
ABSTRACT

SAMANTA, SUVAJIT. A Statistical Characterization of the Genetic Structure of Pop-
ulations. (Under the direction of Bruce Spencer Weir).

In a random mating population the second order descent measure which is also

known as coancestry coefficient (θ) characterizes population structure. This struc-

ture provides information regarding the history of a population. Characterizing inbred

populations, however, requires third (γ) and fourth order (δ and ∆2,2) descent mea-

sures. These descent measures are also used to find different expressions in DNA profile

matching. In literature there are several estimators for second order descent measure

but no estimator exists for the higher order descent measures. In this research we find

estimators for second and third order descent measures using a Method of Moments

approach and a Probabilistic approach. Simulation studies show that our new esti-

mators for second order descent measure are more accurate than the existing moment

estimators while the estimators for third order descent measure are stable in terms

of bias and standard error. We also derive the sampling properties of our estimators.

Later, we relax the constraint that the descent measures have the same value in dif-

ferent populations and find estimators for population-specific θ and γ. We implement

our methods on HapMap SNP data and find the estimates of the descent measures for

the human populations.

The expressions for genetic parameters generally depend on the coancestry coeffi-

cient (θ) and become very simple when the coancestry coefficient is zero. In this thesis

we propose different testing techniques for testing H0 : θ = 0 vs. H1 : θ > 0 for ran-

dom population. For small sample sizes we propose a parametric bootstrap test that

has higher power than the non-parametric bootstrap test proposed by Dodds (1986).

When the sample sizes are large we find an asymptotically chi square test that works

for any number of allelic forms in a particular locus. For more than two alleles per

locus our test is better than the asymptotic test proposed by Li (1996). We implement

our testing procedures on HapMap SNP data and find that the coancestry coefficient

for humans is strictly positive.

The probability of identity by descent simultaneously at two or more loci is a gener-



alization of Wright’s inbreeding coefficient. The two-locus identity is a useful parameter

in predicting the joint ancestry of pair of loci which is frequently used in mapping stud-

ies and in finding variances and covariances of quantitative traits. Weir and Cockerham

(1969) extended the inbreeding coefficient concept for two loci to evaluate a measure of

identity of descent for genes at each of two linked loci. In this research we show that the

two-locus descent measures are not estimable but we can estimate the product of link-

age disequilibrium and two-locus descent measures. We find the estimators of different

components of the two-locus descent measures multiplied with linkage disequilibrium

using a Method of Moments approach. We use haplotype data.

Estimates of heterozygosity and gene diversity have been used in many fields, includ-

ing conservation and evolutionary biology and forensic studies. In published analyses

researchers frequently overlook the sampling properties of these estimators although

this affects the resulting inferences. This dissertation characterizes the estimators of

heterozygosity and gene diversity by evaluating the sampling properties. Properties of

several methods for inferring the variance of sample heterozygosity are evaluated, in-

cluding the use of a new generalized linear mixed model for the total variance of sample

heterozygosity. We have observed a difference in result with the previous linear model.

We implement the methods on one published data set and compare the estimates of

the variance of sample heterozygosity. Using different variance component methods we

can get different estimates of total variance of sample heterozygosity for unbalanced

data while for balanced data all the methods are identical.
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Chapter 1

Review

1.1 Introduction

This research covers two different subjects. One is related to decent measures and

the other one is related to heterozygosity. The first part of the research evaluates the

adequacy of Dirichlet and Normal distribution for allele frequencies. Then it covers

different estimation procedures for decent measures and finds the sampling properties

of the estimators. It also covers different procedures for testing hypotheses about

the coancestry coefficient including the analysis of variance and parametric bootstrap

method. The second part of the research is related to the sampling properties of the

estimator of heterozygosity. The motivation and the goal of the different parts of the

research will be described separately in the following chapters.

The population structure can be characterized by two different set of parameters (i)

F -statistics and (ii) descent measures. F -statistics were proposed by Wright (Wright,

1951) and advocated by many others (Cockerham, 1973; Balding, 2003). On the other

hand, decent measures were proposed by Malécot (Malécot, 1948) and used by other sci-

entist (Weir and Cockerham, 1984; Weir, 1994; Weir and Hill, 2002). Both F -statistics

and descent measures are parameters that characterize the population structure. We

can make inferences about the history of a population (age of the population, effective

size of the population, the mutation rate present in the population, etc.) if we know
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the population structure. The F -statistics and descent measures are conceptually the

same under a random mating system. This research is developed under a random

mating population. It uses descent measures to characterize a population’s structure.

Geneticists are interested in finding the genetic distance between different populations.

This distance involves the knowledge of decent measures. In current forensic studies,

decent measures become a tool to characterize the DNA profile matching.

Heterozygosity and gene diversity are basic tools for summarizing the pattern of

genetic variation in a group of populations. Characteristics of population genetic vari-

ation are of key interest in studies of evolution. The amount of variation present in

a population or species determines the capacity of the heritable change of the group.

So the estimate of heterozygosity and gene diversity can be very helpful descriptive

measures for populations. To know the population better we also need to find the

sampling properties such as bias and variance of these estimators.

In this chapter we introduce all the necessary parameters in detail and review the

development of these parameters. Then we discuss different population models that

will be used in this research. We also draw conclusions about the relationship between

different parameters for a random mating population under different mutation models.

1.2 F -statistics

The population structure is frequently modeled as associations between alleles. These

associations can occur on different levels, and to different extents. This association can

occur within individuals, between individuals within a population, and between indi-

viduals in different populations. The inbreeding coefficient was first proposed by Wright

(1921). Later Wright extended his work for hierarchial population model and intro-

duced three F -statistics, FIS, FST and FIT which represent three different levels of

association (Wright, 1951). These F -statistics can be defined as the correlations be-

tween alleles sampled from different levels in the population. The subscripts of the

F -statistics refer to the level they are concerned with, where I stands for individuals,
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S stands for sub-populations and T for the total population. FST is commonly referred

to as the coancestry coefficient, and it measures the degree of relationship, between

the individuals within populations relative to the amount of relationship found in the

total population. FIT is called the fixation index because it measures the progress of a

neutral locus towards fixation to a single allele under the influence of random genetic

drift. FIS measures the amount of departure from the Hardy-Weinberg equilibrium of

a population.

Cockerham (1969) renamed the F -statistics as f = FIS, θ = FST and F = FIT in his

work. This is done to reduce confusion between the F -statistics and the F distribution.

He also wanted to emphasize that these measures are population parameters rather

than statistics that are functions of observed data. Since these three parameters, f , θ

and F are correlation between alleles, the range of these parameters is from −1 to 1.

Inbreeding within population occurs when some particular individuals are more

related to each other than the relatedness of a random set of individuals from the

total population. Two factors contribute to the total amount of inbreeding in a set

of populations. Generally one factor contributes to θ; the other factor contributes

to f . The random genetic drift results in differences among sub-populations that

descended from a founder population which contributes to the value of θ. For a single

population, drift can be described as the inbreeding coefficient. The assortive mating

within populations increase the value of f . Both the factors, θ and f can increase

the amount of inbreeding of the whole group of populations. The total inbreeding

coefficient, F , is related to θ and f and the relation is (Weir, 1994)

F = f + θ(1 − f).

The above relation demonstrates that the total variation, F , is a sum of the variation

due to genes that are alike in individuals, summarized in f , and the variation due to

unrelated genes in the total population, summarized in θ.
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1.3 Descent Measures

Descent measures are parameters that also describe the association among alleles. The

development of descent measures is based on the concept of identical by descent (ibd).

A set of alleles is called identical by descent if all the alleles are descended from a

common allele in some ancestral population and no allele has gone thorough mutation.

The definition of ibd explicitly implies that the ibd alleles have the same allelic form.

The probability that two or more alleles are identical by descent is called descent

measures. For two allele case, the alleles can come from one individual or two different

individuals in the same population. Malécot (1948) defined the descent measures for

two alleles. He used the same notations as F , θ and f for defining three different descent

measures. Since these parameters are probabilities of different events, the value of these

parameters is always non-negative. Malécot (1948) defined the three parameters

F = Esub−pop

[
Pr(Two alleles from an individual are ibd)

]
, (1.1)

θ = Esub−pop

[
Pr(Two alleles from two individuals within a population are ibd)

]
, (1.2)

f = Pr(Two alleles from an individual in a population are ibd), (1.3)

where “Esub−pop” is to mean that the parameters are defined for random population

set up. In this set up we have more than one populations and every population has

evolved from the same founder population. In our set up, F and θ are parameters

for the random population set up and provide information about the history of the

populations. On the other hand, the parameter f is defined for a single population.

At this point, we have two different definitions of the parameters, θ, F and f . One

set of definitions of these parameters is provided by Wright and Cockerham (Wright,

1921; Cockerham, 1969) while the other set of definitions is given by Malécot (Malécot,

1948). Wright defined the parameters as the correlation of alleles and Malécot defined

as the descent measures. According to Wright’s definition the parameters can take neg-

ative value while Malécot’s definition guarantees non-negative value of the parameters.
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Although the two definitions are different theoretically, the definitions are conceptually

equivalent for a random mating system. When random mating occurs within the popu-

lation, the proportion of heterozygosity reduces over time and the correlation between

two alleles is always positive. This implies that the parameters defined by Wright take

positive values under a random mating system. According to Wright’s definition, the

coancestry coefficient, θ, measures the differentiation between populations. If the value

of θ (defined by Wright) is negative then, two alleles are more related if they are from

different populations than if they are from same population. If the populations have

been isolated since the base population and mate randomly within sub-populations,

differentiation between sub-populations will increase over time. Therefore, the value of

θ (defined by Wright) will be positive all the time under a random mating system. So

in random mating the F -statistics always take positive values which is the case with

descent measures. So the F -statistics and descent measures are conceptually the same.

This research will adopt the concept of descent measures for inferring population his-

tory or the relatedness between individuals in a population. From now onwards this

research will work with the parameters f , θ, and F that are defined in equations (1.1),

(1.2) and (1.3) respectively. The parameters f , θ, and F will be considered as descent

measures for remaining part the research.

The parameter f measures the amount of local inbreeding present in a population.

Generally f gives information about a particular population, while θ and F give long-

term effects of demographic and evolutionary forces of a population (Cockerham, 1973).

Since we are interested in the long-term history of populations, we focus our interest

on estimating the parameters θ and F rather than f . For a random mating population,

there is no need to distinguish the cases that which individual contains the alleles. The

probability of two alleles within an individual being ibd is the same as two alleles from

two different individuals within a population. Therefore, the total inbreeding coefficient

F , and the coancestry coefficient, θ are the same in a random mating population.

Descent measures have been extended to three and four alleles. Third and fourth

order descent measures can be used to find covariances of inbred relatives (Gillois,
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1966) and to characterize a population that has selfing or biparental inbreeding such

as a plant population (Ritland, 1987). Third order descent measure is the probability

that three alleles are identical by descent. These three alleles can come from either

two or three individuals. There are two types of fourth order descent measures. First

one is the probability of four alleles are identical by descent and the second one is

the probability of two pairs of alleles are identical by descent. Four alleles can come

from three different ways from a population while two pairs of alleles can come from

five different ways. The list of possible ways in which the alleles can come from a

population is given in Table 1.1.

Table 1.1: Possible arrangements for different alleles

Descent Measure Possible Arrangements 123

FX aX ≡ a′X

θXY aX ≡ aY

γẌY aX ≡ a′X ≡ aY

γXY Z aX ≡ aY ≡ aZ

δẌŸ aX ≡ a′X ≡ aY ≡ a′Y

δẌY Z aX ≡ a′X ≡ aY ≡ aZ

δXY ZW aX ≡ aY ≡ aZ ≡ aW

∆XY.ZW aX ≡ aY , aZ ≡ aW

∆Ẍ.Y Z aX ≡ a′X , aY ≡ aZ

∆Ẍ.Ÿ aX ≡ a′X , aY ≡ a′Y

∆Ẍ+Y Z aX ≡ aY , a′X ≡ aZ

∆Ẍ+Ÿ aX ≡ aY , a′X ≡ a′Y

1 One allele from an individual is denoted by a
2 Two alleles from an individual are denoted by a and a′

3 The subscript of a indicates the individual that contributes the allele
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In a random mating population the descent measures can not be distinguished

based the source of alleles. For example, the probability that three alleles from two

individuals are identical by descent is the same as the probability that three alleles

from three individuals are identical by descent. So for a random mating system, we

can group the different parameters defined in Table 1.1 and get the identities

FX = θXY ,

γẌY = γXY Z ,

δẌŸ = δẌY Z = δXY ZW , and

∆XY.ZW = ∆Ẍ.Y Z = ∆Ẍ.Ÿ = ∆Ẍ+Y Z = ∆Ẍ+Ÿ .

The above equations suggest that for a random mating population only one parameter

characterize the third-order descent measure and two parameters describe the fourth-

order descent measures. These three parameters are

γ = Esub−pop

[
Pr(Three random alleles are identical by descent)

]
, (1.4)

δ = Esub−pop

[
Pr(Four random alleles are identical by descent)

]
, and (1.5)

∆2,2 = Esub−pop

[
Pr(Any two random pairs are identical by descent)

]
. (1.6)

There are four different inbreeding coefficients for three alleles. For any four alleles

there are 15 arrangements of identity between any of the six pairs of alleles (Cockerham,

1971; Gillois, 1966). In inbred populations to calculate the relatedness between specific

individuals we need all the components. But in random mating populations, only two

descent measures, θ and, γ describe the third-order inbreeding coefficients while, only

four measures, θ, γ, δ, and ∆2,2 describe the fourth-order inbreeding coefficients (Lynch,

1988). Table 1.2 describes the different inbreeding coefficients for two, three and four

alleles. It also shows the relation between these inbreeding coefficients with the descent

measures θ, γ, δ and ∆2,2 under a random mating population.
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Table 1.2: Inbreeding coefficients for two, three and four alleles and their relation with
descent measures under a random mating population

Number of alleles IBD alleles Inbreeding coefficients under RMP†

Two alleles a1 6≡ a2 δ0 = 1 − θ

(a1, a2) a1 ≡ a2 δa1,a2
= θ

Three alleles a1 6≡ a2 6≡ a3 δ0 = 1 − 3θ + 2γ

(a1, a2, a3) a1 ≡ a2 6≡ a3 δa1,a2
= θ − γ

a1 ≡ a3 6≡ a2 δa1,a3
= θ − γ

a2 ≡ a3 6≡ a1 δa2,a3
= θ − γ

a1 ≡ a2 ≡ a3 δa1,a2,a3
= γ

Four alleles a1 6≡ a2 6≡ a3 6≡ a4 δ0 = 1 − 6θ + 8γ + 3∆2,2 − 6δ

(a1, a2, a3, a4) a1 ≡ a2 6≡ a3 6≡ a4 δa1,a2
= θ − 2γ − ∆2,2 + 2δ

a1 ≡ a3 6≡ a2 6≡ a4 δa1,a3
= θ − 2γ − ∆2,2 + 2δ

a1 ≡ a4 6≡ a2 6≡ a3 δa1,a4
= θ − 2γ − ∆2,2 + 2δ

a2 ≡ a3 6≡ a1 6≡ a4 δa2,a3
= θ − 2γ − ∆2,2 + 2δ

a2 ≡ a4 6≡ a1 6≡ a3 δa2,a4
= θ − 2γ − ∆2,2 + 2δ

a3 ≡ a4 6≡ a1 6≡ a2 δa3,a4
= θ − 2γ − ∆2,2 + 2δ

a1 ≡ a2 ≡ a3 6≡ a4 δa1,a2,a3
= γ − δ

a1 ≡ a2 ≡ a4 6≡ a3 δa1,a2,a4
= γ − δ

a1 ≡ a3 ≡ a4 6≡ a2 δa1,a3,a4
= γ − δ

a2 ≡ a3 ≡ a4 6≡ a1 δa2,a3,a4
= γ − δ

(a1 ≡ a2) 6≡ (a3 ≡ a4) δa1,a2:a3,a4
= ∆2,2 − δ

(a1 ≡ a3) 6≡ (a2 ≡ a4) δa1,a3:a2,a4
= ∆2,2 − δ

(a1 ≡ a4) 6≡ (a2 ≡ a3) δa1,a4:a2,a3
= ∆2,2 − δ

a1 ≡ a2 ≡ a3 ≡ a4 δa1,a2,a3,a4
= δ

† RMP is Random Mating Population
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1.4 Heterozygosity

Heterozygosity is simply the proportion of individuals with a heterozygous genotype in

a population at a single locus. Heterozygosity is often termed observed heterozygosity

or Ho. If we have more than one locus then we take the average of observed heterozy-

gosity over loci. For the case of species with some degree of selfing, heterozygosity can

be inadequate to describe the amount of genetic variation in a population. In this case,

it is very common that many different types of homozygous genotypes are present in

the population and would not be captured by the frequency of heterozygote. To solve

this problem, Nei (1973) proposed another method of gene diversity that captures the

diversity at the allelic level. If there are s alleles in a particular locus with frequencies

p1, p2, · · · ps, then the gene diversity for this locus is defined as 1 −
∑s

i=1 p2
i . If there

is more than one locus, then we take the average of gene diversity over locus. As a

measure of genetic variation, Nei’s gene diversity should be particularly used for selfing

species. The expected value of observed heterozygosity and the value of gene diversity

are the same in a random mating population not undergoing selfing. For this reason,

gene diversity has been frequently and incorrectly termed average heterozygosity, or

He in the literature. The relationship between gene diversity and heterozygosity and

the coancestry coefficient θ can be expressed exactly for certain specific population and

mutation models but may more complicated in real life.

To have a better idea about the genetic variation of a population it is important

to find the sampling properties of the observed heterozygosity and gene diversity. Weir

(1989) and Weir et al. (1990) developed extensive theory for the variances of sample

gene diversity and observed heterozygosity respectively. Later, other scientists pro-

posed different methods for finding the variances of sample gene diversity and observed

heterozygosity. We also propose a new method for estimating the variance of sample

heterozygosity. We discuss the development of these methods in Chapter 5. Then in

Chapter 6, we compare our method with other existing methods for estimating the

variance of observed heterozygosity.
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1.5 Wright-Fisher Model

The Wright-Fisher model assumes that the alleles in the current generation are derived

by sampling with replacement from the previous generation. In this research we always

assume that all the loci that we are interested in are neutral. This means all alleles in a

particular locus are equally likely to survive and be transmitted to the next generation.

There may be any number of allelic types at a particular locus. Basically given the

allele frequencies of the previous generation at reproduction the allele counts in the

present generation follow a Multinomial distribution. The index of the distribution is

2N (N is the size of the present population) and the probability vector is the allele

frequencies of the previous generation at reproduction. If we have only two allelic types,

then the allele counts follow a Binomial distribution with appropriate parameters.

The Wright-Fisher model can be implemented with different assumptions about

mutation. We generally assume (i) No mutation and (ii) Both-way mutation. In the

first case where no mutation occurs within alleles, eventually one allele becomes fixed

in the population. The probability that one particular allele will fix in the population is

the initial frequency of that particular allele. The fixation probability and mean fixation

time can be found using a diffusion process (Ewens, 1979). In the second case we assume

that any allelic type can mutate to any other allelic type that already exists in the

population with some positive rate. We assume that the mutation rate per generation

remains same over generations. In this case the allele frequencies eventually follow a

joint stationary distribution. The stationary distribution is a Dirichlet distribution with

appropriate parameter values. When we have two alleles with both-way mutation then

the stationary distribution reduces to a Beta distribution. Sometimes we consider an

infinite allele mutation model that assumes any mutation generates a new allelic type.

Under this mutation model the allele frequencies have a joint stationary distribution

and that is Dirichlet. The stationary distribution and mean time to reach the stationary

distribution can be found using a diffusion process (Ewens, 1979).
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1.6 Theoretical Values of Descent Measures

In this section we discuss how the descent measures change over generations in a

random mating population. We consider the Wright-Fisher model for transmitting

alleles over generations. The value of the descent measures in a generation depends

on the assumption of mutation of alleles, the value of the descent measures in the

previous generation and the size of the previous generation. The descent measures

at a particular locus do not depend on the number of alleles and allele frequencies in

the locus. We denote the value assumed by θ, γ, δ, ∆2,2 at generation t by θt, γt, δt

and ∆2,2,t. We assume that there are N individuals i.e. 2N alleles in the population

at time t. We derive expressions for θt+1, γt+1, δt+1 and ∆2,2,t+1. These values can

be expressed in terms of N , θt, γt, δt and ∆2,2,t. But we get different expressions for

different assumptions about mutations. In the next two sections we find expressions

for the descent measures under different assumptions about mutations.

1.6.1 No Mutation

In this section we assume no mutation among alleles and discuss the behavior of the

descent measures. Take two alleles from the population at time t + 1. These two

alleles can be descended from one allele or two different alleles at generation t with

probabilities 1
2N

and 1 − 1
2N

respectively. If these two alleles are descended from a

single allele then they are always ibd. If the alleles are descended from two different

alleles then the probability that they are ibd is θt. So we have

θt+1 =
1

2N
+ (1 − 1

2N
)θt. (1.7)

Now we consider three different alleles from (t + 1)th generation. We will find the

probability that these alleles are identical by descent which is denoted by γt+1. These

three alleles can be descended from one, two, and three different alleles in the previous

generation with probabilities 1
4N2 ,

3(2N−1)
4N2 and (2N−1)(2N−2)

4N2 respectively. These alleles
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are always ibd if they come from the same allele in the previous generation. If they

are descended from two different alleles in the previous generation then the probability

that these three alleles are ibd is the same as the probability that the two alleles in

the previous generation are ibd which is θt. Similarly if the alleles are descended from

three different alleles then the alleles at (t + 1)th generation are ibd with probability

γt. So we get

γt+1 =
1

4N2
+

3(2N − 1)

4N2
θt +

(2N − 1)(2N − 2)

4N2
γt. (1.8)

For four alleles, similar arguments as above lead us to the equations

δt+1 =
1

8N3
+

7(2N − 1)

8N3
θt +

6(2N − 1)(2N − 2)

8N3
γt

+
(2N − 1)(2N − 2)(2N − 3)

8N3
δt and (1.9)

∆2,2,t+1 =
2N

8N3
+

2(4N2 − 1)

8N3
θt +

4(2N − 1)(2N − 2)

8N3
γt

+
(2N − 1)(2N − 2)(2N − 3)

8N3
∆2,2,t. (1.10)

The transition equations (1.7)-(1.10) had been derived by Weir (1994). If the initial

population consists of non-inbred and unrelated individuals, then the four descent

measures have explicit solutions (Weir, 1994)

θt = 1 − λt
1,

γt = 1 − 3

2
λt

1 +
1

2
λt

2,

δt = 1 − 1

5
(9λt

1 − 5λt
2 + λt

3) −
3

20(5N − 3)
λt

1

+
1

12(N − 1)
λt

2 +
8N − 3

30(5N − 3)(N − 1)
λt

3, and (1.11)

∆2,2,t = 1 − 1

15
(24λt

1 − 10λt
2 + λt

3) −
1

5(5N − 3)
(λt

1 − λt
2),
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where,

λ1 = 1 − 1

2N
,

λ2 = (1 − 1

2N
)(1 − 2

2N
), and (1.12)

λ3 = (1 − 1

2N
)(1 − 2

2N
)(1 − 3

2N
).

The above solutions assume that the population size remains the same over generations

and equal to N . If the population size changes over generations and the effective pop-

ulation size is Ne, then the above equations approximately hold good if N is replaced

by Ne.

Now we approximate the expressions in the equation (1.11) by assuming N → ∞.

We also re-scale the time by assuming a unit time is equal to 2N . In other words we

are assuming t is of the order O(N). For notational benefit we denote c = limN→∞
t

2N
.

So for large N and large t we get

λt
1 = exp (−c), λt

2 = exp (−3c), and λt
3 = exp (−6c). (1.13)

When N is large, using the above approximation we get the relations (Robertson, 1952)

γ =
3

2
θ2 − 1

2
θ3, (1.14)

δ = 3θ3 − 3θ4 +
6

5
θ5 − 1

5
θ6, and (1.15)

∆2,2 = θ2 +
2

3
θ3 − θ4 +

2

5
θ5 − 1

15
θ6 =

2

3
γ +

1

3
δ. (1.16)

Due to a finite drift the population becomes more inbreed under a random mating

system. Eventually the value of all the descent measures, θ, γ, δ and ∆2,2 after some

generations converge to 1. When N is very large some authors assume (Weir and Hill,

2002) normal distribution for allele frequencies. In this case the higher order descent
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measures become functions of θ and they can be expressed as (Weir, 1994)

γn = 0, δn = 0, and ∆2,2,n = θ2. (1.17)

1.6.2 Both-Way Mutation

In this section we allow both way mutation. We assume any allele mutates to another

allele with a positive rate u. Using the same arguments that we have used in the

previous section get the following transition equations

θt+1 = (1 − u)2[
1

2N
+ (1 − 1

2N
)θt],

γt+1 = (1 − u)3[
1

4N2
+

3(2N − 1)

4N2
θt +

(2N − 1)(2N − 2)

4N2
γt],

δt+1 = (1 − u)4[
1

8N3
+

7(2N − 1)

8N3
θt +

6(2N − 1)(2N − 2)

8N3
γt

+
(2N − 1)(2N − 2)(2N − 3)

8N3
δt], and (1.18)

∆2,2,t+1 = (1 − u)4[
2N

8N3
+

2(4N2 − 1)

8N3
θt +

4(2N − 1)(2N − 2)

8N3
γt

+
(2N − 1)(2N − 2)(2N − 3)

8N3
∆2,2,t].

The mutation rate u is generally very small. It is safe to assume that the higher orders

of u (u2, u3 etc) are negligible. Now we assume population sizes are also very large

which says u/N , u/N2, u/N3, and 1/N2 are very close to 0. So we can omit them

while doing the algebra. This approximation leads to

θt+1 =
1

2N
+ (1 − 2u − 1

2N
)θt,

γt+1 =
3

2N
θt + (1 − 3u − 3

2N
)γt,

δt+1 =
6

2N
γt + (1 − 4u − 6

2N
)δt, and (1.19)

∆2,2,t+1 =
2

2N
θt +

4

2N
γt + (1 − 4u − 6

2N
)∆2,2,t.
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Let us define a new parameter φ = 4Nu. Then at equilibrium the descent measures

will be

θe =
1

1 + φ
,

γe =
2

(1 + φ)(2 + φ)
,

δe =
6

(1 + φ)(2 + φ)(3 + φ)
, and (1.20)

∆2,2,e =
6 + φ

(1 + φ)(2 + φ)(3 + φ)
.

From the above set of equations we get another set of relations between descent mea-

sures for large population size and generation (Balding and Nichols, 1995)

γe =
2θ2

e

1 + θe

,

δe =
6θ3

e

(1 + θe)(1 + 2θe)
, and (1.21)

∆2,2,e =
θ2

e(1 + 5θe)

(1 + θe)(1 + 2θe)
.

All the results for the Wright-Fisher model with a both-way mutation also hold for

the Wright-Fisher model with an infinite-alleles mutation model. In the infinite allele

mutation model u is the mutation rate and each mutation generates a new allelic type.

Now we check the adequacy of the Normal and Dirichlet approximation for the

descent measures. Figure 1.1 shows that the normal approximations of γ, δ and ∆2,2

do not work at all. The transition equations provide positive values for γ and δ where

the normal distribution approximates these parameters to 0. For ∆2,2 the normal

distribution gives positive value but it is smaller than the exact value of ∆2,2. These are

true for both a pure drift and a both-way mutation model. The Dirichlet approximation

works well for ∆2,2 under both the mutation models but does not work for γ and δ.

Figure 1.1 shows that the Dirichlet approximation of γ and δ is always higher than the
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true values of γ and δ that can be calculated using transition equations. The difference

is smaller in the both-way mutation model but still there is a significant difference. So

we conclude that in general we can not use the normal distribution to approximate γ

and δ. The Dirichlet distribution is not appropriate for pure drift model but it can

be used for both-way mutation model (although some small errors are involved in the

approximation) for calculating the value of γ and δ.
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Figure 1.1: γe, δe, ∆e from equations (1.21) (dotted line) and γn, δn, ∆2,2,n from
equations (1.17) (dashed line) compared to exact value of γ, δ, ∆2,2 under a pure drift
model and a both-way mutation model (same as an infinite allele model). N = 5,000
and the mutation rate of the both-way mutation model is 0.0005.
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Chapter 2

Estimation of Decent Measures

2.1 Introduction

Population structure is a great interest in Genetics. We can make inferences about the

history of a population if we know the population structure. The population structure

is generally modeled as association between alleles and can be characterized by descent

measures. We can also make inferences about the relatedness between two arbitrary

individuals in a population using descent measures. There are two types of second order

descent measures, total inbreeding (F ) and coancestry coefficient (θ). For a random

mating population these two parameters are the same. The coancestry coefficient

measures the degree of relationship between the individuals within the sub-populations

relative to the amount of relationship found in the total population. Higher-order

descent measures are useful in special situations. In general, kth-order (k ≥ 2) descent

measures are characterized by the probability of different arrangements of identity

between k alleles sampled from different levels in a population. The third (γ) and

fourth order (δ and ∆2,2) descent measures can be used to find covariances of inbred

relatives (Gillois, 1966). The third and fourth order descent measures are also needed

to characterize a population that has selfing or biparental inbreeding such as a plant

population (Ritland, 1987). The expression of joint allele frequencies also involves

the descent measures. So the second, third, and fourth order descent measures are
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frequently used to calculate different expressions in DNA profile matching (Weir, 1994).

These descent measures are also useful in affected-relative tests.

The estimation of the descent measure θ and analog of θ have been discussed widely

in the literature (Nei, 1973; Weir and Cockerham, 1984; Robertson and Hill, 1984;

Slatkin, 1995). To estimate θ, the frequentist approaches, method of moments and

maximum likelihood, and Bayesian methods have been used. The frequentist methods

are computationally less intensive while the Bayesian approaches have the benefit of

systematic incorporation of prior information about the data which increases the ability

to capture important information about parameters in complex cases.

Weir and Cockerham (1984) first obtained the moment estimator of θ and Robert-

son and Hill (1984) followed their method. These two estimators are known as bivariate

estimators. Later a multivariate estimator of θ was proposed by Long (1986). The bi-

variate estimators are constructed through combining individual alleles linearly over all

alleles and loci, while the multivariate estimator is combined only over loci. Long’s esti-

mator is equivalent to the Robertson-Hill and Weir-Cockerham estimators for bi-allelic

data from a single locus. Yang (1998) generalized Weir and Cockerham’s estimator

to an arbitrary number of levels in a population hierarchy. The above methods do

not account for the linkage disequilibrium between loci in combining the information

over loci. The best possible way to combine the bivariate estimators over alleles has

remained an issue. Weir and Cockerham (1984) combined the estimates by taking the

ratio of the sum of the numerators of each estimator to the sum of the denominators

of each estimator. Alternatively, Robertson and Hill (1984) combined the estimates by

taking weighted average of the ratio estimators over all alleles. Different weights have

been proposed for multiple alleles and loci by minimizing the variance of the estima-

tor for different ranges of the true value of θ. When the true value of θ is high then

the variance of the estimator minimized for the Weir and Cockerham estimator while

the Robertson and Hill approach minimized the variance for low to medium value of

θ (Raufaste and Bonhomme, 2000). Raufaste and Bonhomme thus recommended the

use of different estimators be governed by the true value of the parameter.
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Applying Bayesian methods to the problem of inferring population structure has

increased in last few years due to affordable computing power. By using the knowledge

about populations gained in the past, the robustness of estimates from extreme data

sets sampled from the present can be increased (Lange, 1995). The Bayesian methods

also make simultaneous inferences about other parameters of interest such as model

fit, number of distinct populations in a group of populations etc. The sensitivity and

performance of Bayesian estimates depend on the choice of prior. Bayesian approaches

to estimation of θ involve the assumption of hierarchial models including the forms

of prior parameter and likelihood distributions. The Dirichlet (Balding and Nichols,

1995; Lange, 1995; Holsinger, 1999) and the multivariate normal (Weir and Hill, 2002)

are two commonly used forms for the distribution of population allele frequencies with

multiple alleles at a locus. For bi-allelic data such as SNP loci, the bivariate forms of

these distributions reduce to a Beta and a normal distribution (Smouse and Willams,

1982; Holsinger, 1999; Balding, 2003; Nicholson and Donnelly, 2002). In Bayesian

approaches the estimates of θ are the posterior mean of the conditional distribution of

the parameters generated by using MCMC based rejection sampling.

