project

grade to identify struggling teams.

Peer Evaluations: Students evaluate themselves and their peers, rating each member

between 1 (Infrequently) to 6 (Above and Beyond) on metrics such as their contributions

and timeliness. The OBP has one peer evaluation, completed at the end of the project;

the TP has two: one at the halfway mark and one at the end of the project. Each student

received the average of the scores from their teammates (and, for the TP, averaged across

both peer evaluations). Students who scored at least one and a half standard deviations

below the class average were selected as struggling, and their team was selected for analysis.

These metrics have been used as measures of success in team-based learning envi-

ronments [P2́0; Sit04]. If either metric flags a team or team member, we consider that

an indication of struggle; we refer to these as teams with observed struggling or observed

struggling behaviour. The number of teams with observed struggling behaviour can be

seen in the last two rows of Table 5.1.

To verify the oracle formed using these metrics, we cross-checked the team classifica-

tions with another data source, the end-of-project reflections (for the OBP, done through a
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semi-open-ended Google Form; for the TP, done through a three-page written document).

The reflections asked students to consider the entire project and how they and the team had

worked to meet their goals. As an open-ended task, this gave students more opportunity to

explain team dynamics, and let us verify the teams with observed struggling. To confirm our

observations, we read through the end-of-project reflections submitted by each member

of the eight teams that were observed to struggle on the TP in Fall 2020. For seven of the

eight teams, at least three members (out of the five or six members of the team) mentioned

issues such as the team falling behind on deliverables or communication difficulties. On

the eighth team, one member received poor peer evaluations, but there were no issues

reported in the final reflections. To contrast this against the rest of the class and establish

a baseline, we randomly selected five other teams with no observed struggle and read

through their reflections. Students on one of the teams reported in their reflections that

they faced communication issues as the project progressed; no issues were reported by any

other students. Consequently, we consider the metrics of grades and peer evaluations to

be reasonably accurate, if imperfect, for identifying teams struggling during the project.

5.2.4 Intervention

To assist struggling teams, we developed a checklist intervention with sample questions to

ask teams. Based on prior work [Iac20], the checklist focuses on getting students to articulate

what specifically they are responsible for, how they have been meeting and collaborating

with their teams, and helping them schedule tasks to allow for concurrent work. The TAs

used this checklist during the lab sessions; additionally, they were encouraged to follow up

with teams via email to help hold members accountable to their plans.

In Spring 2021, we conducted a structured experiment where struggling teams in half of

the lab sections received the targeted follow-up intervention (experimental labs) and strug-

gling teams in the other half of the lab sections did not (control labs). We then measured

the impact of the intervention by comparing end-of-project grades and peer evaluations

between the groups.

5.3 Results

Here, we present results on the efficacy of the weekly TCRS at identifying teams in need of

assistance (RQ9), identifying them early into the project (RQ10), and impacts on student

success (RQ11).
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5.3.1 RQ9: Identifying Struggling Teams

First, we sought to understand whether weekly reflection surveys can successfully identify

software engineering teams in need of instructor assistance.

We find that identifying and reporting struggling relies on the entire team for accurate

results. For example, for the OBP in Fall 2020, nine students (on eight teams) were flagged

for receiving a peer evaluation at least one and a half standard deviations below the class

average. The nine students submitted a total of 47 TCRS responses over the course of the

project. Twelve responses across five flagged students (and four distinct teams) identified

that the team was facing challenges. Consequently, only four of the nine OBP teams we

observed struggling2 were flagged through the TCRS responses of their most unproductive

members. Factoring in TCRS submissions from the team increased this to eight of nine

teams, which suggests that reporting works best as a whole-team effort.

A breakdown of the teams that were identified through the TCRS and a comparison

to teams with observed struggle is shown in Table 5.2. Each sub-table shows the results

for one semester; for example, Table 5.2a shows the results from Fall 2020. Within each

subtable, the left side shows results for the OBP, the right side, for the TP. For example, the

left half of Table 5.2a shows that for the OBP, 8 teams were flagged by the TCRS and had

observed struggle. One team had observed struggle that was not flagged by the TCRS, 10

teams were flagged by the TCRS but had no observed struggle, and 23 teams were neither

flagged nor had observed struggle. The right half of Table 5.2a shows results for the TP.

Results for Spring 2021 are presented similarly in Table 5.2b, where we see every single team

with observed struggle on the TP was flagged by the TCRS. In total, across two projects and

two semesters, the TCRS flagged 34 of 38 teams, or 89.5%, with observed struggle.

There is an inherent tradeoff between precision and recall: if the TCRS flags more

teams, it will increase the recall (the number of struggling teams that the TCRS detects).

However, this will come at the cost of lower precision (more teams flagged with no observed

struggling). Given our use case, we prefer a survey that has high recall over one with high

precision. As the cost of engaging with a team is low, rather than miss teams truly in need

of instructor assistance, we prefer to engage with more teams that potentially don’t need

the help. That said, it is possible that the TCRS-flagged teams actually do need help, but

their struggles did not translate to poor grades or poor peer evaluations. Consequently,

while many teams are flagged that do not ultimately demonstrate struggling outcomes – 35

over the course of two projects and semesters, giving a precision of 49.3% – the tradeoff

suits the circumstances. The recall, by contrast, is much better – 89.5%. In Chapter 6 we

2The final team with observed struggle was flagged solely through poor grades, not peer evaluations.
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Table 5.2 Success of surveys (TCRS) at predicting team struggle relative to struggle observed
(observed struggle, see Section 5.2.3.3). Percentages are relative to the number of teams in total for
that project in each semester.

OBP - F20 TP - F20
TCRS TCRS

Flagged Not Flagged Flagged Not Flagged
O

b
se

rv
ed

St
ru

gg
le Yes 8 (19.0%) 1 (2.4%) 7 (33.3%) 1 (4.8%)

No 10 (23.8%) 23 (54.8%) 3 (14.3%) 10 (47.6%)

(a) Results for Fall 2020

OBP - S21 TP - S21
TCRS TCRS

Flagged Not Flagged Flagged Not Flagged

O
b

se
rv

ed
St

ru
gg

le Yes 11 (19.3%) 2 (3.5%) 8 (28.6%) 0 (0%)

No 14 (24.6%) 30 (52.6%) 8 (28.6%) 12 (42.9%)

(b) Results for Spring 2021

discuss the struggling teams that were not flagged and measures to support similar teams.

RQ9 Summary: The TCRS manages to identify most teams, 89.5% across two projects and

two semesters, that exhibit observed struggling behaviour at the end of the project.

5.3.2 RQ10: Identifying Teams Early

If the TCRS only reveals issues during the last week of a six-week project, it is unlikely that

it will be of any practical use to the teaching staff. We seek to determine if the TCRS can

identify struggling teams sufficiently early, defined as the halfway mark of the project. To

answer RQ10, we find the first occurrence of a TCRS response indicating a problem for each

team with observed struggle.

We present results for when teams were identified through the TCRS in Table 5.3. Each

column tracks a one-week iteration within each project, and the rows the semesters where

the TCRS was used. The final two columns represent the number of teams with observed

struggle that were not detected (ND) by the TCRS at any point during the project, and the

percentage flagged by the halfway mark (H?). The final row summarises teams flagged in

each half of the project. Table 5.3a presents results for the Onboarding Project; Table 5.3b

presents results from the Team Project. For example, the first row in Table 5.3a shows that
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Table 5.3 The first week that each team with Observed Struggle was flagged through the TCRS.
Each column header represents a one-week iteration in the respective project. Teams in the ND
column were not detected through the TCRS. The H? column shows the percentage of teams
flagged by the TCRS by the halfway mark of the project.

W0 W1 W2 W3 W4 W5 W6 ND H?

F20 1 5 1 - - 1 - 1 78%
S21 - 2 - 5 2 2 - 2 54%

Total 14/22 (63.6%) 8/22 (36.4%)

(a) Onboarding Project

W0 W1 W2 W3 W4 W5 ND H?

F20 1 1 4 - 1 - 1 86%
S21 2 4 2 - - - - 100%

Total 14/16 (87.5%) 2/16 (12.5%)

(b) Team Project

in Fall 2020, one team was first flagged during Week 0, five teams during Week 1, and so on.

Ultimately, seven of the nine teams, or 78%, were flagged by the TCRS by the halfway mark.

The percentages are based on the teams with observed struggle, representing the oracle.

On the whole, the TCRS does a compelling job, identifying 28 of the 38 teams, or 73.7%,

by the halfway marks of their respective projects. There is some difference between projects:

63.6% of teams on the OBP were identified by the halfway mark, compared to 87.5% of

teams on the TP. This may be because the first several weeks of the OBP are spent on tasks

the students find comparatively easy – requirements analysis, wireframing, and writing

system tests – and consequently when implementation tasks start to pick up for Week 4,

the workload increases and team dynamics can become strained.

If we move our goalposts one week later, the detection recall for the S21-OBP goes

from 53.8% to 76.9%. For the scope of this project, the teaching staff would still have two

weeks to help the teams improve. This suggests that the details of the project impact early

detection. The TP involves more difficult tasks comparatively early on; of the eight teams

with observed struggle in F20, seven were flagged by the TCRS, and six of those by the

halfway mark. All teams from S21 were flagged by the halfway mark.

RQ10 Summary: The TCRS identifies a majority of struggling teams – 53.8% to 100%,

depending on project and semester – by the halfway mark of the project.
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5.3.3 RQ11: Survey Impact on Team Success

In this section, we evaluate whether the TCRS has a positive impact on software engineering

teams. We consider two factors: 1) does engaging with flagged teams improve their grades,

and 2) do students find the TCRS useful for self-reflection or staying on track. We found that

there was no improvement in students’ grades, but a majority of students (64.4%) found

the TCRS helpful.

As discussed in Section 5.2.4, we conducted an intervention in Spring 2021 where

students in half of the labs received followups from the lab TA and students in the other labs

did not. To understand the impact, we conducted unpaired Mann-Whitney U tests between

the grades received by students in the control group and students in the experimental group,

and found there was no statistically significant improvement in either end-of-project grades

or peer evaluation grades (p > .1 for both metrics and projects).

Students found the TCRS a useful tool for self-reflection or keeping their team on track.

Starting with Fall 2020, we added a question to the end-of-project reflection for the TP asking

students whether the TCRS “helped keep you and your team on track”. To complement the

intervention, we read the reflections submitted by each student in Spring 2021. In total,

we received 118 responses that explicitly mentioned the TCRS. Of the 118 students, 76, or

64.4%, believed that it was a useful tool for self-reflection or keeping them or their team on

track. For example, students mentioned that the TCRS “help[ed] keep our team on track” or

“it forced us to demonstrate what we’ve done”, suggesting that it may be useful for getting

students to reflect on their teaming experience. Of the remaining students who did not

find it helpful, some said the project was going well and “we rarely had any communication

issues to reflect on”. Others remarked that even though issues were brought up, a member

of their team remained intransigent and the situation did not improve. However, most

students appreciated the value of the TCRS. In Chapter 6 we discuss plans to encourage

and support self-reflection.

RQ11 Summary: Most (64.4%) students believe the TCRS helps keep their team on track

or provides a positive chance for self-reflection.

5.4 Discussion

In this section, we discuss the implications of our results, threats to validity, and propose

future work.
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5.4.1 TCRS Success

We observed four false negatives across our two projects and semesters: teams with ob-

served struggle that were not flagged by the TCRS. Three of these teams were from the OBP,

and two of these teams had only two students (as opposed to the typical teams of three);

we posit this puts the students in a more difficult position as there is one fewer person to

contribute to the team’s tasks. In the future, we will make teams of three or four students.

For the final team, on the TP, we read through the end-of-project reflections submitted by

everyone on the team as well as their weekly TCRS responses. Issues were mentioned in

the final reflection, as well as in some of the open-ended comments in the TCRS, but not

the main Likert-scale questions. We have incorporated natural language processing [Nlt]

into our flagging process to alert us to these issues.

5.4.2 Facilitating TA Engagement with Teams

As discussed in Section 5.2.4, we conducted a targeted intervention in Spring 2021 to have

TAs engage with struggling teams. Several times during the semester, we also checked in

with the TAs to see if they were using the checklist and how the discussions with teams

in lab were going. Anecdotally, the TAs mostly reported that teams said things were “fine”

and were hesitant to discuss issues. It is possible that the TAs need more training in crucial

conversations [Pat12] so that they can more effectively discuss challenging dynamics with

teams. Additionally, explicitly tracking when issues came up week after week could help

the TAs take an increasingly hands-on approach for helping teams overcome their issues.

Finally, if TAs are more forceful in reminding students that there are consequences for

non-participation, it may encourage recalcitrant students to engage with team and the

project.

5.4.3 Threats to Validity

In this section, we discuss different types of threats to validity.

5.4.3.1 Conclusion

In this work, we use project grades and peer evaluations as a proxy for observed struggle

to identify teams that are in need of assistance from the teaching staff. While we can

use both of these measures objectively, we have observed that they may not capture the

true picture of what difficulties a team is facing. Indeed, when we read through end-of-

project reflections, we found a team that received fine grades and no concerning peer

77



evaluations, but two members still reported that they were facing issues communicating

and collaborating effectively. Work remains to be done in finding an oracle of team distress

that is objective and accurate.

5.4.3.2 Construct

While we observe that many students were willing to reveal issues in their teams to the

teaching staff, this was not universally the case. One student reported in their final reflec-

tion: “I did not do this [mention a struggling teammate] however, because I did not want to

create tension”. Prior work suggests that women and students from historically underrepre-

sented minorities may be less assertive [Par15; Lea11], and consequently potentially less

comfortable alerting the teaching staff of perceived issues. Further work to detect team

issues that can complement self-reporting is necessary.

5.4.3.3 Internal

In Fall 2020, we merely deployed the TCRS each week to get a baseline observation for

how capable it is at identifying struggling teams. Consequently, we did not look at the

responses until the end of the semester, and no followups were performed based on them.

Several students remarked in their end-of-project reflections that they wished there were

consequences for issues identified, or that there had been more prompt followup. It is

possible that students, frustrated that they were not getting any followup, started taking

the TCRS less seriously as the semester progressed.

5.4.3.4 External

This study was conducted in the context of one course at one university over two semesters.

While we received promising results, replication needs to be performed to validate the use

of a survey for flagging teams and promoting self-reflection.

5.4.4 Future Work

We have identified several promising avenues for future work.

