
Abstract

CHANDRASEKHAR, VINAY. A Framework for Quality of Service Analysis of IP Based

Video Networks (Under the direction of Dr. Mladen A. Vouk).

Applications that use real time video are becoming increasingly necessary for effective

communication over the Internet. Their popularity is increasing in areas such as distance

learning, distributed research and video conferencing. Since real time video has special

Quality of Service (QoS) requirements for it to be acceptable to end users, administrators

are faced with challenges that involve the end-to-end ability of participating systems to

support real time video communication. Unfortunately, the tools that exist in the market

today are either expensive and closed source, or are generic and do not explicitly consider

the characteristics of real time video.

This work proposes a framework for assessment of end-to-end Quality of Service capabil-

ities for support of real-time Variable Bit Rate (VBR) compressed video communication.

This framework evaluates the endpoints and their inter-connectivity and determines the ex-

tent of their ability to support compressed video over User Datagram Protocol (UDP). The

framework generates VBR traffic that mimics compressed low bit rate video, maintains

and reports detailed and summary statistics of each test. User configurable options include

specifying activity levels and bandwidth upper bounds. The framework itself is modular

and extensible, allowing for functionalities to be added or replaced as the testing require-

ments change.

The framework defines a methodology to conduct video QoS tests, and describes how the

test cycles are to be conducted for determining the Quality of Service support. Various met-

rics that are indicative of the Quality of Service for real time video are listed and described.

Traffic generation and transmission requirements for mimicking video traffic are explained.

At each participating end point, the values of the various QoS metrics are maintained in real

time using specific Simple Network Management Protocol (SNMP) Management Informa-

tion Bases (MIBs) designed for use with this framework.

A tool is implemented based on this framework, and its performance as a video QoS mea-

surement tool is studied. The tool uses an Iperf based traffic generation module, that reads

from trace files in order to generate test traffic. The trace files contain datagram size and

timing information required to generate video-like VBR traffic. An SNMP MIB imple-

mentation is provided to record the QoS metrics determined during the tests. A separate

monitoring program queries the endpoint MIBs, tabulates and displays the QoS informa-

tion. This information can then be used to determine end-to-end support.

A FRAMEWORK FOR QUALITY OF SERVICE
ANALYSIS OF IP BASED VIDEO NETWORKS

BY

V INAY CHANDRASEKHAR

DEPARTMENT OFCOMPUTERSCIENCE

NORTH CAROLINA STATE UNIVERSITY

RALEIGH , NC 27695

A THESIS SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

RALEIGH

JULY 2003

APPROVED BY:

DR. DAVID THUENTE DR. KHALED HARFOUSH

DR. MLADEN A. VOUK

CHAIR OF ADVISORY COMMITTEE

Biography

Vinay Chandrasekhar was born in Mysore, India, the city of royal splendor. After com-

pleting his Bachelor of Engineering degree in Electronics and Communications at S.J.C.E,

Mysore, he worked with Mascot Systems, Bangalore as a systems analyst and software

developer for about three years. He then joined the master’s program in Computer Science

at North Carolina State University.

While doing his gradaute studies, he initially worked as a teaching assistant, and later

started his research work as part of the end-to-end video quality analysis project with NCNI,

under the guidance of Dr. Mladen Vouk. During this time, he also assisted Dr. Vouk in

other assignments involving the setup and maintenance of various video endpoints, equip-

ment and networks.

ii

Acknowledgments

I am fortunate to have had the opportunity to work with Dr. Mladen Vouk. His passion for

knowledge and his hard work are an inspiration. I thank him for his guidance and support.

I thank Dr. David Thuente and Dr. Khaled Harfoush for their suggestions and feedback.

I would like to express my gratitude to John Streck and Tyler Johnson for their valuable

comments and advice at various stages of my research. It was a learning experience work-

ing with Wesley and Dr. Ketan Mayer-Patel of UNC, Chapel Hill. I thank the NCNI folks

for their feedback on this work. I appreciate the help of Michael Bugaev for his prompt

assistance with the hardware required for the research. I also thank Marhn Fullmer and

the networks staff at NC State for their help. My thanks to Sandeep, and to my sister, for

reviewing this document.

I wish to sincerely thank my parents and my sister for their unending love, support and

encouragement in all my endeavors. Finally, I am very grateful to be blessed with true

friends who are always there for me.

This work has been supported in part by the North Carolina Networking Initiative.

iii

Table of Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Existing Tools . 3
1.2 Goals . 6
1.3 Current Research . 7
1.4 Thesis Layout . 9

2 Technologies and Tools 10
2.1 RTP . 10
2.2 SNMP . 11
2.3 Video Compression . 14
2.4 Traffic Generation and Analysis . 16

3 Framework Architecture 19
3.1 Framework Layout . 20

3.1.1 Data and Traffic Generators . 21
3.1.2 Analysis and Display . 23
3.1.3 Information Management . 24

3.2 End-to-end QoS Metrics . 26
3.2.1 Bytes . 27
3.2.2 Datagrams . 28
3.2.3 Frames . 30
3.2.4 Bandwidth . 30
3.2.5 Frame Rate . 31
3.2.6 Latency . 31
3.2.7 Jitter . 32
3.2.8 CPU Usage . 34

iv

3.2.9 Memory Usage . 35
3.3 Tests and Sessions . 35
3.4 Framework Output and Usage . 37

4 Implementation 38
4.1 Target Environment . 38
4.2 Data and Traffic Generation . 39

4.2.1 Data Generation . 40
4.2.2 Traffic Generation . 41
4.2.3 Analysis . 43

4.3 SNMP Module . 45
4.4 Display . 47
4.5 Tests and Sessions . 49
4.6 Inter-Module Communication . 50
4.7 Implementation Availability . 50

5 Tool Calibration and Performance 52
5.1 Source Traffic Characteristics . 52

5.1.1 Experimental Setup . 52
5.1.2 Characteristics Charts . 54

5.2 Traffic Generator Characteristics . 57
5.3 Tool Requirements . 62
5.4 Tool Measurements . 65

5.4.1 Experimental Setup . 65
5.4.2 Measurement Charts . 67

5.5 Effect of Load on Actual Video . 77
5.5.1 Effect of Network Cross Traffic 77
5.5.2 Effect of Host Resource Load . 78

5.6 End Notes . 80

6 Conclusion 83
6.1 Summary . 83
6.2 Future Developments . 85

A List of Acronyms 87

B Video QoS MIB 89

v

C Datagram Jitter defined in RFC 1889 99
C.1 Section 6.3.1 - SR: Sender report RTCP packet 99
C.2 Section 6.3.4 - Analyzing sender and receiver reports 100
C.3 Appendix A.8 - Estimating the Interarrival Jitter 101

List of References 103

vi

List of Figures

1.1 CBR sources vs. VBR sources . 2

2.1 An example MIB tree hierarchy . 12
2.2 Iperf server report for a UDP test . 17

3.1 Layout of the framework components . 21
3.2 Video QoS MIB components . 24
3.3 Constant frame rate from a VBR video source 31
3.4 One way latency . 32
3.5 Inter frame jitter vs. Intra frame jitter . 34
3.6 Testing cycle . 36

4.1 Iperf based tool implementation . 40

5.1 QCIF datagram characteristics . 57
5.2 CIF datagram characteristics . 58
5.3 Frame rates at source . 58
5.4 Maximum encoding rate vs. bandwidth at source 59
5.5 Average datagrams generated per second 59
5.6 Traffic generator behavior for a 25 second sampling period 63
5.7 Traffic generator behavior for a 2 second zoom period 64
5.8 Experimental setup diagram for tool measurements 66
5.9 Jitter variation with network cross traffic (QCIF) 69
5.10 Jitter variation with network cross traffic (CIF) 70
5.11 Loss variation with network cross traffic (QCIF) 70
5.12 Loss variation with network cross traffic (CIF) 71
5.13 Frame and bit rate variation with network cross traffic (QCIF) 71
5.14 Frame and bit rate variation with network cross traffic (CIF) 72
5.15 Jitter variation with CPU load (QCIF) . 73
5.16 Jitter variation with CPU load (CIF) . 74
5.17 Loss variation with CPU load (QCIF) . 74
5.18 Loss variation with CPU load (CIF) . 75

vii

5.19 Frame and bit rate variation with CPU load (QCIF) 75
5.20 Frame and bit rate variation with CPU load (CIF) 76

viii

List of Tables

3.1 Video QoS MIB comparison . 25
3.2 List of video QoS metrics . 28
3.3 Description of how the video QoS metrics interact 29
3.4 Jitter calculation example . 33

4.1 Test datagram header . 43
4.2 Video QoS MIB Sender Table entries . 45
4.3 Video QoS MIB Receiver Table entries . 46
4.4 Host QoS metrics calculated from Windows PerfMIB 46
4.5 Test cycle input parameters expected from the user 49

5.1 Video sequences used to study traffic characteristics 53
5.2 Configuration of the various testing components for tool measurements . . 67
5.3 Effect of network cross traffic on actual video 78
5.4 Effect of CPU load on actual video . 79

ix

Chapter 1

Introduction

When multimedia is chosen to assist real time exchange of information, it enhances the

overall user experience and adds significant value to the communication. With advances

in multimedia sensitive networking, the strength of real time multimedia communications,

such as in video conferencing and in distance education, are reaching new heights. Many

of today’s human-interactive communication solutions support video. For real time video

communication over a packet network, video is digitized, often compressed, and then sent

as packetized chunks of information. In IP networks, the transport layer protocol of choice

is UDP [1]. Real time Transport Protocol (RTP) [2] is an Internet Engineering Task Force

(IETF) protocol that provides end-to-end functionality for transport of real time audio and

video data, and has been widely accepted. Sources transmitting video information can

have either a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR). CBR sources gener-

ate traffic at a constant bandwidth, where as VBR sources inject data into the network with

a variable instantaneous bandwidth, as shown in Figure 1.1. CBR is the mode of choice for

Voice over IP solutions because of the way voice is sampled and coded in real time. For

compressed real time video, VBR transmission is preferred to CBR because it can ensure

constant video quality over time, while conserving instantaneous bandwidth [46]. Two

1

t t t t t

t1 t2 t3 t4

(i) CBR: Amount of data sent over time is constant

data

(ii) VBR: Amount of data sent varies over time

Figure 1.1: CBR sources vs. VBR sources

popular series for compression of digitized video are the MPEG-x series by the Moving

Picture Experts Group of the International Organization for Standardization (ISO), and the

H.26x series by the International Telecommunications Union - Telecom (ITU-T). All these

standards define different types of video units called frames that contain information about

the video. For VBR video, the sizes of the frames and the time between datagrams vary

depending on the video information they contain.

An acceptable video experience imposes certain constraints on the factors affecting video

communication. These factors include delay, delay variation known as jitter, and packet

and information loss. Given these restrictions, it is useful to be able to determine the extent

to which video capable endpoints can support video communication. Network and sys-

tem administrators often face the above task of evaluating end-to-end support for real time

2

video communication. For example, an administrator has a new requirement that needs

video communication between the two end-points, or is trying to debug an existing video

communication setup between two end-points that does not appear to work well. In either

case, a system that enables the administrator to actively inject video-like data into the net-

work, collect and analyze the end-to-end quality metrics, is needed. The quality assessment

needs to encompass both endpoint readiness for video, and the support of the underlying

network. This support for video can be also tested and categorized for different types of

video, in terms of video characteristics such as resolution and encoding method.

1.1 Existing Tools

Videoconferencing tools:Solutions from Polycom [47] and VCon [50] are some of the

popular videoconferencing products. The Polycom ViaVideo desktop videoconferencing

product release 2.2 reports packet loss, bandwidth utilization, frame rates and jitter val-

ues for ongoing video communication sessions. However, the values are instantaneous

readings, and there is no mechanism to access or record the readings, or for determining

average values. In addition, the load on the end points are not reported. VCon Vigo v4.51,

another desktop solution, does not provide detailed diagnostic information about ongoing

or previous video sessions. It has a LAN conference state monitor that displays the video

and audio bandwidth allocation information, and the video and audio codecs being used by

the incoming and outgoing signals for the ongoing call. These products are expensive, and

they do not provide any Application Programming Interfaces (APIs) to access statistical

information about ongoing or previous video sessions, and thus cannot be considered as

comprehensive testing tools.

3

Network performance tools: Open Source tools such as Iperf [38], on the other hand,

can be used to measure network parameters that affect video QoS such as UDP datagram

losses and jitter. Iperf provides both periodic and summary reports of each test. But Iperf is

only capable of CBR transmission. Also, this would not form a complete solution since end

point support remains untested. Iperf is explained in more detail in Section 2.4. NetSpec

[51], an Open Source network experimentation and performance measurement application,

concentrates on network testing as opposed to end-to-end testing. It provides a wide range

of testing categories, by categorizing the different traffic types. The emulated traffic models

include voice, MPEG and video teleconference traffic streams. The user can specify video

traffic characteristics such as frame rate and frame size. Individual sizes are then generated

by using a gamma distribution [52]. The first drawback of NetSpec is that it has been de-

signed mainly for Asynchronous Transfer Mode (ATM) networks, and all calculations and

sizes are calculated based on ATM cells. Also, it focuses just on the network, rather than

end-to-end. Finally, it does not monitor the various QoS metrics required to evaluate video

performance.

Delta Videoconferencing Emulator:Delta [55] Protocol Test Solutions provides a video-

conferencing test system to emulate and analyze various real time videoconferencing pro-

tocols, including H.263 [8] analysis. It is ideally used to troubleshoot network and interop-

erability problems by having the test tool communicate with an existing videoconferencing

endpoint and debug the communication stream. The test tool is fully standards compliant

and can code and decode all standard videoconferencing protocols. It can also provide test

sequences and send multiplexed bit-streams containing audio, video and data to the remote

endpoint. The metrics for video tests include RTP and RTCP [2] packet counts, bandwidth,

jitter and picture rates, and total test data count. But the emulator is expensive and closed

4

source. The endpoint being tested must already have a valid videoconferencing protocol

stack itself. Finally, it does not measure host resource usage along with the network mea-

surements that it provides.