The distributions of allele frequencies vary with population models and the time

since divergence of populations. The stationary distribution of allele frequencies for

most of the stochastic process models, such as, island model (Wright, 1931) and finite

stepping-stone model (Maruyama, 1977) is Beta. The normal distribution has been

justified by the appeal to large sample theory (Weir and Hill, 2002; Nicholson and

Donnelly, 2002) rather than stationary distribution. The normal distribution has been

used for non-equilibrium population which are likely to have shorter time since diver-

gence (Nicholson and Donnelly, 2002) while a Beta or a Dirichlet distribution is a poor

fit. For populations with weak drift and migration, the Dirichlet distribution may be a

poor fit for stationary distribution because this increases the time to reach equilibrium.

A Dirichlet distribution does also not fit in the population with high stepwise mutation

rates (Graham et al., 2000).

Long and Kittles (2003) discussed the problems with classical analysis of population
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structure introduced by simplifying assumption of a common value of θ across all

populations. Their results showed that overall estimates of θ from global human data

sets were meaningless and the estimates failed to describe the important local patterns

and amount of genetic variance. Balding (Balding, 2003) also pointed out that the usual

demographic variation and different population sizes in a collection of populations make

the value of θ population specific.

Several estimators have now relaxed the constraint that the value of θ is the same

across populations. Weir and Hill (2002) proposed a new parametrization of popula-

tion model that defined a parameter specific to each population. This allows different

amount of coancestry for different population. The first estimator obtained through

a method of moments approach which is a direct extension of the previous Weir and

Cockerham (1984) moment estimator of θ. This estimator is a ratio of unbiased esti-

mates and therefore expected to be unbiased but it has large sample variance. This

method does not assume any form for the distributions of allele frequencies. The second

estimator of population-specific θ described by Weir and Hill (2002) was a maximum

likelihood estimator. This estimator was developed under the assumption that the sam-

ple allele frequencies are multivariate normally distributed. This estimator has several

desirable properties, such as invariance to transformation. However, this likelihood

estimator is highly unstable when the likelihood function is flat.

In contrast to the frequentist approaches Nicholson and Donnelly (2002) approached

this expanded parametrization from a Bayesian point of view, in the context of an

application to SNP data. They assumed that the allele frequencies are normally dis-

tributed. The authors justify this model as having a reasonable fit to recently diverged,

non-equilibrium populations. Balding (2003) also worked with a Bayesian approach but

he assumed a Beta distribution for the allele frequency. Holsinger and Wallace (2004)

extended Balding’s model for the hierarchical model by describing a summary statistic

that compared the posterior and prior distribution of the coancestry parameters.

The estimate of the third order descent measure (γ) is not well known. Weir (1994)

proposed a moment estimator of γ for a very restrictive case. The performance of this
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estimator is yet to be evaluated. If we assume a Dirichlet or a normal distribution for

the allele frequencies then γ becomes a function of θ. In this case we can infer γ based

on the estimate of θ. Unfortunately, these distributions are not realistic for natural

populations, such as human populations. So the parameter γ has to be estimated

independently. The demographic and size variation in a set of populations make the

descent measures population specific. So the value of γ varies over different population.

There is no estimator for a population-specific γ. There are two fourth order descent

measures. We will show that these two parameters can not be estimated separately.

In this chapter we propose different estimators of descent measures. First we as-

sume the same value of descent measures across the populations and propose a set of

moment estimators of θ and γ based on the third order Analysis of Variance statistics.

Then we propose another set of estimators of θ and γ using a direct probabilistic inter-

pretation. We also compare method of moments estimator with probabilistic estimator

analytically. Later we assume a population-specific value of descent measures and ex-

tend our estimators. To have a better idea about the estimates we also calculate the

sampling properties of the estimators. We give the expressions for biases and variances

of different estimators. Our estimators have large variances but these variances can be

reduced by gathering more information from independent loci.

2.2 Replication of Evolution

In this section we discuss the history of the group of populations that we are interested

in. We typically assume that the ancestral population has infinitely many individuals.

The populations are evolved independently from the same ancestral population. The

different populations have been generated through the replications of the same evo-

lutionary process. Since the replications of the evolutionary process are independent,

they will result independent populations. Even if all quantities such as population size,

mating structure, and mutation rate were kept the same, a different population would

result if evolution were repeated. So the parameter values for different populations will
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be different. The averages can be taken over all possible outcomes of the evolutionary

process to get the final value of the parameters. For example, the value of F (or θ) is

averaged over sub-populations, and therefore requires an evolutionary model that pre-

dicts the levels of variation among sub-populations. Similarly, the value of higher order

descent measures γ, δ and ∆2,2, are also averaged over sub-populations. So estimat-

ing these parameters require observations from more than one sub-population in order

to quantify the variation between sub-populations. These parameters give informa-

tion about long-term effects of demographic and evolutionary forces of the population.

Our expectations will always be over different replications of the populations and any

parameter value will be the average value over sub-populations.

2.3 Data

We have data from the r independent present-day populations. These populations

have evolved from a common ancestral population. We will work with locus A. We

assume that there are s different allelic forms in locus A namely, A1, A2, · · · , As. The

expected allele frequencies in each population are the same and they are p1, p2, · · · , ps

respectively. We have ni sampled alleles from the ith population. So there are total
∑r

i=1 ni = S sampled alleles. Define a set of indicator functions that describe our

frequency data at locus A as follows:

xij,k =





1 if the jth allele in ith population at locus A is Ak

0 otherwise

The observed frequency of the allele Ak in the ith population is

p̃i,k =
1

ni

ni∑

j=1

xij,k, (2.1)
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and the overall weighted and un-weighted observed frequency of the allele Ak are

p̃w,k =
1

S

r∑

i=1

nip̃i,k and p̃uw,k =
1

r

r∑

i=1

p̃i,k. (2.2)

When the sample sizes are equal i.e. n1 = n2 = · · · = nr, then p̃w,k = p̃uw,k.

2.4 Review of Existing Estimators of θ

2.4.1 Method of Moments Estimator

A moment estimator of θ was first found by Weir and Cockerham (1984). They assumed

the same value of θ across different populations. In this section we describe the method

of moments (MOM) estimator of θ proposed by Weir and Cockerham (1984). They

defined the two mean square statistics based on the frequency of the allele Ak. The

mean square statistics are

MSPk =
1

r − 1

r∑

i=1

ni(p̃i,k − p̃w,k)
2 and (2.3)

MSGk =
1∑r

i=1(ni − 1)

r∑

i=1

nip̃i,k(1 − p̃i,k). (2.4)

The expectation of the statistics can be found using the theory

E(xij,kxi′j′,k) =





p2

k + pk(1 − pk)θ if i = i′, j 6= j′

p2
k if i 6= i′.

(2.5)

The expectations of the mean square statistics are

E(MSPk) = pk(1 − pk)[1 + (nc1 − 1)θ] and (2.6)

E(MSGk) = pk(1 − pk)(1 − θ), (2.7)
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where

nc1 =
1

r − 1
(

r∑

i=1

ni −
∑r

i=1 n2
i∑r

i=1 ni

) =
1

r − 1
(S −

∑r

i=1 n2
i

S
).

Using (2.6) and (2.7), Weir and Cockerham (1984) led to their moment estimator of θ,

θ̂WC,k =
MSPk − MSGk

MSPk + (nc1 − 1)MSGk

. (2.8)

The above estimator is based on the frequency data for the allele Ak. There are

different estimators corresponding to different alleles at different loci. After combining

information over alleles and loci, Weir and Cockerham (1984) proposed the overall

estimator of θ,

θ̂WC =

∑L

l=1

∑sl

k=1(MSPlk − MSGlk)∑L
l=1

∑sl

k=1(MSPl,k + (nc1 − 1)MSGlk)
. (2.9)

where MSPlk and MSGlk are the two mean square statistics for the kth allele at the lth

locus. They assumed that there are L independent loci and the lth locus has sl alleles.

2.4.2 ML Estimator Based on Normal Distribution

Weir and Hill (2002) proposed an estimator of θ assuming a multivariate normal

distribution for allele frequencies. They justified the assumption of normal distribution

using large sample sizes and central limit theorem. The normal distribution is an

approximate distribution and it works well for small values of θ. Here the authors

assumed that ni → ∞ which is equivalent to assume ni = n and n → ∞. There are s

alleles at locus A which give s − 1 independent allele frequencies. Define a new vector

of observed allele frequencies as p̃i = (p̃i,1, p̃i,2, · · · , p̃i,s−1)
′ ∀i = 1, 2, · · · , r. p̃i’s are

independent and identically distributed. Weir and Hill (2002) assumed

p̃i ∼ MVNs−1(p, C), (2.10)
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where

p =





p1

p2

...

ps−1





, C = φ





p1(1 − p1) −p1p2 . . . −p1ps−1

−p1p2 p2(1 − p2) . . . −p2ps−1

...
... · · · ...

p1ps−1 −p2ps−1 . . . ps−1(1 − ps−1)





,

where φ = 1
n
[1 + (n − 1)θ]. From standard theory (see Chapter 3), the quadratic form

Q =
1

φ

r∑

i=1

s∑

k=1

(p̃i,k − p̃w,k)
2

p̃w,k

∼ χ2
(r−1)(s−1). (2.11)

The equation (2.11) gives the maximum likelihood estimate of θ as

θ̂N =
1

n − 1

[ n

(r − 1)(s − 1)

r∑

i=1

s∑

k=1

(p̃i,k − p̃w,k)
2

p̃w,k

− 1
]
. (2.12)

If there is more than one loci then the final estimator is the average of the locus specific

estimators of θ.

2.4.3 Bayesian Estimator

In the Bayesian set up scientists assume that the allele frequencies follow a joint distri-

bution (Lange, 1995; Balding and Nichols, 1995). The parameters of this distribution

depend on θ. The conditional distribution of the allele counts given the allele fre-

quencies is Multinomial. The joint prior distribution of allele frequencies is generally

a Multivariate normal or Dirichlet. Now using these two facts we find the posterior

distribution of θ. The posterior mean is the Bayesian estimate of θ. Most of the times

we can not recognize the full posterior distribution. In these cases we use MCMC

method to find the posterior mean of θ.
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2.5 New Estimators of θ and γ

2.5.1 Method of Moments Estimator

In this section we propose new moment estimators for θ and γ. We find a set of

statistics whose expectations depend on the parameters θ and γ. Then we equate the

theoretical moments with sample moments and get the estimators of the parameters. In

the expectation of second moment allele frequency, the parameter γ does not appear.

This can be seen from the equation (2.5) which does not have γ in its expression.

But the parameter γ appears in the expression of third or higher order moments of

allele frequencies. The parameter θ appears in second or higher order moments of allele

frequencies. Here consider two statistics that are based on third order sample moments

of allele frequencies. To find the third order moments of the frequency of the allele Ak,

we need to use the relation

E(xij,kxi′j′,kxi′′j′′,k) =






γpk + 3(θ − γ)p2
k + (1 − 3θ + 2γ)p3

k if i = i′ = i′′

θp2
k + (1 − θ)p3

k if i = i′ 6= i′′

p3
k if i 6= i′ 6= i′′.

(2.13)

The above equation (2.13) can also be written as

E(xij,kxi′j′,kxi′′j′′,k) =






p3
k + 3p2

k(1 − pk)θ + pk(1 − pk)(1 − 2pk)γ if i = i′ = i′′

p3
k + p2

k(1 − pk)θ if i = i′ 6= i′′

p3
k if i 6= i′ 6= i′′.

(2.14)

The above equation (2.14) shows that when an allele frequency is 0.5, then the third

order moment does not depend on γ but it depends on θ. So an allele with frequency

0.5 does not provide any information about γ.

Now we propose three statistics based on the frequency of the allele Ak to find a
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moment estimate of θ and γ. The three statistics are

S1,k =
S

(r − 1)(r − 2)

r∑

i=1

ni(p̃i,k − p̃w,k)
3,

S2,k =
r

(r − 1)
∑r

i=1(ni − 1)

r∑

i=1

n2
i p̃i,k(1 − p̃i,k)(p̃i,k − p̃w,k), and (2.15)

S3,k =
1∑r

i=1(ni − 1)(ni − 2)

r∑

i=1

n2
i p̃i,k(1 − p̃i,k)(1 − 2p̃i,k).

Using the equations (2.14) we find the estimate of these three statistics and they are

E(S1,k) = uk(nc2 + 3nc3θ + nc4γ),

E(S2,k) = uk[
r(nc1 − 1)

S − r
+

r(nc5 − 4nc1 + 3)

S − r
θ − r(nc5 − 3nc1 + 2)

S − r
γ], and (2.16)

E(S3,k) = uk(1 − 3θ + 2γ),

where uk = pk(1 − pk)(1 − 2pk) and

nc2 =
1

(r − 1)(r − 2)
(S

r∑

i=1

1

ni

− 3r + 2),

nc3 =
1

(r − 1)(r − 2)
(Sr − S

r∑

i=1

1

ni

− 3S + 3r +
2
∑r

i=1 n2
i

S
− 2),

nc4 =
1

(r − 1)(r − 2)
(S2 − 3Sr + 2S

r∑

i=1

1

ni

− 3

r∑

i=1

n2
i + 9S − 6r (2.17)

+
2
∑r

i=1 n3
i

S
− 6

∑r
i=1 n2

i

S
+ 4), and

nc5 =
1

r − 1
(

r∑

i=1

n2
i −

∑r

i=1 n3
i

S
).

The expectations defined in (2.16) are 0 if the frequency of the allele Ak is 0.5. So under

this situation these expectations are not informative about the parameters θ and γ. It

is also important to note that we need at least three populations to have information

28



about the parameters from our statistics. In principle, from the three equations given

in the equation (2.16), we can find three statistics T1,k, T2,k and T3,k that are linear

combinations of S1,k, S2,k and S3,k such that

E(T1,k) = pk(1 − pk)(1 − 2pk),

E(T2,k) = pk(1 − pk)(1 − 2pk)θ, and (2.18)

E(T3,k) = pk(1 − pk)(1 − 2pk)γ.

After doing some algebra we get

T1,k = [
2r(nc5 − 4nc1 + 3)

S − r
− 3r(nc5 − 3nc1 + 2)

S − r
]S1,k + (−3nc4 − 6nc3)S2,k

+[−3nc3

r(nc5 − 3nc1 + 2)

S − r
− nc4

r(nc5 − 4nc1 + 3)

S − r
]S3,k,

T2,k = [−r(nc5 − 3nc1 + 2)

S − r
− 2r(nc1 − 1)

S − r
]S1,k + (2nc2 − nc4)S2,k

+[nc4

r(nc1 − 1)

S − r
+ nc2

r(nc5 − 3nc1 + 2)

S − r
]S3,k, and (2.19)

T3,k = [−3r(nc1 − 1)

S − r
− r(nc5 − 4nc1 + 3)

S − r
]S1,k + (3nc3 + 3nc2)S2,k

+[nc2

r(nc5 − 4nc1 + 3)

S − r
− 3nc3

r(nc1 − 1)

S − r
]S3,k.

When T1,k 6= 0 then using ratio estimation theory we get our moment estimator of θ

and γ as

θ̂M,k =
T2,k

T1,k

I(T1,k 6= 0) and (2.20)

γ̂M,k =
T3,k

T1,k

I(T1,k 6= 0). (2.21)

The above estimators are based on the frequency data of allele Ak. For each allele

frequency data at each locus we have one new estimator of θ and γ. Weir-Cockerham

and Robertson-Hill proposed two different methods for combing the information from
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different alleles. Here we use both the combining methods to get two sets of estimators.

The expectations of the statistics T1,k, T2,k, T3,k are positive when p̃k < 0.5 and are

negative when p̃k > 0.5. There is only one allele that has frequency greater than 0.5.

If we add T1,k over ∀k, then there is a chance that we might end up getting some value

very close to 0. For two alleles we always get
∑2

k=1 T1,k = 0. Under these situations

the estimators do not work well if we get the final estimator using Weir-Cockerham’s

weight. So we exclude the allele that has observed frequency greater than 0.5 and work

with the rest independent allele frequencies. We combine the estimators corresponding

to different alleles and different loci by our modified method and get the final estimators

θ̂1,M =

∑s

k=1 T2,kI(p̃w,k < 0.5)∑s
k=1 T1,kI(p̃w,k < 0.5)

,

θ̂2,M =
1

s

s∑

k=1

T2,k

T1,k

I(T1,k 6= 0), (2.22)

γ̂1,M =

∑s
k=1 T3,kI(p̃w,k < 0.5)∑s
k=1 T1,kI(p̃w,k < 0.5)

, and

γ̂2,M =
1

s

s∑

k=1

T3,k

T1,k

I(T1,k 6= 0).

If we have data from L independent loci then our final estimators would be

θ̂1,M =

∑L
l=1 T2,l∑L
l=1 T1,l

, θ̂2,M =
1

L

L∑

l=1

θ̂2,M,l, (2.23)

γ̂1,M =

∑L

l=1 T3,l∑L

l=1 T1,l

, and γ̂2,M =
1

L

L∑

l=1

γ̂2,M,l, (2.24)

where θ2,M,l and γ2,M,l are the estimators of θ and γ respectively based on the lth locus.

T1,l, T2,l and T3,l are the sum of T1,k, T2,k and T3,k respectively over different alleles that

has frequency less than 0.5 at the locus l. For equal sample size our statistics reduce

to Weir’s (1994) statistics. We have found that the expressions for the expectations of

the statistics derived by us are not identical to the expressions derived by Weir. For
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equal sample sizes case the equation (2.19) reduces to

T1,k = S1,k + 3(n − 1)S2,k + (n − 1)(n − 2)S3,k,

T2,k = S1,k + (n − 3)S2,k − (n − 2)S3,k, and (2.25)

T3,k = S1,k − 3S2,k + 2S3,k.

2.5.2 Estimators with Probabilistic Interpretation

In this section we provide estimators of θ and γ using a Probabilistic Interpretation.

Here we work with the same set up as in the previous sections. If we choose two

alleles from a population then the probability that both the alleles are of the type

Ak, depends on the parameter θ. The probability of getting three Ak alleles from a

population depends on θ and γ. The above two probabilities depend on the expected

frequency of Ak, pk, as well. We explore these probabilities and find estimators of the

parameters θ and γ. Now we define a new set of parameters

πi,j,k = Esub−pop[Pr(i allele(s) from j population(s) being of the type Ak)]. (2.26)

We are interested in the parameters π1,1,k, π2,1,k, π2,2,k, π3,1,k, π3,2,k and π3,3,k. Using

the population genetics theory we get

π1,1,k = pk, π2,2,k = p2
k, π3,3,k = p3

k,

π2,1,k = p2
k + (pk − p2

k)θ, π3,2,k = p3
k + (p2

k − p3
k)θ, and (2.27)

π3,1,k = p3
k + 3(p2

k − p3
k)θ + (pk − 3p2

k + 2p3
k)γ.

After doing some algebra using the equations in (2.27) we get

θ =
π2,1,k − π2,2,k

π1,1,k − π2,2,k

, θ =
π3,2,k − π3,3,k

π2,2,k − π3,3,k

and (2.28)

γ =
π3,1,k − 3π3,2,k + 2π3,3,k

π1,1,k − 3π2,2,k + 2π3,3,k

. (2.29)
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From the equations (2.28) and (2.29), the estimates of the parameters θ and γ based

on the kth allele frequency at locus A are

θ̂1,P,k =
π̂2,1,k − π̂2,2,k

π̂1,1,k − π̂2,2,k

, θ̂2,P,k =
π̂3,2,k − π̂3,3,k

π̂2,2,k − π̂3,3,k

and (2.30)

γ̂P,k =
π̂3,1,k − 3π̂3,2,k + 2π̂3,3,k

π̂1,1,k − 3π̂2,2,k + 2π̂3,3,k

. (2.31)

Now we have to find the estimates of π1,1,k, π2,1,k, π2,2,k, π3,1,k, π3,2,k and π3,3,k. Giving

equal weights to each population, the estimates of the probabilities are

π̂1,1,k =
1

r

r∑

i=1

p̃k,i = p̃uw,k,

π̂2,1,k =
1

r

r∑

i=1

nip̃
2
k,i − p̃k,i

ni − 1
,

π̂2,2,k =
(
∑r

i=1 p̃k,i)
2 − ∑r

i=1 p̃2
k,i

r(r − 1)
, (2.32)

π̂3,1,k =
1

r

r∑

i=1

n2
i p̃

3
k,i − 3nip̃

2
k,i + 2p̃k,i

(ni − 1)(ni − 2)
,

π̂3,2,k =
1

r(r − 1)

[ r∑

i=1

nip̃
2
k,i − p̃k,i

ni − 1

] r∑

i=1

p̃k,i −
1

r(r − 1)

r∑

i=1

nip̃
3
k,i − p̃2

k,i

ni − 1
, and

π̂3,3,k =
(
∑r

i=1 p̃k,i)
3 − 3(

∑r

i=1 p̃k,i)(
∑r

i=1 p̃2
k,i) + 2(

∑r

i=1 p̃3
k,i)

r(r − 1)(r − 2)
.

In theory the equation (2.29) does not exist when pk = 0.5. When pk = 0.5, then the

equation provides γ = 0
0

which does not make any sense. This can be observed from

the equation (2.14) which says that the third moment of observed frequency of an allele

does not involve γ if the allele frequency is 0.5. So when pk = 0.5, we can not estimate

γ from the frequency data of Ak. At this point we have estimators of θ and γ based

on a single allele frequency. There are several methods to combine the estimators

corresponding different allele frequencies to get a final estimator. We consider two

different approaches and get two different sets of estimators. The first approach was
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proposed by Weir and Cockerham (1984) and they combined the estimates by taking

the ratio of the sum of the numerators of each estimator to the sum of the denominators

of each estimator. Suppose there are L independent loci and the lth locus has sl alleles.

Then the final estimates based on the Weir-Cockerham’s method are

θ̂1,P =

∑L
l=1

∑sl

k=1(π̂2,1,k,l − π̂2,2,k,l)∑L

l=1

∑sl

k=1(π̂1,1,k,l − π̂2,2,k,l)
, (2.33)

θ̂2,P =

∑L

l=1

∑sl

k=1(π̂3,2,k,l − π̂3,3,k,l)∑L

l=1

∑sl

k=1(π̂2,2,k,l − π̂3,3,k,l)
, and (2.34)

γ̂1,P =

∑L

l=1

∑sl

k=1(π̂3,1,k,l − 3π̂3,2,k,l + 2π̂3,3,k,l)I(p̃w,k,l < 0.5)
∑L

l=1

∑sl

k=1(π̂1,1,k,l − 3π̂2,2,k,l + 2π̂3,3,k,l)I(p̃w,k,l < 0.5)
, (2.35)

where π̂1,1,k,l, π̂2,1,k,l, π̂2,2,k,l, π̂3,1,k,l, π̂3,2,k,l and π̂3,3,k,l are estimate of π1,1,k, π2,1,k, π2,2,k,

π3,1,k, π3,2,k and π3,3,k respectively for the lth locus. p̃w,k,l is the weighted average

frequency of the allele Ak at the lth locus.

On the other hand, Robertson and Hill (1984) combined the estimates by taking a

weighted average of the ratio estimators over all alleles at different locus. Using this

method we get another set of estimators

θ̂3,P =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂2,1,k,l − π̂2,2,k,l)

(π̂1,1,k,l − π̂2,2,k,l)
, (2.36)

θ̂4,P =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂3,2,k,l − π̂3,3,k,l)

(π̂2,2,k,l − π̂3,3,k,l)
, and (2.37)

γ̂2,P =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂3,1,k,l − 3π̂3,2,k,l + 2π̂3,3,k,l)

(π̂1,1,k,l − 3π̂2,2,k,l + 2π̂3,3,k,l)
I(denominator 6= 0), (2.38)

where π̂1,1,k,l, π̂2,1,k,l, π̂2,2,k,l, π̂3,1,k,l, π̂3,2,k,l are π̂3,3,k,l are estimates of π1,1,k, π2,1,k, π2,2,k,

π3,1,k, π3,2,k and π3,3,k respectively for the lth locus.

When sample sizes are equal then θ̂1,P is exactly the same as θWC, the classical

estimator given by Weir and Cockerham (1984). In appendix A we have shown the

result algebraically. When sample sizes are not equal then the equality does not hold.
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2.6 New Estimators of Population-specific θ and γ

Long and Kittles (2003) and Balding (2003) showed the overall estimates of descent

measures fail to describe the important local patterns and amount of genetic variance

because of demographic variances among populations. In this section we assume the

value of θ and γ in the ith population is θi and γi respectively. Researchers provided

estimators of θi using different methods such as MOM, ML, and Bayesian methods.

In the next section we describe new estimates of the population-specific θ using a

probabilistic interpretation. In literature there is no estimator for the population-

specific γ. We propose several estimators of the population-specific γ.

2.6.1 Estimators with Probabilistic Interpretation

In this section we provide estimators of population-specific θ and γ using a probabilistic

interpretation. For estimating θi and γi we define the following parameters

π2,1,k,i = Esub−pop[Pr(Two alleles from ith population are of the type Ak)],

π3,1,k,i = Esub−pop[Pr(Three alleles from ith population are of the type Ak)], (2.39)

π3,2,k,i = Esub−pop[Pr(Two alleles from ith population and one allele from another

population are of the type Ak)].

We also need to consider three more parameters, π1,1,k, π2,2,k and π3,3,k that are defined

in the equation (2.26). The relation of the above parameters with expected allele

frequencies and population-specific descent measures can be found from the equation

E(xij,kxi′j′,kxi′′j′′,k) =






p3
k + 3p2

k(1 − pk)θi + pk(1 − pk)(1 − 2pk)γi if i = i′ = i′′

p3
k + p2

k(1 − pk)θi if i = i′ 6= i′′

p3
k if i 6= i′ 6= i′′,

(2.40)
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and the relations are

π1,1,k = pk, π2,2,k = p2
k, π3,3,k = p3

k,

π2,1,k,i = p2
k + (pk − p2

k)θi, π3,2,k,i = p3
k + (p2

k − p3
k)θi, and (2.41)

π3,1,k,i = p3
k + 3(p2

k − p3
k)θi + (pk − 3p2

k + 2p3
k)γi.

After doing some algebra using the equations in (2.41) we get

θi =
π2,1,k,i − π2,2,k

π1,1,k − π2,2,k

, θi =
π3,2,k,i − π3,3,k

π2,2,k − π3,3,k

, and (2.42)

γi =
π3,1,k,i − 3π3,2,k,i + 2π3,3,k

π1,1,k − 3π2,2,k + 2π3,3,k

. (2.43)

From the equations (2.42) and (2.43), the estimates of the parameters θi and γi based

on the frequency data of the allele Ak are

θ̂1,P,k,i =
π̂2,1,k,i − π̂2,2,k

π̂1,1,k − π̂2,2,k

, θ̂2,P,k,i =
π̂3,2,k,i − π̂3,3,k

π̂2,2,k − π̂3,3,k

, and (2.44)

γ̂P,k,i =
π̂3,1,k,i − 3π̂3,2,k,i + 2π̂3,3,k

π̂1,1,k − 3π̂2,2,k + 2π̂3,3,k

. (2.45)

Now we have to find the estimates of π1,1,k, π2,1,k,i, π2,2,k, π3,1,k,i, π3,2,k,i and π3,3,k. The

estimates of π1,1,k, π2,2,k and , π3,3,k are given in the equation (2.32). Giving equal

weights to each population, we get the estimates of the other probabilities as

π̂2,1,i,k =
nip̃

2
k,i − p̃k,i

ni − 1
,

π̂3,1,i,k =
n2

i p̃
3
k,i − 3nip̃

2
k,i + 2p̃k,i

(ni − 1)(ni − 2)
, and (2.46)

π̂3,2,i,k =
1

(r − 1)

nip̃
2
k,i − p̃k,i

ni − 1
(

r∑

j=1

p̃k,j − p̃k,i).
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In theory the equation (2.29) does not exist when pk = 0.5. When pk = 0.5, then

the equation provides γi = 0
0

which does not make any sense. So when pk = 0.5,

we can not estimate γi from the frequency data of the allele Ak. At this point we

have estimators of θi and γi based on a single allele frequency. There are several

methods to combine the estimators corresponding different allele frequencies to get a

final estimator. Weir and Cockerham (1984) combined the estimates by taking the ratio

of the sum of the numerators of each estimator to the sum of the denominators of each

estimator. Suppose there are L independent loci and the lth locus has sl alleles. Then

the final estimates based on the Weir-Cockerham’s method are

θ̂1,P,i =

∑L

l=1

∑sl

k=1(π̂2,1,k,i,l − π̂2,2,k,l)∑L

l=1

∑sl

k=1(π̂1,1,k,l − π̂2,2,k,l)
, (2.47)

θ̂2,P,i =

∑L

l=1

∑sl

k=1(π̂3,2,k,i,l − π̂3,3,k,l)∑L
l=1

∑sl

k=1(π̂2,2,k,l − π̂3,3,k,l)
, and (2.48)

γ̂1,P,i =

∑L
l=1

∑sl

k=1(π̂3,1,k,i,l − 3π̂3,2,k,i,l + 2π̂3,3,k,l)I(p̃w,k,l < 0.5)
∑L

l=1

∑sl

k=1(π̂1,1,k,l − 3π̂2,2,k,l + 2π̂3,3,k,l)I(p̃w,k,l < 0.5)
. (2.49)

On the other hand, Robertson and Hill (1984) combined the estimates by taking

weighted average of the ratio estimators over all alleles at different locus. Using

Robertson-Hill’s method we get another set of estimators

θ̂3,P,i =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂2,1,k,i,l − π̂2,2,k,l)

(π̂1,1,k,l − π̂2,2,k,l)
, (2.50)

θ̂4,P,i =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂3,2,k,i,l − π̂3,3,k,l)

(π̂2,2,k,l − π̂3,3,k,l)
, and (2.51)

γ̂2,P,i =
1

L

L∑

l=1

1

sl

sl∑

k=1

(π̂3,1,k,i,l − 3π̂3,2,k,i,l + 2π̂3,3,k,l)

(π̂1,1,k,l − 3π̂2,2,k,l + 2π̂3,3,k,l)
I(denominator 6= 0). (2.52)

where π̂1,1,k,l, π̂2,1,k,i,l, π̂2,2,k,l, π̂3,1,k,i,l, π̂3,2,k,i,l and π̂3,3,k,l are the estimate of π1,1,k, π2,1,i,k,

π2,2,k, π3,1,i,k, π3,2,i,k and π3,3,k respectively for the lth locus. p̃w,k,l is the weighted average

frequency of the allele Ak at the lth locus.

36



2.6.2 Method of Moments Estimator

In this section we propose a new estimator of population-specific γ. The estimator is

based on the MOM approach. For estimating γi we propose a new statistic

S3,k,i =
n2

i

(ni − 1)(ni − 2)
p̃i,k(1 − p̃i,k)(1 − 2p̃i,k), (2.53)

and the expectation of the statistic is

E(S3,k,i) = pk(1 − pk)(1 − 2pk)(1 − 3θi + 2γi). (2.54)

Let us assume θ̂WH,i is the moment estimator of θi proposed by Weir and Hill (2002).

Since this is a moment estimator, the bias of the estimator is close to zero. So we can

assume E(θ̂WH,i) ≈ θi. Using ratio estimate we get

E
[ ∑s

k=1 S3,k,i

1 − 3
∑s

k=1 π̂2,2,k + 2
∑s

k=1 π̂3,3,k

+ 1.5θ̂WH,i − 0.5
]

≈ E(
∑s

k=1 S3,k,i)

2[1 − 3E(π2,2) + 2E(π3,3)]
+ E(1.5θWH,i) − 0.5

≈ (1 − 3
∑s

k=1 p2
k + 2

∑s
k=1 p3

k)(1 − 3θi + 2γi)

2(1 − 3
∑s

k=1 p2
k + 2

∑s
k=1 p3

k)
+ 1.5θi − 0.5

= γi.