Students mentioned in their end-of-project reflections that they found the TCRS useful

for weekly self-reflection and staying on top of tasks that needed to be completed (Sec-

tion 5.3.3). We intend to probe this further, and conduct follow-up interviews with students

at the end of a future semester to understand the TCRS’ use as a self-reflection tool and

how to further improve it.
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As mentioned in Section 5.4.3, a fundamental limitation of the TCRS is that it requires

students to be willing to share the issues they believe their team is facing with the teaching

staff. While our results suggest many students are willing to do so, this places a burden

on students that may be particularly unwelcome for women and students from underrep-

resented groups. Consequently, future work that focuses on identifying successful and

unsuccessful patterns from version control systems can give early warning signs of team

struggle in a way that does not require students to self-report the issues. We intend to tackle

this next as a way to complement the TCRS for detecting and overcoming team struggle.

5.5 Conclusion

In this work, we have designed a weekly reflection survey for identifying struggling teams

in undergraduate software engineering courses. By matching survey results against project

grades, we have found that the survey can flag teams with observed struggle in most

cases (with an overall success rate of 89.5% across two projects and two semesters), and

typically can do so early enough in the project that the course teaching staff may be able

to intervene and help the team perform better. We devised an intervention to try and

foster discussion in struggling teams and identify a plan for overcoming their collaborative

difficulties. Our intervention did not result in any grade improvements, yet most (64.4%)

students nonetheless reported that the surveys helped keep them on track and provided

a chance for weekly self-reflection. We are planning improvements to the survey and the

course in light of these findings to offer better support for teams.
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CHAPTER

6

PROMOTING SUCCESSFUL TEAMING

OUTCOMES FOR SOFTWARE

ENGINEERING STUDENTS

This chapter1 explores the difficulties that undergraduate students face when collaborat-

ing on software engineering team projects. In this study, we interview students who had

recently completed a team-based software engineering course to understand how they

ran their teams, what challenges they faced, if any, and how they tried to overcome those

challenges. In addition, we consider how students engaged with the collaboration reflec-

tion survey from Chapter 5, to understand how it encourages students to self-reflect on

their project experiences and how this can contribute to successful teaming outcomes.

The work in this chapter provides a better understanding of the types of challenges that

students face, and motivates improvements to project materials to benefit future students.

This study demonstrates the value of the collaboration reflection survey, and provides

insights that have inspired improvements to course materials, resulting in more effective

1This study was published in substantial portion as Presler-Marshall, K., Heckman, S. & Stolee, K. “What
Makes Team[s]Work? A Study of Team Characteristics in Software Engineering Projects”. Proceedings of the
2022 ACM Conference on International Computing Education Research. ICER ’22 [2022].
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instructional materials that will contribute to improved learning outcomes for future

cohorts of students.

Satisfies part of thesis: Using software engineering automation and survey tech-

niques in computer science education results in improved student learning

outcomes, early prediction of struggling teams, and more effective instruc-

tional materials.

6.1 Study Rationale

Professional software engineering is, almost without exception, a team-based activity,

drawing together diverse teams to solve large problems. To help prepare students for this

reality, teaming is taught in many computer science programs and is also a skill assessed

by ABET accreditors [Abe].

In this work, we focus on student teams, and we observe that in software engineering

courses, not all teams manage to work together effectively. Some students may have a

sufficiently dysfunctional team experience that they are not able to learn key skills of how

to manage and run a multi-member team. Students regularly complain about freeriders,

or team members who fail to contribute equitably to the project, resulting in more work

and stress for everyone else [Hal13]. Peer evaluations may be able to discourage freerid-

ing [Taf16; Hal13], but are not a general-purpose tool for addressing all teaming challenges.

Indeed, while teams may be hampered by the explicit non-participation of one of their

members, they may also be frustrated by a general sense of confusion and disorganisa-

tion that negatively impacts the entire team [Oak04]. However, the precise details of the

challenges that software engineering teams face have not been the focus of much research,

which limits educators’ ability to help teams overcome them.

6.2 Introduction

In this work, we look beyond issues of non-participation, and seek to understand what

makes teams work. We do so by identifying transient and persistent challenges faced by

software engineering teams and attempts to overcome them. Additionally, we identify

the characteristics of successful teams, which may serve as a model that educators can

encourage students to adopt. We focus our efforts around the following research questions:

• RQ12: What sort of team-related difficulties do students face on software engineering

teams?
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• RQ13: Why are some teams able to overcome the issues that they face, while others

are unable to do so?

• RQ14: What support do students want from the course teaching staff for overcoming

collaborative difficulties?

• RQ15: What are the characteristics of successful teams?

We answered these research questions by conducting one-on-one interviews with stu-

dents who have recently completed a team-based undergraduate software engineering

course. These questions aimed to understand their experiences, successes, challenges, and

how they tried to overcome these challenges.

Our results show that while some teams manage to work together successfully through-

out the project, communication issues and poor time management caused challenges

that other teams struggled to overcome. Additionally, we find that self-reflection, a critical

component of self-regulated learning [Pan17], helps some teams overcome challenges, but

is not capable of motivating recalcitrant teammates.

Our contributions are as follows:

• A discussion of the characteristics of software engineering student teams that worked

well together, and teams that struggled to work effectively.

• A discussion of the steps students attempted to overcome challenges.

• A discussion of how teaching staff can help struggling teams.

• Data suggesting that teams may face more collaborative challenges than was previ-

ously understood, calling for researchers to better understand issues teams face.

To the best of our knowledge, this is the first paper to study the characteristics of software

engineering student teams from the inside, discussing with students to understand their

experiences and challenges. All prior work we are aware of looks at external factors of

team success, such as team grades [Iac20; Mar16; PM22a], peer evaluations [Iac20; PM22a],

whether projects could be deployed [Mar16], or similar metrics [Dzv18]. By contrast, our

one-on-one interviews with students provide novel insights into what teams do, and, from

their perspective, what challenges were faced. This gives us a far richer perspective on

how teams function, and lets us demonstrate empirically that software engineering teams

function according to educational theory and many educators’ intuitions.
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6.3 Related Work

Practically all professional software engineers work in teams, bringing together a diverse

set of skills to enable engineering the software systems of the modern world [Lay00; Ric12;

Ram20]. While software teams have long been geographically distributed [Lay00], the

COVID-19 situation has accelerated this trend, with more developers opting for fully remote

work [Mil21]. Prior work suggests that remote work accentuates the challenges developers

face working together [Bao20; Neu05], making it crucial that developers enter the workforce

with teaming experience. As a result, most software engineering classes include some form

of team-based learning, from pair-programming efforts to longer-running, many-member

teams [Kha20; Par18; Wil00; Sim02; Iac20; Hun21].

However, despite that teaming is a key learning outcome [Abe], some students have a

dysfunctional team experience that imperils their ability to learn teaming skills. Prior work

has demonstrated that up to 40% of teams in project-based courses are characterised by

“internal strife” and fail to work together effectively [Tuc06], often caused by a lack of com-

munication or effective project management [Oak04; Iac20]. Iacob and Faily [Iac20] report

that dysfunction is a risk in student software engineering teams, where low engagement or

poor communication can hamper individual and team outcomes. They identify that there

may be team dysfunction, but do not study its causes. Marques [Mar16] proposes having a

“monitor” conduct weekly meetings with teams of software engineering students, observing

them work and providing feedback on the overall team function and contributions of each

member. They report mentored teams produced higher-quality software, and performed

substantially better on their final project, but provide little elaboration on the details of the

challenges that students faced in either case. Prior work [PM22a] investigates the use of a

team collaboration reflection survey (TCRS) for identifying struggling teams. They report

that the TCRS can identify struggling teams, but provide little insight into the types of

challenges teams faced. Maguire et al. [Mag19] discuss how to train the mentors required

by several of these approaches.

Computer science education researchers have considered student teams primarily by

focusing on externally-visible characteristics, such as grades, peer evaluations, or version

control system (VCS) commit history. Iacob and Faily [Iac20] and Marques [Mar16] focus

on end-of-project grades as a measure of team success. Meanwhile, Gitinabard et al. [Git20]

focus on VCS data to identify how small teams collaborated. Most similar to our work,

Dzvonyar et al. [Dzv18] explore team forming and success in software engineering. They

discuss considerations when forming teams for a project-based course, and survey teams

at the end of a software engineering course, asking questions about team synergy and any
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challenges the team faced. They report that team synergy was generally high, but two teams

struggled with low motivation and performed poorly. However, they do not discuss how

teams themselves operated and how this may have impacted any challenges faced. Finally,

Berglund [Ber05a] conducts an in-depth study of an upper-level networking course. They

consider how teams distribute leadership responsibilities and whether they function as a

cohesive whole. However, their work considers only two aspects of how teams function,

and the course context is very different from software engineering courses, where teaming

is a primary learning outcome.

Prior work has considered the characteristics of student teams more broadly in engineer-

ing education. Borrego et al. [Bor13] present a comprehensive literature review of teaming

in engineering education, and consider the learning outcomes and “negative behaviours”

commonly associated with them. They show that teaming is widespread in engineering

education, particularly in introductory courses and senior-level capstone courses. They

report that social loafing, or freeriding, is the primary form of dysfunction faced by teams.

They counter that freeriding can be reduced by having projects that are sufficiently complex

that each student has a unique role [Kar93; Kar95], and that academically unbalanced

teams (those featuring both high and low performing students) are at the greatest risk

of freeriding [Pie10]. Beyond the issue of freeriding, they also consider how to promote

teaming environments that lead to positive educational outcomes. They report that in-

terpersonal conflicts between members of the team leads to “reduc[ed] productivity and

satisfaction” [DW12] but that disagreements over how to solve tasks can help students

consider a broader range of possible solutions and thus improve outcomes [DD03]. This

finding has been echoed by other work [Hon04]. More recently, Walsh et al. [Wal21] consider

impacts on team dynamics in engineering education during the COVID-19 situation. They

report that teams experienced many of the same challenges that we observed, including

issues with time management and timeliness, communication difficulties, forming effective

relationships, and burnout and a lack of motivation. Finally, Pazos and Magpili [Paz15]

propose interviewing engineering students to understand how technology can support

better teaming.

Team-based learning (TBL) is a learner-centred pedagogy, where students direct their

own learning under the guidance of an instructor who serves as an “expert facilitator” [Hry12].

TBL is grounded in constructivist theory, which argues that students cannot merely absorb

information passively, but must actively discover it. This theory says that learning is done

through dialogue rather than a dissemination of facts. Prior work has demonstrated that

this is typically a more effective pedagogy and results in better learning [Hry12; Aya15].

For these reasons, the software engineering course we study in this work uses TBL exten-
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sively. Despite the benefits, researchers have recognised that TBL is not an educational

panacea. Successful teamwork depends upon regular communication, particularly when

members work asynchronously [Gil13]. Additionally, teams must be capable of conflict

resolution, which requires both identifying and resolving challenges [Pau06; Raf13]. In

order to help students navigate these challenges, many educators include team forming

activities [Rap07; Pin06; Hog08], self-and-peer assessment [Din14; Taf16], or discussions of

teaming theory (such as Tuckman’s model of teaming [Tuc65], discussed in Raferty [Raf13]

and Hansen [Han06]). In this work, we use Tuckman’s model for characterising where teams

faced challenges. Tuckman argued that teams progress through four stages: forming, as the

members of the team meet each other but largely act independently, storming, as conflicts

and disagreements arise between members, norming, where conflicts are resolved and the

team starts to function cohesively, and finally performing, where members are engaged

and the team works together effectively. Tuckman noted that some teams may skip the

storming stage entirely, while others may face intense “storms” they never overcome. Later,

Tuckman and Jensen added a fifth stage, adjourning, where the group disbands upon the

completion of their tasks [Tuc77].

6.4 Background

At NC State University, a large, research-focused university in the United States, under-

graduate Computer Science students are required to take a Software Engineering course,

typically during their third year. The course covers fundamentals in software engineering,

including how to design, implement, and test a medium-sized object-oriented system; how

to write requirements; and how to appropriately break down a project into manageable

components, all in the context of two multi-week team-based projects. The first project, an

onboarding project (OBP), introduces the process expectations and technology stack. The

second, a larger team project (TP), tasks students with a more comprehensive project with

a larger team. The OBP is completed in teams of three or four students; the TP in teams of

five or six. Prior to team formation, the teaching staff distributes a Google Form to students,

inviting them to fill out who they would or would not like to work with. The teaching staff

makes a best-effort to build teams that satisfy these preferences. Avoidance requests are

always satisfied, and students will usually get at least one, if not more, of the teammates

that they request to work with. Projects are broken into iterations, each typically lasting

one week, that cover different learning objectives: requirements and planning, design,

testing, and implementation. Over the course of the projects, students are evaluated in

five categories: technical deliverables (including both code and technical documents);
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technical processes; project management; team collaboration; and peer review. At the

end of the project, the course teaching staff reviews peer evaluations and contributions

to determine whether individual adjustments are needed (positive or negative). We focus

here on the team project; a larger team provides more interesting dynamics, and a more

recent project is easier for students to remember.

The team project features several aspects designed to promote positive teaming out-

comes. The first iteration features a team forming activity based on prior work [Rap07;

Pin06; Hog08]. The teaming activity is facilitated by the course teaching staff, and en-

courages students to reflect on collaborative experiences in prior classes to identify the

characteristics of successful teams. The activity features questions to facilitate discussion

on what each student wants to learn, how they want to run their teams (including how

they want to meet and communicate out of lab, how they want to resolve conflicts, and

team roles), and timeliness expectations. Students are encouraged to establish individual

feature-based roles to focus on specific tasks, as well as an overall team lead role. They

are also encouraged to split their team approximately in half into two subteams to work

in parallel, and establish leadership on each subteam. Teams are required to establish a

real-time communication approach (i.e. something to supplement email) and produce a

written document reflecting their discussion and the rules they have established, but are

otherwise free to establish rules as they see fit. All members of the team are expected to

sign the rules.

The Software Engineering course typically has between 120 and 200 students a semester,

led by one PhD professor and three to five teaching assistants (TAs). To support team-based

learning, the course features lab sessions each Thursday led by the TAs. Labs have 20-25

students each and provide time for teams to review work from the previous week and

plan tasks for the next week. To ensure teams are prepared for the Thursday labs, weekly

tasks are due Wednesday nights. Lab sections are run synchronously and while they have

typically been run by a single TA, starting in Fall 2021, they are run by pairs of TAs. Due to

the COVID-19 situation, labs were run online from Spring 2020 to Spring 2021, but have

returned to in-person in Fall 2021. However, in keeping with safety protocols, students with

a COVID exposure were asked to join their team by Zoom instead of attending physically.