VideNet Scout and Chariot: VideNet Scout [53] is a web based distributed network per-

formance analyzer for video and voice over IP, developed and maintained by VideNet. It is

an enhancement to an existing closed source solution called Chariot from NetIQ Corpora-

tion [54]. Scout is currently being used to analyze end-to-end video and voice capabilities,

and in turn determine video conferencing support. The range of testing capabilities pro-

vided by Scout include bandwidth probes, port scan, and video and audio stream tests at

different rates. Test streams may be bidirectional and asymmetric, and many test streams

may be run in parallel. Tests between remote endpoint pairs are configured and run using

console software, which may reside elsewhere. Tests are script based, and the test admin-

istrator can specify when and how the tests are to be initiated, number of tests to run and

at what rate the information is recorded. The results of each test are archived and hosted

on a web server. Various flavors of Unix, Linux and Windows Operating Systems are sup-

ported. The enhancements that VideNet Scout provides to the Chariot tool include web

interfacing, a library of predefined performance tests, test scheduling and result archiving

services. In order to test with the VideNet Scout, users begin by downloading and installing

endpoint software. The users then register their endpoints with VideNet Scout using a web

based registration form. The required tests are executed, and the results are displayed on

the Scout web page [53]. The metrics that are collected during the tests include maximum

throughput achieved, lost and duplicate datagrams, maximum, minimum and average jit-

ter and endpoint CPU utilization. A summary of the entire test, as well as data for each

iteration is displayed. For video tests, the user can specify the rate at which to send test

5

traffic. The test traffic however, is sent at a constant bit rate, and the packet sizes are equal.

Packet size has been determined by averaging packet sizes found in actual video traffic.

Different activity levels, picture resolutions and varying traffic rates are thus not supported

in Scout. Also, since Chariot itself is expensive and closed source, enhancements to Scout

are difficult.

Thus, the existing tools are either closed source and expensive solutions, or are not com-

prehensive in their reporting of the various metrics that describe end-to-end QoS. This mo-

tivated the design of an open source testing solution that generates video-like test traffic,

records and reports parameters that affect video QoS at the application, operating system

and network levels.

1.2 Goals

The video QoS framework is designed to give the user an opportunity to test the extent of

end-to-end video support for different video attributes, and to be modular so that compo-

nents can interact without being closely bound. This work achieves the following objec-

tives:

• Identify the various metrics at the application, Operating System and network

levels, that contribute to end-to-end QoS in video communication

• Design and evaluate a traffic generator that generates video-like VBR traffic

• Design and evaluate an SNMP MIB to record and maintain QoS information

locally at the end points

• Design and evaluate a monitor to query the end points, retrieve QoS data, or-

ganize and display the data to the user

6

• Make the implementation easy to distribute, setup and execute.

Initially, the goal was to study the characteristics of compressed real time video by varying

attributes such as maximum encoding rate and picture resolution. These experiments were

conducted for different kinds of video content, some with more motion in the video than

others. The video content was then categorized based on the amount of motion and frame

changes in the video content. This information was used to design a framework that would

mimic video traffic. The effects of transmission of this video like data between the end

points were analyzed. SNMP MIB storage mechanisms for QoS information, as well as

procedures for conducting tests with the framework were defined. Finally, an Iperf [38]

based implementation was built based on this framework, and the results analyzed.

1.3 Current Research

Many research communities and organizations are focusing on QoS initiatives for real-time

video communication today. End-to-end QoS mechanisms that involve both the network

and host level metrics have been stressed in earlier works such as [25][20].

The Internet2 community is actively involved in the fields of end-to-end performance and

digital video measurements [56][21]. One initiative of the Internet2 community is Internet

Commons, which provides services for collaborative research, and is currently focused on

services related to videoconferencing. This effort is also supported by VideNet. VideNet

currently uses the Scout system for video QoS measurement, as explained in Section 1.1.

A survey [22] by the Internet2 QoS working group illustrates the several requirements that

video imposes on both the network and the end host resources. It also discusses current

efforts to standardize measurement and quality analysis techniques for video and audio.

7

Sharif and Chen [19] describe a set of experiments conducted over the Internet2 high per-

formance network and discusses the end-to-end QoS requirements as well as the results.

Other works [12] also describe both the QoS metrics and mechanisms for QoS control

in networks, as well as findings of video experiments conducted over the public Internet.

For example, Wu and Hou [24] describe the QoS problems faced in real time video commu-

nication over the Internet, and propose control mechanisms to address the problems. The

works by Loguinov and Radha [26][27] describe the results of video traffic experiments

conducted over the Internet, and describe the different metrics studied and measured for

the flow.

Another area in the research of video quality is perceptual or visual quality and measure-

ment. Organizations such as the Video Quality Experts Group [57] strive to develop stan-

dards and recommendations for objective perceptual video quality measurements, based on

video attributes such as blurring, tiling, and distortion. Wang and Bovik [23] propose a uni-

versal image quality index that compares two pictures and outputs a quality index between

0 and 1 that indicates degradation. A system that compares two motion sequences and

provides a qualitative analysis similar to [23] is available with the Video Quality Experts

Group [57].

The framework described in this work deals with quantitative metrics that indicate network

and host loads that affect the video communication.

8

1.4 Thesis Layout

Chapter Two describes the various technologies that are involved in the design of this

framework. Tools which have played a part either directly or indirectly in the development

of the framework are also described. Chapter Three deals with the architectural aspects

of the framework, and describes the different components that comprise the framework.

Chapter Four presents an implementation based on the framework architecture described

in Chapter Three. Some tools used in the implementation are replaceable with other tools

that accomplish the same task. Chapter Five is based on the implementation of the frame-

work as described in Chapter Four, and provides an analysis of the implementation and

its components. The results of the tests performed with the implementation are also stud-

ied. Chapter Six concludes by highlighting the usefulness of the framework in analysing

video QoS capabilities, and enumerates the enhancements to the framework and suggests

improvements to the existing design. A glossary of the acronyms used in this work are

listed in Appendix A. The SNMP MIB that has been defined for use with the framework is

given in Appendix B.

9

Chapter 2

Technologies and Tools

This Chapter describes the various tools and technologies that have played a part in the

design of this framework. The sections on RTP and SNMP explain the respective protocols

and their functions. The section on video compression describes how video sequences

are broken down and compressed. The last section illustrates the use of Iperf as a traffic

generation tool, and lists the protocol analyzer programs used in this work.

2.1 RTP

Real time Transport Protocol (RTP) [2] is a protocol useful for transporting video, voice and

any other real-time data at an application level, over the underlying transport and network

layers. It does not guarantee QoS, and provides only minimal control functionality to

support the flow of data. It supports transfer of data to multiple recipients if the underlying

network is multicast enabled. Though the protocol is designed to work independent of

the underlying transport and network protocol, it is dependent on the transport protocol to

fulfill RTP’s multiplexing and checksum requirements. RTP is typically run over the UDP

layer, and carries real time data. This protocol is used in conjunction with the Real time

10

Transport Control Protocol (RTCP) for monitoring data delivery, as well as conveying user

information pertaining to a session. Therefore two UDP ports are used, one to transmit

the data and the other for the RTCP control traffic. If both audio and video are used in a

conference, then two different UDP port pairs are used, one pair for video, and the other

for audio. Video transmission is broken into chunks of video data based on the size and

fragment limitations of the underlying medium, as well as logical block boundaries of

the video content. For every chunk of video data, an RTP header is generated and sent,

enclosed inside a UDP datagram. Several RTP packets may also be carried in one lower

layer protocol data unit using a framing mechanism. This mechanism itself is outside

the scope of RTP. The RTP header includes information that is necessary to identify the

source, as well as datagram information required to reconstruct the video. Specifically, the

datagram information consists of a sequence number for datagram ordering, a timestamp,

and a source identifier. In addition, there are fields within the header that have not been

defined. These fields are for the use of the application [3] that runs over RTP, and can

have any interpretation. This particular quality makes the protocol flexible and application-

friendly, and in turn cannot be isolated as a separate layer.

2.2 SNMP

The Simple Network Management Protocol [9][10] is a widely accepted protocol for net-

work management. SNMP provides the ability to query disparate devices in a network

and obtain network management information from them. The management architecture

consists of an extensible framework where new information can be added to an existing in-

formation base. There are three components that make up the SNMP protocol architecture.

They are the SNMP agent, the network manager, and the Management Information Base.

11

Leaf
OID:

1.3.6.1.4.1.55555.1.1.1
Name: “ctEmail”

Type: Display String
Access: Read-only

Leaf
OID:

1.3.6.1.4.1.55555.1.1.2
Name: “ctPhone”

Type: DisplayString
Access: Read-only

Branch
OID:

1.3.6.1.4.1.55555.1.1
Name: “iContact”

Root
OID: 1.3.6.1.4.1.55555.1

Name: “information”

Leaf
OID:

1.3.6.1.4.1.55555.1.2.2
Name: “hltWeight”

Type: Integer
Access: Read-only

Leaf
OID:

1.3.6.1.4.1.55555.1.2.1
Name: “hltAge”

Type: Integer
Access: Read-only

Branch
OID:

1.3.6.1.4.1.55555.1.2
Name: “iHealth”

Figure 2.1: An example MIB tree hierarchy

The SNMP Agent maintains an online database of management information, and receives

and processes requests for this information. The Network Manager, on the other hand, is

capable of querying SNMP agents for information, and setting information that the agents

maintain. The Management Information Base (MIB) defines a hierarchical collection of

variables called objects and their properties that are required to represent and manage a

particular device on the network. The MIB itself is not a database. Rather, it defines the

way this database looks. The database is then implemented based on these definitions, and

in turn used by the agent to maintain the actual values corresponding to the device. Each

object in the Management Information Base is defined with an Object Identifier (OID), a

unique name that identifies the variable, the data type that this variable represents, and its

access mode (read only, read and write, no access and so on). These objects are organized

into a hierarchical tree format, where each subtree represents a particular group, and the

12

leaves of the trees represent individual objects. This is illustrated by an example in Fig-

ure 2.1. Companies or Organizations may request a unique OID for their use from the

Internet Assigned Numbers Authority (IANA). The IANA maintains a web page [45] that

lists the currently allocated OIDs.

Object definitions are based on the Abstract Syntax Notation (ASN.1) [13] standards. An

example of an object defined using ASN.1 is shown below.

Object Name: ctEmail

OID: vqContact.2

Object Type: DisplayString

Access Mode: read-only

Status: current

Description: This object is used to display the email of

the group contact

Either the Object name or the OID could be used to query the agent about this particu-

lar object. A dotted notation is used for both the object name and the OID. The above

object can be denoted asiso.org.dod.internet.private.enterprises.vidqos

.vqContact.ctEmail which specifies the hierarchical location of this object starting at

the root, which is “iso”. This object can also be referred by its OID as1.3.6.1.4.1

.55555.1.2 , assuming vidqos is attached to the enterprises subtree at position 55555.

The object type specifies the data type of the value defined by this object. In this example,

the object type is aDisplayString of zero or more octets, the value of each octet be-

ing between 0 and 255. The access mode indicates how the object appears to the external

world. In the example, network managers may just read the value contained in the object,

but may not set or update it. The status of the object indicates whether the object is cur-

rently available within an agent implementation. Finally, the description field just a string

13

that describes the object and its functionality.

The SNMP protocol consists of three basic commands: get, set and trap. Except for the

trap service, the protocol follows a request response mechanism, where the network man-

ager sends a request to the SNMP agent, and the SNMP agents responds to the request. A

set command is used to set or update values of the objects maintained by an agent. A get

command is used to obtain information contained within the objects, via the agent. Traps

are generated by the agent itself without a request from a management station, and is used

to indicate to the manager an alert of a special event. Traps are outside the scope of this

discussion. There also exist other helper commands like getNext and getBulk that assist in

getting more than one value. Since the only functions that are possible with the protocol

are setting values and getting values, the protocol is termed “simple”.

2.3 Video Compression

Uncompressed digital video requires lots of memory space, and in turn requires large band-

width for transmission. For example, in a simple experiment, we found that recording 5

seconds of NTSC video with a resolution of 640 x 480 at 30 frames per second required

about 500 MB of hard disk space. Thus, transmission of uncompressed video is currently

not a feasible solution for video conferencing and other applications that need real time

video transmission over existing IP networks. This problem is overcome by exploiting re-

dundancies in the digital video content. This exploitation however, results in some loss of

information content in the resulting video that cannot be recovered. Video information is

redundant in two aspects. Spatial redundancy is based on the fact that pixels considered

14

in a very small area of a frame all contain almost the same information. Temporal redun-

dancy, on the other hand, occurs because two successive frames in a video contain similar

information. Both these redundancies are utilized during video compression.

For the purpose of compression, a video sequence is broken into a Group of Pictures

(GOP). Each such group consists of temporally separated frames. A frame is a unit of

video containing spatial video information pertaining to a particular time instant of the se-

quence. Three types of frames have been defined for use in video compression. These

frames often use transform coding such as Discrete Cosine Transform (DCT) coding to

encode the video data. “I” or Intra-coded frames are coded in isolation from other frames,

and contain all the information required to reconstruct the frame without having to refer

to any other frame. “P” or Predictive frames are coded with the difference information

between a temporal prediction from a previous reference frame and the actual frame. In

other words, a prediction for this time instant is made with the help of a previous reference

frame, and the difference in the information between the predicted frame and the actual

frame is then encoded. Lastly, “B” or Bi-directional coded frames are similar to P frames

but use a previous and a future reference frame. In this case, the prediction is made using

a reference frame that occurred previously, and another reference frame that is to occur at

a later instant of time. The difference between the actual frame and the predicted frame is

then encoded. The breakup of individual frames is in terms of number of pixels per line,

number of lines per frame, an aspect ratio and some inter-picture timing information. The

components that express the picture content are Luminance and color-difference compo-

nents describing Chrominance. Luminance refers to the amount of brightness associated

with the picture, and chrominance contains the color information pertaining to the picture.