So a moment estimator of γi based on locus A is

γ̂M,i =

∑s

k=1 S3,k,i

1 − 3
∑s

k=1 π̂2,2,k + 2
∑s

k=1 π̂3,3,k

+ 1.5θ̂WH,i − 0.5. (2.55)

2.7 Bias and Variance of the Estimators

In this section we discuss the sampling properties of different estimators that are given

in this chapter. We mainly concentrate on the bias and variance of the estimators. The

expressions for bias and variance of the estimators are very complex. Theoretically, we
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can find expressions for bias and variance of the estimators which are multi-allelic, and

have unequal sample sizes; in practice they are intractable. So we restrict our research

to a simple situation. We assume that there are L independent loci and each locus

has two different allelic forms. So the estimators of the descent measures are based

on one allelic frequency at each locus. Our expressions for bias and variance will be

developed based on a locus A and then extended them for a multi-locus situation. The

locus A has two alleles, A and a, with expected frequencies pA and 1− pA respectively.

Without loss of generality we work with the frequency of the allele A, pA. We also

assume that each population has the same sample size, n. The descent measures have

the same value in different populations.

Our estimators are based on the second and third moments of allele frequencies.

The bias and variance of an estimator that is based on second order allele frequencies

involve second, third, and fourth order descent measures. If the estimator is based on

third order allele frequencies then the bias and variance involve second, third, fourth,

fifth, and sixth order descent measures. In the literature we have descriptions about

second, third, and fourth order descent measures. Here we define fifth and sixth order

decent measures. There are two different types of fifth order descent measure and four

different sixth order descent measures. We parameterize all these descent measures as:

η = Esub−pop[Pr(Five random alleles are ibd)],

∆3,2 = Esub−pop[Pr(Three and two random allele are ibd)],

τ = Esub−pop[Pr(Six random alleles are ibd)],

∆4,2 = Esub−pop[Pr(Four and two random alleles are ibd)], (2.56)

∆3,3 = Esub−pop[Pr(Two sets of three random alleles are ibd)], and

∆2,2,2 = Esub−pop[Pr(Three random pairs of alleles are ibd)].

Let us denote P ∗(an event) = Esub−pop[Pr(an event)]. Now suppose we have five/six

alleles of the type A from a population. Then after some tedious algebra which is
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skipped here we get the relations

P ∗(A, A, A, A, A) = p5
A + pA(1 − pA)(1 − 2pk)(1 − 12pA + 12p2

A)η

+10p2
A(1 − pA)2(1 − 2pA)∆3,2 + 15p3

A(1 − pA)2∆2,2

+5p2
A(1 − pA)(1 − 6pA + 6p2

A)δ (2.57)

+10p3
A(1 − pA)(1 − 2pA)γ + 10p4

A(1 − 10pA)θ and

P ∗(A, A, A, A, A, A) = p6
A + pA(1 − pA)(1 − 30pA + 135p2

A − 210p3
A + 105p4

A)τ

+15p2
A(1 − pA)2(1 − 5pA + 5p2

A)∆4,2

+15p3
A(1 − pA)3∆2,2,2 + 10p2

A(1 − pA)(1 − 2pA)2∆3,3

+6p2
k(1 − pA)(1 − 2pA)(1 − 12pA + 12p2

A)η (2.58)

+60p3
A(1 − pA)2(1 − 2pA)∆3,2 + 45p4

A(1 − pA)2∆2,2

+15p3
A(1 − pA)(1 − 6pA + 6p2

A)δ

+20p4
A(1 − pA)(1 − 2pA)γ + 15p5

A(1 − pA)θ.

Now we define the data at locus A as follows:

xij,A =





1 if the jth allele in ith population is A

0 otherwise

The population-specific (ith population) and overall frequency of the allele A are

p̃i,A =
1

n

n∑

j=1

xij,k and p̃A =
1

r

r∑

i=1

p̃i,A. (2.59)

The first six raw moments of the frequency of the allele Ak in a population are

µ′
1 = E(p̃A,i), µ′

2 = E(p̃2
A,i), µ′

3 = E(p̃3
A,i),

µ′
4 = E(p̃4

A,i), µ′
5 = E(p̃5

A,i), and µ′
6 = E(p̃6

A,i).
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The first six central moments of the frequency of the allele Ak in a population are

µ1 = E[(p̃A,i − pA)] = 0,

µ2 = E[(p̃A,i − pA)2] = µ′
2 − p2

A,

µ3 = E[(p̃A,i − pA)3] = µ′
3 − 3pAµ′

2 + 2p3
A,

µ4 = E[(p̃A,i − pA)4] = µ′
4 − 4pAµ′

3 + 6p2
Aµ′

2 − 3p4
A, (2.60)

µ5 = E[(p̃A,i − pA)5] = µ′
5 − 5pAµ′

4 + 10p2
Aµ′

3 − 10p3
Aµ′

2 + 4p5
A, and

µ6 = E[(p̃A,i − pA)6] = µ′
6 − 6pAµ′

5 + 15p2
Aµ′

4 − 20p3
Aµ′

3 + 15p4
Aµ′

2 − 5p6
A.

Using the results of Li (1996) and equations (2.57), (2.58) and (2.60) we get the ex-

pressions for first six raw moments of allele frequencies for a population as

µ′
1 = pA

µ′
2 = p2

A + pA(1 − pA)θ′,

µ′
3 = p3

A + 3p2
A(1 − pA)θ′ + pA(1 − pA)(1 − 2pA)γ′,

µ′
4 = p4

A + 6p3
A(1 − pA)θ′ + 4p2

A(1 − pA)(1 − 2pA)γ′ + 3p2
A(1 − pA)2∆′

2,2

+pA(1 − pA)(1 − 6pA + 6p2
A)δ′,

µ′
5 =

1

n4
pA +

15

n3
(1 − 1

n
)
[
p2

A + pA(1 − pA)θ
]

+
25

n2
(1 − 1

n
)(1 − 2

n
)
[
p3

A

+3p2
A(1 − pA)θ + pA(1 − pA)(1 − 2pA)γ

]
+

10

n
(1 − 1

n
)(1 − 2

n
)(1 − 3

n
)
[
p4

A

+6p3
A(1 − pA)θ + 4p2

A(1 − pA)(1 − 2pA)γ + 3p2
A(1 − pA)2∆2,2

+pA(1 − pA)(1 − 6pA + 6p2
A)δ

]
+ (1 − 1

n
)(1 − 2

n
)(1 − 3

n
)(1 − 4

n
)
[
p5

A

+pA(1 − pA)(1 − 2pA)(1 − 12pA + 12p2
A)η + 10p2

A(1 − pA)2(1 − 2pA)∆3,2

+5p2
A(1 − pA)(1 − 6pA + 6p2

A)δ + 15p3
A(1 − pA)2∆2,2

+10p3
A(1 − pA)(1 − 2pA)γ + 10p4

A(1 − pA)θ
]
, and

(For continuation see next page)
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µ′
6 =

1

n5
pA +

31

n4
(1 − 1

n
)
[
p2

A + pA(1 − pA)θ
]

+
90

n3
(1 − 1

n
)(1 − 2

n
)
[
p3

A

+3p2
A(1 − pA)θ + pA(1 − pA)(1 − 2pA)γ

]
+

65

n2
(1 − 1

n
)(1 − 2

n
)(1 − 3

n
)
[
p4

A

+6p3
A(1 − pA)θ + 4p2

A(1 − pA)(1 − 2pA)γ + 3p2
A(1 − pA)2∆2,2

+pA(1 − pA)(1 − 6pA + 6p2
A)δ

]
+

15

n
(1 − 1

n
)(1 − 2

n
)(1 − 3

n
)(1 − 4

n
)
[
p5

A

+pA(1 − pA)(1 − 2pA)(1 − 12pA + 12p2
A)η + 10p2

A(1 − pA)2(1 − 2pA)∆3,2

+5p2
A(1 − pA)(1 − 6pA + 6p2

A)δ + 15p3
A(1 − pA)2∆2,2

+10p3
A(1 − pA)(1 − 2pA)γ + 10p4

A(1 − pA)θ
]

+(1 − 1

n
)(1 − 2

n
)(1 − 3

n
)(1 − 4

n
)(1 − 5

n
)
[
p6

A + 45p4
A(1 − pA)2∆2,2

+pA(1 − pA)(1 − 30pA + 135p2
A − 210p3

A + 105p4
A)τ (2.61)

+15p2
A(1 − pA)2(1 − 5pA + 5p2

A)∆4,2 + 10p2
k(1 − pk)(1 − 2pA)2∆3,3

+15p3
A(1 − pA)3∆2,2,2 + 6p2

A(1 − pA)(1 − 2pA)(1 − 12pA + 12p2
A)η

+60p3
A(1 − pA)2(1 − 2pA)∆3,2 + 15p3

A(1 − pA)(1 − 6pA + 6p2
A)δ

+20p4
A(1 − pA)(1 − 2pA)γ + 15p5

A(1 − pA)θ
]
,

where,

θ′ =
1

n
+ (1 − 1

n
)θ,

γ′ =
1

n2
+

3

n
(1 − 1

n
)θ + (1 − 1

n
)(1 − 2

n
)γ,

δ′ =
1

n3
+

7

n2
(1 − 1

n
)θ +

6

n
(1 − 1

n
)(1 − 2

n
)γ + (1 − 1

n
)(1 − 2

n
)(1 − 3

n
)δ, and

∆′
2,2 =

1

n2
+

2

n
(1 − 1

n
)(1 +

1

n
)θ +

4

n
(1 − 1

n
)(1 − 2

n
)γ + (1 − 1

n
)(1 − 2

n
)(1 − 3

n
)∆2,2.

The first six central moments can be obtained from the equations (2.60) and (2.61).

The expressions for the central moments become simple for large sample sizes. When
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n → ∞ the first six central moments are

µ1 = 0,

µ2 = pA(1 − pA)θ,

µ3 = pA(1 − pA)(1 − 2pA)γ,

µ4 = 3p2
A(1 − pA)2∆2,2 + pA(1 − pA)(1 − 6pA + 6p2

A)δ, (2.62)

µ5 = pA(1 − pA)(1 − 2pA)(1 − 12pA + 12p2
A)η + 10p2

A(1 − pA)2(1 − 2pA)∆3,2, and

µ6 = pA(1 − pA)(1 − 30pA + 135p2
A − 210p3

A + 105p4
A)τ + 15p2

A(1 − pA)2(1 − 5pA

+5p2
A)∆4,2 + 10p2

A(1 − pA)(1 − 2pA)2∆3,3 + 15p3
A(1 − pA)3∆2,2,2.

We use Taylor series expansion for finding the variance and covariances of second and

third order polynomials of the allele frequencies. Suppose f(x1, x2, · · · , xr) is a third

order polynomial of x1, x2, · · · , xr. The Taylor series coefficients of f are,

gi =
∂f(x′)

∂x′
i

|x′=a, gii =
∂2f(x′)

∂x′2
i

|x′=a, gii′ =
∂2f(x′)

∂x′
i∂x′

i′

|x′=a, (2.63)

giii =
∂3f(x′)

∂x′3
i

|x′=a, giii′ =
∂3f(x′)

∂x′2
i ∂x′

i′

|x′=a, and gii′i′′ =
∂3f(x′)

∂x′
i∂x′

i′∂x′
i′′

|x′=a.

The Taylor series expansion of f(x1, x2, · · · , xr) is

f(x1, x2, · · · , xr) = f(a1, a2, · · · , ar) +

r∑

i=1

gi(xi − ai) +
1

2

r∑

i=1

gii(xi − ai)
2

+
1

2

r∑∑

i6=i′=1

gii′(xi − ai)(xi′ − ai′) +
1

6

r∑

i=1

giii(xi − ai)
3

+
1

2

r∑∑

i6=i′=1

giii′(xi − ai)
2(xi′ − ai′) (2.64)

+
1

6

r∑∑ ∑

i6=i′ 6=i′′=1

gii′i′′(xi − ai)(xi′ − ai′)(xi′′ − ai′′).
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If xi’s are independent random variable with E(xi) = ai, then after some tedious

calculation we find the variance of f(x1, x2, · · · , xr). The variance is

Var(f) = (
1

36

r∑

i=1

g2
iii)µ6 + (

1

6

r∑

i=1

giigiii)µ5 + (
1

4

r∑

i=1

g2
ii +

1

3

r∑

i=1

gigiii)µ4

+(
r∑

i=1

gigii)µ3 + (
r∑

i=1

g2
i )µ2 + (

1

4

r∑ ∑

i6=i′=1

g2
iii′ +

1

6

r∑ ∑

i6=i′=1

giiigii′i′)µ4µ2

+(
1

4

r∑∑

i6=i′=1

giii′gii′i′ −
1

36

r∑

i=1

g2
iii)µ

2
3 + (

1

4

r∑ ∑∑

i6=i′ 6=i′′=1

giii′gi′i′′i′′ (2.65)

+
1

6

r∑∑ ∑

i6=i′ 6=i′′=1

g2
ii′i′′)µ

3
2 + (

r∑ ∑

i6=i′=1

gii′giii′ +
1

2

r∑ ∑

i6=i′=1

giigii′i′ −
1

6

r∑

i=1

giigiii)µ3µ2

+(
1

2

r∑∑

i6=i′=1

g2
ii′ −

1

4

r∑

i=1

g2
ii +

r∑∑

i6=i′=1

gigii′i′)µ
2
2.

Let us assume another function f1(x1, x2, · · · , xr) with the Taylor series coefficients g1
i ,

g1
ii, g1

ii′ , g1
iii, g1

iii′ . If x1, x2, · · · , xr are independent random variables with E(xi) = ai

then the covariance between f(x1, x2, · · · , xr) and f1(x1, x2, · · · , xr) is

Covar(f, f1) = (
1

36

r∑

i=1

giiig
1
iii)µ6 + (

1

12

r∑

i=1

giig
1
iii +

1

12

r∑

i=1

giiig
1
ii)µ5 + (

1

4

r∑

i=1

giig
1
ii

+
1

6

r∑

i=1

gig
1
iii +

1

6

r∑

i=1

giiig
1
i )µ4 + (

1

2

r∑

i=1

gig
1
ii +

1

2

r∑

i=1

giig
1
i )µ3 + (

r∑

i=1

gig
1
i )µ2

+(
1

4

r∑

i6=i′

giii′g
1
iii′ +

1

12

r∑

i6=i′=1

giiig
1
ii′i′ +

1

12

r∑

i6=i′=1

gii′i′g
1
iii)µ4µ2 + (

1

4

r∑

i6=i′

giii′g
1
ii′i′

− 1

36

r∑

i=1

giiig
1
iii)µ

2
3 + (

1

6
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1

4

r∑
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2 + (

1

2
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gii′g
1
iii′
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1

2

r∑
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giii′g
1
ii′ +

1

4
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giig
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1
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r∑
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1
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1
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r∑
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giig
1
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r∑

i=1

giiig
1
ii)µ3µ2 + (

1

2

r∑
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gii′g
1
ii′ −

1

4

r∑

i=1

giig
1
ii +

1

2

r∑

i6=i′

gig
1
ii′i′ +

1

2

r∑

i6=i′

gii′i′g
1
i )µ

2
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For ratio estimators again we use Taylor series expansion to find bias and variance of

the estimators. Suppose X̂ and Ŷ are two statistics with mean µX and µY respectively.

If the ratio estimator of some parameter ζ is

ζ̂ =
X̂

Ŷ
, (2.67)

where ζ = µX

µY
, then the bias and variance of the estimator are

Bias(ζ̂) = − 1

µ2
Y

[Covar(X̂, Ŷ ) − ζVar(Ŷ )] and (2.68)

Var(ζ̂) =
1

µ2
Y

[Var(X̂) − 2ζCovar(X̂, Ŷ ) + ζ2Var(Ŷ )]. (2.69)

Now we use equations (2.68) and (2.69) and find expressions for bias and variance of

different estimators. In the following sections we find bias and variance of different

estimators.

2.7.1 Weir-Cockerham’s Estmator

Here we find the bias and variance of Weir-Cockerham’s moment estimator of θ. Under

our set up, Weir-Cockerham’s moment estimator of θ based on locus A is

θ̂WC,A =
MSPA − MSGA

MSPA + (n − 1)MSGA

, (2.70)

where,

MSPA =
n

r − 1

r∑

i=1

(p̃i,A − p̃A)2 and MSGA =
n

r(n − 1)

r∑

i=1

p̃i,A(1 − p̃i,A).
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Using the equations (2.65) and (2.66) we get

Var(MSPA) =
n2

r

[
µ4 −

r − 3

r − 1
µ2

2

]
,

Var(MSGA) =
n2

(n − 1)2r

[
µ4 − 2(1 − 2pA)µ3 + (1 − 2pA)2µ2 − µ2

2

]
, and

Covar(MSPA, MSGA) =
n2

(n − 1)r

[
− µ4 + (1 − 2pA)µ3 + µ2

2

]
. (2.71)

After some calculations using the equations (2.68) and (2.69), we find the bias and

variance of the estimator θ̂WC,A as

Bias(θ̂WC,A) =
1

p2
A(1 − pA)2

[
{2(n − 1)θ − (n − 2)}Covar(MSPA, MSGA)

+(θ − 1)Var(MSPA) + {(n − 1)2θ + (n − 1)}Var(MSGA)
]

and

Var(θ̂WC,A) =
1

p2
A(1 − pA)2

[
(1 − θ)2Var(MSPA) + (1 − θ + nθ)2Var(MSGA)

{−2 − 2(n − 2)θ + 2(n − 1)θ2}Covar(MSPA, MSGA)
]
, (2.72)

where Var(MSPA), Var(MSGA) and Covar(MSPA, MSGA) are defined in the equa-

tion (2.71) and the central moments can be obtained from the equations (2.60) and

(2.61). The bias and variance of the estimator can be expressed in terms of descent

measures and expected frequency of the allele A, but the expressions will be very com-

plicated. We keep the expressions as above. If we assume that the sample sizes are

large then we get simpler expressions for bias and variance of θ̂WC,A. Assuming n → ∞
we get

Bias(θ̂WC,A) = − 2

r(r − 1)
θ2(1 − θ) +

(1 − 2pA)2

rpA(1 − pA)
(θ2 − γ) and (2.73)

Var(θ̂WC,A) =
1

r

[
3(1 − θ)2∆ − θ2{(r − 3)

r − 1
(1 − θ)2 + θ(2 − θ)}

]

+
1

rpA(1 − pA)

[
(−6pA + 6p2

A)δ + (1 − 2pA)2(θ3 − 2θγ)
]
. (2.74)
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When sample sizes are large Weir and Hill (2002) assumed a normal distribution for the

allele frequencies. Under this model, the higher order descent measures are functions of

θ which makes the expressions for bias and variance more simple. Assuming a normal

distribution we get

Bias(θ̂WC,A) = − 2

r(r − 1)
θ2(1 − θ) +

(1 − 2pA)2

rpA(1 − pA)
θ2, and (2.75)

Var(θ̂WC,A) =
2θ2(1 − θ)2

r − 1
− θ3(2 − θ)

r
+

(1 − 2pA)2θ3

rpA(1 − pA)
. (2.76)

Note that these expressions are different from the expressions given by Li (1996). She

used the theorem given in section 2.2.4 of Serfling (1980) and found Var(MSGA) and

Covar(MSPA, MSGA) is 0. The theorem given in Serfling (1980) assumes that the

indicator variables are independent. In our case, when θ > 0 the indicator variables

are not independent, so we can not use Serfling’s theorem. We assumed a normal

distribution for allele frequencies and direct calculations produce

Var(MSGA) =
1

r

[
2p2

A(1 − pA)2θ2 + pA(1 − pA)(1 − 2pA)2θ
]

and (2.77)

Covar(MSPA, MSGA) = −2p2
A(1 − pA)2θ2

r
. (2.78)

The above two expressions are zero only when θ = 0. The expression for bias in the

equation (2.73) shows that the bias is always negative. But the bias becomes positive

when we assume a normal distribution for the allele frequencies. We think the normal

distribution assumes γ = 0 which is not quite correct.

2.7.2 New Moment Estimator of θ

Under our simple set up, new moment estimator of θ based on locus A is

θ̂M,A =
S1,A + (n − 3)S2,A − (n − 2)S3,A

S1,A + 3(n − 1)S2,A + (n − 1)(n − 2)S3,A

, (2.79)
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where,

S1,A =
n2r

(r − 1)(r − 2)

r∑

i=1

(p̃i,A − p̃A)3,

S2,A =
n2

(r − 1)(n − 1)

r∑

i=1

p̃i,A(1 − p̃i,A)(p̃i,A − p̃A), and (2.80)

S3,k =
n2

r(n − 1)(n − 2)

r∑

i=1

p̃i,A(1 − p̃i,A)(1 − 2p̃i,A).

Using equations (2.65) and (2.66) we calculate the following variances and covariances

Var(S1,A) =
n4

r

[
µ6 −

3(2r − 5)

(r − 1)
µ4µ2 −

(r − 10)

(r − 1)
µ2

3 +
3(3r2 − 12r + 20)

(r − 1)(r − 2)
µ3

2

]
,

Var(S2,A) =
n4

r(n − 1)2

[
µ6 − 2(1 − 2pA)µ5 + (1 − 2pA)2µ4 −

(2r − 3)

(r − 1)
µ4µ2

−(r − 2)

(r − 1)
µ2

3 +
(r − 2)

(r − 1)
µ3

2 +
4(r − 2)

(r − 1)
(1 − 2pA)µ3µ2

−(r − 3)(1 − 2pA)2µ2
2/(r − 1)

]
,

Var(S3,A) =
n4

r(n − 1)2(n − 2)2

[
4µ6 − 12(1 − 2pA)µ5 + {9(1 − 2pA)2 − 4µ2

3

+4(1 − 6pA + 6p2
A)}µ4 − 6(1 − 6pA + 6p2

A)(1 − 2pA)µ3

+(1 − 6pA + 6p2
A)2µ2 − 12(1 − 2pA)µ3µ2 − 9(1 − 2pA)2µ2

2

]

Covar(S1,A, S2,A) =
n4

(n − 1)r

[
− µ6 + (1 − 2pA)µ5 +

(4r − 7)

(r − 1)
µ4µ2 +

(r − 4)

(r − 1)
µ2

3

−3(r − 2)

(r − 1)
µ3

2 −
2(2r − 5)

(r − 1)
(1 − 2pA)µ3µ2

]
, (2.81)

Covar(S1,A, S3,A) =
n4

(n − 1)(n − 2)r

[
2µ6 − 3(1 − 2pA)µ5 + (1 − 6pA + 6p2

A)µ4

−6µ4µ2 − 2µ2
3 + 12(1 − 2pA)µ3µ2 − 3(1 − 6pA + 6p2

A)µ2
2

]
, and

Covar(S2,A, S3,A) =
n4

(n − 1)2(n − 2)r

[
− 2µ6 + 5(1 − 2pA)µ5 − (4 − 18pA + 18p2

A)µ4

+(1 − 2pA)(1 − 6pA + 6p2
A)µ3 + 2µ4µ2 + 2µ2

3 − 8(1 − 2pA)µ3µ2

+(4 − 18pA + 18p2
A)µ2

2

]
.
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After some calculations using the equations (2.68) and (2.69), we find the bias and

variance of the estimator θ̂M,A. The bias and variance are

Bias(θ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)Var(S1,A)

+{9(n − 1)2θ − 3(n − 1)(n − 3)}Var(S2,A)

+{(n − 1)2(n − 2)2θ + (n − 1)(n − 2)2}Var(S3,A)

+{6(n − 1)θ − 2(2n − 3)}Covar(S1,A, S2,A) (2.82)

+{2(n − 1)(n − 2)θ − (n − 2)2}Covar(S1,A, S3,A)

+{6(n − 1)2(n − 2)θ − (n − 1)(n − 2)(n − 6)}Covar(S2,A, S3,A)
]

and

Var(θ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)2Var(S1,A)

+(3nθ − 3θ − n + 3)2Var(S2,A)

+(n − 2)2(nθ − θ + 1)Var(S3,A) + {6(n − 1)2(n − 2)θ2 (2.83)

−2(n − 1)(n − 2)(n − 6)θ − 2(n − 2)(n − 3)}Covar(S2,A, S3,A)

+{6(n − 1)θ2 − 4(2n − 3)θ + 2(n − 3)}Covar(S1,A, S2,A)

+{2(n − 1)(n − 2)θ2 − 2(n − 2)2θ − 2(n − 2)}Covar(S1,A, S3,A)
]
,

where Var(S1,A), Var(S2,A), Var(S3,A), Covar(S1,A, S2,A), Covar(S1,A, S3,A) and

Covar(S2,A, S3,A) are defined in the equations (2.81) and the central moments can be

obtained from the equations (2.60) and (2.61). The estimator can be expressed in

terms of descent measures and expected frequency of the allele A but the expressions

will be very complicated. So we keep the expressions as above. If we assume that the

sample sizes are large then we get simpler expressions for bias and variance of θM,A.
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Assuming n → ∞ and after some algebra we get

Bias(θ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)Var(S∗

1,A) + (9θ − 3)Var(S∗
2,A)

+θVar(S∗
3,A) + (6θ − 4)Covar(S∗

1,A, S∗
2,A) + (2θ − 1)Covar(S∗

1,A, S∗
3,A)

+(6θ − 1)Covar(S∗
2,A, S∗

3,A)
]

and (2.84)

Var(θ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)2Var(S∗

1,A) + (3θ − 1)2Var(S∗
2,A)

+θ2Var(S∗
3,A) + (6θ2 − 8θ + 2)Covar(S∗

1,A, S∗
2,A)

+(2θ2 − 2θ)Covar(S∗
1,A, S∗

3,A) + (6θ2 − 2θ)Covar(S∗
2,A, S∗

3,A)
]
, (2.85)

where,

Var(S∗
1,A) =

1

r
[µ6 −

3(2r − 5)

(r − 1)
µ4µ2 −

(r − 10)

(r − 1)
µ2

3 +
3(3r2 − 12r + 20)

(r − 1)(r − 2)
µ3

2],

Var(S∗
2,A) =

1

r
[µ6 − 2(1 − 2pA)µ5 + (1 − 2pA)2µ4 −

(2r − 3)

(r − 1)
µ4µ2

+
(r − 2)

(r − 1)
(µ3

2 − µ2
3 + 4(1 − 2pA)µ3µ2) −

(r − 3)

(r − 1)
(1 − 2pA)2µ2

2],

Var(S∗
3,A) =

1

r
[4µ6 − 12(1 − 2pA)µ5 + {9(1 − 2pA)2 + 4(1 − 6pA + 6p2

A)}µ4

−6(1 − 6pA + 6p2
A)(1 − 2pk)µ3 + (1 − 6pA + 6p2

A)2µ2 − 4µ2
3

−12(1 − 2pA)µ3µ2 − 9(1 − 2pk)
2µ2

2],

Covar(S∗
1,A, S∗

2,A) =
1

r2
[−µ6 + (1 − 2pA)µ5 +

(4r − 7)

(r − 1)
µ4µ2 +

(r − 4)

(r − 1)
µ2

3

−3(r − 2)

(r − 1)
µ3

2 −
2(2r − 5)

(r − 1)
(1 − 2pA)µ3µ2],

Covar(S∗
1,A, S∗

3,A) =
1

r
[2µ6 − 3(1 − 2pA)µ5 + (1 − 6pA + 6p2

A)µ4 − 6µ4µ2 − 2µ2
3

+12(1 − 2pA)µ3µ2 − 3(1 − 6pA + 6p2
A)µ2

2], and (2.86)

Covar(S∗
2,A, S∗

3,A) =
1

r
[−2µ6 + 5(1 − 2pA)µ5 − (4 − 18pA + 18p2

A)µ4

+(1 − 2pA)(1 − 6pA + 6p2
A)µ3 + 2µ4µ2 + 2µ2

3 − 8(1 − 2pA)µ3µ2.

+(4 − 18pA + 18p2
A)µ2

2].
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The first six central moments are defined in equation (2.62). When sample sizes are

large Weir and Hill (2002) assumed a normal distribution for the allele frequencies.

Under this model higher order descent measures are functions of θ which makes the

expressions for bias and variance more simple. Using standard normal theory we have

µ2 = pA(1 − pA)θ, µ4 = 3p2
A(1 − pA)2θ2, µ6 = 15p3

A(1 − pA)3θ3, and µ1 = µ3 = µ5 = 0,

which gives γ = δ = η = τ = ∆3,2 = ∆4,2 = ∆3,3 = 0; ∆ = θ2; ∆2,2,2 = θ3. Under

the normality assumption the bias and variance of θ̂M,A will remain same as the expres-

sion given in (2.84) and (2.85). But the expressions of Var(S∗
1,A), Var(S∗

2,A), Var(S∗
3,A),

Covar(S∗
1,A, S∗

2,A), Covar(S∗
1,A, S∗

3,A) and Covar(S∗
2,A, S∗

3,A) will be the functions of θ and

pA only. The relations are

Var(S∗
1,A) =

6r

(r − 1)(r − 2)
p3

A(1 − pA)3θ3,

Var(S∗
2,A) =

(10r − 8)

r(r − 1)
p3

A(1 − pA)3θ3 +
2

(r − 1)
p2

A(1 − pA)2(1 − 2pA)2θ2,

Var(S∗
3,A) =

1

r
[60p3

A(1 − pA)3θ3 + (30 − 144pA + 144p2
A)p2

A(1 − pA)2θ2

+(1 − 6pA + 6p2
A)2pA(1 − pA)θ], (2.87)

Covar(S∗
1,A, S∗

2,A) =
−6p3

A(1 − pA)3θ3

(r − 1)
,

Covar(S∗
1,A, S∗

3,A) =
12p3

A(1 − pA)3θ3

r
, and

Covar(S∗
2,A, S∗

3,A) =
−24p3

A(1 − pA)3θ3 − 4(2 − 9pA + 9p2
A)p2

A(1 − pA)2θ2

r
.

2.7.3 New Moment Estimator of γ

Under our simple set up, new moment estimators of γ based on locus A is

γ̂M,A =
S1,A − 3S2,A + 2S3,A

S1,A + 3(n − 1)S2,A + (n − 1)(n − 2)S3,A

, (2.88)
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where S1,A, S2,A and S3,A are given in the equation (2.80). The bias and variance of

γ̂M,A will be very similar to the expressions of bias and variance of θ̂M,A. After some

calculations, we find the bias and variance of the estimator γ̂M,A as follows

Bias(γ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)Var(S1,A) + {9(n − 1)2θ

+9(n − 1)}Var(S2,A) + {(n − 1)2(n − 2)2θ

−2(n − 1)(n − 2)}Var(S3,A) + {6(n − 1)θ − 3(n − 2)}Covar(S1,A, S2,A)

+{2(n − 1)(n − 2)θ − (n2 − 3n + 4)}Covar(S1,A, S3,A)

+{6(n − 1)2(n − 2)θ + 3(n − 1)(n − 4)}Covar(S2,A, S3,A)
]

and (2.89)

Var(γ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)2Var(S1,A) + 9(nθ − θ2 + 1)2Var(S2,A)

+{(n − 1)(n − 2)θ + 2}2Var(S3,A)

+{6(n − 1)θ2 − 6(n − 2)θ − 6}Covar(S1,A, S2,A)

+{2(n − 1)(n − 2)θ2 − 2(n2 − 3n + 4)θ + 4}Covar(S1,A, S3,A) (2.90)

+{6(n − 1)2(n − 2)θ2 + 3(n − 1)(n − 4)θ − 12}Var(S2,A, S3,A)
]
,

where Var(S1,A), Var(S2,A), Var(S3,A), Covar(S1,A, S2,A), Covar(S1,A, S3,A) and

Covar(S2,A, S3,A) are defined in the equation (2.81) and the central moments can be

obtained from the equations (2.60) and (2.61). If we assume that the sample sizes are

large then we get simpler expressions for bias and variance of γM,A. Assuming n → ∞
and after some algebra we get

Bias(γ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)Var(S∗

1,A) + 9θVar(S∗
2,A)

+θVar(S∗
3,A) + 6θCovar(S∗

1,A, S∗
2,A) + (2θ − 1)Covar(S∗

1,A, S∗
3,A)

+6θCovar(S∗
2,A, S∗

3,A)
]

and (2.91)
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Var(γ̂M,A) =
1

p2
A(1 − pA)2(1 − 2pA)2

[
(θ − 1)2Var(S∗

1,A) + 9θ2Var(S∗
2,A)

+θ2Var(S∗
3,A) − 6θ(1 − θ)Covar(S∗

1,A, S∗
2,A) (2.92)

−2θ(1 − θ)Covar(S∗
1,A, S∗

3,A) + 6θ2Covar(S∗
2,A, S∗

3,A)
]
,

where Var(S∗
1,A), Var(S∗

2,A), Var(S∗
3,A), Covar(S∗

1,A, S2,A), Covar(S∗
1,A, S∗

3,A) and

Covar(S∗
2,A, S∗

3,A) are defined in the equation (2.86) and the first six central moments

are defined in the equation (2.62). When sample sizes are large we assume a normal

distribution for the allele frequencies. Under normality the bias and variance of γ̂M,A

will remain same as the expression given in the equations (2.91) and (2.92). But the

expressions of Var(S∗
1,A), Var(S∗

2,A), Var(S∗
3,A), Covar(S∗

1,A, S∗
2,A), Covar(S∗

1,A, S∗
3,A) and

Covar(S∗
2,A, S∗

3,A) are given in the equation (2.87).