In prior work [PM22a], we introduced a team collaboration reflection survey (TCRS)

to the class projects. Administered through Qualtrics, the TCRS is mandatory and asks

students to reflect on their contributions and how their team collaborated. The TCRS is

capable of identifying a large majority of teams that ultimately perform poorly (with the

team as a whole receiving a poor project grade, or one or more members receiving a low

peer evaluation grade). In this paper, the TCRS is used as a tool as we seek insights into the
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challenges that teams face.

All authors of this paper are regular members of the teaching staff for the studied course.

The first author is head TA for the course; the third author was the instructor of record in

the Fall 2021 semester we studied. The second author is a regular instructor for the course,

but was not a member of the teaching staff in Fall 2021.

6.5 Methodology

In this section, we discuss how we improved the TCRS, classified teams based on their

project experience, recruited potential participants, and conducted and analysed inter-

views.

6.5.1 TCRS Improvements

The TCRS features an open-ended question asking students to reflect on their project

experiences over the past week. As suggested in prior work [PM22a], for the Fall 2021

semester we introduced natural language processing using VADER [Nlt] as an additional

way to identify struggling teams from this response. VADER is a sentiment analysis tool, and

produces a 3-tuple of (positive, negative, and neutral scores) representing the sentiments

detected in a piece of text. However, in our context, rather than individual sentiment

scores we need to answer “Is this TCRS response describing a problem the team is facing?”

Thus, we need a binary classifier that combines together the individual sentiment scores to

determine if a comment is predominantly negative (that is, describing a problem, which

the teaching staff would like to know about) or not (describing instead that the team is

working well, or effectively saying nothing at all).

To construct and evaluate a classifier, we built a labeled dataset. We read through the

579 open-ended responses on the TCRS from Spring 2021, and manually labeled each one

as expressing a predominantly positive sentiment, a predominantly negative sentiment,

or no sentiment. This gave us a dataset of 437 positive comments, 93 negative comments,

and 49 neutral comments. We then ran VADER on each comment, and built a binary

classifier from the positive, negative, and neutral scores it produced. As in prior work, we

prefer a high recall (a large majority of negative comments correctly labeled) over high

precision, so we tuned our classifier until the recall exceeded 90%, which gave a precision of

approximately 55%.2 While the precision is relatively low, the classifier successfully narrows

2These figures represent training error, rather than test error; the skew of our dataset towards positive
comments means there is an insufficient number of negative comments for a typical training/test split.
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down approximately 110 comments submitted each week to no more than ten negative

comments for the teaching staff to review, and a quick manual inspection lets us discard

comments that were incorrectly labeled as negative.

6.5.2 Team Classification

In prior work [PM22a], we used a two-part grades-based oracle for identifying struggling

teams: low project grades and peer evaluation grades. In both cases, a threshold of 1.5

standard deviations below the class average was used; a team was flagged through the oracle

if the overall team grade or any member’s peer evaluation grade was below the threshold.

We adopted this same model, with the improvements discussed in Section 6.5.1, and

then compared teams flagged through the oracle against teams flagged through the TCRS.

The TCRS is due each week as part of project tasks, and was analysed to identify struggling

teams. Therefore, while the oracle represents team struggle at the end of the project, the

TCRS represents a metered lens into struggle throughout. We cross-referenced teams

flagged through the oracle to teams flagged through the TCRS, splitting the 24 teams in the

course into four distinct groups:

• Group 1, eight teams: Teams that were not flagged through the grades-based oracle,

and were flagged≤ 1 time through the TCRS. These are teams that ultimately did well,

and any issues faced appeared to be transient.

• Group 2, seven teams: Teams that were flagged through the grades-based oracle, and

were flagged ≥ 2 times through the TCRS. These are teams that ultimately received

poor grades, and issues were seen consistently through the TCRS.

• Group 3, three teams: Teams that were flagged through the grades-based oracle, and

were flagged ≤ 1 time through the TCRS. These are teams that ultimately received

poor grades, but issues showed up at most briefly through the TCRS.

• Group 4, six teams: Teams that were not flagged through the grades-based oracle, but

were flagged ≥ 2 times through the TCRS. These are teams that appeared to struggle

during the project itself, but the issues did not manifest themselves in low grades at

the end.

6.5.3 Recruitment Process

From each group, we randomly selected three teams for analysis, with the exception of

Group 4, where we made an administrative error and only selected two teams. We then

88



Table 6.1 The number of students contacted, and who participated in interviews, from each of
the groups studied. Also shown is the number of teams represented in our interviews.

Students
Contacted

Students
Interviewed

Teams
Represented

Group 1 17 8 2
Group 2 15 3 2
Group 3 16 4 3
Group 4 10 3 2
Total 58 18 9

sent individual recruitment emails to each member of the selected teams, inviting students

to discuss their project experiences. Recruitment emails were sent in January 2022, and

interviews were conducted in late January, approximately two months after the conclusion

of the project. We did not ask students to hide their participation in the study from their

teammates.

This study received IRB approval. Participation was voluntary, and students were not

compensated for participating. Willing students signed up for an interview timeslot from a

provided calendar; we then sent them Zoom information and a consent form. Students

were asked to sign and return the consent form before their interview slot. Every student

who signed up participated in an interview. As shown in Table 6.1, 18 of the 58 students we

invited participated, for a response rate of 31%. The 18 interviews represent nine of the

eleven teams we contacted.

6.5.4 Interview Process

To ensure that all students were asked the same core set of questions, we prepared a

semi-structured interview outline, shown in Figure 6.1. Students were free to direct the

conversation, so questions were not always asked in the same order or with exactly the

same wording, but we asked the same core questions in each interview. As discussed in

Section 6.5.5, after the first three interviews, we added questions on teams’ communication

and leadership approaches (Q5 and Q6). All interviews were conducted by the first author.

6.5.5 Analysis

To analyse interviews, we followed a grounded theory approach [Cha14], transcribing

and performing preliminary analysis concurrently with interviewing. To reduce bias, we

replaced all student names and pronouns with gender-neutral pseudonyms. As suggested
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by Saldaña [Sn09], we began with structural coding [Nam08], identifying a preliminary set

of codes and categories from the interview script and common themes. During this process,

we added Q5 and Q6 to the interview script, shown in Figure 6.1. To supplement our initial

set of codes and categories, we followed an open coding approach [Kha09], letting insights

from each interview guide our analysis, and revisiting prior interviews to see if and how

each newly-discovered topic was discussed.

On five of nine teams represented in the interviews, we interviewed two or more mem-

bers. Consequently, we compared interviews within a team for consistency and contra-

diction. As expected, we found students emphasised and discussed different aspects of

their experiences, but we found no contradictions between different members of the same

team. We verified claims where possible, checking Git logs to confirm comments on the

timeliness and distribution of labour. In no cases did we find information substantially

different than what students told us.

As we compared student responses, we found that the nine teams could be arranged

into four distinct categories, depending on whether they faced collaborative challenges

and how effectively they overcame them. We use Tuckman’s model of teaming [Tuc65], as

discussed in Section 6.3, to characterise team experiences:

• Category I: Ineffective Collaboration. Teams that faced a substantial collaborative

issue they were unable to overcome. These teams never successfully made it past the

storming stage of Tuckman’s model. We name these three teams Alpha, Bravo and

Charlie.

• Category II: Partially Ineffective Collaboration. Teams that faced a substantial

collaborative issue which they were able to partially, but not fully, overcome. These

teams struggled to move through the storming stage of Tuckman’s model, and while

they made more progress than the teams in Category I, they faced conflict until the

end of the project. We name these two teams Delta and Echo.

• Category III: Effective Collaboration with Issues. Teams that faced a collaborative

issue which they were able to fully overcome. These teams lingered in the forming

stage of Tuckman’s model. We name these two teams Foxtrot and Golf. Foxtrot

lingered in the forming stage for approximately two weeks, and Golf for a bit over

one week.

• Category IV: Effective Collaboration. These teams never faced acknowledged col-

laborative issues. They progressed through the forming, norming, and performing
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stages without difficulties, with little sign that they faced a storming stage at all. We

name these two teams Hotel and India.

To answer RQ12, we focused on the challenges faced by Categories I-III. To answer

RQ13, we focused on Categories I-III, looking at how they tried to overcome these chal-

lenges and comparing the fully successful attempts in Category III with partially successful

attempts in Category II and unsuccessful attempts in Category I. To answer RQ14, we

focus on students from all categories, soliciting feedback on steps that were or could be

taken by the teaching staff to help address similar issues. Finally, to answer RQ15, we focus

on what students from all categories described as the successful attributes of their teams,

paying particular attention to teams from Category III and Category IV.

6.6 Results

Here, we present the results on challenges teams face (RQ12), teams’ ability to overcome

them (RQ13), support for teams from the teaching staff (RQ14) and the characteristics of

successful teams (RQ15).

6.6.1 RQ12: Challenges Faced

First, we sought to identify the challenges that impeded effective teamwork. We focus here

primarily on answers to Q1-3 and Q5-15 from our interview script.

6.6.1.1 Communication Difficulties

We find that poor communication underlies most team issues. Two teams from Category I

and all four teams from Categories II and III reported that, at least for part of the project,

their teams did not communicate effectively, leaving them unclear about their current

progress. Adrian, on Team Alpha, described the communication difficulties on their team

succinctly: “I would text things in the chat, and there would be radio silence”. For some teams,

communicating effectively was even a challenge within lab. On Team Bravo, Finnegan said

that “the first few labs it was like almost like silent...and I don’t really know what’s going

on, [or]what are they doing”. Meanwhile, Spencer, from Team Delta, reported that their

teammates were “a little ashamed that they hadn’t started” and would not respond until

the very last moment, once they had actually started. This lack of communication meant

that “a lot of times we didn’t know if [individual tasks]were done or were going to be done

before lab”. As we discuss in Section 6.6.2, Team Bravo managed to partially overcome these

issues, but communication deficiencies impeded many teams.
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We also find that the communication platform students used and how they used it

impacted their communication efforts. Of the nine teams, eight chose Discord, a popular

channel-based, text-and voice chat program [Dis]. Only one team, Alpha, used anything

else: SMS text messages, which Adrian described as an “awful” solution that “discouraged”

necessary conversations. However, despite that all remaining teams used Discord, some

used it more successfully than others. Page, from Team Foxtrot, reported that their team had

a “big group” channel for the entire team. However, rather than using this, or something

else that would be visible to the team, Page and the other member on their subteam

communicated via direct messages (DMs). They described DMs as the “obvious” approach,

but later reported that “[I] no idea what was going on on the second subteam because I didn’t

talk to any of them”. In Section 6.6.4 we discuss how more successful teams used Discord

to communicate.

Finally, we observe that language barriers can contribute to communication challenges.

We interviewed two teams with an ESL3 student; one of them cited this as a major challenge.

In Section 6.6.2 we discuss how Team Bravo partially overcame this issue. Meanwhile,

Parker, from Team Golf, reported that their team experienced a minor language barrier

with one student, but that “we adjusted to it and we did okay” and it did not impede their

work.

6.6.1.2 Time Management

The second most prevalent issue that teams faced is one of time management and ac-

countability. Two of the three teams from Category I and both teams from Category II

reported that they had issues getting work done on time, with a tendency to wait until

the last moment. Spencer, on Team Delta, explained that “we all kind of were pushing

what we need to do back”. They reported that the team often would not start tasks until

after the Wednesday deadline, completing tasks between the deadline and the start of their

lab session the next day: “we fudged that a little bit...not really doing [our work] until like

the next day, Thursday...and that didn’t work”. When technical issues arose, it put their

team in an untenable position, since “you know how it is, there’s not really time to figure it

out”. Emery, from Team Charlie, also reported issues with procrastination: “nobody would

start it early...everything was done at the last possible minute”. Ultimately, Team Delta and

Team Alpha managed to get their projects done, although Adrian reported that it took “an

all-nighter that night it was due”. However, on Team Charlie, Emery reported that “we

didn’t have time to fix [several broken pieces]”.

3English as a second language
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Exactly why teams struggled to get work done on time varied from team to team. On

Team Delta, Spencer reported that “the team doesn’t keep you accountable” and at one point

on the project, “other than Kennedy, nobody else really cared”. Spencer admitted that their

team was “more concerned about the grade than actually learning”. More pressure from the

TAs may have been necessary. Emery was more optimistic about their team’s process, and

said that if their approach of “just make sure you do it before the deadline” was replaced

with “days with [the] team to work on things” they may have worked more effectively.

6.6.1.3 Task Planning

Our results also suggest that teams struggle with task planning and organisation, which

tended to exacerbate other problems. Spencer, from Team Delta, reported that “we didn’t

really have a good execution plan”. They wished that their team had been “more specific

about the [meeting] agenda”. Meanwhile, Adrian, on Team Alpha, reported that while

their team managed to figure out what needed to happen, “those [time] estimates that

we had were just completely wrong” and resulted in an “unequal distribution” of labour.

Additionally, Adrian reported that “we didn’t really think about ” task dependencies, which

meant that they were often blocked because “some things were dependent on other things

and you didn’t necessarily know that”. Incorrect time estimates caused troubles for Hayden

and Team Echo as well. In their case, during the final iteration Nuru was assigned a “process

[that] took way less time than we thought”. Nuru then went to work at their day job, and was

unable to help their teammates, who were “helping with the process that took a lot longer”.

While Hayden said that “overall I don’t blame [Nuru]” because “[they] did all work that we

assigned”, this created difficulties for everyone else.

6.6.1.4 Other Issues

We find some evidence that team leadership strategies also impact team success. Adrian,

on Team Alpha, reported that their teammate Casey established themself as team lead.

Adrian reported that Casey largely refused to delegate tasks, and would go and “[change]

my code for me...and edit the things I’ve done”. Adrian described Casey’s leadership style as

“abrasive”. Other teams had varying degrees of success with their leadership approaches.

Hayden, from Team Echo, acknowledged that the decentralised leadership approach of

their team “usually doesn’t work out” but said “it worked out perfectly”. However, Team

Echo only managed to pull together a working project through a crunch at the end, and

we question if things worked as smoothly as Hayden described. Meanwhile, on Team Golf,

Parker reported their initial experience was very chaotic. They described their first two

93



team meetings as “torture”, saying that “some people were throwing out ideas, some people

were just kind of silent”. Parker reported that their experience after establishing a team

leader was much smoother.