Luminance and chrominance values for a picture are defined in a two-dimensional matrices

15

of size ”X x Y”, where X denotes a multiple of the number of pixels per line, and Y denotes

a multiple of the number of lines per picture.

Two popular standards for real time coding of digital video that co-exist in the market today

are the H.26x series proposed by the International Telecommunications Union - Telecom-

munications (ITU-T), and the MPEG-x series, brought forth by the Motion Pictures Experts

Group committee of the International Organization for Standardization (ISO). H.263 [8],

released in may 1996, was aimed at low bit rate video communication over the Public

Switched Telephone Network (PSTN) and has been used in the experiments conducted for

this work. Of the MPEG series, MPEG2 focused on digital television and DVD coding, and

the more recent MPEG4 is aimed towards solving Internet based multimedia needs [37].

2.4 Traffic Generation and Analysis

Traffic generators perform the task of actually injecting data onto the network for the pur-

poses of testing and measurement. The type of data flow is usually specified or selected

from a list of options before executing the generator. The generator module itself usually

works in a client server environment, where the client pumps data into the network, and the

server sinks the data, and performs useful analysis on it and outputs traffic characteristics

that it observed.

Iperf: Iperf [38] is a multicast capable open source tool that uses active measurement in

order to determine TCP and UDP characteristics. Iperf is based on a client-server model,

and the user can run the client with configurable options and receive and report measure-

ment data at the server. For UDP traffic, Iperf measures datagram losses and delay jitter for

16

iperf-1.6.5>iperf -s -u -i 1
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 8.00 KByte (default)
--
[136] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 2353
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[136] 0.0- 1.0 sec 128 KBytes 1.05 Mbits/sec 0.000 ms 0/ 89 (0%)
[136] 1.0- 2.0 sec 128 KBytes 1.05 Mbits/sec 0.000 ms 0/ 89 (0%)
[136] 2.0- 3.0 sec 128 KBytes 1.05 Mbits/sec 0.000 ms 0/ 89 (0%)
[136] 3.0- 4.0 sec 129 KBytes 1.06 Mbits/sec 0.000 ms 0/ 90 (0%)
[136] 4.0- 5.0 sec 128 KBytes 1.05 Mbits/sec 0.626 ms 0/ 89 (0%)
[136] 5.0- 6.0 sec 128 KBytes 1.05 Mbits/sec 0.626 ms 0/ 89 (0%)
[136] 6.0- 7.0 sec 128 KBytes 1.06 Mbits/sec 0.626 ms 0/ 89 (0%)
[136] 7.0- 8.0 sec 128 KBytes 1.05 Mbits/sec 0.626 ms 0/ 89 (0%)
[136] 8.0- 9.0 sec 128 KBytes 1.05 Mbits/sec 0.626 ms 0/ 89 (0%)
[136] 9.0-10.0 sec 129 KBytes 1.06 Mbits/sec 0.626 ms 0/ 90 (0%)
[136] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.626 ms 0/ 893 (0%)

Figure 2.2: Iperf server report for a UDP test

CBR traffic. Apart from specifying the target IP address and port number, user configurable

options for UDP measurements in Iperf v1.6.5 include the bandwidth to send traffic at, and

the amount of time to transmit for. Alternatively, the user can specify the datagram size and

the number of such datagrams to transmit. Periodic and summary reports can be generated

to report datagram losses and delay jitter, as shown in Figure 2.2. Bandwidth numbers can

be obtained in various formats. Iperf v1.7.0 has useful new features including the ability to

run Iperf in bidirectional mode causing the server to connect back to the client and trans-

mit test data with the options specified, and the ability to report server side statistics at the

client. In this work, a modified version of Iperf v1.6.5 is used as a traffic generation and

analysis tool that injects test data into the network, and receives and analyzes the data at

the target end point. The modification transforms Iperf into a VBR traffic tool, enhancing

its current CBR-only functionality.

17

Ethereal: Ethereal [40] is a GUI protocol analyzer that examines real time network data

and displays relevant protocol header and protocol data information for each packet or

datagram that it encounters. In addition, Ethereal also displays the time instant at which

it captured the particular datagram or packet. Ethereal is run on the target host where the

network data is to be captured and analyzed. An existing interface on the host is selected,

and the capture process is started. Once the capture process is terminated, the results of

the capture are displayed. Filters can be applied both before and after capture to filter out

unwanted information. The captured data can be saved for future use either in Ethereal or

an other packet analyzer program like tcpdump (see below). Ethereal is used in this work

to capture video source traffic and analyze its characteristics.

Tcpdump: Tcpdump [41] is a text based packet analyzer program that outputs in real

time a dump of the packet header information for a given network interface. Optionally, a

boolean expression can be specified and the output will contain information of only those

packets that match the boolean expression. Tcpdump can also read from a stored file and

output packet information, instead of in real-time from a network interface. Windump [42]

is a port of this program for the Windows platform. Windump claims full compatibility

with tcpdump, and uses a packet capture library built for Windows, in order to analyze

network traffic. In addition to its use as a traffic analyzer, Windump is used in this work

as a filter to parse required video datagram information from the trace files saved using

Ethereal.

18

Chapter 3

Framework Architecture

The framework is designed to generate, transmit, and receive video-like traffic over UDP/IP

in the participating endpoints, and record and display the various metrics that assist in QoS

analysis. The framework is modular. Different components in the framework are respon-

sible for the tasks mentioned above. Section 3.1 describes these framework components

in detail, and Section 3.2 provides the rationale for choosing the various QoS metrics and

explains the metrics that are considered by the framework. The framework is designed to

perform as a testing tool, and the procedure for conducting tests with this framework is

described in Section 3.3.

The following is a list of terms used henceforth in this document:

• Frames - A frame refers to a video picture frame whose information is con-

tained in one or more UDP datagrams. In the context of the framework and its

implementation, the frame is conceptual since the datagrams that make up the

frame do not contain valid video information.

• Tool/Implementation - These have been used interchangeably and both refer to

an actual implementation based on the framework discussed in this Chapter.

19

• Picture resolution - This term refers to the picture sizes in terms of pixels. For

example, a picture resolution of QCIF refers to video of size 176 pixels by

144 pixels. The terms picture resolution and picture format have been used

interchangeably.

• Participating end points - The computers that are actually participating in the

testing process. The end point that injects the test data into the network is

called the sending end point or the sender. The end point that receives test data

from a sender is called the Receiving end point or the receiver.

3.1 Framework Layout

Quality of Service capabilities are determined through the process of active measurement.

We inject our own test data between the end points, collect measurements, and use this data

to assess end-to-end QoS. The framework consists of four individual subsystems:

• Data generation

• Traffic generation

• Analysis and display

• Information management

A diagram that illustrates the relationship among the components and their interaction is

given in Figure 3.1. The following steps occur during the testing process:

1. The user starts by specifying the way in which the tests are to be conducted.

2. The data generation module specifies the traffic characteristics, and the traffic gener-

ator generates traffic according to these requirements.

3. At both the sending and the receiving end points, datagrams are analyzed, and QoS

20

SNMP
MIB

SNMP
MIB

Internet

End point B

Pseudo-Video
Sink

End point A

Pseudo-Video
Source

Monitor
Computer

Reporter /
Monitor

(SNMP MIB
Browser and

Graphical
Display)

Figure 3.1: Layout of the framework components

relevant information is filtered out and maintained in the SNMP MIB.

4. A monitor may choose, independently, to query the Information management module

and retrieve data pertaining to one or more such tests.

3.1.1 Data and Traffic Generators

The data and traffic generator modules are responsible for generating video-like test data

and transmitting them between the participating end points according to a set of user spec-

ifications. Data generation involves determining the size of each frame and the time instant

at which to transmit the video, as well as sizes of individual datagrams that make up each

frame. This timing and datagram size information are determined from the picture format,

21

motion scene activity level, and maximum bandwidth information input by the user. In ad-

dition, all necessary information that may be required for QoS analysis is contained within

every transmitted datagram so that there is no additional end-to-end load generated by the

framework. Data generation can be achieved either by means of traffic modeling, or by the

use of trace files.

One approach would be to use one of several empirical or stochastic video traffic mod-

els. A survey of different techniques for VBR video traffic modeling is given in [28]. This

survey also gives recommendations on which models to choose, depending on the require-

ments. When choosing a model for use with this framework, preference must be given to

models with a fixed GOP structure, whose activity level can be controlled. This is because

in video-conferencing applications, there is not much interframe or inter scene movement

(For example, like rapid changes and inconsistent scene lengths in an action movie). Also,

a GOB level break-up of video data should be preferred over frame level break up, to keep

the datagram sizes similar to RTP fragmentation [3]. The model should also be able to gen-

erate video datagram information for varying levels of activity. For example, The Doulamis

model [31] considers activity level, and assumes a fixed GOP structure, but the number of

input parameters required for this model is quite high [30]. Some characteristics of traffic

sources, including Short Range Dependence (SRD) and Long Range Dependence (LRD),

have been explained in [33]. An SRD model for VBR video has been described in [29].In

order to maintain activity level, short term correlation must be considered while choosing

the model.

Another approach to data generation can be through the use of trace files. Timing and

datagram size values can be generated based on the information contained in a trace file

22

that contains data corresponding to the options that the user has selected. These trace files

contain static information either gathered during actual video conferences, or created using

a modeling scheme. Several trace files corresponding to the different combinations of user

inputs can then be collected for varying activity levels, encoding schemes and resolutions.

In any case the traffic generator should display best-effort behavior. In other words, the

traffic generator should make abest effortin transmitting the data as specified by the data

generator. This helps in gaining useful insight into the load on the processor on which the

traffic generator is being executed. This effect is explained and demonstrated in Section 5.2.

Transmission involves interpreting the data provided by the traffic generation scheme, and

actually creating and transmitting the UDP datagrams of specified size at the given time

instants. In addition to transmitting the datagrams, the sender also locally records informa-

tion regarding its transmission. The receiving end point closely interacts with an analysis

unit to extract and determine the required Quality of Service metrics from the received

datagrams, and records the information.

3.1.2 Analysis and Display

Each transmitted test datagram consists of the following fields at a minimum to assist in

determining the various Quality of Service metrics:

i. A datagram sequence number

ii. A frame sequence number indicating the frame to which this datagram belongs and

iii. A time stamp that is necessary for calculating delay and jitter.

The module that receives the test data records the time instants at which it received each

datagram, and uses it to calculate the received (effective) bandwidth, frame rate and jitter

23

QoS Logs Contact

Video QoS

Sender Table Receiver Table

Figure 3.2: Video QoS MIB components

values. The various metrics that determine QoS are discussed in Section 3.2. The display

module consists of a monitor is designed to query and display the Quality of Service metrics

and data in a user-readable graphical format. The monitor is asynchronous. It requests the

sending and receiving end points using the SNMP protocol to provide the recorded data

upon user request, irrespective of the state the testing process is in. The monitor then

formats the data to display test results in a graphical format, highlighting anomalies and

extremities, and indicating hardware resources present on the end-systems.

3.1.3 Information Management

The QoS information pertaining to the tests are stored in an SNMP MIB implementation,

called the Video QoS MIB. The motivation to design a new MIB for use with this frame-

work arose because existing MIBs focus on the control data of a video communication

rather than the video payload, or others, like the RTP MIB, do not contain frame level in-

formation. Our MIB has been designed specifically for use with our framework. Table 3.1

compares the existing MIBs and specifies the motivation for designing a new MIB. Exten-

sions to the already existing MIBs can be an alternative to consider.

24

H.341 MIBs [14] Defines various control met-
rics, H.323 [15], H.320 [17],
H.245 [16] and Gateway in-
formation. Also contains
System capabilities, line rates
etc.

Does not contain actual mul-
timedia data information

RTP MIB [18] Defines RTP Sessions
and session entries.
Sender/Receiver tables
contain number of packets
and bytes

Does not contain video
specific information such as
frame rates and frame losses.
Does not contain data rate
information.

Video QoS MIB All missing information,
along with other required
information maintained in
one place. Extensible design.
Designed for use with the
framework

Does not concern itself with
control information. Could
use H.341/RTP MIBS in con-
junction for control info.

Table 3.1: Video QoS MIB comparison

The QoS subtree in Figure 3.2 is divided into two parts. The Sender table subtree con-

tains entries which record the different options selected for each test at the sending end

point, including activity level and maximum encoding rate. It also maintains the frame rate,

bandwidth and datagram information observed at the sender. The receiver table subtree has

entries that contain frame and datagram information, delay, jitter and losses observed at the

receiving end point corresponding to each test. The Logs subtree consists of a log table that

records event and application logs. Information about the number of processes, physical,

extended physical memory, and CPU usage on the sending and receiving end points could

be obtained from an existing host system MIB implementation such as the Host Resources

MIB [6]. The values would indicate the present load on the system and the extent to which

that system is ready for a video communication application, in terms of video coding and

display.

25

It is necessary to have a mechanism that interfaces the traffic generator module with the

SNMP agent in order to update the values of the QoS metrics stored in the MIB implemen-

tation. In the best case, the stored values are updated for each datagram that is transmitted

or received. Otherwise, the MIB values are updated at regular intervals with the data that is

transmitted or received. This interval is independent from the intervals at which the display

module queries the SNMP agent to retrieve the latest values.

3.2 End-to-end QoS Metrics

The human workflows that use real time video communication impose certain restrictions

on the underlying network, and the sending and receiving end points, for the resulting video

to be acceptable to the end user. For example, a low frame rate of less than 10 frames per

second appears as discontinuous video and is thus frustrating to the user. Thus, Quality of

Service refers to the capability of participating end points and the underlying network to

provide real time compressed video service that meets end-user needs.

QoS metrics fall into one of three categories. Those metrics that are indicative of the

QoS support provided by the network are called Network QoS metrics. Those that describe

the QoS support provided by the end point host Operating System and Platform are called

Operating System QoS metrics. Finally, those metrics that describe QoS support at the

application level are known as Application QoS metrics. The list of the Quality of Service

metrics that were considered in the design of this framework are given in Table 3.2, and a

description of how the different layers impact the QoS metrics is given in Table 3.3. For

example, the number of frames is directly determined by the application level, and not by

26

the network or the host Operating System. Latency, on the other hand, is affected by the

application, Operating System and network levels.