If we use Robertson-Hill’s method to get the final estimator for more than one

independent loci then the bias (variance) of the final estimate is the average of the

biases (variances) for locus specific estimates. On the other hand for Weir-Cockerham’s

method we need to find the variances of the numerator and denominator of the final

estimate separately. Then we can find the bias and variance of the final estimator using

the Taylor series. Finding variances of numerator and denominator are easy as the loci

are independent.

Using the same approach we can find the biases and variances for the estimators

obtained by the probabilistic approach. Here we skip the calculation and the algebraic

expressions. We can not estimate the bias and variances of these estimators. This is

because these expressions contain fourth, fifth and sixth order descent measures and

we can not estimate them. But we can estimate the empirical bias and variance of the

estimators using the MCMC method.
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Chapter 3

Testing Hypotheses about θ

3.1 Introduction

In the previous chapters we have seen the role of descent measures in the study of

population structure. We have also seen several methods for estimating the descent

measures. Among all the descent measures, the coancestry coefficient (θ) is the pa-

rameter which is the most widely used among population geneticists. Almost all the

important quantities about a population involve θ in their expressions. When the value

of θ is 0, then the expressions for the important population parameters become very

simple and easy to interpret. Thus, population geneticists are interested in checking if

they may assume the value of θ is zero. The population geneticists formed this problem

formally in terms of testing hypotheses about θ and proposed several different methods

for testing the hypothesis. The hypothesis is

H0 : θ = 0 vs. H1 : θ > 0 .

Several testing procedures have been proposed under different assumptions. Some ge-

neticists proposed a testing procedure for θ under a fixed population set up (Roff and

Bentzen, 1989; Raymond and Rousset, 1995), while others used a random population

model (Li, 1996; Dodds, 1986). The χ2 test based on an allelic contingency table has

been used for testing population differentiation. Raymond and Rousset (1995), Roff
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and Bentzen (1989) proposed an exact chi-square test based on the permutation pro-

cedure for testing population differentiation. The above two procedures are tests for

a fixed population setup. Dodds (1986) proposed a non-parametric bootstrap resam-

pling procedure for testing if θ is equal to zero. He worked with small sample sizes. Li

(1996) proposed a large sample test that is based on the Analysis of Variance. Her test

procedure assumes two alleles at each locus in the population. The last two methods

are proposed under a random population setup.

In this chapter we propose two methods for testing the hypothesis. The first ap-

proach is based on a parametric bootstrap method and works better for small sample

sizes. On the other hand, the second approach is based on the large sample properties

of allele frequencies. Both the approaches are defined for a random population and

work for any number of alleles in a particular locus. In Chapter 6, we show that our

test procedures are better than existing testing methods in terms of power.

3.2 Review on Testing Procedure

In this section we discuss the existing methods for testing population differentiation.

Some testing methods apply to fixed populations while the others apply to random

populations. We need to clarify the sampling processes involved in the population

structure, and the difference between a fixed population and a random population.

The population structure include two sampling processes, (i) statistical sampling and

(ii) genetical sampling. Different samples from one population will show different lev-

els of genetic variation. This is because of statistical sampling. If all the populations

have descended from a common founder population and remain in random mating

within populations, then the genetical sampling is also included. For the fixed popu-

lation structure, only statistical sampling is involved while in the random population

structure, both statistical and genetical sampling are involved. The fixed population

model holds when we are interested in one particular population and ignore the prior

evolutionary history. On the other hand if we want to know about the evolutionary
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history of a population, then we need to work with a random population structure. In

a random mating population we are interested in testing θ = 0. This null hypothesis

is different from the fixed population model. In a random population we focus on the

properties of θ that measures the population differentiation. Weir (1996) concluded

that the comparison between different fixed populations can be done by testing equal

allele frequencies between populations.

Four different methods are often used for testing population differentiation. The

conventional χ2 test (Nei, 1987) based on the allelic contingency table was criticized

for lack of power (Roff and Bentzen, 1989). The exact χ2 test was proposed by Roff

and Bentzen (1989). The significance level of this test procedure can be computed

by permutation procedure. The above two methods apply to the fixed population

model. Dodds (1986) proposed a distribution free approach for random population

model. It was to construct the confidence interval for θ by using bootstrap procedures

over loci. Later Li (1996) proposed a parametric test that is based on large sample

approximation. She proposed a test statistic that has an asymptotic χ2 distribution

under the null hypothesis. She worked with two alleles per locus.

Goodness of fit χ2 test

The traditional method of testing population differentiation is a χ2 test. This test is

based on an allelic contingency table under the null hypothesis with equal frequencies

between populations (Workman and Niswander, 1970; Nei, 1973). Suppose there are

two alleles at a locus, A and a. We assume there are r populations and the ith popu-

lation has ni sampled alleles. We also assume that the ith population has nA,i sampled

alleles that are of the type A and p̃A,i = nA,i/ni. The overall frequency of allele A is

p̃A that satisfies p̃A =
∑r

i=1 p̃A,i/r. From Table 3.1, the goodness of fit test statistic is

X2 =

r∑

i=1

ni(p̃A,i − p̃A)2

p̃A(1 − p̃A)
. (3.1)
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Under the null hypothesis, X2 should be distributed approximately as a χ2 random

variable with r−1 degrees of freedom. However, the χ2 contingency test is appropriate

for large samples. If the expected values within cells are very small, X2 in the equation

(3.1) may be very large and we can not use the usual tabulated value of χ2 to assess

the significance of the observed values. The general solution is to group the rare alleles

into one category (Roff and Bentzen, 1989). This approach potentially reduces the

power of the test.

Table 3.1: The contingency table for χ2 test when there are two alleles A and a

Observed Frequencies Expected Frequencies

Population A a A a Total

1 n1p̃A,1 n1(1 − p̃A,1) n1p̃A n1(1 − p̃A) n1

2 n2p̃A,2 n2(1 − p̃A,2) n1p̃A n1(1 − p̃A) n2
...

...
...

...
...

...

i nip̃A,i ni(1 − p̃A,i) n1p̃A n1(1 − p̃A) ni

...
...

...
...

...
...

r nrp̃A,r nr(1 − p̃A,r) n1p̃A n1(1 − p̃A) nr

Total Sp̃A S(1 − p̃A) S

Permutation Test

An exact χ2 test based on a permutation procedure for testing the population differen-

tiation was discussed by Roff and Bentzen (1989) and Raymond and Rousset (1995).

The permutation test is based on the fixed population model and is designed to test

the equality of allele frequencies between populations. As in Table 3.1 the marginal

numbers of the contingency table are fixed. By shuffling all the alleles randomly we can

reconstruct contingency tables with the same marginal numbers. So we can generate
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the exact probability distribution of X2 under the null hypothesis. The exact value of

the Type I error can be computed by summing up the probabilities of all the contin-

gency tables which have the same or less probability than the observed table. If this

exact probability is less than the significant level then we reject the test. Enumerating

the entire contingency table with fixed marginal numbers is possible but computa-

tionally hard when the total number of tables is large. In this situation instead of

enumerating all possible tables, a set of contingency table can be generated by a ran-

dom permutation. The proportion of permutated tables that has a probability equal

or less than the probability of the original table forms an estimate of the significance

level.

Bootstrap Resampling

The bootstrap resample is used to test the population differentiation for the random

population level. Dodds (1986) proposed this test procedure. He assumed that there

is more than one locus (L) in the data set. He constructed 100(1 − α)% confidence

interval of θ from bootstrap resampling the original data. If the confidence interval

does not contain 0, then the hypothesis θ = 0 will be rejected at the α significance level.

Bootstrapping can be done either over loci or over populations. The resampling over

populations is not recommended as it may break the population structure. Resam-

pling over independent loci address the genetical sampling from the fonder population.

Dodds proposed to resample over loci. Each time, a particular locus is sampled with

replacement, then the data from all populations at that locus are included in. We

repeat the above method L times to get a particular bootstrap sample. In this way get

bootstrap samples for B times and estimate θ each time to get a bootstrap confidence

interval of θ. In general, when the distribution of estimates of a parameter under the

null is not known, then the numerical resampling becomes a powerful tool for inference

about the estimates. The bootstrap resampling needs lot of computing power.
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A Test from ANOVA

The bootstrap resampling method is computationally intensive and time consuming. Li

(1996) proposed a testing method using the Analysis of Variance. She proposed a test

statistic with a null distribution using the large sample approximation. In this section

we discuss her method. She worked with r independent populations that are descended

from a common ancestral population. She assumed that the expected allele frequencies

in each population are the same. She also assumed that there are 2 alleles, A and a,

with expected frequency pA and 1 − pA in each population. The frequency data for

alleles are available and each population has n sampled alleles, where n is very large.

The data can be described as

xij =





1 if the jth allele in ith population is A

0 otherwise.

The frequency of the allele A in the ith population is p̃A,i. This can be found from the

data as p̃A,i =
∑n

j=1 xij/n. The overall frequency of the allele A is p̃A = 1
r

∑r

i=1 p̃A,i

The basic model assumes the absence of any disturbing force. Li (1996) defined the

following two statistics in her work:

MSP =
1

r − 1

r∑

i=1

n(p̃A,i − p̃A)2, and (3.2)

MSG =
1

r(n − 1)

r∑

i=1

np̃A,i(1 − p̃A,i). (3.3)

She found a test statistic using MSP and MSG and then found the asymptotic dis-

tribution of that statistic under null hypothesis. The starting point was to find the

asymptotic distribution of MSP and MSG under the null hypothesis. When θ = 0,

the alleles in a population are independent which means the random variables xij are

58



also independent. When θ = 0, the mean and variance of xij are

E(xij) = pA and Var(xij) = pA(1 − pA). (3.4)

Using the Central Limit Theorem (CLT) we get

√
n(p̃A,i − pA)

d→ N(0, pA(1 − pA)) as n → ∞ . (3.5)

Since the populations are independent, the p̃A,i are independent random variables. So

the equation (3.5) gives

Zn
d→ MVNr

(
0, pA(1 − pA)Ir

)
, (3.6)

where Z′
n =

√
n(p̃A,1−pA, p̃A,2−pA, · · · , p̃A,r −pA) and Ir is the r-dimensional identity

matrix. Now (Ir − r−11r1
′
r) is an idempotent matrix with trace and rank is equal to

(r − 1). From the Corollary 1.7 and the Theorem 3.5 of Serfling (1980), Li found

MSP

pA(1 − pA)
d→ χ2

r−1

r − 1
as n → ∞. (3.7)

By Chebyshev’s inequality and some algebra, Li (1996) got

MSG
p→ pA(1 − pA). (3.8)

Combining equations (3.7) and (3.8) and appealing to Slutsky’s theorem, Li derived

MSP

MSG

d→ χ2
r−1

r − 1
. (3.9)

So the test statistic is MSP
MSG

and we reject the hypothesis at α significance level if the

value of the test statistic is greater than 100(1−α)th quantile of the distribution
χ2

r−1

r−1
.
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3.3 New Testing Procedures

3.3.1 Parametric Bootstrap

In this section we propose a new testing procedure for testing population differentiation

under a random population model. This test is developed specifically for small sample

sizes. We assume that there are r independent populations that are descended from a

common ancestral population. We have data from L (> 1) independent loci. We also

assume that the expected allele frequencies in each population are the same. We also

assume that there are sl different allelic forms at the lth locus with expected frequencies

p1, p2, · · · , psl
respectively, in each population. We have ni sampled alleles at each locus

in the ith population. We assume no disturbing force is acting on the loci that we are

interested in. The populations are in a random mating system. Now we describe our

test procedure based on the parametric bootstrap sampling. First estimate the allele

frequencies at each locus from the frequency data. In our case the observed allele

frequencies in each locus will be the maximum likelihood estimate of the population

allele frequencies in that particular locus. When θ = 0, the sampled alleles in a locus

and population has a Multinomial distribution with appropriate index parameter and

probability vector. We use this fact and generate a sample for each locus and population

(ni sampled alleles for the ith population) from a Multinomial distribution with the

frequencies obtained from the maximum likelihood estimator. In this way we generate

one bootstrap sample. We repeat this procedure B times to get B bootstrap samples.

Now we find the estimate of θ for each bootstrap sample. All these bootstrap samples

are generated under the null hypothesis H0 : θ = 0. Using these B estimates of θ we

can construct an empirical confidence interval for θ when the true value of θ is 0. We

reject the hypothesis θ = 0 with the level α if the estimate of θ based on the original

data does not belong to the lower 100(1− α)% of the bootstrap estimates. Since both

the estimators, the bootstrap and the original have the same negative bias, the biases

will cancel with each other.
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3.3.2 Large Sample Test

In this section we develop a test statistic for testing the population differentiation under

a random population model. This test statistic is based on the large sample properties

of random variables and works better for large sample. We assume the same set up

as in the previous section. We first develop our test statistic based on a single locus.

Then extend it for multi-locus situation. The development of the test statistic will be

based on the locus A. The locus A has s different allelic types, A1, A2, · · · , As. The

expected frequencies of these allelic types are p1, p2, · · · , ps. We assume the value of θ

is the same in different populations. We have ni sampled alleles from the ith population

and S =
∑r

i=1 ni. The data is defined as

xij,k =





1 if the jth allele at locus A in ith population is Ak

0 otherwise.

In our notation, the allele frequencies based on the data are

p̃k,i =
1

ni

ni∑

j=1

xij,k and p̃w,k =
1

S

r∑

i=1

nip̃k,i. (3.10)

As
∑s

k=1 p̃k,i = 1, there are s − 1 independent observed allele frequencies. So if we

have information from any s − 1 allele frequencies, the last allele frequency would not

provide any extra information. Without loss of generality we will work with the first

s − 1 allele frequencies. Now define some new quantities:

p̃i =
√

ni





p̃1,i

p̃2,i

...

p̃s−1,i





, pi =
√

ni





p1

p2

...

ps−1





, P̃ =





p̃1

p̃2

...

p̃r





, P =





p1

p2

...

pr





,
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C =





p1(1 − p1) −p1p2 . . . −p1ps−1

−p1p2 p2(1 − p2) . . . −p2ps−1

...
... · · · ...

p1ps−1 −p2ps−1 . . . ps−1(1 − ps−1)





, V =





C (0)s−1 . . . (0)s−1

(0)s−1 C . . . (0)s−1

...
... · · · ...

(0)s−1 (0)s−1 . . . C





.

Our aim is to define a statistic and find its distribution under the null hypothesis.

When the value of θ is 0, then (nip̃1,i, · · · , nip̃s,i) ∼ Multinomial(ni; p1, p2, · · · , ps).

This fact provides us

E(P̃) = P and Var(P̃) = V. (3.11)

When ni → ∞ ∀i, the Multinomial distribution converges to a Multivariate Normal

distribution with appropriate mean and variance (using CLT). So we get

P̃− P ∼ MV N(0,V). (3.12)

Since C is a positive definite matrix, there exists a nonsingular matrix T satisfying

C = TT ′. Now we define some new random variables:

z̃i = T−1p̃i, zi = T−1pi, Z̃ =





z̃1

z̃2

...

z̃r





, and Z =





z1

z2

...

zr





.

Using standard theory when ni → ∞ we get

Z̃− Z ∼ MV N(0, Ir(s−1)). (3.13)
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Now we consider A = (Ir − 1
r
1r1

′
r)

⊗
Is−1. We will show that A is idempotent, sym-

metric and its rank is (r − 1)(s − 1). Using the formula (A1
⊗

B1)(A2
⊗

B2) =

(A1A2
⊗

B1B2) we get

A2 = ((Ir −
1

r
1r1

′
r)

⊗
Is−1)((Ir −

1

r
1r1

′
r)

⊗
Is−1)

= ((Ir −
1

r
1r1

′
r)(Ir −

1

r
1r1

′
r))

⊗
(Is−1Is−1)

= (Ir −
1

r
1r1

′
r)

⊗
Is−1 = A.

So A is idempotent. It is easy to check that A is also symmetric as Ir, Is−1 and 1r1
′
r

are symmetric. Since A is idempotent,

rank(A) = tr(A) = tr((Ir −
1

r
1r1

′
r)

⊗
Is−1) = tr(Ir −

1

r
1r1

′
r)tr(Is−1) = (r − 1)(s− 1).

Now A is an idempotent, symmetric matrix with trace and rank is equal to (s−1)(r−1).

From the Corollary 1.7 and the Theorem 3.5 of Serfling (1980) we get

Z̃′AZ̃ =
r∑

i=1

s∑

k=1

(
√

nip̃k,i − 1/r
∑r

i=1

√
nip̃k,i)

2

pk

∼ χ2
(r−1)(s−1). (3.14)

If n1 = n2 = · · · = nr = n then the above equation simplifies to

n

r∑

i=1

s∑

k=1

(p̃k,i − p̃w,k)
2

pk

∼ χ2
(r−1)(s−1). (3.15)

The first equality in the equation (3.14) is shown in Appendix B. It can be noted from

the above equation that the left hand side is not a statistic. Because it involves the

population allele frequencies. Now we propose a Lemma which will be used to find a

test statistic. The proof of the lemma is given in Appendix C.

Lemma : Suppose Xn and Yn are positive random variables of length s. Let us

assume that
∑s

i=1 Xn,i
d→ Z and Yn

p→ c(or,Yn,i
p→ ci), where Z is another random
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variable and c is a constant vector. Then
∑s

i=1 Xn,ici/Yn,i
d→ Z.

In our case, Xn = (Xn,1, · · · , Xn,s) and Yn = 1
S

∑r

i=1

√
nip̃i

, where

Xn,k =
r∑

i=1

(
√

nip̃k,i − 1/r
r∑

i=1

√
nip̃k,i)

2/pk.

Using a large sample property it is easy to show 1
S

∑r
i=1

√
nip̃i

p→ p which implies

c = p. Let us define

s∑

k=1

Xn,k =
s∑

k=1

∑r
i=1(

√
nip̃k,i − 1/r

∑r
i=1

√
nip̃k,i)

2

pk

d→ χ2
(r−1)(s−1). (3.16)

So using the Lemma we conclude that
∑s

k=1 Xn,kck/Yn,k =
∑s

k=1 Xn,kpk/p̃w,k converges

in distribution to χ2
(r−1)(s−1). So we get

T =

r∑

i=1

s∑

k=1

(
√

nip̃k,i − 1/r
∑r

i=1

√
nip̃k,i)

2

p̃w,k

d→ χ2
(r−1)(s−1). (3.17)

For equal sample sizes our test statistic reduces to

T = n
r∑

i=1

s∑

k=1

(p̃k,i − p̃w,k)
2

p̃w,k

. (3.18)

The test statistic distributed as χ2 with (r − 1)(s − 1) degrees of freedom under null

hypothesis. We reject the hypothesis at α significance level if the test statistic is greater

than the 100(1 − α)th percentile of χ2
(r−1)(s−1) distribution.

Now we assume there are L independent loci and sl alleles at the lth locus. Then the

final test statistic is T =
∑L

l=1 Tl, where Tl is the single locus test statistic corresponding

to the lth locus. The test statistic T has a χ2
(r−1)

P

L

l=1
(sl−1)

distribution under the null

hypothesis. In this case we reject the null hypothesis if the test statistic is bigger than

the 100(1 − α)th percentile of χ2
(r−1)

P

L

l=1
(sl−1)

distribution.
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Chapter 4

Two Loci

4.1 Introduction

The probability of identity by descent simultaneously at two or more loci is a general-

ization of Wright’s inbreeding coefficient. The multi-locus identity is a useful parameter

in predicting the joint ancestry of pair of loci that is frequently used in mapping studies.

The joint ancestry also helps in making inferences about historic population structure

from current data (Hernández-Sánchez et al., 2004). The variances and covariances

of quantitative traits in a finite population also involve multi-locus descent measures.

The contributions to variance in the absence of epistasis depend only on two-locus

identities or disequilibria, with epistasis multi-locus terms may be involved.

Weir and Cockerham (1969) extended the inbreeding coefficient concept for two loci

to evaluate a measure of identity of descent for alleles at each of two linked loci. The

multi-locus inbreeding coefficients depend on population size, inbreeding structure at

each single locus and the linkage relationships between loci. The authors first studied

sib mating and then established methods for determining a two-locus inbreeding func-

tion for any pedigree or mating system of individuals. For two-locus descent measures

there are several components of inbreeding and it is necessary to introduce trigametic

and quadrigametic measures in addition to the digametic measures. Later, Cockerham

and Weir (1973) worked with the behavior of two-locus descent measures. The authors
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discussed the use of two-locus descent measures. They also found expressions for di-

genic descent measures for finite populations. Afterwards, Weir and Cockerham (1974)

presented an exact treatment of the behavior of pair of loci for infinite randomly mating,

monoecious populations. All the above work were developed with distinct generations

and in the absence of any kind of disturbing force such as selection.

The descent measures in conjunction with the frequency of initial population pro-

vide exact frequencies for all possible categories of two, three and four genes involving

at the most two alleles at each of the two loci. This does not imply that the population

has only two alleles per locus. From these measures and frequencies we can deduce

various disequilibrium functions, the variance of linkage disequilibrium and related mo-

ments. The rates of approach to equilibrium conditions for linkage disequilibrium in

monoecious population also depends on two-locus descent measures along with initial

gamete frequencies.

In two-locus theory there are two different methods for transmitting gametes in

the next generation. The first model is known as “random union of zygotes” and is

used by Littler (1973), Watterson (1970) and by many others. The second model is

“random union of gametes” and is used by Hill and Robertson (1968) and Karlin and

McGregor (1968). All of these first authors have commented on the differences of these

two approaches. A general theory of Weir and Cockerham (1974) yields many results

for both the models. The qualitative behavior of both the models is identical. When

the population size is large both models yield identical result. Here we work with the

random union of zygotes model.

In this chapter we first discuss the parametrization of the two-locus descent measure

described by Weir and Cockerham (1974). We assume that the loci we are interested

in are neutral. We also assume that the populations follow a random mating system.

Under this set up we find estimators of different components of the two-locus descent

measures.
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4.2 Two-Locus Parameters

Weir and Cockerham (1969, 1974) have extended Wright’s inbreeding parameters for

two loci. In their papers they parameterized the two-locus association in different levels

of the population. Here we describe the two-locus inbreeding parameters for the locus

A and the locus B. The frequently used two-locus parameters are F, Θ, Γ and ∆.

Each of these parameters is a vector of length 8 (Weir and Cockerham, 1974). Suppose

a and a′ are two alleles at the locus A and b and b′ are two alleles at the locus B. Now

define a vector of length 8

X(ab, a′b′) = [X11
11 (ab, a′b′), X11(ab, a′b′), X11(ab, a′b′), 11X(ab, a′b′), 1X

1
1 (ab, a′b′),

X1(ab, a′b′), X1(ab, a′b′), 1X(ab, a′b′)]′, (4.1)

where the components are

X11
11 (ab, a′b′) = Esub−pop[Pr(a ≡ a′ ≡ b ≡ b′)],

X11(ab, a′b′) = Esub−pop[Pr(a ≡ b, a′ ≡ b′)],

11X(ab, a′b′) = Esub−pop[Pr(a ≡ b′, a′ ≡ b)],

X11(ab, a′b′) = Esub−pop[Pr(a ≡ a′, b ≡ b′)], (4.2)

1X
1
1 (ab, a′b′) = Esub−pop[

1

4
(Pr(a ≡ a′ ≡ b) + Pr(a ≡ a′ ≡ b′)

+Pr(a ≡ b ≡ b′) + Pr(a′ ≡ b ≡ b′))],

X1(ab, a′b′) = Esub−pop[
1

2
(Pr(a ≡ a′) + Pr(b ≡ b′))],

X1(ab, a′b′) = Esub−pop[
1

2
(Pr(a ≡ b) + Pr(a′ ≡ b′))], and

1X(ab, a′b′) = Esub−pop[
1

2
(Pr(a ≡ b′) + Pr(a′ ≡ b))].

The equivalence relation denoted by ≡ means that equivalent alleles are descended
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from alleles on one initial gamete. The two-locus parameters are defined as

F = X(ab, a′b′ : ab and a′b′ are on two gametes from one individual),

Θ = X(ab, a′b′ : ab and a′b′ are on two gametes from two individuals), (4.3)

Γ = X(ab, a′b′ : ab, a′ and b′ are on three gametes from three individuals),

∆ = X(ab, a′b′ : a, b, a′ and b′ are on four gametes from four individuals).

The components of these parameters can be described in notation as we define each

component of the X vector above. For example, Θ11
11 is the first component of the vector

Θ while F11 is the second component of the vector F. F1 and Θ1 are the average value

F and θ respectively over the loci A and B. In a random mating population, F = Θ.

We are interested in estimating the different components of Θ.

4.3 Theoretical Values of the Parameters

In this research our main focus will be on a random mating population. In this section

we discuss the behavior of the two-locus descent measures over generations in a random

mating population. Under this set up the descent measures F and Θ are exactly the

same. In particular we discuss about the behavior of Θ, more precisely, last five

components of Θ. We discuss about the transition equations for Θ1, Θ1, 1Θ, 1Θ
1
1 and

Θ11. For discussing the behavior of the above components we need to know the values of

1Γ
1
1, Γ11 and ∆11. The two-locus parameters depend on the population size, inbreeding

structure at each single locus and the linkage relationships between loci. The value of

the two-locus parameters in a particular generation depend on the value of the one-

locus, two-locus parameters in the previous generation, effective population size and

recombination rate between the loci. In our notation, N is the population size in each

generation and ρ is the recombination rate between the two loci we are interested in. We

define a new quantity, λ = 1−2ρ. The value assume by the parameters F, Θ, Γ and ∆
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in the tth generation are F(t), Θ(t), Γ(t) and ∆(t) respectively. The following transitions

describe the behavior of last five components of two-locus parameter Θ (Weir and

Cockerham, 1974). These equations also describe the change of the theoretical values

of 1Γ
1
1, Γ11 and ∆11 over generations. The equations are

Θ1(t+1) =
1

2
Q2 + (1 − 1

2
Q2)Θ1(t),

Θ1
(t+1) = (1 − ρ)Θ1

(t+1) + ρ 1Θ(t),

1Θ(t+1) =
1

2
Q2 Θ1

(t) + (1 − 1

2
Q2)1Θ(t),

1Θ
1
1(t+1) = [

1

2
+

λ

2
(1 − Q2)]1Θ

1
1(t) + ρ(1 − Q2)1Γ

1
1(t) + Q2(

1 − ρ

2
Θ1

(t) +
ρ

2
1Θ(t)),

1Γ
1
1(t+1) = (

1

2
Q3 +

1

3
Q21)1Θ

1
1(t) + (

1

2
Q21 +

1

3
Q111)1Γ

1
1(t) +

1

4
Q3Θ

1
(t) (4.4)

+
1

2
(
1

2
Q3 +

1

3
Q21)1Θ(t),

Θ11(t+1) = Ω11Θ11(t) + Ω12Γ11(t) + Ω13∆11(t) +
(1 − λ2)

2N
Θ1(t) +

(1 + λ2)

4N
,

Γ11(t+1) = Ω21Θ11(t) + Ω22Γ11(t) + Ω23∆11(t) +
(2N − 1)

2N2
Θ1(t) +

1

4N2
, and

∆11(t+1) = Ω31Θ11(t) + Ω32Γ11(t) + Ω33∆11(t) +
(2N − 1)

2N2
Θ1(t) +

1

4N2
,

where, Q2 = 1
N

, Q3 = 1
N2 , Q21 = 3(N−1)

N2 and Q111 = (N−1)(N−2)
N2 . Ωij ’s are the elements

of the matrix Ω and that is

Ω =





Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33




=





(1+λ)2

4
− λ

2N

(N−1)(1−λ2)
2N

(N−1)(1−λ)2

4N

1+λ
4N

− λ
4N2

(N−1)[N+1+λ(N−2)]
2N2

(N−1)(2N−3)(1−λ)
4N2

2N−1
4N3

(N−1)(2N−1)
N3

(N−1)(2N−1)(2N−3)
4N3




.

Weir and Cockerham (1974) also gave the transition equations for Θ11
11, Θ11 and 11Θ.

Since we will not discuss these components, we skip the transition equations in this

research. If the population size changes over generations, then the above equations

approximately hold good if N replaced by Ne, the effective population size.
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4.4 Notation

In this section we define our notation properly. We have r independent populations.

Each population has evolved from the same ancestral population. We also assume that

the ancestral population has infinitely many individuals. The population size at each

generation (except the ancestral population) is N . We work with two loci, A and B.

The locus A has sA different alleles, A1, A2, · · · , AsA
and the locus B has sB different

alleles, B1, B2, · · · , BsB
. The recombination rate between the locus A and the locus B

is ρ and λ = 1 - 2ρ. The expected gamete frequencies in the present-day populations

are the same. There are different types of gamete frequencies and digametic, trigametic

and quadrigametic gamete frequencies for the present generation are

pk = expected frequency of the allele Ak ,

ql = expected frequency of the allele Bl,

P kl
.. = expected frequency of the gamete AkBl,

P k.
.l = expected frequency of a random pair of gametes that carry allele Ak and Bl,

P kl
u|. = expected frequency of a random pair of gametes that carry AkBl and Au, (4.5)

P kl
.|v = expected frequency of a random pair of gametes that carry AkBl and Bv,

P
k|l
u|. = expected frequency of a random triplet of gametes that carry Ak, Au and Bl,

P
k|l
.|v = expected frequency of a random triplet of gametes that carry Ak, Bl and Bv,

P kl
uv = expected frequency of a random pair of gametes AkBl and AuBv,

P kl
u|v = expected frequency of a random triplet of gametes that carry AkBl, Au and Bv,

P
k|l
u|v = expected frequency of a random quadruple of gametes that carry Ak, Au, Bl, Bv,

Dkl = P kl
.. − pkql = expected linkage disequilibrium for alleles Ak and Bl ,

where, k, u = 1, 2, · · · , sA and l, v = 1, 2, · · · , sB. The corresponding parameters (fre-

quencies) in the ancestral population are pk, ql, Pkl
.. , Pk.

.l , Pkl
u|., Pkl

.|v, P
k|l
u|. , Pkl

.|v, Pkl
uv,

Pkl
u|v, P

k|l
u|v and Dkl. It is important to note that the expected allele frequencies in

the ancestral and present population are the same. This is because the populations
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are mating at random. The gamete frequencies in the present generation are related

to the ancestral gamete frequencies through the descent measures at the present gen-

eration. Weir and Cockerham (1974) found the relationship between the gamete fre-

quencies in the present generation, the ancestral gamete frequencies, and the two-locus

descent measures in the present generation. Our moment estimator is based on the

following relations:

P ij
.. = piqj + Θ1

Dij ; P i.
.j = piqj + 1ΘDij ,

P ij

i|. = p2
i qj + Θ1piqj(1 − pi) + (Θ1 + 1Θ)piDij + 1Θ

1
1(1 − 2pi)Dij ,

P ij

.|j = piq
2
j + Θ1piqj(1 − qj) + (Θ1 + 1Θ)qjDij + 1Θ

1
1(1 − 2qj)Dij, (4.6)

P
i|j
i|. = p2

i qj + Θ1piqj(1 − pi) + 21ΘpiDij + 1Γ
1
1(1 − 2pi)Dij , and

P
i|j
.|j = piq

2
j + Θ1piqj(1 − qj) + 21ΘqjDij + 1Γ

1
1(1 − 2qj)Dij .