Three teams also faced issues with mental health challenges. On Team Delta, Spencer

reported that one team member “sorta just disappeared” and stopped attending class or

participating in the team chat; attempts from the team and the teaching staff to contact

them were unsuccessful. Emery, on Team Charlie, faced a similar issue with their teammate

Alex, who the teaching staff was also unable to contact. On Team Bravo, Landon said they

were struggling from “burnout”. They described their performance as “hot and cold” and

said that sometimes they were engaged with the team, and sometimes they “[were] not able

to perform”. We asked Landon about being referred to the counseling center for mental

health support; they “probably would not have taken advantage of it as I should have” and

“would have denied” help. We suspect that these issues were exacerbated by the COVID-19

situation.

On Team Echo, Hayden mentioned an issue unique to their team: two members of the

team had jobs outside of school. Hayden reported that in the first couple weeks of the

project, they “[were] actually a bit hesitant” because the team members with jobs “never

responded...until very late at night”. As discussed in Section 6.6.2, Team Echo was able to

partially overcome this issue, but combined with task planning issues (see Section 6.6.1.3)

it still presented a challenge.

RQ12: We find that teams struggle with communication, setting and keeping to deadlines,

and task planning. Some teams also faced challenges with leadership and burnout.

6.6.2 RQ13: Overcoming Challenges

In this section, we discuss the two teams that completely overcame their challenges, the

two teams that partially overcame them, and the three teams that faced challenges they

were unable to overcome. We focus here primarily on answers to Q1-3, Q12-13, and Q17

from our interview script.

6.6.2.1 Successful Attempts

We find that two teams completely overcame their challenges by addressing deficiencies in

communication and leadership. On Team Foxtrot, Page reported that in the first half of the

project, they had “no idea” what the other subteam was doing, because they “didn’t talk to

them”. The turning point was when the team “completely missed” one weekly task. Page
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explained the grade “really hit us” and the team realised “we really need to start [talking]”

to stay on top of tasks and “make sure [a bad grade] is not a trend”. They remarked that

while this oversight “could have turned into a blame game very easily” their team “handled

it very gracefully”. Everyone realised that “no one was told to do this” and consequently,

responsibility fell on the team. Ultimately, Team Foxtrot overcame this issue through pair

programming, which facilitated communication between the subteams. Additionally, the

team “talked actually quite a bit with” a TA to make sure they “were 100% prepared”. Team

Foxtrot faced no further issues and worked together effectively henceforth.

Team Golf managed to overcome their issues just as effectively. Parker described the

first two team meetings as “torture” as the team meandered aimlessly. Parker explained

that when they sat down to complete the TCRS, they “put [their] thoughts about that week

together” and realised the team needed a plan. Parker credits self-reflection for identifying

the problem, and thought without it they “could have just been really disappointed and

demotivated”. To address this, their team instituted a “rotating team leader” who could

steer discussions. Parker said that as their team figured out the project, they used the team

leader less, but that it was still “nice having it there...as a safety button” if needed.

6.6.2.2 Partially Successful Attempts

Team Delta originally faced severe issues on several fronts: poor communication, last-

minute work, and next to no collaboration. Spencer reported that they tried, largely unsuc-

cessfully, to organise the team, “volunteering to be in the library” and asking for progress

updates. They described the inflection point for their team as the week that they got sick.

Spencer said “when I wasn’t there they had to step up” and this “kick-started” the other

members of the team into participating. Additionally, they remarked that “we realised

how there’s a lot of work left to do” and not much time. While Team Delta never heard

from the missing member, Spencer said that “once we started working” their team started

making some progress, although they conceded the team remained more focused on “[the]

grade than actually learning”. Ultimately, their desire for a better grade encouraged better

collaboration.

Team Echo partially overcame their issues by working around the schedules of the

members with jobs. Hayden said that after a couple of meetings in the library when “these

two people were just MIA” their team scheduled meetings for “weekends and evenings” to

accommodate everyone. Ultimately, while Team Echo struggled with time estimates until

the end, they made progress working together.
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6.6.2.3 Unsuccessful Attempts

While four teams managed to overcome many of the challenges they faced, three more

did not. Team Alpha was ultimately unable to overcome Casey’s “abrasive” leadership.

Adrian said while everyone privately agreed that Casey was behaving unreasonably, they

were “scared or hesitant” to call out the problem, only to “be deflected, and be gas lit” by

the member causing it. Adrian self-described as “not a very confrontational person” and

preferred to suffer through the problem rather than speak up. Meanwhile, Team Charlie

had one member of the team drop the course, leaving more work for everyone else. As the

team never established effective leadership or held to deadlines, they struggled with many

tasks until “the hour before [they were] due”. As we discuss in Section 6.6.3, Team Charlie

may have needed external accountability.

Finally, Team Bravo was in a unique position. Finnegan reported that three members

of their team “were very involved, and very willing to like [do] anything”. They said “it was

productive for us three” and the team identified tasks, Finnegan delegated them, and they

shared progress. However, Finnegan explained that tasks assigned to the remaining two

members “wouldn’t get done...and would put us in [a] bad position”. Finnegan conjectured

this was partially due to a language barrier, as Glenn “had a hard time understanding us”.

Ultimately, Glenn collaborated with Max, who came from a similar cultural background.

Landon also struggled to participate effectively on Team Bravo. Finnegan reported that

Landon missed every out-of-lab meeting. Landon acknowledged being “aware of the

problem” but was “not in a position” to solve it. There was no clear way the team could

have overcome this challenge.

RQ13: When everyone on a team is making an effort to participate, reflecting on what is

working and what is not working can be enough for teams to figure out what they need to

do differently. Other teams may need the pressure of an impending deadline, or external

motivation from the course teaching staff, to encourage everyone to contribute. Finally,

abrasive leadership and mental health challenges posed insurmountable barriers for other

teams.

6.6.3 RQ14: Support from Teaching Staff

In this section, we discuss how the course teaching staff can help teams work more effec-

tively, by focusing on answers to Q4, Q8-11, and Q13-16 from our interview script.

In every lab, TAs meet with each team to check on their progress and offer guidance.

However, as students do most of their work independently outside of lab, it is often difficult
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for TAs to identify team dynamics and whether everyone is doing their part and the team is

working effectively together. Consequently, in prior work [PM22a]we assembled a checklist-

based intervention to supplement the TCRS, providing questions for TAs to ask teams on

communication, collaboration, and project management. Additionally, the intervention

encouraged TAs to conduct mid-week email checkins with struggling teams to help hold

members accountable. Prior work found no improvement in grades from this intervention.

In this work, we aim to identify why and how to fix it.

As part of our interviews, we asked students how we, as members of the course teaching

staff, could help them overcome collaboration issues. For teams that faced no issues, we

asked how we could help them overcome hypothetical issues similar to those we observed.

6.6.3.1 TA Interventions

Prior work demonstrated that this checklist-based intervention for helping teams overcome

challenges was ineffective. Comments from students on struggling teams overwhelming

tell the same story: they want more help, and more active engagement, from members

of the teaching staff. On Team Charlie, Emery requested “more of a guiding hand” than

a “passing comment”. They explained that “[no]body really noticed or paid attention to”

comments from TAs. On Team Alpha, Adrian expressed a similar sentiment. They said

that group projects “typically expect people to be confrontational about problems”, which

they were not comfortable doing, remarking that “it’s easier to do things yourself than try to

explain to [TAs]” what is happening. Adrian requested that TAs “be a facilitator” because if

“a person in authority” brings up problems, the team will be less likely to “not just say it’s all

OK ”. When we asked Blair, from Team Hotel, how TAs could help with a hypothetical team

challenge, they commented “not a lot of people would want to directly confront someone”

and suggested that TAs take a more active role.

We received slightly more conflicting requests from students on other teams. On Team

Delta, Spencer requested that TAs “step in earlier” and let teams know when their grade

“might be affected in the future”. By contrast, on Team Hotel, Carson would prefer to let

teams “try and resolve it amongst [ourselves] for a week” before the teaching staff intervenes.

Educational theory supports Carson’s suggestion, arguing that it is important for teams

to try to overcome their challenges before getting help. Also on Team Hotel, Blair made a

similar comment, saying “if it’s recurring and it’s a problem” then TAs should get involved,

but they would like the team to try first.

In Fall 2021, a student remarked in their end-of-project reflection “When we had a

major contribution issue, I reflected on that in the [TCRS] and TAs were able to intervene”.

This student clearly appreciated knowing their reflections were used to foster discussions.
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However, we recognise that some students may feel they are being “called out” for what

was said. Thus, we asked participants in this study if they would prefer we mention the

TCRS, so that they know we are acting on them, or would they prefer that issues be brought

up more generally, such as in the context of Github contributions. Spencer, on Team Delta,

acknowledged both sides. They appreciated knowing that “y’all take them seriously...you’re

actually reading them”, but said that if issues were brought up through the survey, they

would “immediately try and figure out who is doing this, who said this”. Consequently,

they would prefer for us to “depersonalise” the comments. They said that it would be

“good” to make a note of the reflections, but make it “not the main reason” or focus of the

conversation. Eilian, on Team Hotel, described the tradeoff similarly. They said that “it’s

really awkward” for the TAs to say that “according to the feedback some people weren’t doing

their part”. They suggested that TAs start by asking students what they have contributed

and how they have collaborated, and then follow up with more probing questions and

discussion if the answers did not appear to match what was in the TCRS. Eilian suggested

that we could “still acknowledge [the TCRS]” but preferred that it would not be the primary

focus. While Emery, on Team Charlie, said they “wouldn’t mind” if comments were brought

up through the TCRS, the overall consensus is students prefer for comments to be brought

up without it.

6.6.3.2 Team Formation

Some students suggested changes to the team forming activity discussed in Section 6.4.

Parker, on Team Golf, acknowledged that the team forming activity was “a good idea” but

said it was “really hard” to do effectively on the first day of the project when “you don’t

really know the people and you don’t really know the project”. They said it would be helpful

to take time in lab on the second week of the project to review the team rules and goals and

identify “are [these] still working?”. To encourage everyone to read project materials ahead

of time and make the project easier to discuss, Hayden, from Team Echo, said that “A small

quiz...would have helped”. This suggestion was echoed by Sawyer and Corey, of Team Golf.

Spencer, on Team Delta, suggested encouraging members to share “our specific strengths

and weaknesses”, acknowledging that while they discussed “our technical skills” they never

discussed “how we worked, or if we were bad at getting started on things early”. They

hesitated to call out teammates for not getting things done because “you never want the

first impression to be like ‘Hey guys, you’re not doing your crap’” and expressed optimism

that further team forming would help. On Team Foxtrot, Page said their team was formed

from two smaller groups from the prior project: “three kids already knew each other, and

then I had someone from my previous group which was really nice”. They said this made

98



the team forming exercises “really painless”, but acknowledged they “didn’t talk to any” of

the new team members for the first half of the project. They suggested “swapping it [up]

could have been more efficient” as a way to introduce everyone. One of their teammates,

Jamie, similarly said activities to “break the ice between subteams, but without forcing them

to cooperate” may foster teamwork.

RQ14: We find that most students want a more active role from the course teaching staff,

using their position of authority to bring up issues and then guide teams to a solution,

holding members accountable as necessary. Students also suggested improvements to the

team formation activity as a way for everyone to get to know each other more quickly.

6.6.4 RQ15: Characteristics of Successful Teams

In this section, we discuss the characteristics of successful teams, by focusing on responses

to Q1-6 and Q16-17 from our interview script.

In many ways, the characteristics of successful teams were largely the opposite of the

teams that struggled the most. Carson, on Team Hotel, said that their group “did really well

communicating” throughout. Blair, also on Team Hotel similarly said they “communicated

really well using Discord”. Also on Team Hotel, Emerson said that with multiple Discord

channels “we could sort of compartmentalise different discussions”. On Team Golf, Jesse

echoed this, saying that “we weren’t all trying to talk in the same channel” but “we could still

see what the other [sub]team was doing”. On Team India, Riley explained everyone discussed

the tasks they were working on and “brought up and talked about” any disagreements. On

Team Hotel, Eilian said that they would “just straight up tell them [team members] like ‘stop’”

if they were distracting meetings.

In addition to regularly communicating, we find that the most successful teams also

worked on tasks together. On Team Hotel, Carson said that members on their team would

“hop in the voice chat real quick [when] we needed help on this or that”. Eilian, also on

Team Hotel, explained that their teammates were “really attentive” and would “come on

Discord...until 8 or 9 [PM]” if someone got stuck. On Team Foxtrot, Page said that a prior

internship gave them experience with some of the technologies the project used. To get

their teammate up to speed, they would “almost strictly work in pair programming at first”,

and remarked that “I think that was actually really good...I....was able to teach [them]”. On

Team Golf, Sawyer said that their teammates served as effective mentors, and would be

“like a guide to me”. They credited this relationship for helping them learn a new technology

that they struggled with on the previous project.

We also find that successful teams held themselves accountable. Emerson, on Team
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Hotel, said they would hold scrum-style meetings once a week, and “post updates in the

chat on certain days”. Because of this, “no one put their work to the last minute”. They said

that the “implicit shame” of showing up to meetings unprepared ensured that everyone

did their work. On Team India, Riley explained they “would have a meeting every Monday

afternoon” to discuss progress and come up with a plan for “anything that needed to be

done”.

We find the most successful teams invested heavily in task planning. Sam explained that

Team India would “split up each thing and just estimate it...we tried to split every task [so

they’re] pretty small”. After estimating times, they would create a “wheel [of ] fortune thing

with all of our names” and assign tasks at random, ensuring that each person had “the same

amount of hours” of work to complete. Sam said that this process was “so much fun” and

ensured that everyone was engaged with the process. Team Golf took a more conventional

but equally involved approach to task planning. Parker explained their team “took every

task [for the week]...and put all of them on a [white]board”, at which point each member of

the team “took turns grabbing what we wanted to do”. They said this approach was “great

for learning” because everyone got a chance to do “a little bit of everything”, but conceded

that “with our stochastic approach, it was a lot harder to coordinate” dependencies. Jesse

echoed that this planning approach worked well; they said that after the team planned out

everything, Team Golf would photograph the plan and share it in Discord, at which point

“everybody knew what needed to be done”. Team Hotel used technology to facilitate their

task planning. Carson explained that “we utilised Github Projects4 and the [Github] Issues

like religiously” and said this worked effectively.