The rationale for choosing the video QoS metrics for this framework is based on the host

and network resource requirements of real time compressed video. At the host level, the

generation and transmission of digital video passes through various stages and utilizes dif-

ferent resources [25] at each stage. Input/Output and memory buffers are required for

information storage before transmission, and sufficient Processor speed is required by the

video codec to perform the necessary real time computation involved in the encoding of the

video signal. Thus physical memory and CPU utilization become important metrics that

determine host resource support. Buffering at the end point hosts and the network nodes

introduces bandwidth variation, losses, delay and jitter [22][36], which in turn impact the

quality of the received video seen by the end user. Finally, components such as frame

losses and frame rates of the video itself contribute significantly to providing perceptual

metrics that can either be used directly, or can be input to a perception analysis system for

qualitative analysis (see Section 5.6).

3.2.1 Bytes

The framework maintains the amount of total bytes transfered during each test. This would

be indicative of the amount of compressed real time video content transfered in the duration

of the test. This amount varies with the different configurable options selected by the user

prior to the start of the test. The actual bytes neither contain valid video information nor

valid headers. But for the purposes of calculation, the number that is represented in this

QoS variable assumes that the the following are included in the pseudo-video data:

• RTP header

27

Metric Metric directly impacted by
Network Application Operating System

Number of Bytes No Yes No
Number of Datagrams Yes Yes Yes
Number of Frames No Yes No
Bandwidth Yes Yes Yes
Frame Rate No Yes No
Latency Yes Yes Yes
Datagram Jitter Yes No Yes
CPU Usage No Yes Yes
Memory Usage No Yes Yes

Table 3.2: List of video QoS metrics

• video content (RTP Payload header, H.263 or other encoding format header

and encoded video)

The number does not include any of the lower level headers like UDP and IP.

3.2.2 Datagrams

In the context of the framework, datagrams refers to the number of UDP datagrams trans-

fered during a test. Each UDP datagram may be of different size, and may be sent at

different instants of time, not necessarily at regular intervals. The UDP datagrams are gen-

erated according to the timing and size information specified by the data generator. In

addition to the number of datagrams transfered, the number of datagrams lost during a unit

test are also maintained at the receiver. Datagrams may be lost either because of a load on

a network node, or due to a load on the the end point that receives the test data.

28

Metric Description

Number of Bytes The application level determines the amount of data gen-
erated in terms of bytes, depending on various video data
factors like motion and picture format. Datagram losses in
turn implies a loss in the number of bytes received.

Number of Datagrams At the application level, protocols such as RTP fragmen-
tation determine number of datagrams. Also lower layer
framing at the operating system level, and datagram losses
and data corruption at the network level determine the num-
ber of datagrams received.

Number of Frames The application level determines the number of frames
generated. Datagram losses indirectly impacts number of
frames received.

Bandwidth Bandwidth may be deliberately restricted or specified at the
application level. Bottlenecks at the operating system level
and the network level may also affect the bandwidth value.

Frame Rate Frame rate may be specified at the application level. It is
also affected by various video data factors like motion and
picture format. Datagram losses and bandwidth values in-
directly impact frame rate.

Latency Buffering at the application, operating system and network
levels, as well as propagation delays all contribute to la-
tency.

Jitter Variation in the servicing of datagrams at the operating sys-
tem and network levels contribute to datagram jitter.

CPU Usage The number of applications running on the operating sys-
tem, and the amount of processor time consumed by the
applications in turn determine the percentage of CPU time
allocated to the video application. CPU usage indirectly af-
fects all other metrics (except memory usage).

Memory Usage Similar to CPU usage, the number of applications execut-
ing simultaneously determine the amount of memory space
allocated to the video application.

Table 3.3: Description of how the video QoS metrics interact

29

3.2.3 Frames

As a Quality of Service metric, each frame denotes an encoded video frame. Each individ-

ual frame may span one or more UDP datagrams. This span is determined by two factors

for actual video - the total size of the frame, and the positions at which RTP packetizes the

frame. For this framework, it is assumed that one UDP datagram may contain not more

than one frame. Each frame in a test is identified by a frame number starting at 1. The

framework does not take the type of frame (“I”, “P” or “B”) into account for any of its

QoS analysis. In the context of this framework, a frame is said to be lost ifall the UDP

datagrams that comprise this frame are lost. Frame losses can be compared with datagram

losses as follows. When frame sizes are small and every datagram contains a different

frame, frame loss numbers would be equal to datagram losses. However, as frame sizes in-

crease, datagram losses tend to be far greater than frame losses, because in this case many

UDP datagrams make up one frame.

3.2.4 Bandwidth

The bandwidth metric is used to maintain the effective bandwidth utilized during each test.

This metric recorded at the sender indicates the ability of the sending end point to support

the bandwidth of the data that is generated by the data generator. Since the pattern of

test data generated by the data generator can be predetermined for a particular set of input

parameters the user selects, the bandwidth of the data generator can be compared with

the actual bandwidth of test traffic at the sender to serve as a measure of the sending end

point support for video. On the other hand, bandwidth recorded at the receiver is a useful

measure of the ability of the underlying network and the receiving end point to support the

selected type of video data traffic.

30

Frame 3 Frame 2 Frame 1

tt

Figure 3.3: Constant frame rate from a VBR video source

3.2.5 Frame Rate

The frame rate metric maintains the number of frames transfered per second. As given in

Figure 3.3, VBR video sources tend to keep a constant frame rate, while the size of each

frame may vary. This value is determined both by the number of frames being generated

by the data generator, as well as delays in the underlying network. Even though frame rate

tends to vary similar to bandwidth in most cases (see Section 5.4.2), this value is useful as

it determines user perception, and can be used as input to other systems such as VQM [57],

that analyze user perception.

3.2.6 Latency

The latency metric captures the one way delay encountered by a datagram from the in-

stant it is transmitted by the framework at the sending end point, to the time instant it is

received by the framework in the receiving end point. For the one way delay measurement

to be accurate, a synchronization mechanism such as NTP [34] is required. In real time

communication, it is important for one way latency to be minimal for the communication

31

Receiver Sender

time

t = one way
latency

Figure 3.4: One way latency

experience to be acceptable. In a video conference for example, as the latency increases,

the user has to wait for longer periods of time for responses from the other end point. When

the wait duration becomes noticeable for humans, the resulting experience is less pleasur-

able or in some cases unacceptable. Figure 3.4 outlines the one-way latency between the

two participating end points.

3.2.7 Jitter

Datagram jitter is a measure of the variation in the end-to-end delay times encountered by

datagrams as they are received by the target end point. The expression for calculating jitter

that is used by this framework is the one specified in the RFC 1889 (RTP) recommendation

[2]. The formula is:

Jcurr = Jprev + (|D(i−1,i)| − Jprev)/16

WhereJcurr = Current value of inter arrival jitter,

Jprev = Previous value of inter arrival jitter,

D(i−1,i) = time difference in packet spacing between packets i-1 and i.

32

Datagram Sent time Recd time Di−1,i = (ri − ri−1) Jitter
No. instants instantr −(si − si−1) Jcurr

1 0 2 N.A N.A.
2 4 6 (6 − 2) − (4 − 0) = 0 0
3 8 11 (11 − 6) − (8 − 4) = 1 0 + (1 − 0)/16 = 0.0625

Table 3.4: Jitter calculation example

The RFC states that the algorithm is a first order estimation and that the 1/16 factor is a

gain parameter that provides good noise reduction ratio while maintaining convergence.

The definition of Jitter and explanation of the calculation mechanism for Jitter provided in

the RFC [2] has been attached in Appendix C. The validity or effectiveness of this expres-

sion is outside the scope of this work. The expression is used as stated in the RFC so as

to maintain compliance. The variance in the time spacing between datagrams, irrespective

of which frame they belong to, is considered for calculating datagram jitter. An exam-

ple of jitter calculation using this expression is illustrated in Table 3.4. For this framework,

out-of-order datagrams and lost datagrams are left out for the purposes of jitter calculations.

Intra frame vs. Inter frame Jitter: Consider two framesF1 andF2 as given in Fig-

ure 3.5. TheDx notations indicate datagrams belonging to each frame. For example,

F1 − D1 indicates the first datagram of the first frame. The variance in the time spacingt1

between datagrams of the same frame is considered for calculating the Intra frame Jitter.

The variance in time spacingt2 (wheret2 is usually much greater thant1) between the

starting datagram of one frame and the starting datagram of the next frame is considered

for calculating the Inter frame Jitter, also known as frame inter-arrival jitter [48]. At the

source, time spacing between datagrams of the same frame is typically in the order of a few

hundred microseconds. On the other hand, the time spacing between the starting datagram

33

D1 F1 D2 F1 D1 F2

t1

t2

Figure 3.5: Inter frame jitter vs. Intra frame jitter

of one frame and the starting datagram of the next frame is in the order of tens of millisec-

onds. For example, for a 30 fps picture, ideally inter frame spacing would be 1/30 seconds.

This difference in the time spacing between intra and inter frame datagrams could affect

how network nodes service the datagrams. There is no inherent relationship between inter

frame jitter and intra frame jitter. However, they affect the way in which buffers must be

designed at the receiver in order to render the frames. This makes them important metrics

to consider for codec buffer choice at the receiver.

3.2.8 CPU Usage

The percentage of processor time that is taken up by the different processes that are cur-

rently executing, is indicative of the load on the CPU. This can be determined using the

amount of time the processor spends executing an Idle thread, in comparison to the amount

of time it spends executing all the other threads, as follows:

CPU = (1 − tidle

T
) ∗ 100

whereCPU = Percentage of time spent by the processor executing non-Idle threads,

tidle = Amount of time in current sampling interval spent on Idle thread,

34

T = Total amount of time in the sampling interval.

A busy CPU results in less CPU time available for a real time video application to execute,

resulting in a reduction in the frame rate and thus the quality of video. Both the sending

end point and the receiving end point can be affected by a busy or overloaded CPU.

3.2.9 Memory Usage

The amount of Physical and any extended physical memory, such as Virtual Memory in

the Windows Operating System, used by currently executing processes together indicate

the memory load on the participating end point. As in the case of CPU Usage, memory

usage is ideally a percentage value of the total memory currently available on this end

point. Physical memory is the actual amount of Random Access Memory available on the

end point, and extended memory is the amount of memory (greater than the actual phys-

ical memory)seenby applications, and consists of the physical memory in combination

with secondary storage such as hard disk space. The amount of paging or other memory

swapping activity on the host also indicates whether the currently executing processes are

continually starved for memory. Less memory available to a real time video application

translates to a reduction in the resulting video quality, similar to the affect of an overloaded

CPU.

3.3 Tests and Sessions

At user level, the framework determines Quality of Service based on a series of tests con-

ducted at user specified time intervals. The number and variety of tests performed deter-

mines the stability and accuracy of the QoS results obtained.

35

Ts

ti1 tu1

Test N Test 1 Test 2
… ≈ …

ti2 tu2

Active

Dormant

Figure 3.6: Testing cycle

A Unit Test, in our framework, refers to an individual test of time durationtu performed

with one set of configured options selected by the user. The user may select N unit tests

(N ≥ 1), to be performed at specified intervals of time. This cluster of n unit tests for

the duration of which the user selected options remain constant are then considered as one

“session”. Each session is identifiable through a unique Session Identifier. Tests within a

particular session are numbered starting at 1. In Figure 3.6, the total time for one session,

Ts, can be given as follows:

Ts =
N∑

x=1

tux +
N−1∑
x=1

tix

For example, the user may request ten unit tests of duration twenty seconds each, to be per-

formed at regular intervals of one hour between unit tests. In this case, this one session lasts

for a duration of ten hours and twenty seconds. The set of configurable options selected by

the user is constant for the duration of the session. The user may run several such sessions,

each with a different set of configurable options, to determine the behavior of the tests for

36

those sets of options. The Quality of Service metrics that result from the tests indicate the

extent to which video is supported between the two end points, for the specified interval

of time. Thus more tests performed over extended periods of time tend to give a clearer

picture of actual end-to-end support for video communication.

3.4 Framework Output and Usage

The output of the framework is a quantitative description of the results of the tests it con-

ducts to determine the extent of support for video between the participating end points.

This description consists of the various QoS metrics and host resource information and

is displayed in a human consumable format. An administrator may gather several sets of

such readings using the framework, and then use the readings to determine possible pic-

torial degradation and other qualitative metrics either manually or by other means (see

Section 5.6). The framework alone does not attempt to do any qualitative or perceptual

analysis based on the QoS information it derives from the tests.

37

Chapter 4

Implementation

This Chapter describes an implementation of the architecture presented in the Chapter

Three. The implementation of each architectural component is explained in detail, and

their functional traits discussed. All the results and the analysis of the results of the frame-

work described in Chapter five are based on this particular implementation. The modules

are implemented so that they remain extensible, and additional functionality may be added

with minimal changes to existing functionality. For most part, the modules are loosely

coupled so that modules may be replaced with others providing similar functionality, with

minimal changes to the code.

4.1 Target Environment

The target Operating System chosen for implementing the framework is Microsoft Win-

dows. The Windows Operating System is chosen specifically because most of today’s

common Video Conferencing solutions have been developed for this Operating System.

This facilitates the administrators to determine video QoS capabilities on the same end

38

points that are or will be used to run the actual video conferencing products. Our imple-

mentation is disparate in terms of the development platforms used. User interfaces have

been created using Java version 1.4.0 Swing classes. Timing and information management

modules have been created using C and C++ languages, compiled with Microsoft Visual

Studio version 6.0.

4.2 Data and Traffic Generation

For our implementation, the traffic generator was built using Iperf [38] version 1.6.5. Since

Iperf is an Open Source tool, its code could be modified to generate VBR traffic. Iperf

also provides built-in support for datagram loss and Jitter calculations that are vital met-

rics for determining video QoS. A diagram that shows this Iperf based implementation is

given in Figure 4.1. The tool consists of the following components that assist in test traffic

generation as well as QoS information maintenance:

• A Graphical User Interface is used to accept test cycle and video detail infor-

mation from the user.