4.5 Data

We have data from r independent populations. These populations have evolved from

the same ancestral population. We have haplotype data for two loci, locus A and

locus B. We have ni haplotype sampled from the ith population. So there are total
∑r

i=1 ni = S sampled haplotypes. Let us define the data at the locus A as follows:

xij,k =





1 if the jth allele at locus A in ith population is Ak

0 otherwise

The data at the locus B can be defined as follows:

yij,l =





1 if the jth allele at locus B in ith population is Bl

0 otherwise
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Since we have information at both the loci for a particular gamete, we can recover the

haplotypes from the data at locus A and locus B. Now we define several observed

gamete frequencies using the haplotype data. These sample gamete frequencies will

be used to define different statistics which will be used to find the estimators of the

parameters. The observed gamete frequencies for the ith population are

p̃i,k =
1

ni

ni∑

j=1

xij,k , q̃i,l =
1

ni

ni∑

j=1

yij,l ,

P̃1,i,kl =
1

ni

ni∑

j=1

xij,kyij,l , P̃2,i,kl =
1

ni(ni − 1)

ni∑∑

j 6=j′=1

xij,kyij′,l ,

P̃3,i,kl =
1

ni(ni − 1)

ni∑∑

j 6=j′=1

xij,kyij,lxij′,k ,

P̃4,i,kl =
1

ni(ni − 1)

ni∑∑

j 6=j′=1

xij,kyij,lyij′,l ,

P̃5,i,kl =
1

ni(ni − 1)(ni − 2)

ni∑∑ ∑

j 6=j′ 6=j′′=1

xij,kyij′,lxij′′,k , (4.7)

P̃6,i,kl =
1

ni(ni − 1)(ni − 2)

ni∑∑ ∑

j 6=j′ 6=j′′=1

xij,kyij′,lyij′′,l ,

P̃7,i,kl =
1

ni(ni − 1)

ni∑∑

j 6=j′=1

xij,kyij,lxij′,kyij′,k ,

P̃8,i,kl =
1

ni(ni − 1)(ni − 2)

ni∑∑ ∑

j 6=j′ 6=j′′=1

xij,kyij,lxij′,kyij′′,l , and

P̃9,i,kl =
1

ni(ni − 1)(ni − 2)(ni − 3)

ni∑ ∑∑ ∑

j 6=j′ 6=j′′ 6=j′′′=1

xij,kyij′,lxil′′,kyij′′′,l.

The overall gamete frequencies are p̃k, q̃l, P̃1,kl, P̃2,kl, P̃3,kl, P̃4,kl, P̃5,kl, P̃5,kl, P̃6,kl, P̃7,kl,

P̃8,kl, and P̃9,kl. These are all weighted gamete frequencies and the weight for the ith

population is the denominator in the observed frequency in the ith population.

Now we define some new quantities that are functions of sample sizes in different
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populations and the total number of populations r. These numbers will be used to find

the estimators of the parameters. The new quantities are

nc1 =
1

r − 1
(

r∑

i=1

ni −
∑r

i=1 n2
i∑r

i=1 ni

) =
1

r − 1
(S −

∑r
i=1 n2

i

S
),

nc2 =
1

(r − 1)(r − 2)
(S

r∑

i=1

1

ni

− 3r + 2),

nc3 =
1

(r − 1)(r − 2)
(Sr − S

r∑

i=1

1

ni

− 3S + 3r +
2
∑r

i=1 n2
i

S
− 2), (4.8)

nc4 =
1

(r − 1)(r − 2)
(S2 − 3Sr + 2S

r∑

i=1

1

ni

− 3

r∑

i=1

n2
i + 9S − 6r +

2
∑r

i=1 n3
i

S

−6
∑r

i=1 n2
i

S
+ 4), and

nc5 =
1

r − 1
(

r∑

i=1

n2
i −

∑r

i=1 n3
i

S
).

For equal sample sizes i.e. n1 = n2 = · · · = nr = n, the above quantities reduce to

nc1 = n, nc2 = 1, nc3 = n − 1, nc4 = (n − 1)(n − 2), and nc5 = n2. (4.9)

4.6 Identifiability Problem

Our main aim is to find the estimators of different components of Θ. The equation

(4.6) shows that the expectations of second and third order gamete frequencies involve

only Θ1, 1Θ, Θ1 (or θ), 1Θ
1
1 and 1Γ

1
1. There are three independent second order gamete

frequencies and two independent third order gamete frequencies that depend on alleles

Ak and Bl. It is possible to find the estimates the above five parameters using these

five independent gamete frequencies. For fourth order gamete frequencies we have

only three new gamete frequencies, but these frequencies will involve 12 new unknown

descent measures (Weir and Cockerham, 1974). So it is not possible to estimate these 12
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descent measures from three independent frequencies. If we assume that the ancestral

population is in linkage equilibrium then we have a completely different situation. In

this case, the second and third order gamete frequencies will involve only one descent

measure, θ. The fourth order gamete frequencies involve three new descent measures,

Θ11, Γ11 and ∆11, and these measures can be estimated from the three fourth order

gamete frequencies.

In finding the moment estimators of the parameters we use the following strategy.

First we use the data to define some statistics that estimate different types of population

gamete frequencies in the present-day generation. Now using the relations given in the

equation (4.6), the population gamete frequencies in the present generation can be

expressed in terms of ancestral gamete frequencies and the two-locus descent measures

such as Θ, Γ and ∆. Our estimators of the descent measures are based on these

relations.

The second and third order gamete frequencies described by the alleles Ak and Bl

in the present generation depend on the frequencies of the alleles Ak and Bl, the link-

age disequilibrium of the gamete AkBl in the ancestral population, and the two-locus

descent measures in the present population. So the present-day gamete frequencies

depend on the parameters pk, ql, Dkl, Θ1, 1Θ, Θ1 (or θ), 1Θ
1
1, and 1Γ

1
1 . The depen-

dency of the gamete frequencies in the present generation on the descent measures

and the linkage-disequilibrium in the ancestral population is through Θ1Dkl, 1ΘDkl,

θ, 1Θ
1
1Dkl, and 1Γ

1
1Dkl. So we cannot estimate the parameters Θ1, 1Θ, 1Θ

1
1, and 1Γ

1
1

separately, but we can estimate the compound parameters Θ1Dkl, 1ΘDkl, 1Θ
1
1Dkl, and

1Γ
1
1Dkl. So the parameters Θ1, 1Θ, 1Θ

1
1, and 1Γ

1
1 are not identifiable. We can estimate

the parameter θ separately and it is identifiable. When the ancestral population is in

linkage equilibrium then we are interested in the parameters θ, Θ11, Γ11 and ∆11. In

this situation, these parameters are estimable.
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4.7 Moment Estimator of Θ
1Dkl and 1ΘDkl

In this section we propose unbiased estimators of Θ1Dkl and 1ΘDkl. We propose the

following two statistics using observed gamete frequencies to get information about the

parameters. These statistics are motivated from Weir and Hill (2002)’s statistics that

are defined in the equations (2.3) and (2.4). The statistics are

MSP AB
kl =

1

r − 1

r∑

i=1

ni(p̃i,k − p̃k)(q̃i,l − q̃l) and (4.10)

MSGAB
kl =

1∑r

i=1(ni − 1)

r∑

i=1

ni

[
p̃i,k(1 − q̃i,l) + (1 − p̃i,k)q̃i,l

]
. (4.11)

We use the following equations to find the expectations of the above statistics:

E(xij,kyi′j′,l) =






P kl
.. = pkql + Θ1Dkl if i = i′, j = j′

P
k|.
.|l = pkql + 1ΘDkl if i = i′, j 6= j′

pkql if i 6= i′

(4.12)

The expectations of the statistics are

E(MSP AB
kl ) = Θ1

Dkl + (nc1 − 1)1ΘDkl and (4.13)

E(MSGAB
kl ) =

Spk + Sql − 2Spkql

S − r
− 2

S − r

[
rΘ1

Dkl + (S − r) 1ΘDkl

]
. (4.14)

When we have equal sample sizes for different populations, then the right hand side of

the equation (4.13) reduces to (Θ1Dkl + (n − 1)1ΘDkl), while the second term in the

right had side of the equation (4.14) is 2
n−1

(Θ1Dkl+(n−1)1ΘDkl). This implies that the

two equations (4.13) and (4.14) provide the same information about Θ1Dkl and 1ΘDkl

when sample sizes are equal. In order to find estimators of these parameters we need

two independent linear equations. So for unequal sample sizes the two statistics will

be sufficient to find estimators of the parameters, but for equal sample sizes these two
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statistics will not be enough. We propose to replace the second statistic by a statistic

which always provides different information about the parameters than MSP AB
kl . Here

we consider the statistic S4,kl = P̃1,kl − P̃2,kl. The expectation of the statistic is

E(S4,kl) = Θ1
Dkl − 1ΘDkl. (4.15)

After doing some algebra with the equations (4.13) and (4.15) we have

E
[
MSP AB

kl + (nc1 − 1)S4,kl

]
= nc1 Θ1

Dij and (4.16)

E
[
MSP AB

kl − S4,kl

]
= nc1 1ΘDkl. (4.17)

The above two equations give our moment estimators of the compound parameters

Θ̂1Dkl =
MSP AB

kl + (nc1 − 1)S4,kl

nc1

and (4.18)

1̂ΘDkl =
MSP AB

kl − S4,kl

nc1

. (4.19)

4.8 Moment Estimator Of 1Θ
1
1Dkl and 1Γ

1
1Dkl

We propose four statistics that are based on the third order gamete frequencies to

estimate the compound parameters 1Θ
1
1Dkl and 1Γ

1
1Dkl. The statistics are

MSP AAB
kl =

S

(r − 1)(r − 2)

r∑

i=1

ni(p̃i,k − p̃k)
2(q̃i,l − q̃l), (4.20)

MSGAAB
kl =

1∑r

i=1(ni − 1)

r∑

i=1

ni[p̃
2
i,k(1 − q̃i,l) + p̃i,k(1 − q̃i,l)

2], (4.21)

MSP ABB
kl =

S

(r − 1)(r − 2)

r∑

i=1

ni(p̃i,k − p̃k)(q̃i,l − q̃l)
2, and (4.22)

MSGAAB
kl =

1∑r
i=1(ni − 1)

r∑

i=1

ni[p̃i,k(1 − q̃i,l)
2 + p̃i,k(1 − q̃i,l)]. (4.23)
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To find the expectations of the statistics defined above we need to use the following

equation:

E(xij,kxi′j′,kyi′′j′′,l) =






P kl
.. if i = i′ = i′′, j = j′ = j′′

P k.
.|l if i = i′ = i′′, j = j′ 6= j′′

P kl
k|. if i = i′ = i′′, j = j′′ 6= j′

P
k|l
k|. if i = i′ = i′′, j 6= j′ 6= j′′

qlP
k|.
k|. if i = i′ 6= i′′, j 6= j′

pkql if i = i′ 6= i′′, j = j′

piP
kl
.. if i = i′′ 6= i′, j = j′′

pkP
k|.
.|l if i = i′′ 6= i′, j 6= j′′

p2
kql if i 6= i′ 6= i′′

(4.24)

We also need to use E(xij,kyi′j′,lyi′′j′′,l) which can be found in the same pattern as

equation (4.24). The expectations of the statistics are

E(MSP AAB
kl ) = (1 − 2pk)[nc2Θ

1
Dkl + nc3 1ΘDkl + 2nc3 1Θ

1
1Dkl + nc4 1Γ

1
1Dkl],

E(MSGAAB
kl ) =

Spk + Sql − 2Spkql

S − r
+

pk(1 − pk)(r + (S − r)Θ1)

S − r

−2(rΘ1Dkl + (S − r)1ΘDkl)

S − r
, (4.25)

E(MSP ABB
kl ) = (1 − 2ql)[nc2Θ

1
Dkl + nc3 1ΘDkl + 2nc3 1Θ

1
1Dkl + nc4 1Γ

1
1Dkl], and

E(MSGABB
kl ) =

Spl + Sql − 2Spkql

S − r
+

ql(1 − ql)(r + (S − r)Θ1)

S − r

−2(rΘ1Dkl + (S − r)1ΘDkl)

S − r
.
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The equation (4.25) shows that E(MSGAAB
kl ) and E(MSGABB

kl ) do not provide any

information about 1Θ
1
1Dkl and 1Γ

1
1Dkl. In fact, the statistics MSGAAB

kl and MSGABB
kl

involve only second order gamete frequencies. We propose the following two statistics

which give information about 1Θ
1
1Dkl and 1Γ

1
1Dkl:

S5,kl = P̃3,kl − P̃5,kl −
1

r(r − 1)

r∑∑

i6=i′=1

(P̃1,i,kl − P̃2,i,kl)p̃i′,k and (4.26)

S6,kl = P̃4,kl − P̃6,kl −
1

r(r − 1)

r∑∑

i6=i′=1

(P̃1,i,kl − P̃2,i,kl)q̃i′,j (4.27)

The expectations of the statistics are

E(S5,kl) = (1 − 2pk)[ 1Θ
1
1Dkl − 1Γ

1
1Dkl] and (4.28)

E(S6,kl) = (1 − 2ql)[ 1Θ
1
1Dkl − 1Γ

1
1Dkl]. (4.29)

These expectations are zero when pl = 0.5 and ql = 0.5. Thus, they do not provide

any information about the parameters when pk = 0.5 and ql = 0.5. This is consistent

with the population genetics theory. It is easy to check that p̃k and q̃l are the unbiased

estimators of pk and ql respectively. After doing some algebra with the equations (4.20)-

(4.23) we construct four new statistics for estimating the compound parameters. The

four statistics are

S7,kl =
MSP AAB

kl + nc4S5,kl

1 − 2p̃k

− nc2Θ̂
1Dkl − nc3 1̂ΘDkl, (4.30)

S8,kl =
MSP AAB

kl − 2nc3S5,kl

1 − 2p̃k

− nc2Θ̂
1Dkl − nc3 1̂ΘDkl, (4.31)

S9,kl =
MSP ABB

kl + nc4S6,kl

1 − 2q̃l

− nc2Θ̂
1Dkl − nc3 1̂ΘDkl, and (4.32)

S10,kl =
MSP ABB

kl − 2nc3S6,kl

1 − 2q̃l

− nc2Θ̂
1Dkl − nc3 1̂ΘDkl. (4.33)
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The statistics in (4.30) and (4.31) are well defined only when p̃k is not equal to 0.5.

Similarly, the statistics in (4.32) and (4.33) are not defined when q̃l = 0.5. The expec-

tations of the statistics are defined only when pk 6= 0.5 or ql 6= 0.5. The ratio estimation

theory provides the expectations of the statistics and they are

E(S7,kl) = E(S9,kl) ≈ (2nc3 + nc4) 1Θ
1
1Dkl, and (4.34)

E(S8,kl) = E(S10,kl) ≈ (2nc3 + nc4) 1Γ
1
1Dkl. (4.35)

The above discussion demonstrates that when both p̃k and q̃l are 0.5 then there do not

exist any estimators for 1Θ
1
1Dkl and 1Γ

1
1Dkl. But the estimators of these parameters

exist if one of the allele frequency is not equal to 0.5 and the estimators are

̂
1Θ1

1Dkl =
S7,klI(p̃k 6= 0.5) + S9,klI(q̃l 6= 0.5)

(2nc3 + nc4)
[
I(p̃k 6= 0.5) + I(q̃l 6= 0.5)

] , and (4.36)

̂
1Γ1

1Dkl =
S8,klI(p̃k 6= 0.5) + S10,klI(q̃l 6= 0.5)

(2nc3 + nc4)
[
I(p̃k 6= 0.5) + I(q̃l 6= 0.5)

] . (4.37)

4.9 Ancestral Population is in Linkage Equilibrium

In this section we assume that the ancestral population is in linkage equilibrium. This

assumption reduces lot of computation burden. For example, if the ancestral popu-

lation is in linkage equilibrium then the different gamete frequencies in the present

population do not depend on Θ1, 1Θ, 1Θ
1
1 and 1Γ

1
1. In this setup, we are interested in

the four parameters θ, Θ11, Γ11 and ∆11. These parameters characterize the gamete

frequencies in the present generation. Now we propose the moment estimator of these

parameters. We have found different estimators of θ in the previous section. To find

the estimator of other three parameters we have used the equations for quadrigametic
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descent measures. The equations are

P kl
kl = p2

kq
2
l + Θ1pkql(pk + ql − 2pkql) + Θ11pkql(1 − pk)(1 − ql),

P kl
k|l = p2

kq
2
l + Θ1pkql(pk + ql − 2pkql) + Γ11pkql(1 − pk)(1 − ql), and (4.38)

P
k|l
k|l = p2

kq
2
l + Θ1pkql(pk + ql − 2pkql) + ∆11pkql(1 − pk)(1 − ql).

Now we propose four statistics which will be used to estimate the parameters. The

statistics are

R1,kl = P̃7,kl − Rkl,

R2,kl = P̃8,kl − Rkl, (4.39)

R3,kl = P̃9,kl − Rkl, and

R4,kl =
1

r(r − 1)

r∑∑

i6=i′=1

p̃i,kq̃i,l(1 − p̃i′,k)(1 − q̃i′l),

where,

Rkl =
1

r(r − 1)

r∑ ∑

i6=i′=1

[ q̃i′,l(P̃3,i,kl + P̃5,i,kl)

2
+

p̃i′,k(P̃4,i,kl + P̃6,i,kl)

2
− p̃i,kq̃i,lp̃i′,kq̃i′,l

]
.

Using population genetics theory we have

E(Rkl) = p2
kq

2
l + Θ1pkql(pk + ql − 2pkql),

E(P̃7,kl) = p2
kq

2
l + Θ1pkql(pk + ql − 2pkql) + pkql(1 − pk)(1 − ql)Θ11,

E(P̃8,kl) = p2
kq

2
l + Θ1pkql(pk + ql − 2pkql) + pkql(1 − pk)(1 − ql)Γ11, (4.40)

E(P̃9,kl) = p2
kq

2
l + Θ1pkql(pk + ql − 2pkql) + pkql(1 − pk)(1 − ql)∆11, and

E(R4,kl) = pkql(1 − pk)(1 − ql).
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Using the relations defined in the equations (4.40) and ratio estimation theory we have

E(
R1,kl

R4,kl

) ≈ Θ11,

E(
R2,kl

R4,kl

) ≈ Γ11, and (4.41)

E(
R3,kl

R4,kl

) ≈ ∆11.

From the above relations we propose our moment estimators of the parameters based

on the frequency data of the gamete AkBl. The estimators are

Θ̂11 =
R1,kl

R4,kl

,

Γ̂11 =
R2,kl

R4,kl

, and (4.42)

∆̂11 =
R3,kl

R4,kl

.

The overall estimates of the parameters are

Θ̂11 =

∑sA

k=1

∑sB

l=1 R1,kl∑sA

k=1

∑sB

l=1 R4,kl

,

Γ̂11 =

∑sA

k=1

∑sB

l=1 R2,kl∑sA

k=1

∑sB

l=1 R4,kl

, and (4.43)

∆̂11 =

∑sA

k=1

∑sB

l=1 R3,kl∑sA

k=1

∑sB

l=1 R4,kl

.

In this chapter we have proposed moment estimators for different components for two-

locus inbreeding parameters. Now we need to check the performance of our estimators.

We have done this in Chapter 6. In that chapter we simulate data under a pure drift

model and a both-way mutation model and calculate the estimates of the parameters

to find the performance of our methods in terms of bias and standard error.
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Chapter 5

Variance of Heterozygosity

5.1 Introduction

The summary statistics heterozygosity and gene diversity are the basic tools for sum-

marizing the amount of genetic variability in a population. The characteristics of

population genetic variation are of key interest in studies of evolution and for com-

mercial and conservational breeding programs that seek to develop and maintain a

desirable variance. The genetic variance also determines the extent to which a popula-

tion can adapt to a changing environment. While it is very convenient to characterize

the population variation using descriptive measures, heterozygosity and gene diversity,

a number of studies published each year reporting these parameters fail to report the

sampling errors of their estimates. It would be better to report the sampling proper-

ties of the estimators for increasing the quality of statistical inference. In this chapter

we consider several approaches to obtaining the variance of sample heterozygosity and

discuss the efficiency of these approaches.

The measure of genetic variation was first described by Marshall and Allard (1970)

where they coined the word polymorphic index. Later Nei (1973) and Nei and Roy-

choudhury (1974) worked on determining the variance of polymorphic index. It was

in that work that the name ‘gene diversity’ was first used for this measure. Their

approach focused on a single random mating population so they did not consider the
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variation due to differentiation between populations. They worked with genetic dis-

tance measures to account for the variation between pairs of population. This variation

can be summarized as the total variance of heterozygosity or gene diversity.

The purpose of this research is to advocate the regular inclusion and consideration

of the variances of the estimators of heterozygosity and gene diversity. We have noticed

that in last five years several papers presented estimates of these statistics, but less than

50% of these papers also reported variances with their point estimates. The studies

that gave variances of their estimates typically only reported the variance under the

within-population scope.

Weir (1989) and Weir et al. (1990) developed extensive theory for the variances

of sample gene diversity and heterozygosity, respectively. These papers emphasized

that the appropriate expressions for these variances are dependent upon the scope of

inference. The total population scope is used when making inferences about a larger

group of populations. In this scope, the evolutionary history of the population has been

involved. In contrast, the within-population scope infers about the specific populations

sampled and individuals can be regarded as being independent. For both total and

within scopes, Weir (1989) and Weir et al. (1990) considered the dependencies between

loci. Weir (1989) found an expression for the variance of the sample heterozygosity for

different mating systems. He used a linear model approach for estimating the variance

assuming the loci effects are fixed. Latter Johnson (2004) assumed the loci effects

are random and estimated the variance of heterozygosity using the same linear model

approach. Because the genotypes are either 1 or 0 based on heterozygote or homozygote

we think the generalized linear model would be a better fit. In this research we find

the variance of heterozygosity using a generalized linear model approach. We believe

the locus effects are fixed rather than random.

Shete (2003) found a uniformly minimum variance unbiased estimator (UMVUE)

of gene diversity by correcting the bias of the classical estimator. Shete suggested a

bootstrap procedure for estimating the variance of sample gene diversity for a single

population at multiple loci. This variance is equivalent to the within-population vari-
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ance. Resampling over the population is not recommended as it breaks the population

structure. So we can not use bootstrap method for estimating the variance of het-

erozygosity and gene diversity in total scope. It is very difficult to obtain an exact

expression for the total variance of the UMVUE of sample gene diversity because of

the complexity of the expression. However, the UMVUE should give similar values to

the classical estimator of gene diversity for large samples.

The data sets used in studies are frequently unbalanced because they are surveys

of natural populations. Typically in these data sets different numbers of individuals

are observed in different population according to the availability of individuals that

can be genotyped during the data collection. The statistical properties of sample

variances can not be determined easily for unbalanced data. For balanced data the

usual ANOVA procedure gives the estimates of variance components with desirable

and known statistical properties such as uniformly best unbiasedness. We can not

find a unique set of sum of squares that are uniformly best for unbalanced data set.

Scientists (Rao and Kleffe, 1988; Searle et al., 1992) advocated MIVQUE (minimum

variance quadratic unbiased estimation), ML (maximum likelihood), REML (restricted

maximum likelihood) for analyzing an unbalanced data set. The implementation of

these methods is available in many statistical software packages including R and SAS.

Here we address a number of issues such as the need for the consideration of the

sampling properties of heterozygosity and gene diversity and the best procedures for

obtaining the variances. We also illustrate the difference between within-population

and total scope variance by re-analysis of one published data set (Olsen and Schaal,

2001). Throughout it will be demonstrated that failure to account for source of variance

in population could strongly affect the quality of inferences that can be made in an

analysis. The difference between a linear model and a generalized linear model for

estimating the total variance of sample heterozygosity will be discussed.
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5.2 Estimation of Variance of Heterozygosity

We define some notation and our setup for analysis here and then develop the theory

of sample heterozygosity and gene diversity. We have genotype data at L different

loci from r independent populations. The lth locus has sl different allelic forms. We

assume that there are nil sampled genotypes at the lth locus in the ith population. We

denote the data using an indicator function. Let xijl takes the value of 1 if the jth

individual in the ith population is a heterozygous at the lth locus and 0 otherwise. The

sample heterozygosity is the observed frequency of heterozygote in a data set. The

term Hi denotes the proportion of heterozygosity in the ith population. H̃il and H̃i are

the sample value of heterozygosity of the ith population at the lth locus and over all L

loci respectively. The symbol ∼ is used here to distinguish the sample values from the

population values of parameters. Using indicator variables we can write

H̃il =

∑nil

j=1 xijl

nil

and H̃i =

∑L

l=1

∑nil

j=1 xijl
∑L

l=1 nil

. (5.1)

Gene diversity is the frequency of heterozygote expected for a population with Hardy-

Weinberg genotype proportion. Let us assume that the di is the gene diversity of the

ith population. The sample values for locus-specific and overall gene diversity in the

ith population are

d̃il = 1 −
sl∑

k=1

p̃2
il,k and d̃i =

∑L
l=1 nild̃il∑L

l=1 nil

, (5.2)

where p̃il,k is the sample frequency of kth allele at locus l in the ith population.

Heterozygosity and gene diversity are both measures that summarize the amount

of genetic variation found in populations. While gene diversity quantifies the variation

at the allelic level, heterozygosity summarizes the variation at the genotypic level.

The observed heterozygosity is much simpler measure than gene diversity but it fails

to capture the true extent of genetic variation in populations with a high amount
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of selfing or asexual reproduction which is found in many plant species and simpler

organisms. In a selfing population alleles tend to associate within individuals. In this

case gene diversity would be more appropriate measure to use than heterozygosity.

The general expression for the variance of H̃i for both within and total population

scope include the variance of the population estimates at single locus, H̃il, and the

covariance between these estimates. The exact relation is

Var(H̃i) =
1

L2

[ L∑

l=1

Var(H̃il) +
L∑ ∑

l 6=l′=1

Covar(H̃il, H̃il′)
]
, (5.3)

where the Var(H̃il) and Covar(H̃il, H̃il′) are either within or total population scope.

For within-population scope we can calculate the value of Var(H̃i) by calculating the

quantities in equation (5.3). Shete (2003) suggested to estimate the value of Var(H̃i)

through bootstrapping the data from the population of interest. On the other hand

by using the sample values of VarW (H̃il) and CovarW (H̃il, H̃il′) and the relation in the

equation (5.3) we get the exact expression

VarW (H̃i) =
1

L2

[ L∑

l=1

H̃il(1 − H̃il)

nil

+
L∑∑

l 6=l′=1

H̃ill′ − H̃ilH̃il′

nill′

]
, (5.4)

where H̃ill′ is the observed proportion of individuals that are heterozygous at locus l

and l′. nill′ is the number of individuals that have been genotyped at both the loci l

and l′ in the ith population.

The estimate of total variance for sample heterozygosity is relatively hard to find.

We can express the variance of the heterozygosity in terms of variances and covariances

of the data. This means we express the variance of sample heterozygosity in terms of

variances and the covariances of the indicator random variables. In particular we need

to know VarT (xi1l), CovarT (xi1l, xi2l), CovarT (xi1l, xi1l′) and CovarT (xi1l, xi2l′). Weir

(1989) found expressions for these quantities for different mating systems. We can

estimate the variances and covariances using a linear or generalized linear model. We
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discuss this in the next two sections. A straightforward algebra shows

VarT (H̃il) =
1

nil

VarT (xi1l) + (1 − 1

nil

)CovarT (xi1l, xi2l) and

VarT (H̃i) =
1

(
∑L

l=1 nil)2

[ L∑

l=1

nilVarT (xi1l) +

L∑

l=1

(n2
il − nil)CovarT (xi1l, xi2l) (5.5)

+(
L∑ ∑

l 6=l′=1

nill′)CovarT (xi1l, xi1l′) +
L∑∑

l 6=l′=1

(nilnil′ − nill′)CovarT (xi1l, xi2l′)
]
.

5.2.1 A Linear Model Approach

Our main aim is to estimate VarT (H̃il) and VarT (H̃i) and for that we need to estimate

VarT (xi1l), CovarT (xi1l, xi2l), CovarT (xi1l, xi1l′) and CovarT (xi1l, xi2l′). Weir et al. (1990)

used a linear model to obtain the estimates of the total variance components. The linear

model used by Weir et al. (1990) was

xijl = αi + βj(i) + γl + (αγ)il + (βγ)jl(i), (5.6)

where αi, βj(i), (αγ)il (βγ)jl(i) are random effects of population, individual, population

interacted with locus and individual interacted with locus respectively and γl is fixed

locus effect. The third interaction (population interacted with locus and individual)

term is essentially the error term in the linear model. It is important to note the indi-

viduals are nested within a population. The variance components for a total population

scope are

αi
iid∼ N(0, σ2

p) ⇒ VarT (αi) = σ2
p ,

βj(i)
iid∼ N(0, σ2

i(p)) ⇒ VarT (βj(i)) = σ2
i(p), (5.7)

(αγ)il
iid∼ N(0, σ2

pl) ⇒ VarT ((αγ)il) = σ2
pl, and

(βγ)jl(i)
iid∼ N(0, σ2

il(p)) ⇒ VarT ((βγ)jl(i)) = σ2
il(p).
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Johnson (2004) considered a fully random model where she assumed the locus effects

are random as well. The linear model in the equation (5.6) remains the same but John-

son’s assumption would have the effect of adding the variance component γl
iid∼ N(0, σ2

l )

which gives VarT (γl) = σ2
l to those listed in the equation (5.7). The total variance of

the heterozygosity can be expressed in terms of σ2
p , σ2

i(p), σ2
l , σ2

pl and σ2
il(p). Johnson

(2004) found the general expressions for the total variance of heterozygosity in terms of

the above variance components but we found that her expressions are incorrect. After

some algebra we get the total variance of sample heterozygosity using a fully random

model. The total variances are

VarT (H̃i) =
1

(
∑L

l=1 nil)2

[
σ2

p

( L∑

l=1

n2
il +

L∑∑

l 6=l′=1

nilnil′
)

+ σ2
i(p)

( L∑

l=1

nil +

L∑∑

l 6=l′=1

nill′
)

+(σ2
l + σ2

pl)
( L∑

l=1

n2
il

)
+ σ2

il(p)

( L∑

l=1

nil

)]
and (5.8)

VarT (H̃il) =
(
σ2

p + σ2
l + σ2

pl

)
+

1

nil

(
σ2

i(p) + σ2
il(p)

)
. (5.9)

For a fixed loci effect, the variance component of loci effect is zero, i.e. σ2
l = 0. To find

the above expression we first find the variances and covariances in the equation (5.5)

in terms of variance components and then find variance of observed heterozygosity.

5.2.2 A Generalized Linear Mixed Model Approach

Since xijl’s are 0-1 random variables, normality of the errors generally does not hold.

The linear model does not guaranty that the estimates of E(xijl)’s always belong to

[0, 1]. To resolve these problems we propose a generalized linear model. Our model is

divided in two steps and the model is

xijl | pijl ∼ Bernoulli(pijl) and (5.10)

g(pijl) = αi + βj(i) + γl + (αγ)il.
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where g is the link function. It is important to note that we do not have the error

term in the second step. In theory any function that has the range [0,1] can be used

as a link function. One popular choice for the link function is the distribution function

of a random variable. Statisticians have shown that different types of distribution

functions are useful for different families. In our the case the family is binomial (to

be more specific, bernoulli), and obvious choices for the link function are logit, probit

and complementary log-log. In our research we consider all the three different link

functions and choose the best link function based on model selection criteria. αi, βj(i),

(αγ)il (βγ)ijl are random effects of population, individual, and population interacted

with locus respectively. The distribution of these effects are given in the equation (5.7).

We treat the locus effect as fixed rather than random which implies γl’s are also fixed

locus effects.

Our aim is to get an estimate of VarT (H̃il) and VarT (H̃i). First we estimate the

variance components for different random effects and then use the equation (5.5) for

estimating the variance of heterozygosity. For a generalized linear model we can not

estimate the quantities VarT (x11l), CovarT (x11l, x12l), Covar(x11l, x11l′), and

Covar(x11l, x12l′) directly. Using the second degree Taylor series approximation we have

E(pijl) = f(γl) +
1

2
f ′′(γl)

[
σ2

p + σ2
i(p) + σ2

pl

]
,

Covar(pijl, pij′l) = [f ′(γl)]
2
[
σ2

p + σ2
pl

]
,

Covar(pijl, pijl′) = f ′(γl)f
′(γl′)

[
σ2

p + σ2
i(p)

]
, and (5.11)

Covar(pijl, pij′l′) = f ′(γl)f
′(γl′)σ

2
p,
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where f = g−1. Now using the theory of conditional probability we get

Var(xijl) = E(pijl) − [E(pijl)]
2,

Covar(xijl, xij′l) = Covar(pijl, pij′l) = [f ′(γl)]
2
[
σ2

p + σ2
pl

]
, (5.12)

Covar(xijl, xijl′) = Covar(pijl, pijl′) = f ′(γl)f
′(γl′)

[
σ2

p + σ2
i(p)

]
, and

Covar(xijl, xij′l′) = Covar(pijl, pij′l′) = f ′(γl)f
′(γl′)σ

2
p .