We find that successful teams considered team leadership, but carried it out in a largely

decentralised manner. On Team Hotel, Emerson served as initial team lead, delegating tasks

and ensuring that everyone knew what to do. Over time, however, as the team “got familiar

with what worked for us” leadership became a shared effort. On Team India, Sam explained

“a tendency to take leadership roles”, but said their role was more “get[ting] conversations

going and ideas moving” than directing people. Meanwhile, Riley, also on Team India,

described their leadership approach as decentralised, explaining that “we all served as like

passive leadership”. On Team Golf, Parker described how their team instituted a leader role

after an initial rudderless week where the meetings were disorganised to the point of being

“torture”. Jesse, also on Team Golf, explained that the team leader’s role was “just to keep the

meetings on track” and figure out “what needed to be talked about...and make sure that’s

what was talked about”. They said this approach “worked really well” for their team.
4A Kanban-board style task tracking system
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RQ15: Successful teams communicate regularly, sharing their current progress with the

team. Additionally, members of these teams regularly collaborated on their tasks. We also

see that these teams plan out tasks carefully and then hold themselves accountable. These

teams consider leadership roles, but largely function in a decentralised manner, trusting

each person to ask for help as needed.

6.7 Discussion

In this section, we discuss the significance of our results and how they compare to our prior

work (Section 6.7.1), consider whether team formation impacts team success (Section 6.7.2),

discuss possible improvements to team forming (Section 6.7.3), and finally discuss threats

to validity (Section 6.7.4).

6.7.1 Significance of Results

We observe that none of the characteristics of successful and unsuccessful teams, as dis-

cussed in Section 6.6, come as a surprise. Prior work in teaming, as discussed in Section 6.3,

has identified that student teams are at risk of dysfunction [Tuc06; Oak04; Iac20; PM22a;

Dzv18], particularly due to challenges with communication and project management.

However, to the best of our knowledge, this is the first work to study student teamwork in

software engineering from the perspective of the teams themselves, rather than external

factors. Thus, we offer the first concrete evidence that the student-identified challenges

faced in software engineering teams are consistent with broader pedagogy.

Our results here suggest that teams may face more challenges than grades alone reveal.

All members of Team Alpha ultimately received an A on the project, but the team was

nonetheless flagged several times through the TCRS for having collaboration issues. In

this case the team did not work together as well as the grades indicated. This suggests that

collaborative challenges may be greater than previously understood. Given the four distinct

stages Tuckman [Tuc65] argues teams progress through, the six weeks of the project may

simply not be long enough for all teams to overcome their challenges and work effectively.

6.7.2 Teammate Requests as a Predictor for Team Success

As discussed in Section 6.4, teams are formed by the teaching staff with student input. We

sought to understand whether there was any relationship between team formation and

success. We did so by looking at how each team was formed, and classifying it as A) at
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random, B) around one group of students who requested each other, or C) around two or

more groups of students who requested each other. For example, Team Alpha falls into

Group B, as four students mutually requested each other and they were matched with one

additional student. By contrast, Team Hotel was formed from a group of three students

who requested each other, a group of two students who requested each other, and a student

with no requests, so Hotel falls into Group C. We find the formation of the team has little

bearing on how effectively it worked. Carson, on Team Hotel, was the only member of

the team who did not have another “buddy” that they had requested, but reported being

“grateful to have a really good group”. By contrast, on Team Alpha, the conflict that Adrian

reported was between four people who mutually requested each other. Likewise, on Team

Echo, the conflict was between two people who mutually requested each other. On Team

Golf, which faced and overcame a collaborative challenge that was not due to any member

in particular, three members mutually requested each other, but peer evaluations and

comments in interviews showed that all six members were happy together. Overall, we find

no clear relationship between how a team was formed and its success.

We note that although the teams studied in this work were enrolled in a synchronous,

in-person class, this class followed a year and a half of online classes. Prior work has argued

that students struggle to form effective relationships when working online [Wal21], which

are necessary for establishing the trust that supports positive teaming outcomes [Bor13]. It

is possible that students with a more normal educational trajectory would have established

relationships that support more effective teaming.

6.7.3 Student-Suggested Improvements

Most of the project changes suggested by students offer a clear pedagogical improvement.

The suggestion that we add a small quiz to encourage students to read project materials

is used in flipped classrooms [Wil13], and compelling students to prepare for the team

forming activity may ward off the disorganisation that Parker described as “torture”. Page,

on Team Foxtrot, suggested that we make the final question on the TCRS, How do you feel

about your team’s collaboration process in this project?, mandatory, which may encourage

further self-reflection. Hayden, on Team Echo, suggested that we allow teams to submit a

redacted chat log demonstrating peer review in place of the review in lab, which can be

accomplished with a rubric to ensure equitable grading [Fel18]. Indeed, if this encourages

students to engage in more peer review outside of lab, it would have clear benefits by

promoting more timely and collaborative work. We have found both of these behaviours

are associated with the most successful teams, and encouraging students to engage in them
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is advantageous.

Currently, both project deliverables and the TCRS are due Wednesday night, to prepare

for labs on Thursday. Emery, on Team Charlie, said that they would “put in the survey what

I would expect people to submit”, but their teammates would often not follow through, and

thus their responses did not accurately represent team progress. We recognise that as a

reflection survey, it may make more sense to have it due after other tasks, but unfortunately

with one lab per week, this is not feasible. Emery suggested that we could “allow for like,

a second survey after lab” if students had any followup comments. Combining this with

a dashboard for viewing team challenges over time could help the teaching staff track

persistent issues.

6.7.4 Threats to Validity

In this section, we discuss threats to validity, using categories suggested by Wohlin et

al. [Woh12].

Construct: When we ask students what worked effectively for their teams, and what they

struggled with, they may interpret success differently than we do, focusing on what actions

led them to a higher grade rather than better learning. We asked clarifying questions to

focus them on collaborative behaviour when their answers did not match the questions.

Responses are subject to hypothesis guessing, particularly as interviews were conducted

by a member of the course teaching staff. However, participants were forthcoming about

both the strengths and weaknesses of their teams, suggesting a willingness to discuss their

experiences frankly. Additionally, as discussed in Section 6.5.5, we compared responses

from teammates, and checked what we could on Github, and found no misrepresentations.

Internal: In this work, we describe the characteristics of struggling teams and teams that

worked together effectively. Students reported that when they took the steps towards

behaviour we see associated with successful teams, they did better. This suggests a causal

relationship.

The responses are subject to recall bias, as there was two months between the con-

clusion of the project and the interviews. We cross-referenced answers from students on

the same team, and checked what information we could against Github, and found no

misrepresentations. Not all information, such as how students met outside of lab, could be

externally verified, so we must rely on what students said. Aside from what we were told by

students, we do not have information on their other obligations, such as how many classes

they are taking or whether they have day jobs.

External: This study was conducted with 18 students from one course and one semester
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at one university. We caution that these findings may not be broadly representative of

team-based software engineering projects, and encourage replication with students from

different courses.

Reliability: The interviews for this study were conducted by the first author, and the

data analyses primarily by them. However, after minor changes following the first several

interviews, our interview script remained unchanged, and all subsequent interviewees

were asked the same questions. This step improves reliability as all interviewees were asked

a consistent set of questions.

6.8 Conclusion & Future Work

In this work, we have studied how students on software engineering teams work together.

We have revealed that students face issues communicating, establishing and keeping to

deadlines, and estimating the difficulty of tasks. Some teams are able to overcome these

issues, partially or completely, by reflecting on what is working and not working, or through

external motivators such as grades. However, mental health challenges and intransigent

teammates remain a challenge, suggesting that instructors need to do more to offer support

for struggling teammates and encourage better behaviour. Additionally, we discuss the

characteristics of successful teams, and report that these teams stay in regular communica-

tion, using Discord to facilitate asynchronous discussion and holding meetings to work

on tasks together as a team. Members on these teams hold each other accountable and

support each other. We consider suggestions that students offer on how to provide more

effective feedback and guidance.

This work has identified behaviours associated with struggling teams and ones associ-

ated with successful teams. We encourage future work to identify whether an intervention

can steer teams towards these latter behaviours. Additionally, as our study is limited in

scope, we suggest a replication of this work with a course where students work in the same

teams all semester to see both what challenges teams face and whether they are more suc-

cessful at overcoming them when they are working together for sixteen weeks as opposed

to six.
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Collaboration:

Q1: Could you tell me about your collaboration experience on the TP?

Q2: Could you tell me one thing about your collaboration experience that you think worked
out well on the TP and one thing that could have been improved upon?

Q3: Is there anything that you would definitely do again, and anything that you would defi-
nitely change?

Team Formation:

Q4: At the start of the project we took a day for team forming, setting goals and rules with the
team. Did you find this helpful at establishing a common plan for the project? If not,
is there anything that you think could have been done to improve things? If it worked,
what did you find most helpful?

Communication and Leadership:

Q5: Could you tell me about how your team communicated outside of lab, and how, if at all,
you met up together?

Q6: Could you describe your team’s leadership approach?

If the team was flagged through the TCRS and grades-based oracle:

Q7: Did you find the TCRS & followup from TAs in lab to be helpful? Did it help you and your
teammates do a better job splitting up tasks, communicating among yourselves, or
ensuring that work got done and according to your standards?

Q8: Is there anything that you would have liked us to do differently based on the issues we
observed?

Q9: Would you have liked us to bring up the issues we observed more directly, and been more
explicit about telling people on the team what to do and requiring followups? Or would
you prefer having the teaching staff bring up issues but leaving it more hands-off on
how to resolve them?

Q10: Would you have liked us to mention we saw issues from the TCRS, or in a different way,
such as through Github contributions?

Q11: Is there anything that you wish had been done differently on your team in regards to
how we responded?

Q12: More broadly, is there anything you wish you had done differently?

Figure 6.1 Interview Outline
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If the team was flagged through the TCRS, but not the grades-based oracle:

Q13: We saw from some of the TCRS responses (remind student of context) that there were
some issues your team faced, but your team did well in the end. If you remember, could
you talk a bit more about what was going on? What do you think helped your team
overcome issues like these?

Q14: Were there any other issues that you or your team experienced that we didn’t see here?

Q15: Would you have liked any help from the teaching staff to help overcome them, and if so,
what sort of help?

If the team was not flagged by the TCRS or grades-based oracle:

Q16: Reading through the TCRS responses you (and your team) submitted each week, we
didn’t notice any issues that needed to be addressed. However, we realise that these
don’t necessarily capture the entire story. Thinking back over the course of the project,
were there any issues that you encountered communicating or collaborating with your
team?

Q16a: (if yes) Would you have wanted help from the teaching staff? What questions could we
have asked that would have helped uncover them?

Q16b: (if yes) What sort of followup would you want us to take?

Reflections on self-reflection:

Q17: Did you find the TCRS helpful for self-reflection during the project?

Q17a: (if yes) What questions did you think were particularly helpful? Are there any changes
we could have made to help make them better?

Q17b: (if no) Can you think about what we could have done to make this more useful to you?

106



CHAPTER

7

SUMMARISING INDIVIDUAL

CONTRIBUTIONS TO TEAM PROJECTS

This study explores the possibility of using automation techniques to summarise individual

students’ contributions to a larger team project. We show that using software engineering

automation can help TAs grade projects more consistently than they can do otherwise, and

provide students with more nuanced and more actionable feedback. Taken together, these

results offer improved student learning outcomes from the improved feedback quality,

and early prediction of struggling teams by more consistently identifying students who

are not participating.

Satisfies part of thesis: Using software engineering automation and survey

techniques in computer science education results in improved student learn-

ing outcomes, early prediction of struggling teams, and more effective instruc-

tional materials.

107



7.1 Study Rationale

Most professional software engineers work in teams [Ric12; Lay00; Ram20], and to prepare

students for this, team-based learning (TBL) features heavily in many computer science

programs [Sim02; Iac20; Bat22]. TBL is an active learning approach grounded in construc-

tivist theory, and helps students learn by bringing them together to discover knowledge.

Prior work has demonstrated that TBL is an effective pedagogy that offers improved learn-

ing outcomes [Hry12; Aya15], but it is not without its challenges. Some teams lack the

communication and project management abilities to effectively function together as a

team [Tuc06; Abb17; Dzv18]. Other teams are hampered by the non-participation of one

or more members, leaving more work for the remaining members. Peer evaluations are

commonly used to discourage this, but they may be biased [Din14] and not effective for

drawing comparisons across teams [Bru10].

Consequently, to encourage and reward participation, instructors need other ways of

identifying the contributions of each student. The most common approach is outsourcing

grading to TAs, who are responsible for reviewing individual contributions and providing

grades and feedback. Unfortunately, TAs may struggle to provide students with consis-

tent [Gla15; Hay03] and actionable feedback. While providing a grade deduction can serve

as a motivator to do better, the most effective way for students to learn is providing for-

mative feedback with specific comments on how to improve [Bla10; Wis20a]. For students

to improve, they must receive consistent feedback [But95]. However, TAs may provide

inconsistent grades and feedback that impedes learning.

Accurately identifying individual contributions can help instructors provide students

with feedback of what is expected of them, thus improving learning outcomes. Many com-

puter science courses use version control systems such as Git [Tor], where commits explicitly

track the contributions of each student. However, just because the information is available

through Git does not mean that it is in a format that facilitates identifying precisely what

each student has contributed. Consequently, contributions may be overlooked, harming

the fairness of the grading and providing inconsistent feedback. For female and minority

students, who may be less assertive and less willing to contest feedback provided [Lea11;

Par15], the effects may be particularly severe. Consequently, it is essential that the teach-

ing staff can accurately identify individual contributions to both encourage and reward

participation, and provide students with feedback on when contributions do not reach

the expected mark. In this study, we aim to identify whether automated contributions

summaries can help TAs with this.

More formally, we frame our work around the following research questions:
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• RQ16: Can automated summaries of student contributions enable faster grading by

TAs?

• RQ17: Can automated summaries of student contributions enable more consistent

grading by TAs?

• RQ18: Can automated summaries of student contributions enable less frustrating

grading from the perspective of a TA?

• RQ19: How do automated summaries of student contributions enable better feedback?