• The modified version of Iperf is started either in Client mode or in Server

mode depending on user selection. The Iperf execution is handled in a separate

thread. If the tool is being run in “client” or sender mode, the thread also

utilizes a test cycle timer program to control the generation and transmission

of test data as per user specification.

• The Iperf client code reads a particular trace file that contains the timing and

datagram size information necessary to generate and transmit test data to the

receiver. The trace file that is chosen is determined by the combination of input

parameters chosen by the user.

39

Not Shown:
Iperf output dump

displayed to user
Reset MIB

functionality

Monitor

VBR Test Data In VBR Test Data Out

Trace Files

SNMP MIB

Parser Parser

Iperf Client

Wrapper Thread

 Iperf Server

Wrapper Thread +
Test cycle Timer

Test GUI
Accepts Test Video Details
Accepts Test Cycle Details

Figure 4.1: Iperf based tool implementation

• The Iperf server listens on the specified port for incoming test data.

• The output from the Iperf program is fed to a Parser object. The parser filters

out the necessary QoS information and formats it to be sent to the SNMP MIB

implementation for records-keeping.

• A monitor program may choose at any time to query the MIB on the partici-

pating end points and retrieve the QoS information.

4.2.1 Data Generation

A set of experiments were conducted to characterize VBR video traffic generated at the

source. The test was based on studying RTP datagrams generated at the source with an

H.263 encoder. The RTP output was collected for different combinations of the set of

{Activity Level, Maximum Encoding Rate, Picture Resolution}. The resulting timing,

40

datagram size and frame number information was dumped to a file. The data was then

filtered out and analyzed to produce characteristics charts. The characteristics of H.263

video traffic and the details of the experiment are outlined in Section 5.1.

4.2.2 Traffic Generation

The Iperf code was modified for incorporating video VBR traffic generation by inserting

an additional module to read the trace file corresponding to the options the user has chosen.

The datagram sender module in Iperf was also modified to send datagrams according to the

trace file entries. The timing calculations in Iperf were modified1 to maintain better timing

accuracy through the process of time compensation. The time for execution of one iter-

ation of the datagram transmission loop is subtracted appropriately from the time instant

at which the next datagram is sent, thus compensating for the time required by the host to

execute that part of the code.

The sizes of individual trace files are kept at a minimum by including the trace information

for a short duration, and having the trace file reader loop through the same file using a

wrap-around method. The last entry of the trace file is assumed to be the same as the first

entry in the trace file, except for the time instant at which it is sent. If the trace file looks

like this:

Time instant: 0.0 Datagram:D0

Time instant:t1 Datagram:D1

...
1The timing mechanism in Iperf 1.6.5 for Windows had a resolution of about 10 milliseconds (ms). In

other words, updates to the timer function used in the Iperf code were of the order of 10 ms. For VBR data
generation, this was highly insufficient. So the timing function in Iperf had to be rewritten for microsecond
resolution in Windows.

41

...

...

Time instant:tn−1 Datagram:Dn−1

Time instant:tn Datagram:D0

The next instant of time is calculated astn + t1 and the datagram to be sent isD1. So the

program just wraps around after the end of the trace file and starts again from the begin-

ning. This method is also useful to maintain the activity level for the duration of a test.

All the necessary information that needs to be transfered from the sender to the receiver is

contained within each datagram so as not to introduce additional control information on the

network when the test is in progress. The header for each UDP test datagram is designed

to carry the control information as shown in the header diagram Table 4.1.

Datagram ID: A 32 bit number starting at 1 that uniquely identifies a datagram in a unit

test. This number is used at the receiver to calculate the total datagrams received, as well

as the number of lost datagrams.

Sender time: a 64 bit number with the first 32 bits representing the number of seconds

and the next 32 bits representing the number of microseconds of the time instant at which

this datagram is sent. The time stamp is obtained from the underlying Operating System.

Frame ID: A 32 bit number starting at 0 that identifies the frame that this datagram be-

longs to. More than one test datagram may have the same frame ID depending on whether

the information about one frame is being carried by multiple datagrams. This number is

used by the receiver to calculate the number of frames received and lost, as well as the

frame rate observed at the receiver.

42

1 32
Datagram ID

Sender Time instant (Seconds)
Sender Time instant (Microseconds)

Frame ID
Test Session ID

Table 4.1: Test datagram header

Test Session ID: A 32 bit number that is randomly generated at the sender and uniquely

identifies datagrams that belong to a particular test session. The session ID is used by the

receiver to maintain and differentiate among the information generated by several test ses-

sions.

Since the total size of the test datagram header is 20 bytes, the minimum size of a test

datagram is 20 bytes. If the trace file specifies a datagram size less than 20 bytes, the tool

still sends a 20 byte datagram in order to maintain all the information necessary to identify

the datagram at the receiver.

4.2.3 Analysis

Section 4.2.2 explained the test datagram header. The information in the header is used

at the receiver to analyze and record the various metrics that quantify QoS. At the sender,

as the test data is being injected into the network, requisite information is continuously

recorded and periodically output from the Iperf module. This information includes number

of bytes, datagrams and frames transmitted, and bandwidth and frame rate determined at

the sender. Host resource usage metrics monitored include peak values and last determined

43

values of CPU usage, physical memory and committed memory as a percentage of their

respective maximum values on the end point. Committed Memory is defined in Windows

PerfMIB [49] as follows:

Committed memory is physical memory for which space has been reserved on

the disk paging file in case it needs to be written back to disk.

This information is stored in the local MIB, along with the configurable options set by the

user for this test. At the receiver, datagram headers are filtered from the received datagrams.

The datagram numbers indicate the number of total datagrams received and the number of

lost datagrams. For example, if the last datagram received during a test has the datagram

number as 200, then a total of 200 test datagrams were received at the target end point

in the duration of the test. Non-sequential datagram numbers in the received datagrams

indicate lost or out-of-order datagrams. Out-of-order datagrams are also counted as lost

datagrams. The number of total frames received and frame loss are also calculated similar

to datagrams, but using the Frame numbers contained within the received datagrams. In this

case, out-of-order frames are not reported at all, and any frames that are out of sequence are

automatically considered as lost frames. Jitter is calculated based on the time stamp con-

tained within the received datagram header and the time instant at which the datagram was

received, as given in Section 3.2.7. The maximum value of jitter that was determined for

the duration of the test is also recorded, and indicates an anomaly that may have occurred

during the test. Latency is not calculated due to the absence of a time synchronization

mechanism in this implementation.

44

No. Variable Description

1 Session ID Session ID that this test belongs to
2 Test Number Test number of this test, starting at 1
3 Test Duration Duration of the test, in seconds
4 Activity Level Activity level selected for this test
5 Picture Format Picture Format selected for this test
6 Maximum Encoding Rate Max. Encoding rate selected for this test
7 Bytes Sent Number of bytes sent during this test
8 Bandwidth at the sender Bandwidth at the sender for this test, in bytes

per second
9 Datagrams Sent Number of Datagrams sent during this test

10 Frames Sent Number of video frames sent during this test
11 Frame Rate at the SenderFrame rate for this test, in frames per second
12 Test Status States whether the test is in progress, or is com-

plete

Table 4.2: Video QoS MIB Sender Table entries

4.3 SNMP Module

The QoS subtree in the SNMP MIB described in Section 3.1.3 consists of a Sender Table

and a Receiver Table, and maintains all the QoS metrics determined with the traffic gen-

erator tool. The entries within these tables are given in Tables 4.2 and 4.3. The MIB is

implemented to maintain these values, and is attached to an existing SNMP Service, which

is the standard SNMP Service that is part of the Windows Operating System. The tables

are internally implemented as singly linked lists, utilizing additional memory as required

to grow the table and incorporate new entries. They are initialized at SNMP service start

up, and cleared at SNMP service shutdown.

To record the peak and last values of end point host resource QoS metrics such as CPU

usage and Memory usage as given in Table 4.4, the tool queries the PerfMIB subtree main-

tained by the Windows Operating System. The peak and last determined values are then

45

No. Variable Description

1 Session ID Session ID that this test belongs to
2 Test Number Test number of this test, starting at 1
3 Test Duration Duration of the test, in seconds
4 Bytes Received Number of bytes received during this test
5 Bandwidth at the receiver Bandwidth at the receiver for this test, in bytes

per second
6 Total Datagrams Sent Number of Datagrams sent during this test
7 Datagrams Lost Number of Datagrams lost during this test
8 Total Frames Sent Number of video frames sent during this test
9 Frames Lost Number of video frames lost during this test

10 Frame Rate at the ReceiverFrame rate for this test, in frames per second
11 Jitter Datagram Jitter recorded for this test, in mi-

croseconds
12 Maximum Jitter Maximum Jitter recorded for this test, in mi-

croseconds
13 Test Status States whether the test is in progress, or is com-

plete

Table 4.3: Video QoS MIB Receiver Table entries

No. Variable Description

1 Peak CPU Usage Percentage of time the processor is executing a
non-idle thread, maximum value during this test

2 Last CPU Usage Percentage of time the processor is executing
a non-idle thread, last value determined during
this test

3 Peak Physical Memory Usage Physical memory used in bytes, maximum
value during this test

4 Last Physical Memory Usage Physical memory used in bytes, last value de-
termined during this test

5 Peak Committed Memory UsageCommitted virtual memory used in bytes, max-
imum value during this test

6 Last Committed Memory Usage Committed memory used in bytes, last value de-
termined during this test

7 Peak Page accesses Number of page accesses (hard page faults) ,
maximum value during this test

Table 4.4: Host QoS metrics calculated from Windows PerfMIB

46

stored in aSender/Receiver Tablesubtree implemented in the Video QoS MIB as theSystem

subtree. The information in the System subtree is used in conjunction with the information

given by the Host Resources MIB [3], discussed in Section 4.4.

There is an option provided in the MIB implementation for the tool user to clear the existing

table entries without having to restart the SNMP service. This option is useful in several

ways. Firstly, the user may clear test data entries in the MIB without having to lose SNMP

information contained in subtrees other than the Video QoS MIB subtree. It also helps

in clearing entries that were recorded during previous test sessions, before starting a new

test session. This in turn frees up the memory occupied by all the entries in the previous

test sessions. When the memory space occupied by the MIB entries becomes significantly

large, it may contribute towards slowing down the system performance. The reset MIB

functionality is not selective in its clearing of the values. All values that currently exist in

the MIB are deleted when the user sends a reset MIB request.

4.4 Display

The Display module queries the participating end points, gathers QoS information, formats

it so that it is human-consumable, tabulates and displays the information to the user. The

user starts by selecting which target end points are to be queried for test information, and

the rate at which the end points must be queried to get fresh data. For each end point, an

end point handler object is created to query the SNMP MIBs. Separate threads are created

to query the QoS and System Sender and Receiver tables. These threads populate the GUI

display with the latest values parsed from the values obtained from the MIB. In addition to

querying the Video QoS MIB implementation, the Host Resources MIB [3] implementation

47

provided by the Windows Operating System is also queried, and the following information

is obtained:

• Total amount of Random Access Memory on the host

• Number of processes running on the host

• Number of CPUs on the host

• Host system description

These above values are obtained just once, at the start of the query process. However,

a manual “Refresh” button is provided to the user to refresh the values recovered from

the Host Resources MIB on the specified end point. The steps that occur while gathering

SNMP information from the end points are as follows:

1. Query the Host Resources MIB at the specified end point and get and display system

hardware information

2. Start separate threads to query

• QoS Sender table

• QoS Receiver table

• System Sender table

• System Receiver table

3. Parse the information from the tables, and convert them to human-readable format.

For example, convert Picture Resolution values obtained from the Sender table en-

tries, from 0 and 1 to QCIF and CIF respectively

4. For the peak and last CPU and Memory usage values obtained from the System

subtree tables, calculate percentage values from the absolute values

5. Display the latest values

48

Video Test Type Test Time Information

Activity Level Duration of each test
Picture Format Total number of unit tests to be performed
Maximum Encoding Rate Time interval to wait in between unit tests

Table 4.5: Test cycle input parameters expected from the user

An Open Source code that provides an SNMP client [43] was utilized and modified to do

an SNMP “walk” in order to get all the entries in a table having specified the starting and

ending Object Identifiers.

4.5 Tests and Sessions

The implementation assumes that all unit tests in a session are of the same duration, and

that the interval of time between unit tests in a session is constant. Thus the valuestux and

tix are reduced totu andti respectively in the calculation of the total session timeTs given

in Section 3.3. Thus, session timeTs can be calculated as follows:

Ts = N(tu) + (N − 1)(ti)

All information for conducting the test is accepted from the user in a Graphical User In-

terface (GUI). The user starts a session of unit tests by specifying the following values

describing the nature of the video input and the test duration as given in Table 4.5, along

with the destination addresses and ports. Each session of such unit tests is started in a

separate thread. The logic for execution of unit tests in a session is given below:

1. Start a separate thread for this session

2. Run the Iperf process with the video options chosen

49

3. Parse all the input from the output and error streams of the Iperf process, enter the

parsed information into the SNMP MIB

4. if {number of unit tests not complete}

• wait for the time interval specified, compensating for any time lost while

running the Iperf process and parsing its output

• decrement the number of tests to be performed

• go to step 2

4.6 Inter-Module Communication

The parser program selectively filters out the information output by the Iperf based traffic

generator module, and sends them to the MIB implementation to be updated. This commu-

nication happens through the use of a UDP socket. As soon as the SNMP service is started

on the end point, the Video QoS MIB implementation starts a a single thread that listens

to a port for incoming updates. The parser pushes values to be updated to this socket and

the thread receives them. The Display module queries the SNMP agent at the end points

through the well known SNMP UDP port 161, again through the use of sockets. The Iperf

module outputs periodic and summary information to the output console. A wrapper appli-

cation that runs the Iperf module opens a Java Output Stream, and receives all the output

information that the Iperf module dumps on the console.