From the equation (5.12) we get

VarT (H̃il) =
1

nil

[
E(pijl) − [E(pijl)]

2
]

+ (1 − 1

nil

)[f ′(γl)]
2
[
σ2

p + σ2
pl

]
and

VarT (H̃i) =
1

(
∑L

l=1 nil)2

[ L∑

l=1

E(pijl)
[
1 − E(pijl)

]
+ (

L∑

l=1

(n2
il − nil)[f

′(γl)]
2
[
σ2

p + σ2
pl

]

+
[ L∑ ∑

l 6=l′=1

nill′
]
f ′(γl)f

′(γl′)
[
σ2

p + σ2
i(p)

]

+
L∑∑

l 6=l′=1

(nilnil′ − nill′)f
′(γl)f

′(γl′)σ
2
p

]
.

Sometimes f ′ and f ′′ may be very complicated and not easy to find. In those cases we

use the following algorithm for estimating VarT (pijl), CovarT (pijl, pij′l),

CovarT (pijl, pijl′) and CovarT (pijl, pij′l′).

Step 1. Estimate σ2
α, σ2

β , σ2
αγ , σ

2
βγ and γl from the model using an appropriate

method

Step 2. Generate αi, βj(i), (αγ)il, (βγ)jl(i) from the distributions given in the equa-

tion (5.7). Use the estimated values for the variances.

Step 3. Calculate pijl from γl, αi, βj(i), (αγ)il, (βγ)jl(i).

Step 4. Repeat Step1-Step3 B times and store the pijl’s each time. B is a large

number, say 1000.

Step 5. Use B independent pijl’s and get the empirical estimates of VarT (pijl),
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CovarT (pijl, pij′l), CovarT (pijl, pijl′), and CovarT (pijl, pij′l′).

Because we are using a random number generator, we will not get identical results if

we repeat the method but results will be very similar.

It is necessary to have data from more than one population for estimating the

variance component σ2
p for both linear or generalized linear models. If we do not have

data from multiple populations, it has often been suggested that data from individual

independent loci can be used for approximating the genetical sampling. This approach

can be written as the average of the variance of the single-locus heterozygosity. The

variance of single-locus heterozygosity is

VarT (H̃i)=̂s2
Hi

=

∑L
i=1(H̃il − H̃i)

2

L(L − 1)
. (5.13)

By taking the expectation it can be seen that this approximation fails to allow the de-

pendencies in the data that are accounted for in the underlying population model. Weir

et al. (1990) found the expectation of the variance of single-locus heterozygosity and

it is

ET (s2
Hi

) = VarT (H̃i) +
1

L(L − 1)

L∑

l=1

(Hl − H)2 −
∑ ∑L

l 6=l′ CovT (H̃il, H̃il′)

nL(L − 1)
.

This approximation is biased for the variance of sample heterozygosity if the heterozy-

gosity at single-locus varies over loci or the loci are dependent. Because of this the

single-locus approximation given in equation (5.13) is not a good approximation of

total variance of sample heterozygosity.

5.3 Variance Component Methods

For estimating variance components there are several methods such as ML, REML,

ANOVA, MIVQUE. For balanced data sets all the methods are identical but for un-
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balanced data sets they differ. The methods REML and ML are based on the full form

of the probability distribution of the data. The ML approach estimates the parameter

by maximizing the joint likelihood for the model parameters given the observed data.

REML attempts to remedy drawbacks of the ML method such as negative estimates

of variances. It also maximizes the likelihood for the model parameter to estimate

the parameters but with some restriction. In contrast ANOVA requires a less restric-

tive assumption of the form of the first two moments. The ANOVA estimators are

the familiar ones obtained by equating observed and expected mean squares from an

analysis of variance. For a balanced data set these estimators have many desirable

properties. However, unbalanced data destroy all the properties except unbiasedness.

The MIVQUE approach does not depend on the distribution of the data. MIVQUE es-

timates are unbiased, translation invariant and have a minimum variance. This method

is desirable as it does not depend on any distribution. Johnson (2004) compared the

different methods and found that the estimates of variance components using different

methods are very similar. So we can use any method for estimating the variance com-

ponents. For the linear model we use REML for estimating the variance components.

In the case of the generalized linear mixed model we always use the log-likelihood

to estimate the variance components. But this criterion does not have a closed form

expression and must be approximated. The default approximation in R is “PQL”

or penalized quasi-likelihood. Alternatives are “Laplace” or “AGQ” indicating the

Laplacian and adaptive Gaussian quadrature approximations respectively. The “PQL”

method is fastest but least accurate. The “Laplace” method is intermediate in speed

and accuracy. The “AGQ” method is the most accurate but can be considerably slower

than the others. We have used “Laplace” method to approximate the log-likelihood.
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Chapter 6

Simulation Studies

6.1 Introduction

In the previous chapters we have proposed several estimators for overall and population-

specific descent measures. We also proposed different testing procedures for testing

hypotheses about the coancestry coefficient. A generalized linear mixed model is pro-

posed to find the variance of observed heterozygosity. These expressions have been

developed under the random population setup. We need to verify the performance of

our methods under different values of the parameters. We also need to check the effect

of number of loci, number of individuals in populations, mutation rates, age of the

current generation, unbalanced sampling on our methods. For this we need to simulate

populations that follow our model with different parameter values. Once we generate

different independent populations we can estimate the descent measures. We also can

estimate the variance of heterozygosity using the genotypic data from more than one

population. Since we know the true values of these parameters we can compare the

accuracy of our estimates by evaluating the empirical biases and standard errors of our

estimators. Using the simulated data we can find the empirical power of our testing

procedures.

We generate data assuming two models: (i) a Pure drift model and (ii) a Both-way

mutation model. In the next section we describe these two models and the procedures
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to generate data using these two models. We use these data sets and estimate the

descent measures. The biases and variances of the estimators involve higher order

descent measures which are unknown. So we can not find the theoretical value of the

biases and variances of our estimators. We evaluate the performance of our estimators

by calculating the empirical bias and variance of the estimators. The empirical power

of different tests has also been calculated. We give the results in tabular forms.

6.2 Pure Drift Model

Model

Falconer and Mackay (1996) described the assumptions of an idealized population.

We construct different populations using these assumptions. To make our simulation

study easy, we modify some of these assumptions. We consider a random population

setup, and under this all the present populations are evolved from a single ancestral

population. The evolution of one population may or may not depend on the evolution

of other populations. In this research we assume that the evolution of one population

is independent of the evolution of other populations. So the populations are essentially

independent. We consider L independent loci. Different loci may have a different

number of allelic forms, but in our simulation study we assume each locus has s different

allelic forms. The initial reference population is non-inbred and has infinitely many

individuals. This reference population is also in Hardy-Weinberg equilibrium at each

locus. We assume a random mating system within each population that also includes

self-fertilization in a random amount. The loci we are interested in are neutral. The

pure drift model assumes that the evolutionary forces such as mutation, migration and

selection are assumed not to occur. The generations are distinct and do not overlap.

The population size remains the same over generations and it is N . So in a population

there are N individuals or 2N alleles. Based on these assumptions the theoretical value
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of the descent measures at the tth generation are (see equation (1.11))

θt = 1 − (1 − 1

2N
)t and (6.1)

γt = 1 − 3

2
(1 − 1

2N
)t +

1

2

{
(1 − 1

2N
)(1 − 2

2N
)
}t

. (6.2)

We can not control the values of both the parameters θ and γ in a population, but

we certainly can control the value of one parameter. Here we control the value of θ.

Given a value of θ, θ0, we can compute the time t0 such that the population at the

generation t0 will have θ0 as the value of θ. The value of γ in the population at t0 can

be computed from the equation (6.2). The value of t0 can be computed by

t0 =
log (1 − θ0)

log (1 − 1
2N

)
. (6.3)

Hence, the number of generations needed for specific θ values can be determined. The

simulated allelic data in the final population is used to find the performance of our

estimators. The pure drift model is presented diagrammatically in Figure 6.1.

Simulation Procedures

Here we describe the simulation procedure for one locus. The description is based on

locus A that has s different allelic forms, namely A1, A2, · · · , As. The frequency of

these alleles in the ancestral population is p1, p2, · · · , ps. Since there are L independent

loci, we have to repeat the following procedure L times to get data at L independent

loci. The simulation procedure for generating a population with coancestry coefficient

θ0 is

1. Set the frequency of the allele Ak in the reference or ancestral population

to pk for k = 1, 2, · · · , s; where 0 < pk < 1 and
∑s

k=1 pk = 1.

2. Generate one allele in the first generation by drawing a random number, u

such that u ∼ uni(0, 1).
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• If 0 ≤ u ≤ p1, then the allelic type is A1.

• If
∑k−1

i=1 pi < u ≤
∑k

i=1 pi, then the allelic type is Ak where

k = 2, 3, · · · , s − 1

• If
∑s−1

i=1 pi < u ≤ 1, then the allelic type is As.

3. Repeat the above step 2N times to get 2N alleles for one population in the

first generation. Store the allelic type of the kth allele, k = 1, 2, · · · , 2N .

This way we generate the first generation population from the ancestral

population.

4. Generate the (t + 1)th generation from the previous generation, t ≥ 1

• Create one allele at the (t+1)th generation by drawing a random

number I uniformly from {1, 2, · · · , 2N}.
• Determine the type of the I th allele in the tth generation. This

will be the allelic type of one allele in the population at time

(t + 1).

• Repeat the above two steps 2N times to generate the whole pop-

ulation at the (t + 1)th generation.

5. This simulation is stopped at the generation t0. The value of t0 can be

calculated from the value of the coancestry coefficient, θ0 (see the equation

(6.3)).

6. We randomly draw samples of n alleles with replacement from this simu-

lated population at the final generation and record the allele frequencies of

all the alleles. These sampled alleles will be our data.

7. We follow the same procedure (step 1 to step 6) to construct r independent

populations with L independent loci.

8. Now we estimate descent measures, calculate test statistics, estimate the

variance of heterozygosity from the simulated data.

9. Repeat procedures 1 to 8 for 1000 times independently. We use these 1000

replications to find empirical bias, variance, and power for different meth-

ods.
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Figure 6.1: The fission and sampling process for the pure drift model and both-way
mutation model. This also shows the genetic and statistical sampling involved in
genetic data analysis.
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6.3 Both-way Mutation Model

Model

The evolutionary process involves forces such as mutation, migration and selection.

Therefore it is not realistic to assume a pure drift model. But on the other hand it is

extremely complex to include all the evolutionary forces in the model. In this section

we include only mutation in the evolutionary process. We assume a both-way mutation

model in which any allele can mutate to any other allele. The mutation rate from one

allele to another allele does not depend on the forms of the alleles. The rate of mutation

is u per generation per allelic form which means that for s alleles at a locus, the total

mutation rate per generation is (s − 1)u. In general, the basic fission process is the

same as for the pure drift model, but now the allelic type Ai can mutate to the allelic

type Aj with probability u per generation. We can compute the theoretical value of θ

and γ given the number of generations and population size using the equation (1.18).

Simulation Procedures

The simulation procedure is similar to the simulation for a pure random drift model.

But only “step 4” needs to be modified:

Create the (t + 1)th generation from previous generation:

• Create one allele in the (t + 1)th generation by drawing a random number

I uniformly from {1, 2, · · · , 2N}
• Determine the type of the I th allele in generation t. WLOG assumes that

the allelic form of this allele is Ai. Now this may be mutated to any other

allele with rate u. Now generate a random number, η ∼ uni(0, 1). Create

an allele in the (t + 1)th generation as follows

• If (j − 1)u ≤ η < ju, then the allelic type is Aj . j = 1, 2, · · · , s;

• If su ≤ η ≤ 1, then the allelic type is Ai.

• Repeat the above two steps 2N times to generate the (t + 1)th generation
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6.4 Results

In this section we discuss the results. This discussion compares the performance our

estimators and test statistics with other proposed measures. We have five different top-

ics, (i) different estimators of θ and γ, (ii) different estimators of population-specific θ

and γ (iii) estimators for two-locus descent measures, (iv) power of different test statis-

tics for testing θ = 0, and (v) estimators of the variance of observed heterozygosity. In

the next five sections we have discussed these five topics separately. For estimation and

testing of descent measures we generate 5 independent populations and each popula-

tion has 500 individuals or 1000 alleles in each generation. For estimating the one-locus

descent measures we sample 300, 325, 350, 375 and 400 alleles from 5 populations and

for the two-locus descent measures we sample the whole population which means that

there are 1000 sampled alleles in each population. We consider different sample sizes

for testing hypotheses about the coancestry coefficient. The sample sizes are given in

the caption of the tables where we describe the results. For estimating the variance

of heterozygosity we generate 10 populations with 150 individuals in each population

and at each generation. In this case, we sample 30 alleles from each population. In

the caption of the tables we have used various notations and here we describe the no-

tations. L is the number of independent loci and s is the number of different alleles

at each locus. p is a vector which denotes the expected frequencies of different allelic

forms. t denotes the age of the current population while ρ is the recombination rate

between the locus A and the locus B. D11 is the linkage disequilibrium between the

allele A1 and the allele B1.

Overall Descent Measures

In this subsection we discuss the performance of the different estimators of θ and γ.

There are several estimators available for θ, but there is no estimator for γ. Weir and

Cockerham’s moment estimator is a well established moment estimator of θ and it has

been compared with other estimators. We compare our new moment estimators with
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Weir and Cockerham’s estimator.

The Table 6.1, Table 6.2, and Table 6.3 show that all the moment estimators have

a small bias but a large standard deviation. The information from independent loci

increases the accuracy of the estimators by decreasing the standard deviations of the

estimators. The information from independent loci also decreases the magnitude of the

biases of the estimators. For example, in Table 6.2, when θ = 0.101 the bias of θ̂WC

based on a single-locus and 20 loci are 0.00125 and 0.00013 respectively. Sometimes an

increment in the number of loci may cause the change of sign in the bias of an estimator,

but it may also decrease the magnitude of the bias. For example, in Table 6.1, when θ =

0.101 the bias of θ̂1,M based on a single locus is −0.00224. If we take information from

20 independent loci then the bias is 0.00003. Theoretically, the bias of the estimators

should be negative but we can not calculate the theoretical value of the biases as they

involve unknown higher order descent measures, δ, ∆2,2 etc. In some situations, we

have found that an increase in the number of locus may cause an increment in the bias

although the increment is very small. For example, in Table 6.3 when θ = 0.051 the

biases of θ̂1,P based on a single locus and 20 loci are 0.00018 and 0.00114. This should

not happen in theory and we conclude that one or two outliers in the simulation process

cause these discrepancies. In general, the biases of the moment estimators are small for

different parameter values and decrease with an increasing number of loci. On the other

hand, the information from different loci always reduces the standard deviations of the

estimators. For example, in Table 6.2 when θ = 0.051 then the standard deviations

of θ̂4,P based on a single locus and 20 loci are 0.01961 and 0.00439 respectively. So

we can control the value of standard deviations of the moment estimators by taking

information from different loci. The above facts are true for a pure drift model and a

both-way mutation model.

The biases and standard deviations of estimators heavily depend on the number

of different allelic forms at each locus. The simulation studies show that the value of

biases and standard deviations of different estimators decrease as the number of allelic

forms per locus increases. This fact does not depend on the allelic frequencies at a
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locus. If we have 2 alleles with frequencies 0.7 and 0.3 at each locus, then the bias and

standard deviation of θ̂3,P based on a single locus are -0.00079 and 0.06432 when the

true value of θ is 0.101 (see Table 6.1). Under the same setup with four allelic forms at

each locus with equal frequencies, the bias and standard deviation of θ̂3,P are −0.00070

and 0.03640 (see Table 6.2). If we generate data using a both-way mutation model,

then the standard errors of the MOM estimators also decreases with an increasing

number of loci.

The performance of the estimators does depend on the population model but the

relative performance of the estimators remain similar. In the simulation studies we

consider two different models. Under the same setup, Table 6.1 and Table 6.2 show the

results of different estimators of θ under a pure drift model while Table 6.3 displays

the results for a both-way mutation model. We compare Table 6.1, Table 6.2, and

Table 6.3 and find that all the tables show similar results. The results are not exact as

the true values of θ are not the same for both the models.

Now we compare different estimators with Weir-Cockerhams’s moment estimator.

As we discussed earlier, all the estimators have negligible biases and we do not compare

our estimators in terms of biases. We compare our estimators in terms of their standard

deviations. The newly proposed moment estimators of θ, θ̂1,M and θ̂2,M are less efficient

than θ̂WC in terms of standard deviation. In Table 6.1 when θ = 0.011, the standard

deviations of θ̂WC based on a single locus and 20 loci are 0.00927 and 0.00214. Under

the same setup as above, the standard deviations of θ̂1,M are 0.01170 and 0.00267 while

the standard deviations of θ̂2,M are 0.01170 and 0.00266. In Table 6.3 when θ = 0.051,

the standard deviations of θ̂WC based on a single locus and 20 loci are 0.03597 and

0.00834. Under the same setup as above, the standard deviations of θ̂1,M are 0.03971

and 0.00931 while the standard deviations of θ̂2,M are 0.03971 and 0.00909. The new

proposed estimators θ̂1,P and θ̂2,P are very competitive with θ̂WC . Sometimes the

first two estimators are more accurate than θ̂WC , but in some other cases we get the

opposite result. In Table 6.1 when θ = 0.011, the standard deviations of θ̂WC based on

a single locus and 20 loci are 0.00927 and 0.00214. Under the same setup, the standard
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deviations of θ̂1,P are 0.00927 and 0.00213 while the standard deviations of θ̂2,P are

0.00927 and 0.00213. In Table 6.2 when θ = 0.051, the standard deviations of θ̂WC

based on a single locus and 20 loci are 0.02101 and 0.00463. Under the same setup,

the standard deviations of θ̂1,P are 0.02091 and 0.00463 while the standard deviations

of θ̂2,P are 0.02117 and 0.00467. In the first example θ̂1,P and θ̂2,P are doing well, but

in the second example θ̂WC is more accurate. So in general we cannot prefer some

estimators over others. The θ̂3,P has lesser standard deviation than θ̂1,M , θ̂2,M , θ̂1,P

and θ̂2,P . In most of the cases θ̂3,P is more accurate than θ̂WC in terms of variance.

But in some cases, the θ̂3,P has a larger standard error than θ̂WC . For example, in

Table 6.3 when θ = 0.011, the standard errors of θ̂WC based on a single locus and 20

loci are 0.00998 and 0.00206. Under the same setup, the standard deviations of θ̂3,P

are 0.00999 and 0.00205. The θ̂3,P has more variance than θ̂WC .

Now we compare the performance of θ̂4,P with θ̂WC . From our simulation studies

we have found that the estimator θ̂4,P is at least as accurate as θ̂WC . In most cases θ̂4,P

has smaller variance than θ̂WC , but sometimes they may have the same variance. In

Table 6.2 when θ = 0.101, the standard deviations of θ̂WC based on a single locus and 20

loci are 0.03848 and 0.00897. Under the same setup the standard deviations of θ̂4,P are

0.03478 and 0.00796. In both the cases θ̂4,P has less standard deviations than θ̂WC . On

the other hand, in Table 6.3 when θ = 0.011, the standard deviations of θ̂WC based on

a single locus and 20 loci are 0.00998 and 0.00206. Under the same setup, the standard

deviations of θ̂4,P are 0.00998 and 0.00205. In the first case both the estimators have

the same standard error while in the last case θ̂4,P has a lower standard error. So we

conclude θ̂4,P is a better estimator than θ̂WC in terms of standard deviation.

All the moment estimators have negligible biases. It is not possible to find the best

estimator in terms of bias. But we will not worry about the biases as they are negligible

for all estimators. The estimators θ̂1,M and θ̂2,M are less accurate than θ̂WC in terms

of the variance. The estimators θ̂1,P , θ̂2,P , and θ̂3,P are very competitive with θ̂WC in

terms of variance. In most of the situations θ̂1,P , θ̂2,P , and θ̂3,P have smaller variances

than θ̂WC but sometimes θ̂WC may have a larger variance. On the other hand, θ̂4,P is
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at least as efficient as θ̂WC in terms of variance. Most of cases θ̂4,P has smaller variance

than θ̂WC but sometimes they may have the same variance. So we advocate using θ̂4,P

as a moment estimator of θ as this estimator has smaller standard error.

Now we discuss the performance of different estimators of γ. The biases of the

estimators are relatively small. If we gather information from different loci then the

bias become lesser. For example, in Table 6.4 when the number of alleles per locus

is 2 and γ = 0.00017, the biases of γ̂1,M are −0.00009 and 6.4e−6 respectively for

1 and 20 loci. In the same setup the biases of γ̂1,P based on a single locus and 20

loci are −0.00010 and 2.6e−6 respectively. The standard deviations of the moment

estimators are relatively large, but we can decrease the standard deviations by including

independent loci. For example, in Table 6.5 when the number of alleles per locus is

2 and γ = 0.01464, the standard deviations of γ̂1,P based on a single locus and 20

loci are 0.14925 and 0.01467 respectively. In the same setup, the biases of γ̂2,P are

0.14925 and 0.05753. When the true value of γ is small then all four estimators of

γ are equivalent. For example, Table 6.4 shows that when the number of alleles per

locus is 4 and γ = .00017 all the four estimators have equal standard deviations for

a different number of loci. On the other hand, Table 6.4 shows when the number of

alleles per locus is 2 and γ = .00017, the standard deviations of different estimators are

not exactly equal but they are very close to each other. As the true value of γ increases

we find differences in the performance of the estimators. In general, γ̂1,P and γ̂1,M are

more stable and better estimators than the other two for large values of γ. These two

estimators have lower standard deviation than the other two estimators. For example,

Table 6.4 when γ = 0.01464 and there are 4 alleles per locus, the standard deviations

of γ̂1,P based on a single locus and 20 loci are 0.02368 and 0.00592. Under the same

setup, the standard deviations of γ̂1,M are 0.02373 and 0.00593, standard deviations of

γ̂2,M are 0.02879 and 0.00944, and standard deviations of γ̂2,P are 0.03437 and 0.03132.

When the true value of γ = 0.00377, then the standard deviations of γ̂1,M and γ̂1,P are

also slightly smaller than the other two estimators. Table 6.4 shows that most of the

cases the standard deviation of γ̂1,P is smaller than the standard deviation of γ̂1,M but
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in some cases they are the same. So we prefer γ̂1,P over γ̂1,M as an estimator of γ. In

conclusion, we advocate using γ̂1,P to estimate γ.

Population-specific Descent Measures

In this section we discuss about the performance of four different estimators of popu-

lation specific θ. The moment estimators of population-specific descent measures have

small biases. Moreover adding information from different independent loci also gener-

ally decreases the biases. But the standard deviations of the estimators are relatively

large. In fact, the magnitude of the standard deviations the estimators based on a

single locus are larger than the estimates. The variances of the estimators decrease

as the number of independent loci increases. For example, in Table 6.5 the standard

deviations of θ̂4,P based on a single locus and 20 loci in the first population are 0.17187

and 0.03912 which shows that the variance decreases as number loci increases. Among

the four estimators, θ̂4,P is the most efficient in terms of variance and θ̂2,P is the least

efficient. The other three estimators, θ̂WC , θ̂1,P and θ̂3,P are very competitive. We

cannot order the last three estimators according to their efficiency in terms of stan-

dard error. For example, Table 6.5 shows that the standard deviations of θ̂4,P based

on a single locus and 20 loci in the 2nd population are 0.18636 and 0.04314. Under

the same setup, the standard deviations of θ̂WC are 0.21815 and 0.04859, the standard

deviations of θ̂1,P are 0.21430 and 0.04785, the standard deviations of θ̂2,P are 0.37568

and 0.08182 and the standard deviations of θ̂3,P are 0.21430 and 0.04989. This shows

that the estimator θ̂4,P has least variance. Table 6.5 and Table 6.6 show that the esti-

mator θ̂4,P has the least variance in all the cases. In terms of biases all the estimators

are very competitive but the biases are so small we can neglect them. So we suggest

using the estimator θ̂4,P for estimating population specific θ. The biases and variances

of the estimators of population-specific θ are larger than the biases and variances of

the estimators of overall θ. This is obvious because in estimating population-specific θ

heavily depends on a single population although they need more than one population.
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The estimator of population-specific γ does not work properly when there are two

or three different allelic forms per locus. When there are four or more allelic forms

the estimators work well. As with the other moment estimators, the estimators of

population-specific γ have less biases but large standard deviations. If the true value

of γ is very small then the biases of the estimators are not negligible, but for moderate

and large values of γ the biases become smaller. We can reduce the biases by collecting

information from independent loci. In general the bias of γ̂1,M is smaller than other

estimators, but in a few cases the bias of γ̂1,P is smaller than γ̂1,M . In these cases

the difference in biases are very small and the biases are negligible. So we conclude

that γ̂1,M is a better estimator than others in terms of bias. γ̂1,M has the least variance

among four different estimators. This is true for all populations and different number of

loci. The standard deviation of γ̂1,M decreases as we increase the number of independent

loci. The bias and variance of the estimator of population-specific γ are larger than the

bias and variance of the estimator of overall γ. We suggest using γ̂1,M for estimating

population-specific γ. The supporting results are given in Table 6.7 in tabular form.

Two-locus Descent Measures

In this section we discuss the performance of the estimators of Θ1Dkl, 1ΘDkl, 1Θ
1
1Dkl

and 1Γ
1
1Dkl. We also have found the moment estimators of Θ11, Γ11 and ∆11 when

the ancestral population is in linkage equilibrium but we skip the discussion on them.

When we have two alleles in each locus, then D11 can characterize the full linkage

structure by the relation D11 = -D12 = -D21 = D22. For two alleles per locus we found

the estimators of the composite parameters follow the above relation, for example

Θ̂1D11 = −Θ̂1D12 = −Θ̂1D21 = Θ̂1D22. If we have more than two allelic forms in each

locus then we do not get the above relations but we have found that the estimate of

compound parameters corresponding different Dkl behave similarly. So without loss of

generality here we present the behavior of the estimators of Θ1D11, 1ΘD11, 1Θ
1
1D11

and 1Γ
1
1D11 only.
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Table 6.8 describes the values of the estimators when ρ = 0.01, 0.05, 0.10 and D11 =

0.16, 0.08. The estimators of Θ1D11, 1ΘD11 and 1Θ
1
1D11 work very well for the setup

in Table 6.8. The biases of these estimators are very small compare to the true value

of the parameters. The standard deviations are of the same order of the true value

of the parameters. For t = 105 the standard deviations are comparatively larger than

the standard deviations of the estimates when t = 52. The estimators of 1Γ
1
1D11 have

biases of the same order as true value and the standard deviations are comparatively

large. For example, in Table 6.8 when t = 52, D11 = 0.16 and ρ = 0.01, the estimate

is 0.00033 while bias and standard deviation of the estimate are −0.00013 and 0.00384

respectively. In fact, the estimate of 1Γ
1
1D11 is always negative while the true value

of the compound parameter is positive. The reason behind this the true value of the

compound parameter is very close to 0 and ratio estimator does not work well in this

situation. The value of the parameter increases as t increases and we get positive

estimate of the parameter for large generation values.

In the Table 6.9 we present the results under different parameter values when each

locus has four different forms of alleles with equal frequencies. The interpretation of

these results are more or less the same as the interpretation of the results of Table 6.8.

The biases of the estimators are small compare to the true value of the parameters

except for one or two cases. The bias of 1Γ
1
1D11 is relatively larger than the others.

In fact, for t = 11 the estimates of 1Γ
1
1D11 are negative while the true value of the

parameter is positive. The standard deviations of the moment estimator Θ1D11 are of

the order of the true value of the parameters. In the other cases the standard deviations

are relatively larger. The standard deviations of the estimators increase with time t.

We observed that the estimator of 1Γ
1
1D11 does not work properly.

Testing hypotheses about θ

In this section we compare the empirical power of newly proposed parametric bootstrap

test with the non-parametric bootstrap test. The comparison has been done under
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small sample sizes. For large sample sizes we compare our newly proposed F test

with the test statistic proposed by Li (1996). We have performed the tests at a 5%

level. We have found that the empirical level of the parametric bootstrap is very close

to 5% all the time. In some situations when there are small number of loci (say, 5),

the empirical significance level of non-parametric bootstrap test may well exceed the

theoretical significance level. The empirical power of the parametric bootstrap test and

large sample test increases with the true value of θ and the sample sizes. The power

of both the bootstrap tests increases as the number of loci increases. For example,

when θ = 0.05070, the sample sizes are 10, and there are two alleles per loci with equal

frequencies, then the power of the parametric bootstrap test are 0.409, 0.611 and 0.838

for 5, 10 and 20 loci. For the above setup the powers of non-parametric bootstrap test

are 0.348, 0.516 and 0.787. Table 6.10 shows that the power of the tests also increases

with the number of allelic form per locus. For example, when θ = 0.01095 and there

are 10 loci with two allelic form per locus with equal frequencies, the power calculations

of the parametric bootstrap test are 0.130, 0.332 and 0.553 for 10, 25 and 40 sampled

alleles in each population. Under the same setup, when there are four alleles per locus

with equal frequencies the power of the parametric bootstrap test are 0.200, 0.595 and

0.892 for 10, 25 and 40 sampled alleles in each population. As we increase the number

of sampled alleles in each locus, the power of the non-parametric tests also increase.

For example, when θ = 0.10062, two alleles per locus and there are 5 loci the the power

of the non-parametric bootstrap test are 0.658, 0.952 and 0.995. Table 6.10 shows that

the parametric bootstrap method is better than non-parametric bootstrap method in

terms of powers. In most of the cases, parametric bootstrap method has more power

than non-parametric bootstrap method. When θ is very large and there are more

loci then both the method have a power 1. So we recommend using the parametric

bootstrap method when the sample sizes are small.

The power of the two F tests is given in Table 6.11. For a 5% significance level, both

the F -test have approximately 5% power when the null hypothesis is true, showing that

the tests have a correct size. The power of the F -tests increases when the true value
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of θ increases. The power of the F -tests increases when the number of sampled alleles

in each population increases. When there are two alleles in each locus then both tests

have approximately equal power. In most of the situations they have equal power,

but in some cases the test proposed by Li (1996) has a slightly more power than our

test procedure but these differences are negligible. The power of the tests does not

vary with the expected allele frequencies. So when we have two allelic forms in each

locus then the performances of both the tests are very similar to each other. When we

have more than two alleles, then Li’s F -test does not exist but our F -test works fine.

Table 6.11 shows that the power of our F -test increases when the number of alleles

per locus increases and this increment is significantly large. For example, when true

value of θ is 0.011 and the locus has two alleles with equal frequencies then the power

of our test are 0.313, 0.566, and 0.825 for 100, 200 and 500 sampled alleles. For the

same setup when there are five alleles with equal frequencies then the powers are 0.671,

0.937 and 0.998. Throughout this simulation studies, we have noticed that the power

of our F test is more than Li’s test, if we have more allelic forms per loci. So our F -test

can be used to get more power when there are more than two alleles per locus. So we

suggest to use our method for more than two alleles and for two alleles we can use any

one F -statistics.

Variance of heterozygosity

In this part we compare the performance of our newly proposed generalized linear

model with the existing linear model approach for estimating the variance of sample

heterozygosity. It is very hard to find the true value of the variance of observed

heterozygosity in the total-population sense. We generate data with independent loci

and each locus has the same allele frequencies. This gives the expectation of the

statistic s2
H̃i

is equal to the total variance of the observed heterozygosity. Using this

approach we have an idea about the true value of the variance. The another approach

for having an idea about the true value of the total variance is to store the estimates
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of the observed heterozygosity for each monte carlo simulation. Then find the sample

variance of the observed heterozygosity and get an empirical estimate of the variance

of the heterozygosity. The Table 6.12 shows that the two empirical estimates of the

variance of the heterozygosity agree with each other, but the true value is unknown

to us. The estimate of sample heterozygosity using a generalized linear model is very

close to its empirical value and the linear model has a large bias. The magnitude of the

standard error of both the estimates is the same. The above two facts suggest that the

MSE of the GLMME is smaller than the MSE of LMME. Both the estimates decrease

as the true value of the population differentiation increases. The Table 6.12 shows that

the estimates of the within-population variance is always smaller than the empirical

estimate of the total-population variance of sample heterozygosity. This is because the

within variance fails to incorporate the variance due to the population differentiation.