To answer these questions, we designed an algorithm to summarise individual students’

code contributions to team assignments, and built a reference implementation, AutoVCS,

for Java projects tracked through Github. Our algorithm uses AST-based differencing [Fei16]

and thus can present potentially more valuable summaries than tallying lines of code (LOC).

We conduct a study with 13 current or former TAs to understand how they grade assignments

when using automated summaries. Our results show that automated summaries can help

TAs grade more consistently and provide more nuanced and actionable feedback.

The contributions of this study are as follows:

• an algorithm for summarising what individual developers have contributed to collab-

orative software assignments,

• an implementation of our algorithm as a tool, AutoVCS, which works on Java projects,

• a demonstration that our algorithm, implemented in AutoVCS, helps TAs grade lab

assignments more consistently and provide students with more useful feedback, and

• a demonstration that TAs prefer grading with summaries from our algorithm

7.2 Background

At NC State University, CS1.5 is a Java-based course taken by all CS majors and minors and

is open to non-majors. CS1.5 typically has between 250 and 300 students a semester, and

is taught by one PhD professor and 12-15 TAs, giving a student:teaching staff ratio of ap-

proximately 20:1. CS1.5 teaches fundamentals in object-oriented design and development,

basic software engineering concepts, and linear data structures. CS1.5 has a companion

lab, where students work in teams of three to apply concepts covered in lecture. Students

work together on the same team, and use the same Github repository, for three or four

weeks, at which point teams are scrambled for the next set of labs. Students complete a
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total of 11 labs with three different teams over the semester. As described by Heckman

and King [Hec18a], the course uses Jenkins to give students immediate feedback on their

code and automate most grading; TAs are responsible only for grading Javadoc (to ensure it

describes the code) and individual contributions (which are evaluated by checking commit

history on Github). We have observed that grading individual contributions is a slow task

that TAs dislike. Prior work has shown that even with rubrics, precisely evaluating contri-

butions requires subjective judgement [Jon07]; thus TAs are unlikely to draw meaningful

single-point distinctions. Consequently, TAs provide coarse grades and feedback, giving a

0 ("No contributions"), 5 ("Insufficient contributions") or 10 ("Sufficient contributions"),

typically with no further elaboration. Prior work argues that students want more feedback

on their work [Li14], and we aim to identify whether our algorithm can assist with this.

7.3 Contributions Algorithm & AutoVCS

To identify whether automated contributions summaries can support grading, we devel-

oped an algorithm that uses commit histories and program analysis to summarise indi-

vidual students’ code contributions to team-based assignments. We then built a reference

implementation, AutoVCS, which operates on assignments hosted on Github and written

in Java. Our algorithm features three main steps; a full implementation is available in our

Github repository [Aut].

1. Metadata Extraction: Metadata is extracted for each repository, storing commit hashes,

dates and times for each commit, commit author, and a list of the files changed on each

commit. This step is performed on Line 2 of Algorithm 1.

2. Change Extraction: Similar to work done by Feist et al. [Fei16], this step extracts changes

made on each commit. It does so by traversing Git history to identify changed files, and

then building ASTs from adjacent file revisions and computing an edit script between

them. This step is shown in Algorithm 1 from lines 6 to 20. AutoVCS uses our improved

version of ChangeDistiller [Flu07] to build and difference ASTs for each file.

3. Contributions Summaries: Detailed edit scripts for each file on each commit are aggre-

gated to present higher-level summaries for each user; this is shown in Algorithm 2, and

the resulting summaries are shown in Figure 7.1. Summaries are computed with three

levels of granularity: I⃝ a weighted [Gal09] sum of all contributions; II⃝ a summary of

changes made across all files; and III⃝ a summary of changes made to each file. Addi-

tionally, to allow for grading non-code contributions, a full list of commits can be shown
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Algorithm 1 Contribution Summary Algorithm

1: procedure SUMMARISECONTRIBUTIONS(repo,[. . . ])

2: r ←initRepository(repo) ▷ Extract metadata

3: R 1←clone(repo)

4: R 2←clone(repo)

5: C o n t r i b s B y C o mmi t ←{}
6: for commit c in r do

7: if c.parent is null or c.isMergeCommit then

8: continue

9: end if

10: C o n t r i b s F o r C o mmi t ←{}
11: Check out R 1 to c
12: Check out R 2 to c.parent
13: for ChangedFile in c.ChangedFiles do

14: As t N e w ← buildAST(R1.ChangedFile)
15: As t Ol d ← buildAST(R2.ChangedFile)
16: C o n t r i b s F o r F i l e ← diff(AstNew, AstOld)▷ Compute an edit script between

ASTs

17: ContribsForCommit.insert(ContribsForFile)
18: end for

19: ContribsByCommit.insert(c, ContribsForCommit) ▷Map each commit to the

changes made as part of it

20: end for

21: B y U s e r ← summarise(ContribsByCommit) ▷ Summarise changes per-user, to include

multiple commits

22: return ContribsByUser
23: end procedure
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( IV⃝). For the Java code supported by AutoVCS, II⃝ and III⃝ use a condensed version of

the change types proposed by Gall et al. [Gal09]; I⃝ is a weighted combination of these

changes. Option I⃝ also uses the weighted contribution scores to compute a percent-

age contribution for each member. Individual code changes are summarised into four

categories: 1) changes to classes, 2) changes to methods, 3) changes to documentation,

and 4) all other changes. These are shown in II⃝ in Figure 7.1.

Prior work has shown that LOC represents the best, although still not particularly good,

predictor for team grades [Mie05]. We hypothesise that part of the problem is that not all

LOC changes are equal: languages such as Java contain substantial "boilerplate" code that

is often auto-generated. To address this, AutoVCS recognises four common boilerplate

methods [Kam; Cha] in Java code: hashCode(), equals(), getters, and setters. Changes

to these methods are skipped so that contributions are not artificially increased by autogen-

erated code. In our course context, GUI files are provided by the teaching staff, so AutoVCS

has a toggleable option to skip them.

AutoVCS is a web application, and can be run in interactive mode and batch mode. In

interactive mode, the user selects a single repository and (optionally) a time window and

summaries are computed and displayed. Batch mode runs from a JSON configuration file,

and produces a summary page for each repository specified.

7.4 Study

To answer our research questions, we designed and conducted a two-part controlled exper-

imental study with 13 participants to evaluate whether our algorithm, as implemented in

AutoVCS, can help TAs grade more effectively (RQ16 & RQ17), make grading less frustrating

(RQ18), or provide better feedback (RQ19). This study was approved by the NCSU IRB Office

as protocol #24701. The study outline and research questions answered in each part of the

study are shown in Figure 7.2. We recruited participants from two groups: a) 44 students

who have served as TAs for two team-based undergraduate CS courses (CS1.5 and a third-

year software engineering course) within the past two years, and b) all CS PhD students at

NC State University with TA experience. Nine students from group a) and four students

from group b) participated. The participants had an average of 6.6 years of experience with

Java (median: 6) and 4 semesters of TA experience (median: 4). Four participants identified

as female, and five as members of a minority racial group.

This study was conducted in four, two-hour lab sessions, held physically in a computer

lab. All sessions followed the same procedures, and participants attended only one session.

A brief outline of the study is shown in Figure 7.2. In Part 1 (Section 7.4.2), participants
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Algorithm 2 Summarise Changes By User Algorithm

1: procedure SUMMARISEBYUSER(ContribsByCommit) ▷ For a group of commits

and associated fine-grained changes, presents a summary per user and a contribution

score per user

2: C o n t r i b s P e r U s e r ←{}
3: for (commit, contribs) in ContribsByCommit do ▷ For each user, combine

contributions

4: if commit.author not in ContribsPerUser then

5: ContribsPerUser.insert(commit.author, {})
6: end if

7: ContribsPerUser.insert(commit.author, contribs)
8: end for

9: S umma r i s e d C o n t r i b s ←{}
10: for user, contribs in ContribsPerUser do ▷ Summarise and weight

contributions

11: U s e r C o n t r i b ← 0

12: U s e r C o n t r i b S umma r y ←{}
13: for contrib in contribs do

14: UserContribSummary.insert(label(contrib.type),
existingCount+1) ▷ Summarises contributions

15: UserContrib += weight(contrib.type) ▷ Computes weighted score

of all of a user’s contributions

16: end for

17: SummarisedContribs.insert(user, {UserContrib,
UserContribSummary})

18: end for

19: return SummarisedContribs
20: end procedure
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Figure 7.1 A trimmed contributions summary produced by AutoVCS. All four types of summaries
can be toggled on and off independently; two are enabled. For brevity, details for student B and
all contributions for student C are not shown.

Figure 7.2 Study Outline, showing the parts of the study, the approximate time spent on each
part, and what RQs were answered by each.
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graded lab assignments from a recent offering of our CS1.5 course. Some assignments

were graded entirely by hand (the control group) and some with summaries from our algo-

rithm (the experimental group). In Part 2 (Section 7.4.3), participants evaluated feedback

from other participants in the study. Finally, participants completed a brief reflection

(Section 7.4.4).

7.4.1 Terminology

We refer to the individual students whose assignments were graded as subjects. We refer to

the 13 TAs who participated in our study as participants or raters, depending on context.

We refer to the grades assigned by raters to subjects as ratings. We refer to rating subjects

when referring to individual students, or grading assignments when referring to the entire

three-person team.

7.4.2 Part 1: Grading

In Part 1, participants were tasked with grading 17 lab assignments from a recent offering

of our CS1.5 course. We provided each participant a Google Sheets spreadsheet, where

each assignment to grade was on a separate row. A random subset of nine assignments

had summaries from AutoVCS (the experimental group); the other eight had no summaries

available (the control group). For each assignment, the spreadsheet contained a) a link

to the Github repository with the code, b) a reminder of the time interval to grade, and c)

where applicable, a link to the contributions summary from AutoVCS. The order of the 17

tasks was randomised for each participant. Figure 7.3 shows a example of the spreadsheet

used, with grades and comments from one participant. For each subject on each team,

raters provided a) a contribution score (0, 5, or 10, as discussed in Section 7.2), b) if the

score was not a 10, a comment to the subject explaining what to do differently to receive

more points, and c) a comment, not shared with the subject, giving the rationale for the

score. We instrumented the spreadsheet to reveal tasks one at a time and capture start

times and end times.

The assignments to grade were prepared by anonymising 18 weekly lab assignments

from a recent offering of our CS1.5 course, replacing authors in git commits and code with

pseudonyms.1 These anonymised assignments were hosted on Github Enterprise to mirror

normal grading practises. One assignment was used as an example to demonstrate the

1Rewriting files in git while keeping the history (commit author and timestamps) is not officially supported,
and could not be performed on repositories where students introduced merge conflicts. From the most
recent offering of our CS1.5 course, eighteen assignments could be completely anonymised.
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Figure 7.3 Excerpt from the spreadsheet used for Part 1, showing grades ( I⃝), comments ( II⃝),
and rationale ( III⃝). Feedback students B and C is not shown.

Figure 7.4 Excerpt from the spreadsheet used for Part 2, showing several pairs of comments
alongside corresponding votes.

tasks and the contributions summaries.

7.4.3 Part 2: Evaluating Feedback

In Part 2, participants were asked to put themselves in the mindset of a student receiving

feedback and evaluate its actionability. We provided participants with ten pairs of grades

and comments from other participants in the study and asked them to choose which

comment from each pair is “more helpful in letting you know what to improve upon”, or

Either (no difference) as appropriate. One grade and comment in each pair came from an

assignment from the control group, and one came from the experimental group. This label

was not shown, and the order of the two comments was randomised. An example of the

spreadsheet used is shown in Figure 7.4.
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7.4.4 Reflection Survey

Finally, we asked participants to complete a brief reflection on the grading experience.

The reflection asked participants how they used the automated summaries; how helpful

they found each of the main features (shown in Figure 7.1); how they would improve the

summaries; and whether they would choose to use them again.

7.4.5 Data Description

7.4.5.1 Survey Responses

We converted the text Likert scale to numbers, where 1 maps to the lowest score, such as

“Not at all helpful”, and 5 maps to the highest score, such as “Extremely helpful”. We treat

them as interval-scaled data [Har15b]. All 13 participants completed the reflection survey.

7.4.5.2 Data Details

In Part 1, we tasked 13 participants with grading 17 assignments. Some participants graded

more slowly than others, and consequently not all participants finished grading all assign-

ments. The 13 participants in our study graded a total of 204 assignments, providing 610

ratings for individual students2.

In Part 2, we provided each participant with ten pairs of comments from other partici-

pants, and asked them to choose which comment from each pair was more actionable. The

13 participants submitted 130 votes, choosing comments from the experimental group 60

times, comments from the control group 43 times, and expressing no preference 27 times.

7.4.5.3 Analysis

To answer RQ16 we compared grading times for assignments from the control and exper-

imental groups. The distribution of the elapsed times is skewed right; consequently, we

chose a Mann-Whitney U test, a non-parametric test.

To answer RQ17, we computed inter-rated reliability (IRR) for the control and experi-

mental groups. Raters provided three grades for each assignment (for the three students on

the team); thus each student is a unique subject rated by up to 13 raters (the participants in

our study). We use Krippendorff’s Alpha [Kri11] for computing IRR, as it handles a different

2Note this is not an exact multiple of 3, as two participants each missed rating one subject. If all participants
had graded all assignments, there would have been 663 ratings (13 participants * 17 assignments * 3 students
per assignment = 663 ratings).
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Table 7.1 Grading time, in minutes, for assignments that were graded manually (Control) or with
automated summaries (Experimental). Times are split into the first eight assignments (first half )
and second nine assignments (second half ) graded by each participant.

First Half Second Half Overall
Mean Median Mean Median Mean Median

Control 7.57 7.13 4.36 4.02 5.85 5.31
Experimental 7.88 6.79 4.66 4.10 6.35 5.44

number of ratings per subject. As suggested by Zapf et al. [Zap16]we calculated confidence

intervals for both groups and identified the q-value where they are disjoint.

To answer RQ18, we read through responses to the reflection to understand how partici-

pants used the summaries.

We answered RQ19 with two different metrics. To identify if automated summaries help

participants provide better feedback we performed Fisher’s Exact Test on the preferences

from Part 2. To understand if automated summaries help TAs see nuance, we performed a

test of two proportions on the rate of partial credit for each group.

7.5 Results

In this section we present results for whether automated contributions summaries can

enable faster (Section 7.5.1) or more consistent (Section 7.5.2) grading. We also consider

impacts on the grading experience (Section 7.5.3) and feedback to students (Section 7.5.4).