4.7 Implementation Availability

This implementation is owned by NCNI and is currently undergoing testing. It will eventu-

ally be made public-domain and Open Source using an appropriate license agreement. The

50

setup file for the implementation can be found at

http://www4.ncsu.edu/ vchandr/videosite/progress/soft/setup.exe

51

Chapter 5

Tool Calibration and Performance

We start this Chapter by describing the experiments conducted for studying the traffic char-

acteristics of a VBR video source. The second section explains the traits displayed by the

traffic generation module of the tool. In the third section, we describe the results of exper-

iments conducted with the tool and obtaining measurements under different network and

host resource loads. Finally, we describe the affect of load on the human perception of

actual video transmitted between the participating endpoints.

5.1 Source Traffic Characteristics

5.1.1 Experimental Setup

The objective of this set of experiments was to accurately characterize VBR video traffic

generated at the source. The test was based on studying RTP datagrams generated at the

source with a software H.263 encoder. The RTP output was collected for different input

video sequences categorized according to the amount of motion they contained. Table 5.1

lists these well-known video test sequences. The RTP datagram information was collected

and saved using Ethereal. The data was then filtered out using Windump and analyzed to

52

Activity Video Length* Description
Level Sequence (seconds)

None None None No input video. Camera switched off, and the
resulting blue screen transmitted

Minimal Miss America 5 Person talking against a dark background, min-
imal face and neck movement

Some News 10 Two news anchors against a background that
features a screen with a pair of ballet dancers

High Foreman 13.33 Involves panning and rapid scene change
* - All video sequences played at 30 frames per second

Table 5.1: Video sequences used to study traffic characteristics

produce characterization charts. Trace files were also created from the RTP dump files, and

used to input datagram size and timing information to the tool.

A Canon Vizcam 1000 video camera focused towards a continuously looping video se-

quence being played at 30 frames per second on the monitor of a computer fed the signal

to a frame grabber card. The video sequences were made to loop so as to maintain the

activity level. The UCL/LBNL version 2.8ucl-1.1.3 of the Video Conferencing Tool (VIC)

was used to encode and transmit this video. The experiments were performed using the

H.263 compression scheme. Keeping the quality level on the VIC User Interface a constant

at 10, RTP traces were recorded for different maximum bandwidth settings (64, 128, 384

and 1536 kbps), and picture format (small - corresponding to QCIF, and normal - corre-

sponding to CIF). Each experiment was conducted for a duration of exactly 15 minutes and

analyzed, so that the video sequence has looped sufficient number of times to yield stable

values. The computer that was used to conduct the experiments had an Intel PIII 930 Mhz

processor with 128 MB RAM, Matrox Millenium G550 video card 32 MB video RAM,

running Windows 2000 Professional.

53

5.1.2 Characteristics Charts

The charts depicted in Figures 5.1 through 5.5 describe the characteristics of the video traf-

fic at the source. For the purposes of this study, Intracoded (I) frames were not considered.

Only Predictive (P) frames, and the datagrams that carry P frame information (henceforth

called P datagrams) were considered. The following observations were made regarding the

characteristics of compressed real time video traffic:

• It can be observed from figures 5.1 and 5.21 that on an average for most activity

levels, one datagram is sufficient to carry one P frame in case of QCIF. Even

in the case of High activity level, the maximum number of datagrams that

constitute a P frame is just 3. For CIF resolution, the number of datagrams

required to carry one P frame is greater than one for most activity levels, and

the maximum number of datagrams that constitute a P frame tends to increase

with an increase in activity level2.

• For QCIF resolution, average datagram sizes tend to vary and increase in pro-

portion with increase in activity level. Variations in mean datagram sizes also

tend to increase with increase in activity level. However, for CIF resolution,

average datagram sizes tend to befuller for any amount of activity level, in-

cluding for minimal motion. But with increase in activity level, the variation

in mean sizes actually decreases, indicating that there is not much difference

between the maximum and minimum datagram sizes.

• For the following combinations of inputs, the frame rates at the source are

1Values for datagram sizes and number of datagrams at a particular activity level varied slightly for dif-
ferent maximum encoding rates specified. The variations seemed to be unrelated, but the values were close
together. So the mean of the values at different maximum encoding rates was taken to generate the graphs in
figure 5.1 and 5.2.

2Except for the High activity level,scene changesbecause of the looping of the test video sequence are
not significant, by visual inspection. For example, in the Minimal activity (Miss America) sequence, there is
not much change in luminance and background color between the last and the first frames

54

successfully maintained at 30 fps irrespective of the activity level of the video,

which is the ideal case in our study:

1. QCIF video with maximum encoding rate specified to be 384 kbps

2. QCIF video at 1536 kbps

3. CIF video at 1536 kbps

This implies that with the given host (sending end point), the above three com-

binations of picture resolutions and maximum encoding rate can produce 30

fps for any of the given activity levels. The reason why other combinations

fall below the expected ideal rate of 30 fps, as shown in Figure 5.3, can be

attributed to two independent factors:

1. availability of host resources on the sending end point

2. The given input combination is less than perfect

The first point above is self explanatory, and implies that even though it is

possible to generate 30 fps video for the given input, the CPU and memory

resources on the source end point are insufficient and restricting the frame rate

that is being generated at the source. The second point states that even though

there may be enough resources on the host to generate 30 fps for the given

input, either the maximum encoding rate specified is insufficient to generate 30

fps for the given activity level and picture resolution, or the picture resolution

is too high for the given activity level and maximum encoding rate. It can be

seen from Figure 5.3 that frame rates fall slower with increase in maximum

encoding rate. Also, it can be seen that for CIF resolution video, 64 kbps and

128 kbps maximum encoding rates are highly insufficient for any amount of

activity level.

55

• The charts in Figure 5.4 further supplement the observations made in the pre-

vious point. For a given combination of activity level and picture resolution,

the output video is generated at a certain bit rate. If the maximum encoding

rate is more than what is required, then the extra encoding bandwidth remains

unused. However, in cases where the maximum encoding rate is specified to

be less than what is actually required, then all the encoding bandwidth is used,

but the output video frame rate is less than ideal. For example, in the CIF

chart in Figure 5.4, we can see that at 64 kbps, the entire encoding bandwidth

is always used (for all activity levels), but the frame rate reduces drastically

with increase in activity level as seen in Figure 5.3. At the other extreme, the

specified encoding rate of 1536 kbps is never fully utilized at any activity level

or picture resolution, and the output frame rate is ideal at 30 fps.

• The average number of datagrams per second for maximum encoding rate

specified at 1536 kbps generating 30 fps ideal video output is shown in Fig-

ure 5.5. The average number of datagrams remains almost the same irrespec-

tive of the activity level, in case of QCIF resolution. This is expected because

for QCIF, the average number of datagrams per frame is 1 (Figure 5.1), and so

a constant frame rate of 30 fps implies that the average datagrams per second

is also 30. However, for CIF resolution, more than one datagram usually con-

stitutes one frame, and so the average number of datagrams per second is far

higher than 30, and the number tends to increase with an increase in activity

level, because there is an increase in the number of datagrams that make up a

frame.

Here is a summary of the observations made above:

• Datagram sizes tend to befuller for CIF resolution video irrespective of activity

56

Datagram Sizes - QCIF

0

100

200

300

400

500

600

None Minimal Some High

Activity Level

D
at

ag
ra

m
 S

iz
e

(B
yt

es
)

Mean P Datagram Size

Standard Deviation of
each P datagram

Number of Datagrams - QCIF

0

0.5

1

1.5

2

2.5

3

3.5

None Minimal Some High

Activity Level

N
u

m
b

er
 o

f
d

at
ag

ra
m

s

Maximum number of P
datagrams
Average number of P
datagrams

Figure 5.1: QCIF datagram characteristics

level, when compared to QCIF.

• The number of datagrams per frame for CIF resolution video are higher than

for QCIF resolution, for a particular activity level

• Frame rates tend to drop with activity level if the picture resolution is high

and/or a low maximum encoding rate is specified

• A particular combination of user inputs for activity level and picture resolution

requires a certain maximum encoding rate to be specified in order to output 30

fps video.

5.2 Traffic Generator Characteristics

The goal of this experiment was to determine the effectiveness of the Iperf based traffic

generator module by comparing the output from the tool with the information in the corre-

sponding trace file that it uses as input. The output from the traffic generator was recorded

using Ethereal, and the time instants of each datagram was used to produce the charts. The

57

Datagram Sizes - CIF

0

100
200

300

400

500
600

700

800

None Minimal Some High

Activity Level

D
at

ag
ra

m
 S

iz
e

(B
yt

es
)

Mean P Datagram Size

Standard Deviation of
each P datagram

Number of Datagrams - CIF

0

2

4

6

8

10

12

14

16

None Minimal Some High

Activity Level

N
u

m
b

er
 o

f
d

at
ag

ra
m

s

Maximum number of P
datagrams
Average number of P
datagrams

Figure 5.2: CIF datagram characteristics

Frame Rates at Source

0

5

10

15

20

25

30

None Minimal Some High

Activity Level

F
ra

m
e

 R
a

te
 (

fp
s

)

QCIF video at 64 kbps
QCIF video at 128 kbps
CIF video at 64 kbps
CIF video at 128 kbps
CIF video at 384 kbps

Figure 5.3: Frame rates at source

58

Bandwidth at source - QCIF

0

20000

40000

60000

80000

100000

120000

140000

160000

None Minimal Some High

Activity Level

B
an

d
w

id
th

 (
b

p
s)

64 kbps
128 kbps
384 kbps
1536 kbps

Bandwidth at source - CIF

0

100000

200000

300000

400000

500000

600000

700000

None Minimal Some High

Activity Level

B
an

d
w

id
th

 (
b

p
s)

64 kbps
128 kbps
384 kbps
1536 kbps

Figure 5.4: Maximum encoding rate vs. bandwidth at source

Average Datagrams per second

0

20

40

60

80

100

120

None Minimal Some High

Activity Level

N
u

m
b

e
r

o
f

d
a
ta

g
ra

m
s
 p

e
r

s
e
c
o

n
d

P datagrams per second -
QCIF
P datagrams per second -
CIF

Figure 5.5: Average datagrams generated per second

59

combination of input parameters specified in the tool for these experiments was{Activity

level = Some, Maximum Encoding Rate = 384 kbps, Picture Format = QCIF}. The outputs

were compared with respect to the first 25 seconds. The observed frame rate in the actual

trace and the tool output is 30 fps. The computer used for the experiment is an Intel PIII

930 Mhz, with 128 MB RAM, running Windows 2000 professional.

Two experiments were conducted with the traffic generator, one in which there was no

significant CPU and memory load on the end point host being used for the experiment, and

the other in which there was significant load. For the first experiment with no load, there

were 24 processes executing on the host, taking up 101 MB of the total 310 MB committed

memory available, and 66 MB of the 130 MB physical memory space available. For the

second experiment, there were 41 processes executing, taking up 247 MB of the 310 MB

available committed memory, and 122.5 MB of the 128 MB of RAM available. There was

no other significant activity on the source computer while the experiment was being con-

ducted. Since the traffic generator reads from the actual trace file, records the datagram size

and the time instant at which each datagram was sent, and mimics that behavior, datagram

sizes will be the same in both cases (see Section 4.2.2) and thus do not need comparison.

The three charts each in Figures 5.6 and 5.7 display the datagram timing information in

the actual trace file, the traffic generator with no memory and CPU load on the generating

host, and the traffic generator with memory and CPU load on the generating host respec-

tively. Figure 5.6 shows the behavior of the generator in a 25 second period, and Figure 5.7

is a 2-second zoom in on a portion of the trace shown in Figure 5.6. Part a. in the Figures

is plotted by taking the information contained in the source trace files directly. These trace

files are the files that the traffic generator module reads in order to obtain the information

60

it needs in order to generate and transmit test traffic. Part b. in the Figures is plotted by

monitoring the test traffic datagrams output by the traffic generator module, when there is

no other load affecting the source end point (and in turn the traffic generator module). Part

c. in the Figures is plotted by monitoring the test traffic datagrams output by the traffic

generator module, but this time with memory and CPU loads affecting the source end point

(and in turn the traffic generator module). The two charts Part a. and Part b. in Figures 5.6

and 5.7 indicate that the traffic generator does indeed mimic the actual trace. The compar-

ison may seem trivial because the generator reads from the same trace file to generate its

traffic, and that traffic output is compared with the trace file again. But the challenge is to

maintain exact (or almost the same) time difference between successive datagrams in the

generator as provided in the trace file, and this is usually in terms of microseconds. Since

the timing mechanism in Iperf for windows [38] had to be modified to improve accuracy, as

mentioned in Section 4.2.2 this comparison assumed importance. The output of the traffic

generator measured at the network level as shown in Part b. of the Figures 5.6 and 5.7,

when compared with Part a. of the Figures, indicate that the Operating System (under no

additional memory or CPU loads) does not seem to have any adverse affect on the working

of the traffic generator module.

The traffic generator is limited in its capability to mimic the actual trace file by the time dif-

ference between successive datagrams. For very low time differences, of the order of a few

hundred microseconds, there is a time lag between the actual trace file and the traffic gen-

erator. This is because the generator/transmitter code loop takes more than this duration of

time for one iteration. These numbers may also vary with different processor speeds. The

traffic generator output with respect to time is also affected by the amount of load on the

computer where it is being executed. This effect can be seen in the upward spikes in the

61

chart Part c. in each of the Figures 5.6 and 5.7, indicating more time taken between suc-

cessive datagram transmissions. When many tasks are executing simultaneously, or when

there is increased context switching, there is a time lag between the when the datagram is

actually sent and the timing information in the trace file. The presence of increased net-

work traffic such as broadcast traffic on the Network Interface Card (NIC) of the source

end point also affects the traffic generator module similar to Part c. in Figures 5.6 and 5.7.