We use a model selection criteria to find which model is a better fit. There are

many model selection methods, and we have used Akaike information criterion (AIC),

Bayesian information criteria (BIC), and Deviance information criterion (DIC). We

have found that in almost all the cases our generalized linear mixed model is a better

fit than the linear model. We also have found that in general, the logit link function

for generalized mixed model works better than other link functions.

The Akaike information criterion (AIC), developed by Hirotsugu Akaike in 1971

and is grounded in the concept of entropy. The AIC is an operational way of trading

off the complexity of an estimated model against how well the model fits the data. In

the general case, AIC = 2k − 2 ln (L), where k is the number of parameters, and L

is the likelihood function. Given any two estimated models, the model with the lower

value of AIC is the one to be preferred. The AIC is a decreasing function of RSS,

the goodness of fit, and an increasing function of k.

The Bayesian information criteria (BIC) penalizes free parameters more strongly

than does the AIC. In the general case, BIC = k ln (n)−2 ln (L), where k is the number

of parameters, and L is the likelihood function. It is important to keep in mind that

the BIC can be used to compare estimated models only when the numerical values
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of the dependent variable are identical for all estimates being compared. The models

being compared need not be nested, unlike the case when models are being compared

using an F or likelihood ratio test.

The deviance information criterion (DIC) is a hierarchical modeling generalization

of the AIC and BIC. It is particularly useful in Bayesian model selection prob-

lems where the posterior distributions of the models have been obtained by Markov

chain Monte Carlo (MCMC) simulation. Like AIC and BIC it is an asymptotic ap-

proximation as the sample size becomes large. It is only valid when the posterior

distribution is approximately multivariate normal. Define the deviance as D(β) =

−2 log (p(y | β)) + C, where y is the data, β are the unknown parameters of the model

and p(y | β) is the likelihood function. C is a constant that cancels out in all calcula-

tions that compare different models, and which therefore does not need to be known.

The expectation D̄ = Eβ [D(β)] is a measure of how well the model fits the data; the

larger this is, the worse the fit. The effective number of parameters of the model is

computed as pD = D̄ − D(β̄), where β̄ is the expectation of β. The larger this is,

the easier it is for the model to fit the data. The deviance information criterion is

calculated as DIC = pD + D̄. The models with a smaller DIC should be preferred to

models with larger DIC. Models are penalized both by the value of D̄, which favors

a good fit, but also by the effective number of parameters pD. Since D̄ will decrease

as the number of parameters in a model increases, the pD term compensates for this

effect by favoring models with a smaller number of parameters.

The advantage of DIC over other criteria, for Bayesian model selection, is that the

DIC is easily calculated from the samples generated by a MCMC simulation. AIC

and BIC require calculating the likelihood at its maximum over β, which is not readily

available from the MCMC simulation. But to calculate DIC, simply compute D̄ as

the average of D(β) over the samples of β, and D(β̄) as the value of D evaluated at the

average of the samples of β. Then the DIC follows directly from these approximations.
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Table 6.1: Different estimators of θ. Parameters: s = 2; p = (0.7, 0.3); L = 1, 20; The
data is generated with a pure drift model.

L = 1 L = 20

θ Method Average Bias SD Average Bias SD

.011 θ̂WC .01038 -.00056 .00927 .01101 .00006 .00214

θ̂1,M .01019 -.00076 .01170 .01106 .00011 .00267

θ̂2,M .01019 -.00076 .01170 .01097 .00002 .00266

θ̂1,P .01036 -.00059 .00927 .01100 .00005 .00213

θ̂2,P .01036 -.00059 .00927 .01100 .00005 .00213

θ̂3,P .01036 -.00059 .00927 .01097 .00002 .00211

θ̂4,P .01037 -.00058 .00926 .01097 .00002 .00211

.051 θ̂WC .04861 -.00209 .03549 .05031 -.00038 .00784

θ̂1,M .04878 -.00191 .03904 .05051 -.00019 .00902

θ̂2,M .04878 -.00191 .03904 .04980 -.00089 .00885

θ̂1,P .04873 -.00196 .03552 .05036 -.00033 .00782

θ̂2,P .04873 -.00196 .03552 .05036 -.00033 .00782

θ̂3,P .04873 -.00196 .03552 .04994 -.00076 .00770

θ̂4,P .04864 -.00205 .03520 .04992 -.00078 .00764

.101 θ̂WC .09952 -.00110 .06322 .10083 .00020 .01466

θ̂1,M .09839 -.00224 .07052 .10065 .00003 .01695

θ̂2,M .09839 -.00224 .07052 .09737 -.00325 .02768

θ̂1,P .09983 -.00079 .06342 .10086 .00024 .01460

θ̂2,P .09983 -.00079 .06342 .10086 .00024 .01460

θ̂3,P .09983 -.00079 .06342 .09924 -.00139 .01416

θ̂4,P .09986 -.00077 .06304 .09908 -.00154 .01397
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Table 6.2: Different estimators of θ. Parameters: s = 4; p = (0.25, 0.25, 0.25, 0.25);
L = 1, 20; The data is generated with a pure drift model.

L = 1 L = 20

θ Method Average Bias SD Average Bias SD

.011 θ̂WC .01073 -.00021 .00544 .01094 -1.8e-6 .00126

θ̂1,M .01073 -.00021 .00556 .01095 2.5e-6 .00127

θ̂2,M .01064 -.00031 .00550 .01084 -.00010 .00126

θ̂1,P .01073 -.00021 .00541 .01094 -6.7e-7 .00126

θ̂2,P .01073 -.00022 .00541 .01094 -5.4e-6 .00127

θ̂3,P .01071 -.00024 .00539 .01090 -.00004 .00125

θ̂4,P .01071 -.00023 .00536 .01090 -.00004 .00124

.051 θ̂WC .05067 -.00002 .02101 .05023 -.00046 .00463

θ̂1,M .05083 .00014 .02171 .05025 -.00045 .00483

θ̂2,M .05021 -.00048 .02129 .04943 -.00126 .00468

θ̂1,P .05067 -.00002 .02091 .05025 -.00045 .00463

θ̂2,P .05050 -.00020 .02117 .05023 -.00047 .00467

θ̂3,P .05022 -.00048 .02023 .04963 -.00106 .00449

θ̂4,P .05003 -.00066 .01961 .04958 -.00112 .00439

.101 θ̂WC .10187 .00125 .03848 .10075 .00013 .00897

θ̂1,M .10090 .00028 .03945 .10079 .00017 .00965

θ̂2,M .09939 -.00123 .03839 .09805 -.00257 .00923

θ̂1,P .10198 .00135 .03835 .10073 .00011 .00891

θ̂2,P .10272 .00210 .04038 .10070 .00007 .00894

θ̂3,P .09992 -.00070 .03640 .09843 -.00219 .00846

θ̂4,P .09938 -.00124 .03478 .09796 -.00267 .00796
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Table 6.3: Different estimators of θ. Parameters: s = 2; p = (0.7, 0.3); L = 1, 20; The
data is generated with a both-way mutation model.

L = 1 L = 20

θ Method Average Bias SD Average Bias SD

.011 θ̂WC .01069 -.00019 .00998 .01095 .00007 .00206

θ̂1,M .01054 -.00033 .01214 .01095 .00007 .00254

θ̂2,M .01054 -.00033 .01214 .01085 -.00003 .00252

θ̂1,P .01073 -.00014 .00999 .01095 .00007 .00206

θ̂2,P .01073 -.00014 .00999 .01095 .00007 .00206

θ̂3,P .01073 -.00014 .00999 .01092 .00004 .00205

θ̂4,P .01073 -.00014 .00998 .01092 .00004 .00205

.051 θ̂WC .05022 .00006 .03597 .05127 .00111 .00834

θ̂1,M .04967 -.00049 .03971 .05117 .00102 .00931

θ̂2,M .04967 -.00049 .03971 .05042 .00027 .00909

θ̂1,P .05034 .00018 .03590 .05130 .00114 .00833

θ̂2,P .05034 .00018 .03590 .05130 .00114 .00833

θ̂3,P .05034 .00018 .03590 .05085 .00069 .00819

θ̂4,P .05032 .00016 .03570 .05083 .00067 .00812

.101 θ̂WC .10482 .00424 .06893 .10606 .00548 .01624

θ̂1,M .10230 .00171 .08197 .10589 .00531 .01825

θ̂2,M .10230 .00171 .08197 .10278 .00219 .02678

θ̂1,P .10474 .00415 .06873 .10605 .00547 .01629

θ̂2,P .10474 .00415 .06873 .10605 .00547 .01629

θ̂3,P .10474 .00415 .06873 .10411 .00353 .01565

θ̂4,P .10461 .00403 .06774 .10392 .00333 .01544
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Table 6.4: Estimators of γ. Parameters: L = 1 and 20; s = 2 and 4; p = (0.7, 0.3) and
(0.25, 0.25, 0.25, 0.25); The data is generated with a pure drift model.

L = 1 L = 20

allele γ Method Average Bias SD Average Bias SD

2 .00017 γ̂1,M .00008 -.00009 .00268 .00018 6.4e-6 .00067

γ̂2,M .00008 -.00009 .00268 .00018 5.1e-6 .00067

γ̂1,P .00007 -.00010 .00264 .00018 6.6e-6 .00066

γ̂2,P .00007 -.00010 .00264 .00018 2.6e-6 .00067

.00377 γ̂1,M .00447 .00070 .02295 .00376 -9.0e-6 .00498

γ̂2,M .00447 .00070 .02295 .00356 -.00020 .00537

γ̂1,P .00444 .00067 .02248 .00379 .00002 .00499

γ̂2,P .00444 .00067 .02248 .00357 -.00020 .00537

.01464 γ̂1,M .00918 -.00546 .07136 .01455 -.00009 .01297

γ̂2,M .00918 -.00546 .07136 .00909 -.00555 .06614

γ̂1,P .00948 -.00516 .07074 .01456 -.00008 .01294

γ̂2,P .00948 -.00516 .07074 .01353 -.00111 .03532

4 .00017 γ̂1,M .00016 -.00002 .00098 .00019 .00001 .00024

γ̂2,M .00016 -.00002 .00098 .00019 .00001 .00024

γ̂1,P .00016 -.00001 .00098 .00019 .00001 .00024

γ̂2,P .00016 -.00002 .00097 .00019 .00001 .00024

.00377 γ̂1,M .00422 .00045 .00850 .00371 -.00006 .00193

γ̂2,M .00412 .00035 .00846 .00354 -.00022 .00190

γ̂1,P .00419 .00042 .00840 .00370 -.00007 .00193

γ̂2,P .00406 .00030 .00834 .00351 -.00026 .00189

.01464 γ̂1,M .01412 -.00052 .02318 .01456 -.00008 .00571

γ̂2,M .01311 -.00153 .02381 .01309 -.00155 .00583

γ̂1,P .01411 -.00053 .02311 .01455 -.00009 .00570

γ̂2,P .01300 -.00164 .02372 .01301 -.00163 .00577
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Table 6.5: Estimators of θi. Parameters: s = 2; p = (0.7, 0.3); L = 1 and 20; The data
is generated with a pure drift model.

L = 1 L = 20

Pop θi Method Average Bias SD Average Bias SD

1 .049 θ̂WH .03802 -.01078 .20344 .04979 .00100 .04449

θ̂1,P .03993 -.00887 .19707 .04971 .00092 .04335

θ̂2,P .03451 -.01428 .34796 .05087 .00208 .07485

θ̂3,P .03993 -.00887 .19707 .04473 -.00407 .04498

θ̂4,P .05016 .00137 .17187 .05470 .00591 .03912

2 .063 θ̂WH .04939 -.01357 .21815 .06531 .00235 .04859

θ̂1,P .05084 -.01212 .21430 .06522 .00226 .04785

θ̂2,P .03995 -.02301 .37568 .06745 .00448 .08182

θ̂3,P .05084 -.01212 .21430 .06230 -.00066 .04989

θ̂4,P .05558 -.00738 .18636 .06700 .00404 .04314

3 .077 θ̂WH .07604 -.00088 .23051 .07608 -.00084 .05165

θ̂1,P .07685 -7.2e-5 .22960 .07597 -.00096 .05139

θ̂2,P .08331 .00639 .39388 .07547 -.00145 .08848

θ̂3,P .07685 -7.2e-5 .22960 .07523 -.00169 .05368

θ̂4,P .07729 .00037 .19787 .07527 -.00166 .04647

4 .091 θ̂WH .08833 -.00234 .24322 .09183 .00116 .05253

θ̂1,P .08832 -.00235 .24482 .09168 .00101 .05284

θ̂2,P .08371 -.00696 .41958 .09152 .00085 .08980

θ̂3,P .08832 -.00235 .24482 .09257 .00189 .05539

θ̂4,P .08187 -.00880 .21001 .08713 -0.0035 .04740

5 .104 θ̂WH .11188 .00767 .24591 .10138 -.00284 .05671

θ̂1,P .11126 .00705 .24950 .10119 -.00303 .05769

θ̂2,P .12572 .02151 .42000 .09845 -.00577 .09659

θ̂3,P .11126 .00705 .24950 .10357 -.00064 .06014

θ̂4,P .10222 -.00199 .21280 .09414 -.01008 .05102
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Table 6.6: Estimators of θi. Parameters: s = 4; p = (0.25, 0.25, 0.25, 0.25); L = 1, 20;
The data is generated with a both-way mutation model.

L = 1 L = 20

Pop θi Method Average Bias SD Average Bias SD

1 .049 θ̂WH .05551 .00357 .04703 .05368 .00174 .01043

θ̂1,P .05551 .00357 .04703 .05368 .00174 .01043

θ̂2,P .05439 .00245 .06368 .05404 .00211 .01402

θ̂3,P .06307 .01113 .04171 .06023 .00829 .00892

θ̂4,P .07052 .01858 .03081 .06868 .01674 .00655

2 .063 θ̂WH .07135 .00626 .05998 .06729 .00220 .01249

θ̂1,P .07135 .00626 .05998 .06729 .00220 .01249

θ̂2,P .06863 .00353 .07256 .06779 .00270 .01526

θ̂3,P .07433 .00923 .04995 .06966 .00457 .01043

θ̂4,P .07658 .01149 .03487 .07388 .00879 .00746

3 .077 θ̂WH .08446 .00662 .06765 .08183 .00399 .01432

θ̂1,P .08446 .00662 .06765 .08183 .00399 .01432

θ̂2,P .08750 .00966 .08108 .08143 .00359 .01659

θ̂3,P .08142 .00358 .05321 .08030 .00246 .01184

θ̂4,P .08142 .00358 .03739 .07964 .00180 .00809

4 .091 θ̂WH .09541 .00522 .07334 .09480 .00461 .01646

θ̂1,P .09541 .00522 .07334 .09480 .00461 .01646

θ̂2,P .09706 .00687 .08364 .09406 .00387 .01922

θ̂3,P .08951 -.00068 .05863 .08934 -.00085 .01283

θ̂4,P .08581 -.00438 .04057 .08468 -.00552 .00869

5 .104 θ̂WH .10570 .00354 .08241 .10815 .00599 .01790

θ̂1,P .10570 .00354 .08241 .10815 .00599 .01790

θ̂2,P .10612 .00396 .09151 .10839 .00624 .02095

θ̂3,P .09728 -.00488 .06505 .09826 -.00390 .01385

θ̂4,P .08989 -.01227 .04352 .08978 -.01238 .00930
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Table 6.7: Different estimators of γi. Parameters: s = 4; p = (0.25, 0.25, 0.25, 0.25);
L = 1, 20; The data is generated with a pure drift model.

L = 1 L = 20

Pop γi Method Average Bias SD Average Bias SD

1 .0035 γ̂1,M .00364 .00015 .01297 .00354 4.8e-5 .00327

γ̂2,M .00723 .00374 .07341 .00859 .00510 .01947

γ̂1,P .00266 -.00084 .05406 .00367 .00018 .01274

γ̂2,P .00720 .00371 .07342 .00858 .00509 .01947

2 .0058 γ̂1,M .00642 .00063 .02059 .00569 -.00010 .00455

γ̂2,M .00924 .00344 .07704 .00836 .00257 .02102

γ̂1,P .00774 .00194 .06072 .00606 .00027 .01333

γ̂2,P .00928 .00348 .07705 .00835 .00255 .02103

3 .0086 γ̂1,M .00770 -.00091 .02582 .00885 .00024 .00630

γ̂2,M .00691 -.00171 .08256 .00730 -.00132 .02021

γ̂1,P .00678 -.00184 .06400 .00877 .00015 .01497

γ̂2,P .00684 -.00178 .08260 .00730 -.00132 .02021

4 .0119 γ̂1,M .01268 .00075 .03902 .01153 -.00039 .00783

γ̂2,M .01027 -.00165 .09240 .00867 -.00326 .02154

γ̂1,P .01279 .00087 .07753 .01163 -.00029 .01685

γ̂2,P .01037 -.00156 .09246 .00867 -.00325 .02154

5 .0157 γ̂1,M .01527 -.00042 .03907 .01544 -.00024 .00979

γ̂2,M .00939 -.00630 .09004 .01031 -.00538 .02248

γ̂1,P .01383 -.00186 .07584 .01538 -.00031 .01760

γ̂2,P .00931 -.00638 .09008 .01029 -.00540 .02248
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Table 6.8: Estimates of two-locus descent measures. Parameters: s = 2; p = (0.7, 0.3);
The data is generated with a pure drift model.

t = 52 t = 106

D11 ρ Method Average Bias SD Average Bias SD

0.16 0.01 Θ̂1D11 .09522 .00026 .01797 .05906 .00337 .02246

1Θ̂D11 .00617 -.00027 .00627 .01008 .00021 .01231

1Θ̂
1
1D11 .00484 -4.7e-5 .00665 .00635 .00036 .01956

1Γ̂
1
1D11 .00033 -.00013 .00384 .00112 -.00025 .01815

0.05 Θ̂1D11 .01334 .00201 .01091 .00387 .00202 .01413

1Θ̂D11 .00306 .00019 .00576 .00346 .00050 .01104

1Θ̂1
1D11 .00089 .00020 .00383 .00074 .00036 .01407

1Γ̂1
1D11 .00015 -3.9e-5 .00274 .00059 .00024 .01113

0.1 Θ̂1D11 .00233 .00137 .00866 .00185 .00048 .01234

1Θ̂D11 .00171 .00017 .00555 .00175 .00025 .01096

1Θ̂1
1D11 7.4e-5 -3.7e-5 .00314 -.00151 -.00168 .08314

1Γ̂
1
1D11 2.6e-5 -6.5e-5 .00244 -.00030 -.00047 .04286

0.08 0.01 Θ̂1D11 .04704 -.00044 .01792 .02947 .00162 .02175

1Θ̂D11 .00317 -3.2e-6 .00556 .00484 -9.8e-5 .01135

1Θ̂
1
1D11 .00239 -5.4e-5 .00553 .00388 .00088 .02348

1Γ̂
1
1D11 .00014 -8.7e-5 .00292 .00071 3.3e-5 .01218

0.05 Θ̂1D11 .00662 .00096 .01060 .00113 .00020 .01440

1Θ̂D11 .00145 9.5e-6 .00548 .00128 -.00020 .01110

1Θ̂1
1D11 .00027 -7.2e-5 .00321 .00043 .00024 .01084

1Γ̂1
1D11 5.6e-5 -3.8e-5 .00213 .00019 1.4e-5 .00956

0.1 Θ̂1D11 .00129 .00081 .00875 .00087 .00019 .01245

1Θ̂D11 .00090 .00014 .00542 .00097 .00023 .01068

1Θ̂1
1D11 .00014 8.2e-5 .00286 .00024 .00016 .00841

1Γ̂
1
1D11 4.6e-5 6.2e-7 .00222 .00038 .00030 .00891
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Table 6.9: Estimates of two-locus descent measures. Parameters: s = 4; p = (0.25,
0.25, 0.25, 0.25); The data is generated with a pure drift model.

t = 52 t = 106

D11 ρ Method Average Bias SD Average Bias SD

.0625 0.01 Θ̂1D11 .03874 .00165 .01729 .02479 .00304 .02049

1Θ̂D11 .00268 .00020 .00492 .00455 .00070 .01022

1Θ̂1
1D11 .00205 .00014 .00398 .00311 .00077 .00913

1Γ̂1
1D11 .00022 4.3e-5 .00191 .00093 .00040 .00667

0.05 Θ̂1D11 .00507 .00064 .00976 .00068 -4.4e-5 .01274

1Θ̂D11 .00126 .00013 .00492 .00087 -.00029 .00988

1Θ̂1
1D11 .00031 4.6e-5 .00241 .00190 .00175 .05743

1Γ̂1
1D11 7.4e-5 1.4e-7 .00169 .00162 .00148 .04894

0.1 Θ̂1D11 .00089 .00052 .00779 .00058 4.9e-5 .01080

1Θ̂D11 .00060 -4.2e-7 .00492 .00042 -.00017 .00921

1Θ̂
1
1D11 9.8e-5 5.5e-5 .00205 .00014 7.9e-5 .00486

1Γ̂
1
1D11 2.2e-5 -1.4e-5 .00172 .00021 .00014 .00454

.03125 0.01 Θ̂1D11 .01834 -.00021 .01614 .01150 .00063 .01966

1Θ̂D11 .00130 5.9e-5 .00512 .00170 -.00023 .00987

1Θ̂
1
1D11 .00111 .00016 .00395 .00121 4.0e-5 .00872

1Γ̂1
1D11 .00013 3.8e-5 .00176 .00022 -5.2e-5 .00672

0.05 Θ̂1D11 .00306 .00085 .00962 .00075 .00038 .01262

1Θ̂D11 .00079 .00023 .00485 .00074 .00016 .00981

1Θ̂1
1D11 .00014 5.4e-6 .00213 5.8e-5 -1.6e-5 .00672

1Γ̂1
1D11 2.0e-5 -1.7e-5 .00148 .00014 7.5e-5 .00711

0.1 Θ̂1D11 .00023 4.6e-5 .00730 1.9e-5 -.00025 .01058

1Θ̂D11 .00023 -6.9e-5 .00476 .00026 -3.1e-5 .00931

1Θ̂
1
1D11 -4.9e-5 -7.1e-5 .00185 6.7e-5 3.8e-5 .00534

1Γ̂
1
1D11 -4.4e-5 -6.2e-5 .00147 .00012 8.7e-5 .00517
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Table 6.10: The comparison between the empirical powers of newly proposed paramet-
ric bootstrap test with the non-parametric bootstrap test. We consider equal allele
frequencies and equal sample sizes. The data is generated with a pure drift model.

L = 5 L = 10 L = 20

θ allele n NP Boot P Boot NP Boot P Boot NP Boot P Boot

0.00 10 0.065 0.057 0.043 0.054 0.041 0.050

2 25 0.047 0.042 0.045 0.044 0.044 0.049

40 0.044 0.042 0.043 0.053 0.041 0.048

10 0.080 0.047 0.057 0.056 0.049 0.049

4 25 0.082 0.052 0.056 0.047 0.055 0.055

40 0.062 0.044 0.047 0.049 0.044 0.045

.01095 10 0.114 0.110 0.111 0.130 0.151 0.187

2 25 0.190 0.224 0.260 0.332 0.430 0.506

40 0.312 0.365 0.455 0.553 0.713 0.797

10 0.166 0.139 0.190 0.200 0.278 0.303

4 25 0.386 0.389 0.540 0.595 0.814 0.842

40 0.609 0.669 0.861 0.892 0.981 0.985

.05070 10 0.348 0.409 0.516 0.611 0.787 0.838

2 25 0.750 0.847 0.946 0.973 0.999 0.999

40 0.911 0.966 0.994 0.999 1 1

10 0.696 0.714 0.903 0.932 0.997 0.998

4 25 0.991 0.994 1 1 1 1

40 1 1 1 1 1 1

.10062 10 0.658 0.780 0.893 0.935 0.993 0.997

2 25 0.952 0.989 1 1 1 1

40 0.995 0.999 1 1 1 1

10 0.970 0.981 1 1 1 1

4 25 1 1 1 1 1 1

40 1 1 1 1 1 1
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Table 6.11: The comparison between the empirical powers of newly proposed chi square
test statistics with Li’s test procedure. We consider equal sample sizes for different
populations. The data is generated with a pure drift model.

n = 100 n = 200 n = 500

θ allele frequency Our Test Li’s Test Our Test Li’s Test Our Test Li’s Test

.000 2 equal 0.055 0.055 0.052 0.053 0.044 0.044

2 0.7 & 0.3 0.053 0.053 0.041 0.041 0.049 0.050

2 0.9 & 0.1 0.042 0.042 0.053 0.053 0.048 0.048

3 equal 0.050 NA 0.048 NA 0.058 NA

4 equal 0.046 NA 0.047 NA 0.052 NA

5 equal 0.048 NA 0.039 NA 0.056 NA

.011 2 equal 0.313 0.317 0.566 0.568 0.825 0.825

2 0.7 & 0.3 0.316 0.321 0.539 0.543 0.823 0.823

2 0.9 & 0.1 0.343 0.348 0.557 0.561 0.837 0.838

3 equal 0.469 NA 0.774 NA 0.964 NA

4 equal 0.566 NA 0.895 NA 0.994 NA

5 equal 0.671 NA 0.937 NA 0.998 NA

.051 2 equal 0.827 0.828 0.937 0.937 0.985 0.985

2 0.7 & 0.3 0.861 0.862 0.951 0.951 0.990 0.990

2 0.9 & 0.1 0.861 0.862 0.951 0.951 0.990 0.990

3 equal 0.968 NA 0.997 NA 1 NA

4 equal 0.997 NA 1 NA 1 NA

5 equal 1 NA 1 NA 1 NA

.101 2 equal 0.944 0.944 0.983 0.983 0.995 0.995

2 0.7 & 0.3 0.951 0.952 0.985 0.985 0.996 0.996

2 0.9 & 0.1 0.940 0.940 0.990 0.990 0.999 0.999

3 equal 0.997 NA 1 NA 1 NA

4 equal 1 NA 1 NA 1 NA

5 equal 1 NA 1 NA 1 NA
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Table 6.12: Relationship between several different expressions for the variance of het-
erozygosity (H̃i). The terms given are heterozygosity, within and total-population
standard deviation of observed heterozygosity, single-locus and empirical approxima-
tion of standard deviation of heterozygosity. The data is generated from 10 populations
at 5 independent loci using a Pure drift model.

SDT (H̃i)

linear glm+logit

frequency θ H̃i SDW (H̃i)
√

s2
H̃i

empirical mean sd mean sd

0.5 & 0.5 .000 0.497 0.040 0.041 0.038 0.189 0.010 0.093 0.017

.052 0.472 0.040 0.043 0.041 0.182 0.012 0.074 0.018

.101 0.447 0.040 0.047 0.046 0.174 0.013 0.060 0.015

.151 0.424 0.039 0.055 0.053 0.167 0.015 0.051 0.014

0.6 & 0.4 .000 0.477 0.040 0.043 0.039 0.186 0.010 0.092 0.017

.052 0.454 0.040 0.044 0.043 0.179 0.012 0.074 0.018

.101 0.431 0.039 0.053 0.051 0.171 0.014 0.059 0.015

.151 0.408 0.038 0.059 0.058 0.164 0.016 0.051 0.014

0.7 & 0.3 .000 0.419 0.039 0.044 0.040 0.176 0.010 0.090 0.016

.052 0.399 0.039 0.054 0.051 0.170 0.013 0.072 0.017

.101 0.378 0.037 0.065 0.060 0.163 0.015 0.058 0.015

.151 0.359 0.036 0.069 0.068 0.157 0.016 0.049 0.014

0.8 & 0.2 .000 0.318 0.037 0.044 0.039 0.163 0.010 0.086 0.015

.052 0.305 0.036 0.060 0.056 0.159 0.013 0.068 0.016

.101 0.285 0.034 0.072 0.068 0.151 0.015 0.054 0.014

.151 0.274 0.034 0.076 0.075 0.147 0.016 0.045 0.013
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6.5 Application on HapMap Data

In this section we analyze the HapMap data to characterize the human genome. We

used our estimators to estimate the descent measures in different human populations.

We measure genome-wide descent measure and show the heterogeneity among genome

regions.

The International HapMap Project is an organization whose goal is to develop a

haplotype map of the human genome (the HapMap), which will describe the common

patterns of human genetic variation. The project is a collaboration among researchers

at academic centers, non-profit biomedical research groups and private companies in

Canada, China, Japan, Nigeria, the United Kingdom, and the United States. The

HapMap is expected to be a key resource for researchers to use to find genes affecting

health, disease and responses to drugs and environmental factors. The information

produced by the project is freely available to researchers around the world.

The International HapMap Project officially started with a meeting on October 27

to 29, 2002, and was expected to take about three years. It comprises two phases and

the complete data for Phase I was published on October 27, 2005. Completion of the

HapMap will enable future work. The Japanese teams will study 300,000 people to

identify haplotypes that match 47 diseases, and the British will attempt to genotype

patients with diabetes, bipolar disorder, rheumatoid arthritis, cardiovascular disease

and other common diseases.

Most of the common haplotypes occur in all human populations. However, their

frequencies differ among populations. Therefore, data from several populations are

needed to choose tag SNPs. In the HapMap project scientists collected SNP data

from different populations. Pilot studies have found sufficient differences in haplotype

frequencies among population samples from Nigeria (Yoruba), Japan, China and the

United States (residents with ancestry from Northern and Western Europe) to warrant

developing the HapMap with large-scale analysis of haplotypes in these populations.

The HapMap developed from information obtained from these populations should be
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useful for all populations in the world. Specifically, the DNA samples for the HapMap

will come from a total of 270 people. The groups consist of the Yoruba people in

Ibadan, Nigeria (30 adult-and-both-parents trios), Japanese in Tokyo (45 unrelated

individuals), Han Chinese in Beijing (45 unrelated individuals) and the U.S. residents

of northern and western European ancestry (30 trios). These numbers of samples will

allow the project to find almost all haplotypes with frequencies of 5% or higher. For

the HapMap project, researchers sequenced all 22 chromosomes human autosomes. In

the following we provide the length and the number of SNPs for each chromosome.

Results

We compute values of descent measures using only those SNPs that were found to be

segregating in all population samples. We have used θ̂4,P and γ̂1,P for estimating overall

θ and γ. For estimating population-specific θ we have used θ̂4,P,i. We also use this data

set to find if the coancestry coefficient of human populations is strictly positive. Our

estimates are calculated for all markers separately and also for all markers in all the 5-

Mb windows centered on each SNP in the autosomal genome. The numbers of markers

used are shown in Table 6.13.

A genome-wide survey of descent measures shows that there is substantial variation,

even among SNPs that are very close to each other. The estimate of overall θ based

on single-locus marker values from four samples has a distribution very much like the

χ2 distribution with two or three degrees of freedom. The extreme noisiness in single-

locus estimates is demonstrated in Table 6.14, where the standard deviations of the

values for each chromosome are seen to be about the same size as the means. The

variation is even higher for the population-specific values. The noisiness of single-locus

estimates can be reduced by combining data from several adjacent markers. We have

chosen to use 5-Mb windows to clarify the graphical presentations. The distribution of

these (approximately) 1000-locus values is close to a normal distribution. Table 6.14

shows that the chromosomal standard deviations have dropped substantially. Even
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for the relatively large window size of 5 Mb there is substantial variation along each

chromosome, suggesting that values of descent measures are genome region-specific.