7.5.1 RQ16: Grading Speed

We find no significant difference in grading speed from automated summaries. As shown

in Table 7.1, participants graded assignments in the control group in an average of 5.85

minutes. Participants graded assignments in the experimental group in an average of

6.35 minutes. A Mann-Whitney U Test confirmed that the difference was not significant

(p = .677).

We observe a learning curve as participants get more comfortable with, and conse-

quently faster at, grading assignments. To evaluate a learning curve, we compared times

taken to grade the first half and second half of the assignments within the control and

experimental groups using Mann-Whitney U tests. We observed learning effects in both

groups, showing that regardless of how participants graded assignments, they got faster

over time (p < .001 for both groups).
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We observe that grading may feel faster when using automated summaries. One partici-

pant reflected "it definitely felt faster to grade" with the automated summaries. While the

numbers do not back this up, if the process feels faster, TAs may consider it less of a burden.

RQ16: Automated summaries do not impact grading speed.

7.5.2 RQ17: Grading Consistency

We find that automated summaries can help TAs grade more consistently. We calculated

Krippendorff’s Alpha (α) separately for the control and experimental groups to identify

how consistently the raters of each subject agreed with each other. We find α= 0.286 for

the control group, and α= 0.609 for the experimental group. At q = .0213, the confidence

intervals are disjoint, showing that automated summaries significantly improve grading

consistency.

We note, however, that even though automated summaries help TAs grade more consis-

tently, α= 0.609 still indicates a relatively low level of agreement. Krippendorff argues that

"it is customary to require α≥ .800" [Kri04], which participants in our study did not meet.

We discuss possible causes of this and implications in Section 7.6.1.

RQ17: TAs grade assignments more consistently using automated summaries than without

them.

7.5.3 RQ18: Grading Preferences

We find that TAs have a strong preference for grading with automated summaries. All 13

participants said that they would prefer to use automated summaries for grading in the

future, with 11 participants saying they would strongly prefer them. Participants gave the

automated summaries an average rating of 4.85 out of 5. One participant said "I think the

tool was a huge help" and rated it 5/5.

We find that participants find all of the features of the contributions summaries to be

useful. As discussed in Section 7.4.5.1, we calculated the average score given to each feature.

Participants found the List of commits for each user ( IV⃝ in Figure 7.1) to be the most useful

feature, rating it 4.46/5. Percentage Contribution to Team (part of I⃝ in Figure 7.1) was

rated as the second most useful, with a score of 3.92/5. All features received a rating of 5

from at least one participant, and received an average rating of at least 3.4/5, approximately

3Krippendorff’s α uses q-values as opposed to p-values as they provide improved resilience when perform-
ing multiple comparisons. q-values are interpreted the same way as p-values [Ben95; Sto03]
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halfway between Moderately Helpful and Very Helpful. Our results show that both simple

summaries of commit history and more advanced program analysis can assist with grading.

RQ18: TAs strongly prefer grading with summaries from AutoVCS and find all of the

features helpful.

7.5.4 RQ19: Feedback Quality

TAs consider feedback from assignments graded with automated summaries to be more

actionable than assignments graded manually. As described in Section 7.4.3, we asked par-

ticipants to choose between pairs of comments to choose which one makes it clearer "what

to improve upon". A Fisher Exact Test confirmed (p = .0311) a preference for comments

from the experimental group, thus showing that TAs consider feedback from their peers

more useful when it came from assignments graded with automated summaries.

We also observe that the quantity of feedback is impacted by automated summaries.

We compared the rate at which partial credit was assigned in both groups, and find TAs

award partial credit to 17.1% of subjects in the control group, and 24.9% of subjects in

the experimental group. A test of two proportions shows that this difference is significant

(p = .018). Consequently, the average grade given in the control group was higher than

in the experimental group. TAs are expected to provide feedback on where to improve

alongside partial credit, but are not required to do so for full credit. By giving more partial

credit, this may help TAs provide students with more feedback and thus improve learning

outcomes [Hat07; Wis20a].

One participant remarked in their reflection that the automated summaries encouraged

them to be careful, saying that "[I]was terrified at how much it made me reconsider some

of my initial grading thoughts". We thus see evidence that our contributions summary

algorithm can help TAs grade more carefully.

RQ19: TAs consider feedback from assignments graded with automated summaries to

be more helpful than feedback from assignments graded without them, and automated

summaries help TAs see nuance and provide partial credit more often.

7.6 Discussion

Here, we probe grading inconsistencies (Section 7.6.1), discuss threats to validity (Sec-

tion 7.6.2) and explore future work (Section 7.6.3).
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7.6.1 Improving Grading Consistency

In Section 7.5.2, we found that automated summaries improve grading consistency, but that

consistency remains an issue. To probe this further, we focused on the most extreme cases:

subjects who were given full credit (10) and no credit (0) by different raters. We found seven

of these subjects within each of the control and experimental groups. To understand these

ratings, we read through the comments and rationale from each rater for these subjects.

We find that while the number of these disagreements does not differ across both groups,

the causes do. In the control group, four of the seven disagreements came from issues

identifying individual contributions. In two cases, a rater gave credit even when the student

had no contributions. In an additional case, a rater gave credit for work done outside

of the time window (work for a different lab, which used the same repository) and in a

final case, a rater missed contributions that were made. By contrast, in the experimental

group, we saw only two issues with identifying contributions. In one case, the rater gave

credit for contributions outside the time window; in the second, the rater appeared to miss

contributions within the time window. The remaining cases (3 from the control group, 5

from the experimental group) were caused by disagreements over what contributions were

worthy of credit (such as system testing and documentation) and cases of pair programming.

The sample size is small, but these results suggest that automated summaries may help TAs

more accurately identify individual contributions; work remains to ensure that differences

between types of contributions are considered when grading.

7.6.2 Threats to Validity

In this section, we discuss different types of threats to validity.

7.6.2.1 Conclusion

To combat any impacts of multiple study sessions, we used a script to introduce the study

procedures.

Differences in elapsed times between groups were calculated with nonparametric tests

to handle skewed data. IRR was calculated using Krippendorff’s Alpha, which handles

missing data [Kri11].

7.6.2.2 Internal

To counter learning effects, the order of tasks for each participant was randomised.
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Participants knew that their behaviour was being studied, and thus may have graded

more carefully. However, this applies to participants in both the control and experimental

groups equally.

7.6.2.3 Construct

We measure consistency by calculating IRR, evaluating whether TAs’ ratings agree with

each other. We do not consider whether the ratings agree with an expert, such as a course

instructor. Our evaluation matches typical grading practises.

7.6.2.4 External

We conducted Part 1 of study using Google Sheets, and participants graded student labs

from a recent semester. Both the study tasks and format emulate the normal grading

experience. However, all assignments came from a single semester of a single course. We

suggest future work to consider other contexts.

All participants in the study were current or former TAs for team-based CS courses and

have experience with evaluating individual contributions. As students, they are also familiar

with interpreting feedback; however, they may do so differently from CS1.5 students.

7.6.3 Future Work

As discussed in Section 7.5.2, our results show that automated summaries can help TAs

rate subjects significantly more consistently, but consistency is still relatively poor. Rubrics

have been widely used to improve grading consistency and fairness [Fel18; Red10; Rag20];

however, to the best of our knowledge, no prior work has evaluated their impact on assessing

individual contributions. We propose evaluating whether rubrics can be used in this

context.

We find that participants particularly struggled with grading pair programming. While

we instruct students to document pair programming via commit messages, contributions

in Git appear only under the name of the student who committed the code. Work remains

to be done to ensure that pair programming is graded fairly.

Much work remains to be done in account for non-code contributions. We found

several participants who missed students’ system testing contributions. Prior work sug-

gests automatically crediting non-code contributions is an open problem, as evidenced

by approaches such as All Contributors [You21], which sidesteps it by manually tracking

them instead. We propose future work to support grading with automation for identifying

non-code contributions.
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In Section 7.5.4 we found that TAs consider feedback from assignments that were graded

with automated summaries to be more actionable than feedback from manually-graded

assignments. We suggest future work to evaluate learning gains by putting the feedback

directly in front of students in the target course.

7.7 Conclusion

In this work, we developed an algorithm for summarising individual students’ code contri-

butions to team assignments. We built a tool, AutoVCS, that implements our algorithm,

and evaluated it with 13 TAs, who graded some assignments with automated summaries

and some assignments without it. We found that automated summaries help TAs grade

assignments more consistently and provide students with more actionable feedback. Addi-

tionally, although automated summaries do not impact grading speed, TAs strongly prefer

to grade assignments using them. We suggest future work to explore the use of rubrics for

grading individual contributions and automated support for non-code contributions.
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CHAPTER

8

CONCLUSION

8.1 Summary of Results

We began this dissertation with the following thesis statement:

Using software engineering automation and survey techniques in computer science educa-

tion results in improved student learning outcomes, early prediction of struggling teams,

and more effective instructional materials.

In support of this thesis statement, we conducted five studies exploring how to use

automation and surveys to further educational outcomes. In the remainder of this section,

we briefly discuss the findings of this dissertation.

We began first in Chapters 3 and 4 exploring the use of software engineering automation

in computer science education. In Chapter 3, we considered the issue of test flakiness, with

the goal of identifying how to improve automated testing practises to provide students with

more consistent feedback on their code. In Chapter 4, we considered the use of automated

program repair in computer science education, seeking to identify whether automated

repair can produce repairs of sufficient quality that they may have pedagogical benefits. In

both studies, we demonstrated that software engineering automation can offer educational
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benefits. In Chapter 3, we identified the impact of Selenium configuration and system

configuration on test stability in the context of iTrust2 [Hec18b]. This provided a more

stable application and more consistent feedback for teaching software engineering. In

Chapter 4, we consider the types of mistakes that students make as they learn SQL, and

develop a tool, SQLRepair, to perform automated repair on SQL queries. We find that

students struggle with both the syntax and semantics of SQL, and that automated repair

can fix mistakes from both categories. We also demonstrate that students find repairs

sufficiently understandable they may be usable as an educational tool, in contexts such as

intelligent tutoring systems. While the focus of these studies is different (automated testing

in Chapter 3 and automated program repair in Chapter 4), both chapters demonstrate that

software engineering automation can be beneficial in computer science education.

We next consider how to promote better teaming outcomes for undergraduate com-

puter science students as they learn to collaborate on team projects. The first problem we

considered is "How do we proactively identify teams that are struggling to collaborate effec-

tively?" To this end, in the collaboration reflection study (Chapter 5) we developed a team

collaboration reflection survey (TCRS), which asks students to briefly reflect on what they

have accomplished over the past week and how effectively they think their team is working

together. We matched teams flagged through the TCRS to teams that went on to perform

poorly, and found a large majority of struggling teams (89%) could be proactively identified;

additionally, a majority of students (64%) appreciated that the TCRS kept them on track or

gave them a chance to reflect on the status of their project. However, an intervention we

tried with student teams to promote better teaming outcomes was unsuccessful. To better

understand the challenges that teams faced, and why the intervention may have failed,

we conducted a followup team challenges study (Chapter 6). In this study, we interviewed

students who had recently completed a team-based software engineering course. In this

study, we sought to understand how students ran their teams, what if any challenges their

teams faced, and if their team faced any challenges, how they tried to overcome them.

This study demonstrated that major challenges included communicating effectively and

setting and holding to deadlines, and that some, but not all, teams were able to overcome

these challenges over the course of the project. Our results confirmed that most students

found the TCRS helpful, and requested that TAs take a more active hand in navigating

and resolving any challenges that the TCRS revealed. Finally, in our contributions analysis

study (Chapter 7) we considered how to provide students with more effective feedback

on their contributions to team-based projects. To do so, we developed an algorithm for

summarising individual students’ code contributions to team-based software projects, and

implemented a tool based off of it. A user study demonstrated that our algorithm helps

125



teaching assistants provide students with more consistent and more actionable feedback,

and that TAs strongly prefer grading with automated summaries than without them.

8.2 Implications

The clearest implication of this work is that much remains to be done in promoting positive

teaming experiences for students in computer science courses. The oracle for observed

struggle that we created in Chapter 5 demonstrated that approximately one in four teams

experience substantial collaborative challenges that result in low peer evaluations or that

cause the team to perform poorly on their project. When severe collaboration issues afflict

one in four teams, computer science education researchers need to do more to understand

the details of what is going on. Informed by this information, computer science educators

can then help teams avoid or overcome these challenges. Furthermore, the TCRS we created

suggests that up to twice as many teams face some sort of collaborative challenges than

grades alone reveal. While this is in line with prior work [Tuc06; Mar16], it indicates that

team challenges are widespread in software engineering courses. Some adversity can

contribute to a positive learning experience, but too much adversity can have the opposite

effect and instead demoralise students and impede learning outcomes [D’M14].

The TCRS provides instructors a way to detect team challenges, but the details of pre-

cisely what issues teams face in many ways still remain hidden. Teams do most of their

work on their own, outside of class, and thus a majority of student interactions and their

associated challenges are largely opaque to the teaching staff. Our followup work in Chap-

ter 6 provides insights into these challenges, and shows that many of the issues teams face

ultimately result from how they communicate and collaborate outside of lab. However, it is

still unclear why some teams face these challenges in the first place. Why do some teams

manage to communicate effectively, while others do not? Why do some teams successfully

hold themselves to deadlines, while other teams continue to procrastinate? Our work

reveals that these are common problems, but more remains to be done to understand

them more fully. These collaboration experiences are ones that grades do not necessarily

reveal, yet they can still cause substantial frustration and heartache for students. While

the challenges we have observed do not differ drastically from those faced by students in

other disciplines [Bur03; Pfa03; Owe15; ML17], their impact may be more severe. Negative

experiences such as these may be demoralising for some students [Ban86], particularly

in introductory classes. For female and minority students who are traditionally less as-

sertive [Par15; Lea11], these negative experiences may poison their perspective of computer

science programs. At a time when computer science educators are trying to make the field
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more inclusive and welcoming towards a diverse body of students, it is essential that we

identify how to support positive teaming experiences that will draw in students rather than

pushing them away. There is much more work that computer science education researchers

can and should do to gain insights into the types of challenges that student teams face so

that we can support positive learning experiences.