So in essence, the traffic generator does abest-effort in sending the test data and transmits

at a lower frame rate (fps) in comparison to the actual trace file as the load on the executing

machine increases. However, this behavior would be beneficial to the tool, because the

frame rate at the source would be indicative of the load on the Operating System at the

source. The sending frame rate could be compared with the frame rate in the trace file to

determine the amount of load on the sending end point.

5.3 Tool Requirements

In this section we describe the basic scalability issues involved with the tool. The SNMP

MIB implementation consists of tables that hold information gathered during each unit test

conducted with the tool. The MIB subtree grows with the number of unit tests performed,

and the growth can be given as O(N), where N is the number of unit tests performed with

the tool. The user is given an option to clear all existing values in the MIB subtree and

thus manually manage the amount of memory utilized by the MIB implementation. In ad-

dition to these memory requirements, the parser module also maintains one cumulative set

of values for every unit test, for the duration of a unit test. This is equivalent to the amount

of memory required for containing one unit test worth of information in the SNMP MIB

implementation.

62

/UDP video datagrams on wire

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

53
3

54
7

56
1

atagram Number

 at no load - test datagrams on wire

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

53
3

54
7

56
1

atagram Number

 at load - test datagrams on wire

35
1

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

53
3

54
7

56
1

Datagram Number

Part a. Actual Trace - RTP

0.00

0.01

0.02

0.03

0.04

0.05

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

57
5

58
9

60
3

61
7

63
1

64
5

65
9

67
3

68
7

70
1

71
5

72
9

74
3

D

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Part b. Traffic generator trace

0.00

0.01

0.02

0.03

0.04

0.05

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

57
5

58
9

60
3

61
7

63
1

64
5

65
9

67
3

68
7

70
1

71
5

72
9

74
3

D

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Part c. Traffic generator trace

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

57
5

58
9

60
3

61
7

63
1

64
5

65
9

67
3

68
7

70
1

71
5

72
9

74
3

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Figure 5.6: Traffic generator behavior for a 25 second sampling period

63

Part a. Actual Trace - 2 second zoom

0.03

0.032

0.034

0.036

0.038

0.04

0.042

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Datagram Numbers (offset - 184)

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Part b. Traffic Generator Trace at no load - 2 second zoom

0.03

0.032

0.034

0.036

0.038

0.04

0.042

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Datagram Number (offset 184)

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Part c. Traffic Generator Trace at load - 2 second zoom

0.03

0.032

0.034

0.036

0.038

0.04

0.042

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Datagram Numbers (offset 184)

Ti
m

e
di

ff
. b

/n
 s

uc
ce

ss
iv

e
da

ta
gr

am
s

(s
ec

on
ds

)

Figure 5.7: Traffic generator behavior for a 2 second zoom period

64

In terms of processor load, the sending end point places closes to a 100 percent load on

the processor. This is because the tool internally uses an Iperf based traffic generator, and

Iperf in turn utilizes 100 percent of CPU for generating and transmitting the traffic. Thus

for the duration of every unit test, processor load on the sending end point is close to 100

percent. On the receiving end point, there is hardly any noticeable processor load. The

Iperf traffic generator may be replaced by one of several other traffic generation tools, or

one of the traffic modeling techniques discussed in Section 3.1, in order to improve the

CPU utilization at the sending end point. The additional processes and threads created by

the tool are two processes - the Graphical User Interface and the modified Iperf process,

and one thread - the Iperf wrapper thread.

5.4 Tool Measurements

The objective in the following experiment was to execute the tool between two end points

for varying network and host load conditions, and study the results obtained from the tool,

in order to determine the affects of load on VBR test traffic.

5.4.1 Experimental Setup

The experimental setup for executing the tool and obtaining and analyzing the measure-

ments it outputs, is given in Figure 5.8. The configurations of each of the machines used

in the experiment are outlined in Table 5.2. For cross traffic creation (network load gener-

ation), the Iperf tool in its unmodified state was used in UDP mode, and CBR cross traffic

utilizing different bandwidths was continuously sent for the duration of the tests. Two

computers running the Redhat Linux Operating System were used as routers for packet

65

Computer 1
Sends

Video/test data

Computer 2
Receives cross

traffic

Computer 3
Sends cross

traffic

Router 1
Forwards traffic
between comp.

1 & hub

Router 2
Forwards traffic
between comp.

4 & hub

Ethernet Hub

Computer 4
Receives

Video/test data

Figure 5.8: Experimental setup diagram for tool measurements

forwarding, in order to effectively isolate the cross traffic at the hub from reaching the

video test computers. The hub was used in order to force collisions to occur between cross

traffic and test traffic.

Tool measurement experiments were conducted with the input parameter combinations

{Activity level = Some, Maximum Encoding Rate = 384 kbps, Picture Format = QCIF}

and{Activity level = Some, Maximum Encoding Rate = 384 kbps, Picture Format = CIF}.

Ten unit tests of 30 seconds duration were conducted at 30 second intervals and the values

were averaged out to obtain one set of results per test session. Test sessions were conducted

for varying network traffic loads, as well as CPU and memory loads and the resulting val-

ues were plotted. All resulting values are determined by the tool residing on the receiving

computer (computer 4).

66

Component Configuration

Ethernet hub 3Com Super Stack II hub 10 (10 Mbps)
Computer 1 Intel 933 Mhz PIII with 128 MB RAM running

Windows 2000
Computer 2 Intel 399 Mhz PII with 128 MB RAM running

Windows 2000
Computer 3 Intel 299 Mhz PII dual processor with 128 MB

RAM running Red Hat Linux 7.2
Computer 4 Intel 200 Mhz with 64 MB RAM running Red

Hat Linux 7.3
Router 1 Intel PIII 930 MHz with 128 MB RAM running

Red Hat Linux 7.3
Router 2 Intel Pentium 199 MHz with 64 MB RAM run-

ning red Hat Linux 7.3

Table 5.2: Configuration of the various testing components for tool measurements

5.4.2 Measurement Charts

Variation with Network Load

For this set of experiments cross traffic with a specified bandwidth was continuously sent

from computer 3 to computer 2 while the tool on computer 1 sent video test data to the tool

residing on computer 4, in a setup as shown in Figure 5.8. The specified bandwidth for

cross traffic was increased in stages from 0 to a maximum value at which most of the test

datagrams failed to reach computer 4. The increments chosen for bandwidth values were

non-uniform and successive increments depended upon how significant the difference in

output was at those values. At each stage the output from the tool was recorded, and the

information was used to plot the charts shown in Figures 5.9 to 5.14. The change in values

were quite sharp and so plots with a logarithmic Y-axis were not very different from the

plots with linear scales. So all the plots shown in this section are non-logarithmic.

67

Jitter values increased very slightly with increase in cross traffic until a certain thresh-

old value, after which they increased drastically. This was true for both QCIF and CIF

picture tests. In the case of CIF tests, the threshold value occurred at a lower value of cross

traffic bandwidth (about 8000 Mbps) when compared to QCIF tests (about 9400 Mbps), as

shown in Figures 5.9 and 5.10. At high cross traffic loads, average jitter was almost as high

as maximum jitter for QCIF tests. At the same loads for CIF tests, maximum jitter values

were far higher than average values.

Datagram losses were not encountered until the threshold value of cross traffic was reached.

After the threshold value, losses shot up almost vertically. For QCIF tests, datagram losses

were similar to frame losses, because each frame mostly consisted of just one datagram.

On the other hand, datagram losses were far higher than frame losses for CIF tests, because

many datagrams tend to constitute a single frame. The larger number of datagrams also

explains the fact that percentage losses after the threshold value are far higher for QCIF

tests when compared to CIF tests, as can be seen in Figures 5.11 and 5.12. The threshold

value for losses in CIF tests occurred at about 9000 Mbps, where as that for QCIF tests

remained at about 9400 Mbps.

The Y-axis on the frame rate and bandwidth plots denote the difference between the sent

and the received frame rates. Frame rate and bandwidth values at the receiver decreased

only after the threshold values were reached. Frame rate variations were very similar to

variations in received bandwidth, as seen in figures 5.13 and 5.14. The threshold values

for QCIF and CIF tests were the same as the respective values determined for losses due to

cross traffic. For QCIF tests, frame rate decreased much more than in the case of CIF tests.

68

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ji
tt
e
r

(m
ic

ro
se

co
n
d
s)

cross traffic (kbps)

Variation of Jitter with cross traffic

Average Jitter
Maximum Jitter

Figure 5.9: Jitter variation with network cross traffic (QCIF)

The reason for this is partly due the way frame rate calculations are made by the tool (see

Section 3.2.3).

Variation with Host Resource Load

The CPU and the virtual memory on the receiving end point (computer 4 in Figure 5.8)

were varied to study the effect of host resource load on video communication. In the first

set of experiments, CPU load on the receiving end point was increased in stages from 0

to 95 percent. Tests were conducted using the tool at each stage, and the resulting values

were plotted graphically. These charts are given in Figures 5.15 to 5.20. In the second set

of experiments, tests were conducted using the tool with the receiving end point running

with low virtual memory. The values output by the tool for CPU load were used to plot the

graphs shown in Figures 5.15 to 5.20. A discussion on the affect of memory load on the

video communication is presented in Section 5.6.

69

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ji
tt
e
r

(m
ic

ro
se

co
n
d
s)

cross traffic (kbps)

Variation of Jitter with cross traffic

Average Jitter
Maximum Jitter

Figure 5.10: Jitter variation with network cross traffic (CIF)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
ss

e
s

(%
)

cross traffic (kbps)

Variation of Losses with cross traffic

% Datagram losses
% Frame losses

Figure 5.11: Loss variation with network cross traffic (QCIF)

70

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
ss

e
s

(%
)

cross traffic (kbps)

Variation of Losses with cross traffic

% Datagram losses
% Frame losses

Figure 5.12: Loss variation with network cross traffic (CIF)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
e
cr

e
a
se

 in
 f
ra

m
e
 r

a
te

 (
fp

s)

cross traffic (kbps)

Frame rate variation with cross traffic

frame rate variation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
e
cr

e
a
se

 in
 b

a
n
d
w

id
th

 (
b
p
s)

cross traffic (kbps)

Bandwidth variation with cross traffic

bandwidth variation

Figure 5.13: Frame and bit rate variation with network cross traffic (QCIF)

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
e
cr

e
a
se

 in
 f
ra

m
e
 r

a
te

 (
fp

s)

cross traffic (kbps)

Frame rate variation with cross traffic

frame rate variation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
e
cr

e
a
se

 in
 b

a
n
d
w

id
th

 (
b
p
s)

cross traffic (kbps)

Bandwidth variation with cross traffic

bandwidth variation

Figure 5.14: Frame and bit rate variation with network cross traffic (CIF)

Jitter values rose in proportion to CPU load, and jitter values were high at CPU loads

less than 50 percent, as seen in Figures 5.9 and 5.10. Two interesting points to note are

that irrespective of picture resolution (QCIF or CIF), maximum jitter values were always

higher than average jitter values, and jitter variations with CPU load were very similar. This

is different from jitter variation for QCIF and CIF tests with cross traffic loads discussed in

Section 5.4.2.

Datagram and frame losses for QCIF occurred after a threshold value of CPU load (of

about 60 percent) was reached. Since each frame mostly comprised a single datagram,

datagram losses matched frame losses for QCIF tests as seen in Figure 5.17. For CIF tests,

losses were encountered at much lower CPU loads, and increased almost linearly with CPU

load, starting at about 20 percent CPU load. An important point to note here is that frame

72

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

Ji
tt
e
r

(m
ic

ro
se

co
n
d
s)

CPU usage (%)

Variation of Jitter with CPU

Average Jitter
Maximum Jitter

Figure 5.15: Jitter variation with CPU load (QCIF)

losses almost matched datagram losses, as can be seen in Figure 5.18, indicating that data-

gram losses were more bursty and thus whole frames were lost. Again, this is different

from variation of datagram and frame losses with network cross traffic.

Frame rate and bandwidth remained constant until about 60 percent CPU load for QCIF

tests, and 20 percent for CIF tests, and then began to decrease. However, the decrease was

more linear for CIF tests when compared to QCIF tests, as shown in Figures 5.19 and 5.20.

The decrease in frame rate for CIF tests with increase in CPU load (difference of about 16

fps at 90 percent CPU load) was far higher than in the case of QCIF tests (difference of

about 3 fps at 90 percent CPU load).

A summary of the observations made with the tool measurements is given below:

• For network cross traffic, test data QoS metrics at the receiving end point varies

minimally until a threshold value of cross traffic is reached. After this threshold

73

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 20 40 60 80 100

Ji
tt

e
r

(m
ic

ro
se

co
n

d
s)

CPU usage (%)

Variation of Jitter with CPU

Average Jitter
Maximum Jitter

Figure 5.16: Jitter variation with CPU load (CIF)

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

lo
ss

e
s

(%
)

CPU usage (%)

Variation of Losses with CPU

% Datagram losses
% Frame losses

Figure 5.17: Loss variation with CPU load (QCIF)

74

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

lo
ss

e
s

(%
)

CPU usage (%)

Variation of Losses with CPU

% Datagram losses
% Frame losses

Figure 5.18: Loss variation with CPU load (CIF)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 20 40 60 80 100

D
e
cr

e
a
se

 in
 f
ra

m
e
 r

a
te

 (
fp

s)

CPU usage (%)

Frame rate variation with CPU

frame rate variation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100

D
e
cr

e
a
se

 in
 b

a
n
d
w

id
th

 (
b
p
s)

CPU usage (%)

Bandwidth variation with CPU

bandwidth variation

Figure 5.19: Frame and bit rate variation with CPU load (QCIF)

75

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 20 40 60 80 100
D

e
cr

e
a
se

 in
 f
ra

m
e
 r

a
te

 (
fp

s)

CPU usage (%)

Frame rate variation with CPU

frame rate variation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100

D
e
cr

e
a
se

 in
 b

a
n
d
w

id
th

 (
b
p
s)

CPU usage (%)

Bandwidth variation with CPU

bandwidth variation

Figure 5.20: Frame and bit rate variation with CPU load (CIF)

value, any additional cross traffic drastically affects the communication

• The threshold value is higher for QCIF tests than for CIF tests, for network

cross traffic

• The variation of QoS metrics with cross traffic for QCIF is similar to that for

CIF, except in the case of frame losses

• For CPU loads, there is a threshold value after which losses and frame rates

are affected by CPU load, similar to the affect of network cross traffic.