Table 6.13: Chromosome lengths and numbers of markers segregating in all populations

Chromosome Length(Mb) No. markers Chromosome Length(Mb) No. markers

1 246.02 46,170 2 243.36 54,649

3 199.16 39,741 4 191.64 35,988

5 180.75 35,649 6 170.67 40,993

7 158.41 26,444 8 146.29 46,834

9 136.31 36,513 10 134.89 29,488

11 134.29 26,767 12 131.96 25,156

13 96.17 22,427 14 87.05 17,520

15 81.78 15,430 16 89.88 14,111

17 81.70 14,317 18 76.11 24,697

19 63.58 10,355 20 63.58 12,115

21 36.95 12,639 22 34.76 11,353

Because the usual values of descent measures are averages over populations, they

may obscure signatures of past evolutionary events such as selective sweeps; so, we have

also estimated population-specific values using our newly proposed estimators. These

values show much more variation, and the very large standard deviations shown in

Table 6.14 indicate that single-locus values are not reliable. The 5-Mb window values,

however, have coefficients of variation that are always < 0.5. The overall estimate of

γ based on a single-locus is extremely variable over the genome. The variability of

the estimate of γ reduces if we consider estimates based on a 5 Mb window and the

standard deviation is about the same size as the means. In the previous section we have

seen that the population-specific γ is stable only when there are at least four allelic

forms per locus. Since our SNP data has two alleles per locus, we do not estimate the
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population-specific γ.

The correlation of pairs of single-locus statistics reflects the linkage disequilibrium

between those pairs (Weir et al., 2005). Specifically, the correlation for single-locus

within-population inbreeding coefficients is given by r2, the squared correlation of al-

lele frequencies at those loci. There is a similar relationship for single-locus θ values

and within population r2 values. Attention must be paid to the inherent variation in

descent measures values if they are to be used to detect selection. Because the stan-

dard deviations differ among chromosomes, a case could be made for using genome-wide

standard deviations to identify exceptional values which means population-specific val-

ues differ from each other exceptionally. There are many more regions with population

differences than there are regions with values different from the mean.

We also have implemented the testing procedures on the HapMap data set. We

found that all four methods rejected the null hypothesis which means the coancestry

coefficient is strictly positive for human populations. This is expected as in the simu-

lation study we have seen that when the true value of θ is close to 0.10 then the power

of all the tests is one.

6.6 Application on Another Published Data set

The analysis of an empirical data set was employed to study the effect of different

methods and models of interest for estimating the variance of heterozygosity. We re-

analyzed one previously published data set (Olsen and Schaal, 2001) using the software

code written in R.

The data set was collected by Olsen and Schaal (2001), who genotyped 5 microsatel-

lite loci in 27 populations of the plants Manihot esculenta ssp flabellifolia. There are

157 individuals in the sample data set. These plants are found in very small popula-

tions of less than 15 individuals. The microsatellites were located in multiple introns

of a 962-base-pair sequence of the Glyceraldehyde 3- phosphate dehydrogenase gene.

These populations were further pooled according to geographic relationships into five
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Table 6.14: Estimates of population-specific and overall θ and overall γ based on single-
locus and 5-Mb window for HapMap data

Chr CEU(θ) HCB(θ) JPT(θ) YRI(θ) All(θ) All(γ)

chr1 .09(.31, .04) .16(.25, .04) .16(.26, .05) .07(.36, .04) .12(.11, .02) .04(.12, .02)

chr2 .10(.31, .04) .17(.25, .05) .17(.25, .04) .07(.36, .05) .13(.11, .02) .04(.12, .02)

chr3 .09(.31, .04) .17(.25, .04) .17(.25, .03) .06(.35, .03) .12(.11, .02) .04(.12, .02)

chr4 .10(.30, .05) .15(.24, .04) .16(.25, .04) .06(.36, .04) .12(.11, .02) .04(.12, .03)

chr5 .09(.31, .03) .14(.25, .04) .15(.25, .04) .08(.34, .03) .12(.11, .02) .03(.11, .02)

chr6 .09(.31, .05) .14(.24, .03) .14(.25, .03) .08(.35, .03) .11(.11, .01) .03(.11, .02)

chr7 .08(.32, .05) .15(.24, .03) .16(.25, .04) .07(.34, .04) .12(.11, .02) .04(.11, .02)

chr8 .10(.29, .05) .15(.24, .04) .15(.24, .03) .09(.35, .05) .12(.11, .02) .04(.12, .02)

chr9 .08(.30, .04) .16(.24, .03) .15(.24, .03) .07(.35, .04) .12(.10, .02) .03(.11, .02)

chr10 .10(.31, .05) .15(.24, .03) .15(.25, .02) .08(.34, .04) .12(.11, .01) .04(.12, .03)

chr11 .09(.30, .03) .14(.24, .02) .13(.24, .02) .09(.34, .03) .11(.10, .01) .03(.11, .02)

chr12 .09(.32, .05) .16(.25, .02) .15(.26, .03) .08(.35, .03) .12(.11, .01) .04(.12, .02)

chr13 .09(.30, .03) .15(.24, .04) .14(.24, .04) .07(.35, .04) .11(.10, .02) .03(.10, .02)

chr14 .10(.32, .04) .14(.24, .02) .14(.25, .02) .09(.35, .03) .12(.11, .01) .03(.11, .02)

chr15 .12(.32, .05) .16(.24, .05) .16(.25, .04) .08(.36, .04) .13(.11, .02) .04(.12, .02)

chr16 .09(.31, .02) .14(.25, .03) .15(.24, .03) .08(.35, .01) .12(.11, .01) .04(.12, .02)

chr17 .10(.30, .04) .15(.24, .04) .16(.25, .04) .09(.34, .02) .13(.11, .02) .05(.13, .04)

chr18 .09(.30, .03) .15(.23, .03) .15(.25, .04) .05(.34, .04) .11(.10, .01) .03(.10, .02)

chr19 .10(.31, .02) .13(.24, .02) .15(.25, .03) .07(.36, .03) .11(.10, .01) .04(.11, .01)

chr20 .09(.30, .04) .14(.24, .03) .14(.24, .03) .09(.34, .03) .11(.10, .02) .03(.11, .02)

chr21 .09(.29, .03) .14(.23, .02) .13(.24, .03) .09(.34, .03) .11(.10, .01) .03(.11, .02)

chr22 .08(.30, .05) .14(.24, .03) .15(.24, .03) .10(.34, .03) .12(.11, .02) .03(.12, .01)
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groups in order to study the effects of increasing the departure from balanced sampling

on different methods. The five pooled groups were as follows: Tocantins included the

populations Axixa, Luzinopolis, Miranorte and Duere. The group Goia included the

populations Campos Belos, Campinorte, Rialma, Corumba, Neropolis, Goias Velho,

Ipora and Caiaponia. Mato Grosso was composed of Nova Xavatina, Serra Petrovina,

Santa Elvira, Sao Vincente, Lambari dOeste, Pontes e Lacerda-A and -B. The group

Randonia included Vilhena, Pimenta Bueno, Jaru, Ariquemes, Teotonio, Taquaras.

Finally, the group Acre was composed of the Rio Branco and Sena Madureira popula-

tions.

Results

We advocate the regular inclusion of the variance of estimators in statistical analyses,

particularly for the estimators of heterozygosity. It is important to include estimates of

variance in analyses of this type, because the variances can be quite large and we can get

more completely summarizes the data of interest. Examination of the point estimates

H̃i in Table 6.16 illustrates the benefits of such a summarization. For this data set

different plant populations have high levels of genetic variation which is conveyed by

the point estimates. However, the estimates of heterozygosity range a great deal across

both loci and populations, with underlying H̃il estimates ranging from (0.0; 0.72). This

range is best summarized by including the variance of sample estimates with the point

estimates for this data.

We use the general term “single-locus approximation” for the estimator to mean

the variance of single-locus estimates as in the equation (5.13). This is a frequently

used approach for the small proportion of studies that do give variance estimates of

heterozygosity. The approximation will be very similar to the total variance of sample

heterozygosity only in the cases where the heterozygosities can be reasonably modeled

as having the same expected values and having no dependencies between loci. Weir

(1989) noted that the composite linkage disequilibrium coefficients can be used as an
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indicator of non-independence between gene diversity estimates at different loci. In

our empirical data (Olsen and Schaal, 2001) the different loci are in linkage disequi-

librium. Johnson (2004) performed a series of tests and found that for this data 18

out of 154 tests for composite linkage disequilibrium were significant at the 5% level,

when 8 would be expected to be significant by chance. The presence of disequilibrium

is consistent with the microsatellite markers being located within a 962-base-pair se-

quence (Olsen and Schaal, 2001). For this data set we have found a great disparity

between the variance of heterozygosity as estimated by the single-locus approximations

and those obtained with variance component methods or exact expressions (Table 6.16).

This supports the idea of testing for composite linkage disequilibrium as an indicator

of covariances between sample heterozygosities.

The sources of variation in observed values of heterozygosity are population, in-

dividual and different interaction. We believe that the loci contributes to the varia-

tion of heterozygosity by adding different fixed effects for different loci. On the other

hand Johnson (2004) treated the loci effects as random effects. These two approaches

will produce different results and the difference will depend on the variation of the locus

effects. In the Table 3.2, Johnson (2004) found the total variances of the heterozygosity

for the same data set using both random and mixed models and found that there is not

much difference in the result. So it is appropriate to assume the loci effects are fixed.

Since our data set is unbalanced we can use different variance component methods for

analyzing the data set. But Johnson (2004) showed that within a model the results do

not vary a lot for different component methods. So without loss of generality we find

the estimates using a REML method.

We mentioned earlier that Johnson (2004) derived the expressions for the variance

of heterozygosity incorrectly. We found the correct expressions for the variance of

heterozygosity. Table 6.15 and Table 6.16 show that our expression produces a larger

estimate than Johnson (2004)’s estimate. But we also think the linear model approach

is not correct for indicator random variables. Here we propose a generalized linear

model with mixed effects. Now the biggest problem with the generalized linear model
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is choosing the link function. In particular any cumulative density function can serve as

a link function. Three popular choices of link function for Bernoulli random variables

are logit, probit and complementary log-log. We have used all three link functions

and found that they give different estimate of the variance of heterozygosity. To find

the best linear function we have used model selection criteria such as AIC, BIC, log-

likelihood, or deviance. The results show that for the microsatellite data set (Olsen

and Schaal, 2001) the logit link function is the best among three link functions. For

the pooled data set all three link functions work well and they also produce almost the

same result. For this particular data set we can use any one of the three link functions.

So the link function depends on the data set. Again the model selection criteria shows

that the generalized linear mixed model with logit link function is better than the

linear model for the actual data as well as the pooled data. So we suggest using our

generalized linear model rather than a linear mixed model for estimating the variance

of heterozygosity. The glm estimate for variance is always larger than the estimate

found using a linear model.

Table 6.15: Relationships between different expressions for the variances of H̃i for the
pooled data obtained from Olsen data set

SDT (H̃i)

Population ni H̃i SDW (H̃i)
√

s2
H̃i

lm logit probit cloglog

Toc. 26 0.377 0.051 0.037 0.1044 0.0971 0.0980 0.0918

Goiás 48 0.258 0.032 0.075 0.0998 0.0920 0.0930 0.0865

Mato 35 0.303 0.035 0.049 0.1018 0.0943 0.0952 0.0889

Rond. 36 0.411 0.041 0.032 0.1016 0.0940 0.0950 0.0886

Acre 12 0.550 0.053 0.077 0.1154 0.1090 0.1096 0.1039
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Table 6.16: Relationships between different expressions for the variances of H̃i for the
Olsen data set

SDT (H̃i)

Population ni H̃i SDW (H̃i)
√

s2
H̃i

lm logit probit cloglog

Axixá 6 0.433 0.087 0.145 0.168 0.190 0.241 0.175

Luzinópolis 6 0.300 0.078 0.133 0.168 0.190 0.241 0.175

Miranorte 8 0.550 0.059 0.085 0.163 0.187 0.240 0.170

Dueré 6 0.167 0.119 0.053 0.168 0.190 0.241 0.175

C. Belos 6 0.267 0.077 0.113 0.168 0.190 0.241 0.175

Campinorte 6 0.067 0.038 0.067 0.168 0.190 0.241 0.175

Rialma 6 0.233 0.073 0.145 0.168 0.190 0.241 0.175

Corumbá 6 0.233 0.030 0.163 0.168 0.190 0.241 0.175

Nerópolis 6 0.233 0.099 0.085 0.168 0.190 0.241 0.175

Goiás Velho 6 0.367 0.110 0.082 0.168 0.190 0.241 0.175

Iporá 6 0.233 0.087 0.113 0.168 0.190 0.241 0.175

Caiapônia 6 0.433 0.087 0.145 0.168 0.190 0.241 0.175

N.Xavatina 6 0.167 0.056 0.091 0.168 0.190 0.241 0.175

S. Petrovina 5 0.000 0.000 0.000 0.172 0.193 0.242 0.178

Sta. Elvira 2 0.400 0.000 0.245 0.202 0.217 0.252 0.204

S. Vincente 4 0.300 0.087 0.146 0.177 0.197 0.244 0.182

L. d’Oeste 6 0.500 0.041 0.158 0.168 0.190 0.241 0.175

P. Lacerda-A 6 0.300 0.062 0.111 0.168 0.190 0.241 0.175

P. Lacerda-B 6 0.467 0.038 0.082 0.168 0.190 0.241 0.175

Vilhena 6 0.433 0.087 0.145 0.168 0.190 0.241 0.175

P. Bueno 6 0.700 0.078 0.062 0.168 0.190 0.241 0.175

Jarú 6 0.133 0.038 0.133 0.168 0.190 0.241 0.175

Ariquemes 6 0.267 0.077 0.113 0.168 0.190 0.241 0.175

Teotónio 6 0.533 0.038 0.111 0.168 0.190 0.241 0.175

Taquaras 6 0.400 0.067 0.113 0.168 0.190 0.241 0.175

Rio Branco 6 0.567 0.073 0.085 0.168 0.190 0.241 0.175

S. Madureira 6 0.533 0.077 0.200 0.168 0.190 0.241 0.175
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Chapter 7

Discussion

This research has found different estimators for overall and population-specific descent

measures. This study has explored the sampling properties of all the estimators us-

ing simulation studies. In particular, we have found the analytical expressions for the

biases and standard errors of the moment estimators of overall θ and γ. The simu-

lation study shows that the biases of the moment estimators of descent measures are

relatively small in magnitude, and negative in direction. This result is consistent with

the theoretical results that we obtained in this research using numerical approxima-

tions. Li (1996) also found similar results using a normal approximation. The biases

and variances of the moment estimators of θ and γ increase as the differentiation levels

increase in a total population. The biases of the moment estimators were found to

be unaffected by the number of loci sampled, the amount of linkage between loci, and

unbalanced sampling. The biases of the moment estimators are negligible although

the sampling variances may be quite large. The sampling variances of the moment

estimators increase as the true value of descent measures increases, but is not affected

by unbalanced sampling. The sampling variances of the moment estimators decrease

strongly as a result of increasing the number of loci sampled and increased number

of alleles per locus. But still the variances remain fairly large on the whole due to

variance from genetic sampling occurring in populations that cannot be reduced by

sampling design. Increasing the number of loci sampled has a stronger effect on re-

ducing the sampling variance of a moment estimator than increasing the number of
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individuals sampled. The estimate of γ based on an allele which has frequency close to

0.5 is not stable. The estimate has huge standard error although the bias is not that

large. The reason behind this is when the true allele frequency is 0.5, then the third

moment of that particular allele does not provide any information about γ. One must

be cautious about using the moment estimator of descent measures based on loci with

very low polymorphism. The estimators are more robust to polymorphism problems

if we increase the number of polymorphic loci. In our research we always assume that

the populations are independent, but in general this is not the case. For dependent

populations we cannot estimate the population-specific descent measures separately,

but we can estimate some particular function of descent measures.

The maximum likelihood estimator of overall and population-specific θ based on

a normal distribution gives undesirable estimates for both iterative and non-iterative

approaches. For population-specific θ, the MLE fails consistently to converge to es-

timate values within the possible parameter range. This is true for both of the two

proposed iteration methods for the MLE (Weir and Hill, 2002). Possibly future work

with different numerical optimization procedures might be able to solve this problem of

convergence and provide better estimates of population-specific θ. On the other hand,

for overall θ the numerical optimization for the MLE converges but does not produce

any reasonable estimates. In summary, the unpredictable behavior of the iterative

and non-iterative MLE suggests that the moment estimator is a much better choice

to be used in analyses. These estimators of θ are not recommended for general use in

analyses. If we use a normal distribution then we do not need to estimate the higher

order descent measures as they are functions of θ. In the first chapter we have shown

that these approximations of descent measures do not work for a random pure drift

model and a both-way mutation model. Since the alleles in a population are equally

correlated, we cannot use the central limit theorem to get the asymptotic distribution

of the allele frequencies. We simulated data and found that the moments of the allele

frequencies differ from a normal distribution moments. We think this is the reason

behind the unreasonable estimates produced by MLE method. There are two fourth
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order descent measures and they appear in the fourth order moment of the allele fre-

quencies. Since there is only one independent sample moment, it is not possible to

estimate both the fourth order descent measures.

The normal theory approach assumes the distributional form of the data but the

MOM assumes only the first two moments of the allele frequencies. Because of this

reason scientists prefer MOM over MLE based on normal distribution. There are

several other methods which only assume the first two moments and estimate descent

measures. Here we consider Quasi-Likelihood, extended Quasi-Likelihood, and Pseudo

Likelihood methods that have the above property. The performance of these methods

are yet to be evaluated. In the following paragraphs we discuss how to estimate descent

measures using these methods.

We outline the process of developing an estimator of θ based on a particular allele

at a particular locus. Let us assume the allele is A. The expected frequency of the

allele is p. We assume that there are r independent populations. The total sampled

alleles and the count of the allele A in the ith population are ni and Yi respectively.

Quasi-likelihood was proposed by Wedderburn (1974) and is based on the first two

moments of the data. It does not assume the distributional form of the data. We have

independent observations z1, · · · , zr with E(zi) = µi and Var(zi) = Vi(µi) where Vi is

some known function. Now assume µi is a known function of β1, · · · , βp and the β’s

are the parameters of our interest. Then the quasi-likelihood function is (Wedderburn,

1974)

Q(µ, Z) =
r∑

i=1

Q(µi, zi) =
r∑

i=1

∫ µi

zi

zi − t

Vi(t)
dt. (7.1)

We get the estimates of the parameters β1, · · · , βr by maximizing the equation (7.1)

with respect to the parameters.

In our case the data are Yi/ni’s. So zi = Yi/ni, µi = p, Var(zi) = [1+(ni −1)θi]/ni.
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So the quasi-likelihood is

Q(µ, Z) =
r∑

i=1

Q(µi, zi) =
r∑

i=1

∫ p

zi

ni(zi − t)

t(t − 1)[1 + (ni − 1)θi]
dt. (7.2)

We can estimate p and θi by solving the following equations simultaneously

U1(p, θi) =

r∑

i=1

ni(zi − p)

p(p − 1)[1 + (ni − 1)θi]
and (7.3)

U2(p, θi) =
r∑

i=1

ni(zi − p)2

p(p − 1)[1 + (ni − 1)θi]
. (7.4)

To get an estimate of the overall value of θ, we replace θi by θ in the equations (7.3)

and (7.4). Then we solve them in terms of θ and p.

For the common descent measures model, ignoring constant terms, the extended

quasi-likelihood function of Nelder and Pregibon (1987) is

lQ =
1

2

r∑

i=1

{
log[1 + (ni − 1)θ] +

Di(Yi, p)

[1 + (ni − 1)θ]

}
, (7.5)

where Di is the binomial deviance function for the ith population. The form of Di is

Di(Yi, p) = 2
[
Yi log(

Yi

nip
) + (ni − Yi) log(

ni − Yi

ni − nip
)
]
. (7.6)

Differentiation of lQ with respect to p and θ leads to the pair of the estimating equations

r∑

i=1

Yi − nip

p(1 − p)φi

= 0 and (7.7)

r∑

i=1

(ni − 1)
(Di − φi

φ2
i

)
= 0, (7.8)

where φi = 1 + (ni − 1)θ. For a given value of θ, the solution of the equation (7.7) is

simply a weighted average of allele frequencies over different populations. The estimate
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of θ based on the extended quasi-likelihood method, θEQL is the simultaneous solution

of the equations. The equation (7.7) is an unbiased estimating equation, but equation

(7.8) is not because in general E(Di) 6= φi. The pseudo-likelihood method replaces Di

in the equation (7.8) with

X2
i =

Yi − nip

nip(1 − p)
, (7.9)

and leads to the pseudo-likelihood estimator θPL. Unlike θEQL, θPL results from an

unbiased estimating equation because E(X2
i ) = φi.

We also can estimate γ using the above approaches but for that we need to consider

the second order moments of the allele frequencies. This is because γ appears in the

variance of the second order allele frequencies. The variance of second order allele

frequencies will also have δ and ∆ in the expression.

In one part of our research we clarified the problem of testing hypotheses about the

coancestry coefficient (θ). We worked with a random population setup. We proposed

a parametric bootstrap procedure for small sample sizes and a chi square test for

large sample sizes. Under a random population model, bootstrap resampling over loci

is the only way to get information about the evolution. Dodds (1986) used a non-

parametric bootstrap method for testing purpose for small sample sizes. We suggested

a parametric bootstrap testing method for the same setup. Simulation studies show

that our testing procedure has higher power than Dodds’s method. Li (1996) used

the central limit theorem for approximating the distribution of allele frequencies as a

normal distribution and proposed a chi square test. Her test is based on the frequency

of one particular allele and it loses information when there are more than two alleles per

locus. We resolved this problem and found a test procedure which includes all the allele

frequencies. As expected, our test statistic has higher power than Li’s test procedure

for more than two alleles per locus although for two alleles both the test procedures

have almost similar power. Weir and Cockerham (1984) have developed higher levels for

analysis of variance for estimating higher order F -statistics. The methods for making

136



inferences regarding F-statistics for a hierarchial population setup will be a topic for

future study.

We have found a moment estimator for different components of two-locus descent

measures. We also have shown that these measures are not identifiable. The compound

parameter, the product of linkage disequilibrium between loci, and the two-locus de-

scent measures are estimable. We derived the sampling properties of these estimators

using simulation studies and found that they have negligible biases and large sampling

errors. Since the value of two-locus descent measures depend on the value of the recom-

bination rate between two loci, these measures are loci specific. There is a scope to use

other methods for estimating the descent measures. One can put some prior on linkage

disequilibrium and integrate it to get an estimate of two-locus descent measures. These

may be problems for future research.

We have advocated the practice of adding sample variances with the point estimates

by illustration with analysis of an empirical data set, and by attempting to clarify the

underlying statistical theory motivating the methods and models for obtaining variance

estimates. This illustration has shown that the range of heterozygosity and gene diver-

sity estimates can be large and it has demonstrated that this can be well summarized

by including associated variances with point estimators. In the analysis of a real data

set, we have found a wide range for the estimates of heterozygosity. This should en-

courage investigators estimating heterozygosity to consider the sampling properties of

their estimators in order to increase the quality of their inferences. Generally however,

if data from multiple populations is available, one must avoid the approximation of the

total variance of sample heterozygosity by the single-locus approximation. Instead, it is

best to use the generalized mixed model or generalized random model variances, which

will be more reliable than the single-locus approximation because they more generally

account for all sources of variation due to evolutionary history.

The magnitude of the total variance of the sample gene diversity is a result of the

scope of inferences to be made, the number of loci and individuals per population

sampled, mating systems, and the distribution of alleles across the populations of
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interest. Differences in these factors can result in differences in the sampling variance

of gene diversity from equal sized samples of different species.

Some scientists treat the locus effects as fixed while others assume that they are

random. If the variance due to loci is very high then the random effect model can

produce a different result than mixed effect model. Otherwise these models give similar

results. Johnson (2004) analyzed the empirical data set that is presented here and found

that the random effects model produces similar results as the mixed effects model. The

variance component for loci may be more likely to be large for loci that are not in linkage

disequilibrium. But in theory we would like to think that the effects of the loci are

fixed.

It has been shown that the variance component methods studied here can produce

different estimates for unbalanced data sets. The ANOVA method performs differently

than REML, ML and MIVQUE for unbalanced data. The maximum likelihood based

methods appear to be robust to the effect of small sample sizes and the assumption of

normality made by these approaches. The REML method is perhaps to be preferred

because it accounts for fixed effects with respect to degrees of freedom and has guaran-

teed minimum variance properties, it does not allow negative variance estimates. The

ML approach does not guarantee minimum variance, while, MIVQUE and ANOVA

allow negative estimates of variance. In general, all the methods provide similar kind

of estimates for variance for the cases where the populations were of relatively similar

sizes.

The bootstrap resampling approaches have been used to determine the sampling

properties of gene diversity and heterozygosity for a fixed population (Shete, 2003).

The bootstrap procedure should not be applied to a random population model because

the resampling would disrupt associations between genes in individuals. Weir (1989)

and Shete (2003) have shown that the bias of the gene diversity is small, particularly

relative to the large sampling variance of the estimator. However, Shete has also

determined the form of a uniform minimum variance unbiased estimator (UMVUE) of

gene diversity for a fixed population model by correcting the bias.
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Expressions for the total variance of sample gene diversity and heterozygosity must

account for both within and between population variation for the case of more than one

population sampled. Weir (1989) and Weir et al. (1990) determined the total variance of

sample gene diversity and heterozygosity, respectively, using exact expressions involving

genotype frequencies and descent measures under a variety of different evolutionary

models. For a mixed-mating or random mating systems, this variance results mostly

from associations of alleles between individuals. Because of this, the total variance

of sample heterozygosity is minimized most efficiently by sampling more individuals,

rather than increasing the number of loci sampled. In contrast, increasing the number

of loci sampled, rather than the number of individuals sampled, has the strongest

minimization of variance for unlinked loci in populations at migration-drift equilibrium.

The sources of variation in their observed values of gene diversity and heterozy-

gosity are similar. Due to the complexity of the exact expression, the total variance

of gene diversity is hard to find. In this situation one can approximate VarT (d̃i) by

VarT (H̃i). If this approximation was found to be reasonable, the total variance esti-

mates could be obtained with the use of variance components methods. It would then

have well-studied sampling properties due to the extensive statistical theory developed

with these statistical methods. Unfortunately, the relationship between the variances

of sample heterozygosity and gene diversity appears to be complex and one is not well

approximated by the other. Simulation studies show that as heterozygosity decreases

relative to a given level of gene diversity, the associated variance of sample heterozy-

gosity increases, while the variance of sample gene diversity is instead decreasing.
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Appendix A

The Relations between the Moment and the

Probabilistic Estimators

When the sample sizes are equal, we get the following simplifications:

MSPk =
n

r − 1

r∑

i=1

(p̃i,k − p̃w,k)
2 =

n

r − 1

[ r∑

i=1

p̃2
i,k − rp̃2

w,k

]

MSGk =
n

n(r − 1)

r∑

i=1

p̃i,k(1 − p̃i,k) =
n

r(n − 1)

[
rp̃w,k −

r∑

i=1

p̃2
i,k

]

π̂1,1,k =
1

r

r∑

i=1

p̃k,i = p̃uw,k = p̃w,k (A.1)

π̂2,1,k =
1

r

r∑

i=1

np̃2
k,i − p̃k,i

n − 1
=

n

r(n − 1)

r∑

i=1

p̃2
k,i −

1

n − 1
p̃w,k

π̂2,2,k =
(
∑r

i=1 p̃k,i)
2 −

∑r

i=1 p̃2
k,i

r(r − 1)
=

r

r − 1
p̃2

w,k −
1

r(r − 1)

r∑

i=1

p̃2
k,i.

147



Some algebra with the above expression give

MSPk − MSGk =
n(nr − 1)

r(r − 1)(n − 1)

r∑

i=1

p̃2
k,i −

nr

r − 1
p̃2

w,k −
n

n − 1
p̃w,k,

MSPk + (nc1 − 1)MSGk =
n

r(r − 1)

r∑

i=1

p̃2
k,i −

nr

r − 1
p̃2

w,k + np̃w,k,

MSPk − MSGk = n(π2,1,k − π2,2,k), and (A.2)

MSPk + (nc1 − 1)MSGk = n(π1,1,k − π2,2,k).

Using the equations (A.1) and (A.2) we get

θ̂WC,k =
MSPk − MSGk

MSPk + (nc1 − 1)MSGk

=
n(π2,1,k − π2,2,k)

n(π1,1,k − π2,2,k)
= θ̂1,P,k. (A.3)

This shows that the moment estimator of θ proposed by Weir and Cockerham and the

newly proposed probabilistic estimator of θ based on a single allele are the same. So

the final estimators also be the same irrespective of the combining methods. Using

the similar kind of algebra we also can make inferences about the third order mo-

ment estimators of θ and moment estimators of γ. Some calculations provide use the

equalities

θ̂1,M = θ̂3,P , θ̂2,M = θ̂4,P , γ̂1,M = γ̂1,P , and γ̂1,M = γ̂2,P . (A.4)

For unequal sample sizes these equalities do not hold. Simulation studies show that

there is a small difference between these estimators. We also have shown through

simulation that the estimators based on the probabilistic approach is better than the

moment estimators in general.
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Appendix B

Derive the Simpler Form of a Test Statistic

Z̃
′

AZ̃ = (Z̃
′

1, Z̃
′

2, · · · , Z̃
′

r)(Ir −
1

r
1r1

′
r)

⊗
Is−1(Z̃

′

1, Z̃
′

2, · · · , Z̃
′

r)
′

= (Z̃
′

1, · · · , Z̃
′

r)(Z̃
′

1, · · · , Z̃
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r)
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r)(
1

r
1r1

′
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Appendix C

Proof of the Lemma

We have Yn,i
p→ ci and Pr(Yn,i = 0) = 0. Using these two facts we get ci/Yn,i

p→ 1 for

i = 1, 2, ..., s. So for ∀ǫ > 0, there exists a δ(ǫ) > 0 which depends on the value of ǫ

such that (true for i = 1, 2, · · · s)

Pr
[
ci/Yn,i > 1 + δ(ǫ)

]
<

ǫ

s + 1
and Pr

[
ci/Yn,i < 1 − δ(ǫ)

]
<

ǫ

s + 1
. (C.1)

Using the equation (C.1) we get the following two inequalities:

Pr
[

max
1≤i≤s

ci/Yn,i < 1 − δ(ǫ)
]

≤ Pr
[
c1/Yn,1 < 1 − δ(ǫ)

]
<

ǫ

s + 1

Pr
[

max
1≤i≤s

ci/Yn,i > 1 + δ(ǫ)
]

= Pr
[ s⋃

i=1

{
ci/Yn,i > 1 + δ(ǫ)

}]
(C.2)

≤
s∑

i=1

Pr
[
ci/Yn,i > 1 + δ(ǫ)

]
<

sǫ

s + 1

From the equation (C.2) we get, ∀ǫ > 0, there exists a positive δ(ǫ) such that

Pr
[
| max

1≤i≤s
ci/Yn,i − 1 |> δ(ǫ)

]
<

ǫ

s + 1
+

sǫ

s + 1
= ǫ. (C.3)

The equation (C.3) concludes that

max
1≤i≤s

ci/Yn,i
p→ 1. (C.4)
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Similarly we can show

min
1≤i≤s

ci/Yn,i
p→ 1. (C.5)

Now by assumption we have
∑s

i=1 Xi
d→ Z. Using Slutksy’s theorem we get

(max
1≤i≤s

ci/Yn,i)

s∑

i=1

Xi
d→ Z and ( min

1≤i≤s
ci/Yn,i)

s∑

i=1

Xi
d→ Z. (C.6)

Since each Xi and ci/Yn,i are positive, we get the following inequalities:

( min
1≤i≤s

Yn,i/ci)
s∑

i=1

Xi,n ≤
s∑

i=1

Xi,nci/Yn,i ≤ (max
1≤i≤s

ci/Yn,i)
s∑

i=1

Xi,n (C.7)

Choose x from real line and from the equation (C.7) we get

Pr
[
( min
1≤i≤s

Yn,i/ci)

s∑

i=1

Xi,n ≤ x
]

≤ Pr
[ s∑

i=1

Xi,nci/Yn,i ≤ x
]

≤ Pr
[
(max
1≤i≤s

ci/Yn,i)
s∑

i=1

Xi,n ≤ x
]
. (C.8)

The point x is a continuous point of Z as Z is a continuous random variable. Now

taking limits on both sides of the equation (C.8), we get

Pr[Z ≤ x] ≤ lim
n→∞

Pr
[ s∑

i=1

Xi,nci/Yn,i ≤ x
]
≤ Pr[Z ≤ x],

⇒ lim
n→∞

Pr
[ s∑

i=1

Xi,nci/Yn,i ≤ x
]

= Pr[Z ≤ x]. (C.9)

From the equation (C.9) we get

s∑

i=1

Xi,nci/Yn,i
d→ Z.
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