Pursuing this same problem of team dysfunction from a different angle, in Chapter 7,

we seek to improve how TAs provide students with feedback on their contributions to team

assignments. In Chapter 6 we observe that most collaborative challenges were due to poor

communication or procrastination, but some students reported being dissatisfied with the

contributions of their teammates. It is possible that this is because TAs provide students

with insufficient guidance on what was expected from them each week or failed to deduct

sufficient points to motivate better contributions. Part of this may be due to how teams

are evaluated by TAs. In Chapter 6, we observe that several students felt that the in-lab

grading distracted from a back-and-forth dialogue about the team’s progress. Our results

in Chapter 7 support this, and suggest that TAs may simply not have enough time in lab

to carefully review individual contributions and give on-the-spot grades and feedback to

teams. We observe that TAs spent an average of six minutes grading individual contributions

for three-person teams. While grading time may not be linear in the number of students on

a team, this suggests that accurately grading contributions for five or six member teams may

take upwards of ten minutes to do properly. When TAs spend approximately 15 minutes

discussing with each team, it is plausible that they simply don’t have enough time to evaluate

individual contributions effectively [Vat21] and provide students with useful feedback on

their contributions [Wis20b].

Overall, while the work in this dissertation enhances our understanding of how to help

teams, it also shows that promoting positive and educational team-based learning is still

an open problem for computer science educators.

8.3 Relation to Prior Work

In this section, we discuss how our results relate to prior work, considering prior work

in teaming in higher education (Section 8.3.1) and teaming and educational theory (Sec-

tion 8.3.2).
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8.3.1 Teaming Education

The results that we have shown in Chapters 5 and 6 are broadly consistent with existing

work in team-based learning. Tucker and Reynolds [Tuc06] report that approximately 40%

of teams in a project-based studio design course are characterised by “conflict and selfish

ambition”. They report these teams fail to work together successfully over the course of the

project, ultimately delivering “piecemeal design with little cohesion”. We found a relatively

consistent 25% of teams were flagged by the grades-based oracle established in Chapter 5.3,

and Chapter 6.6.1 reveals that additional teams faced persistent issues working together

over the course of the semester.

Our results are also broadly consistent with prior work studying teaming in software

engineering education. Marques reports [Mar16] that software engineering students and

recent graduates lack “teamwork skills and collaborative ability”, which hamper their ability

to work effectively in team projects. They report that among student software engineer-

ing teams that did not receive support from an external mentor, or “monitor”, only 40%

managed to produce a project that could be deployed successfully. While this is a higher

rate of observed struggle than is revealed by our oracle (Chapters 5 and 6), it shows that

challenges in software engineering teams are indeed widespread. Additionally, it matches

our results in Chapter 6 that most teams face some sort of collaborative challenge that

hinders their ability to work together successfully. Iacob and Faily [Iac20] similarly report

that many undergraduate software engineering students struggle to collaborate effectively,

and that mentorship improves students’ perceptions of their teaming success (although

not overall project grades). However, they caution that it is difficult to scale this approach

to large classes. Our approach of using lightweight self-reflection surveys as a way to solicit

feedback from students and better direct TA resources may offer improvements in helping

teams, particularly at scale; our results in Chapter 6.6 echo this. Our results in Chapter 6.6

additionally suggest that self-reflection, as a key component of self-regulated learning,

is sufficient for some teams to consider their challenges and overcome them. However,

our results show that this is insufficient in the case of more severe team dysfunction and

at motivating recalcitrant teammates. Thus, to help these teams overcome collaborative

challenges, the course teaching staff may need to intervene and provide students with

further guidance on how to work together effectively as a team.

We finally consider our results on team dysfunction in the context of broader engi-

neering education, which has shown that collaborative difficulties are widespread [Bor13;

Hal13]. Borrego et al. [Bor13] report that freeriding is the dominant team challenge in

engineering education. They observe that freeriding may be particularly prevalent “when
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individual contributions can[not] be identified” by instructors and when students perceive

that projects have a low “inherent value”. By contrast, we do not observe freeriding as a

significant issue. In the upper-level software engineering course that we study, we observe

that whole-team dysfunctions in communication, timeliness, and task planning are the

predominant issues. Unfortunately, Borrego et al. do not break out observed challenges by

class standing, so we are unable to compare our results specifically with upper-level courses.

Compared to prior work [Hal13], we observe few cases of students who made negligible

contributions to their team’s overall effort. In all such cases, we observe that severe mental

health challenges left students in a position where they were unable to engage effectively

with their team.

Our work in Chapter 7.5.2 is consistent with work showing that TAs, and even instruc-

tors, may struggle to consistently evaluate students’ contributions [Hay03; Gla15]. Hayes et

al. [Hay03] report that TAs perform poorly at discerning what individual students have con-

tributed to team-based projects. Even with Git and Github, which track exact contributions

from each student on a team, we found that TAs struggle with this same problem. Our work

in Chapter 7 provides TAs with summary information on each student’s contributions. We

demonstrate that this information helps them more consistently identify and grade the

contributions from each student.

8.3.2 Teaming & Educational Theory

We consider our results on team challenges in the context of teaming theory and educational

theory. Tuckman’s theory of teaming [Tuc65] argues that teams progress through four (and

later five [Tuc77]) stages, and that it takes time for members of a team to become acquainted,

face and resolve challenges, and finally work together smoothly. We see evidence of this

in Chapter 6.6.2. We observe that team challenges are widespread, and that it takes time

for teams to “norm” and overcome their collaborative challenges. In the context of our

six-week project, some teams are unable to ever overcome their collaborative challenges.

This suggests that full-semester projects, such as described by Bates et al. [Bat22], may offer

a better environment for students to both face and overcome collaborative challenges.

We consider our results on team formation in the context of teaming theory. In Chap-

ter 6.7.2, we observe that the way a team is formed (whether around students who requested

each other or not) has no consistent impact on its outcome, and the challenges, if any, that

it faces. We observe several teams that were formed from students who mutually requested

each other, and who ultimately collaborated effectively. However, we also observe a team

that was formed from students who requested each other but ultimately struggled to work

129



effectively. Finally, we observe teams formed from members who did not request each

other, yet still collaborated effectively. While our sample size is small, this suggests that

teams can work well regardless of whether students know each other going into the project.

We briefly consider our results in the context of diversity in student identities. Prior

work has shown that pairing together students from minority backgrounds can help form

a sense of inclusion and consequently improve teaming outcomes [Tak14]. While the

impact of team demographics on overall success was not our focus, our results support this.

In Chapter 6.6.2.3, we observe a positive outcome for Team Bravo from pairing together

students from a similar minority cultural background; this helped overcome a language

barrier and helped one student work more effectively with the rest of their team. While

we observed a benefit to paring students from a similar background together, Rienties et

al. [Rie13] report that students form strong cross-cultural team relationships. By bringing

together a diverse set of students, this may help improve learning outcomes by giving

students a broader set of perspectives to learn from. Borrrego et al. [Bor13] report that

groups that “typically value collective outcomes” may experience more positive teaming

experiences, and point to female students and those of East Asian background as ones who

may be particularly engaged team members. In Chapter 6.6, we observe that Team Hotel,

which had many female students, acknowledged no collaborative challenges.

Finally, we consider how to effectively form groups from students of different skill levels,

which may present a more difficult challenge. Prior work studying team-based learning has

shown that having projects that are sufficiently complicated that each student has a unique

task and role to play can make everyone feel involved with the team and reduce the risk of

freeriding [Kar93; Kar95]. Conversely, teams that are formed from both high-performing

and low-performing students can increase the risk of freeriding, as the lower-performing

students are unable to meet the expectations of their higher-performing teammates, and

consequently give up [Pie10]. At the same time, Bandura and Walters’ Social Learning

Theory [Ban63] argues that students learn by observing and modeling others, and that

behaviour which is rewarded persists, and behaviour which is punished does not. From

this angle, a team that features both higher performing students and lower performing

students may improve learning for all, by giving each student examples of behaviour they

may wish to emulate or avoid. Prior work by Hong and Page has shown that this intra-

team diversity can improve not just learning over time, but also performance within a

project, as students are able to draw upon a wider range of approaches and potential

solutions [Hon04]. Dzvonyar et al. [Dzv18] apply this principle within software engineering,

creating “balanced teams with regard to technical skills” so that more experienced students

can serve as mentors to their less experienced teammmates. Our work has not considered
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the optimal middle ground to maximise both participation and learning outcomes, but

identifying it can support the best team learning environment.

8.4 Future Work

In this dissertation we have drawn upon software engineering automation and surveys

to offer educational benefits for individual students and teams of students. There are

several promising areas for future work based on the work in this dissertation. We con-

sider future work including further use of automated program repair in computer science

education (Section 8.4.1), using automation to gain further insights into teams and how

they work together (Section 8.4.2) and helping teams overcome collaborative challenges

(Section 8.4.3).

8.4.1 Automated Program Repair in CS Education

We have identified several promising advances of this research involving further use of

automated program repair within the field of computer science education.

• In our automated program repair study (Chapter 4) we demonstrated that automated

repair can be applied to special-purpose languages such as SQL, and that students

find these repairs understandable. This suggests that automated program repair may

be useful in Intelligent Tutoring Systems, offering students hints on what to try next

based on the current status of their work [And85; Cro18]. So far, however, we have only

given students a complete repair to consider. Better approaches may involve giving

them a part of a repair, which could be sufficient to get them unstuck. We propose

future work to evaluate this approach, comparing it to traditional ITS approaches

that offer hints based off of other students’ work [Bar10; Eag12; Pri18] to evaluate

impacts on learning outcomes.

• In our contributions analysis study (Chapter 7) we proposed an algorithm for sum-

marising individual students’ code contributions to team-based projects. Our algo-

rithm builds and differences abstract syntax trees (ASTs) to offer more information

about the code contributed than just considering lines of code. However, compil-

ers are unable to build ASTs from code that does not compile, which may result in

contributions being missed if students regularly commit code with syntax errors.

Prior attempts to automatically test code that students write has recognised that

introductory students particularly struggle with getting syntax correct [Par17]. To
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address this, prior work has considered using automated program repair on student

submissions, to repair syntax errors students make so that automated tests can be

run on their code [Par17; Bha16; Ahm21]. We propose future work using the BlueJ

project’s Blackbox dataset [Bro14b] to identify the proportion of compilation errors

that are due to syntax mistakes. If students regularly write code that does not compile,

and commit it to Git, we propose future work to identify whether automated repair

can fix these syntax mistakes in a way that meaningful automated summaries can be

created.

8.4.2 Automation and Teaming

In Chapter 5, we introduced lightweight automation for flagging struggling teams based

on collaboration reflection survey responses, and made further improvements to it in

Chapter 6. In Chapter 7, we used program analysis techniques to automatically summarise

code contributions from individual students. Based on this work, we have identified several

promising areas for further use of automation to assist with teaming in computer science

education.

• In our contributions analysis study (Chapter 7), we demonstrated that automated

contributions summaries can help TAs grade individual student contributions sub-

stantially more consistently than they do otherwise. We have not, however, considered

whether they can grade more accurately, that is, whether they agree with expert raters

such as instructors. We propose future work to identify how accurately TAs grade

assignments when they have automated summaries to aide them, and if necessary

consider future steps to help them more closely match against instructor grades.

As part of this, we propose replicating the work from Chapter 7 with instructors as

participants, to understand how consistently instructors grade assignments, and,

as necessary, how to offer them support so that they can grade assignments more

consistently.

• We additionally propose future work to evaluate the use of automated contributions

summaries as a way to predict struggling teams. We suggest work to identify to what

extent team challenges are a result of nonparticipation or last-minute contributions,

versus broader interpersonal conflicts. From this, we propose evaluating whether

(improved) contributions summaries can serve as a predictor of or proxy for other

challenges teams face [Abb17; Dzv18; Mar16].
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• Our work in the contributions analysis study (Chapter 7) summarises code contri-

butions that students make, but is unable to identify other types of contributions,

including documentation, design, and system testing. We propose future work to

move beyond the All Contributors [You21]model and use natural language processing

of semi-structured data such as Github Issues and Pull Requests to identify other

types of contributions.

• The algorithm that we developed in the contributions analysis study (Chapter 7)

can summarise individual code contributions in any language; however, the tool we

implemented, AutoVCS, only works on Java projects hosted on Github. We propose

future work to evaluate how to extend these techniques to other languages, including

different paradigms such as functional programming. We propose future work to

consider whether language-agnostic AST analysis can be used to efficiently scale this

approach to arbitrary languages.

8.4.3 Helping Teams Overcome Challenges

Our work in Chapters 5 and 6 provided insights into the challenges that teams face in

undergraduate software engineering courses. We propose future work to identify challenges

students face in different contexts and helping them overcome these challenges.

• In our team challenges study (Chapter 6), we observed several students who expressed

a preference for trying to solve team challenges within the team first, and then getting

help from the course teaching staff if efforts were unsuccessful. To facilitate this, we

propose a big-picture view of team challenges, allowing instructors to track issues that

are observed through the TCRS, issues observed by TAs in lab, insufficient contribu-

tions, and more. We propose a user study to evaluate whether tracking these disparate

types of issues can help instructors help teams function more effectively than is oth-

erwise possible. As a part of this, we propose unified tooling to help instructors both

track and visualise team challenges in their courses.

• In our collaboration reflection study (Chapter 5) we created a collaboration reflection

survey and demonstrated that it can flag student software engineering teams that

struggled to work together effectively. An intervention we tried did not work, and

followup work in the Team Challenges Study (Chapter 6) revealed that teams need

more of a guiding hand from the teaching staff. We propose future work based on

these findings to conduct more hands-on interventions with teams. In particular,

we propose evaluating how much intervention is necessary to help teams overcome
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these challenges, while still giving them a chance to make mistakes and learn from

their experiences.

• Our work in the team challenges study (Chapter 6) provided novel insights into the

challenges that teams in undergraduate software engineering courses face. We pro-

pose future work to study team challenges in different contexts. In particular, we

propose work to identify whether students on longer-running projects (for instance,

an entire semester) manage to resolve the issues they are facing more effectively, or

if they continue to struggle all semester. Additionally, we propose work to identify

whether the challenges that teams face vary based on the level of the course, and

whether more notice students face different challenges than more advanced students.

8.5 Final thoughts

In Summer 2020, I set out to try and use data from version control systems to predict teams

that were failing to collaborate effectively. Nearly two years later, we’re still not there, but

we’ve learned much more about how teams function and how to support their learning

experiences. I look forward to realising my original goal in the not too distant future.
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