• unlike network cross traffic, jitter values are affected by small CPU loads.

Also, jitter variations are similar in case of QCIF and CIF tests with vary-

ing CPU loads, unlike in the case of QCIF and CIF tests with varying network

cross traffic

• The variation of QoS metrics with CPU load is more gradual when compared

to the variation due to network cross traffic

76

• Frame losses are almost as high as datagram losses, and frame loss variation

matches that of datagram loss, in case of CIF tests with varying CPU loads.

Also, the loss numbers are significantly higher than in all other test scenarios

5.5 Effect of Load on Actual Video

In this section we discuss how an actual video communication is affected in terms of human

perception by network and host resource loads, based on visual inspection of the resulting

video. These experiments were performed with the same experimental setup as given in

Figure 5.8. Instead of using the tool, the video software VIC v2.8ucl-1.1.3 was used to

transmit actual video data between computers 1 and 4. The video sequence used for these

tests was the “news” sequence. This sequence was played on the computer monitor and

captured by the video hardware (similar to the setup explained in Section 5.1.1). The video

at the receiving end point was observed, and the results obtained as perception quality

metrics by visual inspection of both the video as well as the received frame rate, bit rate

and loss values reported by VIC on its Graphical User Interface.

5.5.1 Effect of Network Cross Traffic

Cross traffic of 9400 kbps and 9200 kbps were applied for QCIF and CIF respectively,

in order to determine the quality of the video output by VIC at the receiving end point.

For QCIF video, VIC reported about 3 to 13 percent instantaneous packet losses. 8 to 9.5

percent losses were observed for CIF video. The other visual effects created by network

cross traffic have been listed in Table 5.3, where all numbers (except frame rate) denote the

extent of the effect, on a scale of 0 to 5, where 0 denotes no effect, and 5 denotes maximum

effect. The values were observed by watching the video at the receiving end point.

77

Test Tiling Encoding Residue Fr. rate Jerkiness Others
noise decrease

QCIF, no
load

1 2 0 0 fps 0

QCIF, with
load

3 4 3 2 to 5 fps 3 some blurring

CIF, no
load

1 2 0 0 fps 0

CIF, with
load

2 4 3 1 to 4 fps 4

Table 5.3: Effect of network cross traffic on actual video

Even without traffic, there was noticeable encoding noise and some blurring at both the

sending and the receiving end points. But the frame rate remained the same as the sending

end point in the absence of cross traffic. With network cross traffic and QCIF video, the

effects that stood out were that there was more tiling, remnantghostresidue, and some

amount of jerkiness. For QCIF video, this jerkiness increased significantly, along with en-

coding noise. But there was not as much tiling in case of CIF video as in the case of QCIF

video. Also, drop in frame rate was also not as much for CIF video, when compared to

QCIF video.

5.5.2 Effect of Host Resource Load

Video software usually consumes significant amount of CPU resources, especially for CIF

resolution picture. For example, on computer 4, it was found that the VIC software used

about 35 to 40 percent of CPU for CIF video decoding and display, while ViaVideo utilized

about 50 percent. So minor variations in CPU load (by other applications running on the

78

Test Tiling Encoding Residue Fr. rate Jerkiness Others
noise decrease

QCIF, no
load

1 2 0 0 0

QCIF, with
load

1 2 1 0 fps 1 high blurring, slow-
motion effect

CIF, no
load

1 2 0 0 0

CIF, with
load

1 2 1 1 fps 3 less blurring, higher
slow-motion effect

Table 5.4: Effect of CPU load on actual video

host) tend to effect the video quality. Overall CPU load of 90 percent at the receiving end

point was used to study the visual effects of CPU load on the received video. The effects

have been listed in Table 5.4.

The most significant effect created by CPU load was theslow-motioneffect. There was

also a lack of increase in noise as well as a lack of increase in tiling and residue. There

was a high amount of jerkiness but slightly less blurring in CIF video, when compared to

QCIF video. Another significant effect in the case of CIF video was a drastic drop in the re-

ceived instantaneous bit rate displayed by VIC. Surprisingly, VIC did not display any drop

in frame rates for either QCIF or CIF video, even though the slow motion effect meant that

the frame rate had to clearly be less than ideal.

79

5.6 End Notes

In this section, we discuss some issues with respect to video quality measurements, and

conclude by suggesting a workflow application that connects the tool to a perceptual qual-

ity analysis tool.

The measurements and results discussed so far in this Chapter are all based on a single

activity level. In general, as the activity level in the video increases, the number of data-

grams and the sizes of individual datagrams tend to increase. Thus increased activity levels

tend to be affected more by the same amount of load at the network, operating system or

application levels.

We noticed for tool execution that the virtual memory loads on the receiving end point

and its variations hardly affected the QoS metrics. Memory experiments on the tool were

based on executing a memory loader application that gradually consumed virtual memory

on the receiving end point. During this time, the tool was executed continuously, and the

QoS metrics were monitored. Lack of virtual memory did not seem to affect the behavior

of the tool or the results it displayed. However, other implications such as hard page faults

and availability of dedicated video RAM were not tested, and these factors might impact

the QoS metrics. When the memory loader application was executed to test its affect on

actual video communication, a similar result was found. The received video picture did not

seem to have any perceivable deterioration or defects.

The video perception tests with the Polycom ViaVideo videoconferencing solution yielded

results that were dissimilar to the results obtained by VIC to some extent. The reasons for

80

this can be attributed to the fact that ViaVideo uses the H.323 [15] umbrella standard and

has built in mechanisms to measure and change the attributes of the sent traffic on the fly

when it detects losses. One clear difference between the operation of VIC and ViaVideo

in the presence of loads was the drastic drop in frame rates at the receiving end point with

ViaVideo. At high loads, frame rates were reduced to near 1 fps. However, some other

QoS metrics matched those indicated by the tool. For example, at high cross traffic loads,

instantaneous jitter and loss values were reported to be about 65 milliseconds and 4 to 5

percent respectively, which is in the range of the values reported by the tool for similar

cross traffic loads.

In the real world, the effect of load on the video tends to get compounded because the

loads at different levels act in conjunction. This leads to more losses and jitter at lower

individual loads than what was observed in this Chapter. Thus it becomes vital to gather all

the different values and metrics for each individual test using the tool, in order to get the

big pictureand determine the reasons for a particular kind of video behavior.

The results and findings discussed in this Chapter are based on the H.263 encoding scheme.

Video traffic that is generated using other encoding schemes may by affected differently by

network and host loads, when compared to the H.263 encoding scheme. However, trace

files may be generated using any encoding scheme and may then be used with the tool to

test the end-to-end support. Thus the tool provides flexibility to test end-to-end support for

various encoding schemes. To generate the trace files, a computer with adequate hardware

resources may be used (see Section 5.1.2) in order to obtain consistent and optimal traces.

One advantage of obtaining results in quantitative form is that the frame rates and loss

81

numbers provided by the tool may consequently be supplied as input to a perceptual qual-

ity analyzer model such as the Video Quality Metric (VQM) [57] software. The results

obtained from the tool may be used to reconstruct a test video sequence, and the original

and reconstructed video sequences then fed as input to the VQM software. VQM analyzes

the sequences, and outputs an absolute number that denotes video quality on a scale of 0 to

1. It also indicates the probable root causes for the video degradation by specifying percent-

age blurring, jerkiness and block distortion. This interconnectivity between the tool and the

VQM is underway. VQM integration and development is currently being researched in the

department of Computer Science at UNC Chapel Hill.

82

Chapter 6

Conclusion

This work studied the characteristics of compressed real time VBR video traffic, defined

the various QoS metrics, and proposed a framework for end-to-end QoS analysis based on

active measurement and testing. A tool was implemented based on the framework, and

its effectiveness as an end-to-end QoS measurement test solution was studied. The results

of the measurements of the tool under varying loads were described and analyzed. In this

concluding Chapter, we present a summary of the achievements of this work, and suggest

future enhancements that would improve and augment the capabilities of the tool.

6.1 Summary

The objectives for the development of the framework were to define the various QoS met-

rics that determine quality in real time video communication, and design a QoS measure-

ment and analysis testing solution that would be modular and extensible. We began this

work by categorizing video based on the amount of motion, and studying compressed real

time video traffic characteristics by varying the amount of motion, the picture resolution

83

and the maximum encoding rate. The study was based on the H.263 coding format, trans-

mitted over the RTP/UDP/IP stack. This study provided useful insight into the how video

traffic is generated and transmitted between endpoints. A framework was then designed

to generate, transmit, receive and analyze test data that simulated real time VBR video

traffic behavior. An SNMP MIB was specially designed for use with this framework to

maintain QoS information that resulted from the tests. This MIB was used in conjunction

with other standard MIBs to successfully provide all the metrics that determine QoS. A

monitor program was designed and implemented to query end point MIBs, retrieve, collate

and display the QoS information to the user. For the implementation of this framework,

Iperf was chosen to generate traffic, and was modified to be able to generate video-like

VBR test traffic. The tool was designed to allow the user to specify how the tests must be

scheduled and run. The user could also vary test data traffic by specifying input parameters

such as amount of motion, picture resolution and bandwidth. The tool was successfully

executed under varying network and host loads, and test measurements were maintained

locally at the end point MIB implementations. The monitor program was used to success-

fully query and retrieve the test measurements from the end points. The results from the

test measurements indicated that the quality of the video is affected by the availability of

both the resources on the network that connects the endpoints, as well as the resources on

the endpoint hosts themselves, hence underlining the need for end-to-end measurement of

the Quality of Service in order to determine support for compressed real time video traffic

between end points.

84

6.2 Future Developments

Eventually, client based agents that participate in QoS analysis tests and maintain the result-

ing QoS information can be developed. Data can be collected and analyzed by the agents

to provide an estimate of end user QoS, and possibly recommend remedies. Periodic as

well as on-demand reports on performance and availability can be generated to assist in

choosing client access patterns [21].

One enhancement to the existing framework can be to have a Policy Controller that is

based on a network policy server [35]. The policy controller can regularly probe the MIB to

identify changes in resource requirements and dynamically change its policies for resource

reservation. This helps dynamically alleviate resource problems inside the Autonomous

System in which the Policy Controller is implemented. With a policy controller, tests with

different combinations of inputs can be automatically performed to indicate the available

(or expectable) Quality of Service for the given pair of end points.

Another enhancement is to consider multiplexing several video test traffic data and test

end-to-end performance. This is similar to having a video conference with more than one

video capturing the information at each participating end point. Also, audio test traffic

capabilities may be included, so that audio and video traffic can be multiplexed to mimic

video conferencing, and end-to-end support can be determined.

Finally, the system can be extended to include more than two participating end-points,

in a multicast scenario, as opposed to the unicast design currently in place. Appropriate

extensions will then have to be made to the Video QoS SNMP MIB to include additional

85

information that may be necessary for a multicast scenario.

86

Appendix A

List of Acronyms

ASN Abstract Syntax Notation

ATM Asynchronous Transfer Mode

CBR Constant Bit Rate

CIF Common Intermediate Format

DCT Discrete Cosine Transform

fps Frames per second

GOB Group Of Blocks

GOP Group Of Pictures

GUI Graphical User Interface

I Frame Intracoded Frame

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

ITU-T International Telecommunications Union - Telecom

LRD Long Range Dependence

87

MIB Management Information Base

MPEG Moving Picture Experts Group

NTP Network Time Protocol

OID Object Identifier

P Frame Predictive-coded Frame

PSTN Public Switched Telephone Network

QCIF Quarter Common Intermediate Format

QoS Quality of Service

RTCP Real time Transport Control Protocol

RTP Real time Transport Protocol

SNMP Simple Network Management Protocol

SRD Short Range Dependence

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBR Variable Bit Rate

VIC Video Conferencing tool

VQM Video Quality Metric (software)

88

Appendix B

Video QoS MIB

VIDQOS-MIB DEFINITIONS ::= BEGIN
IMPORTS

Counter32, Counter64, Gauge32, Integer32,
MODULE-IDENTITY,
OBJECT-TYPE FROM SNMPv2-SMI
DisplayString FROM RFC1213-MIB;

vidQoS MODULE-IDENTITY
– format is YYYYMMDDHHMMZ
LAST-UPDATED “200325030000Z” – March 3, 2003
ORGANIZATION

“Video QoS Team, NCNI
Email: h323@renoir.csc.ncsu.edu”

CONTACT-INFO
“Vinay Chandrasekhar
Graduate Student
Department of Computer Science
NC State University
Raleigh, NC - 27606.

Tel:+1 919 515 0138
Email: vchandr@unity.ncsu.edu”

DESCRIPTION
”The QoS metrics that must be managed for
running end-to-end video capability tests
between given endpoints. The MIB is comprised
of four different parts:
1. Contact Information - contains general contact
information
2. Host System Information - System parameters that
describe the QoS metrics of the system that
participates in the tests.
3. QoS Information - QoS metrics that
describe the behavior of various elements of video
communication.
4. Logs - Logs of the errors and events that occur during
testing.”

REVISION “200325030000Z” – March 3, 2003
DESCRIPTION “Initial Release”

::= { enterprises 55555}
–
– OBJECTS
–

vqContact OBJECT IDENTIFIER ::={ vidQoS 1}
vqSystem OBJECT IDENTIFIER ::={ vidQoS 2}
vqQoS OBJECT IDENTIFIER ::={ vidQoS 3}
vqLogs OBJECT IDENTIFIER ::={ vidQoS 4}
–
– Contact Information
–
ctGroup OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS mandatory
DESCRIPTION

“This object is used to display the name of the Group and / or Organization.”
::= { vqContact 1}

ctEmail OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS mandatory
DESCRIPTION

“This object is used to display the email of the group contact.”
::= { vqContact 2}

ctVersion OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS mandatory
DESCRIPTION

89

“This object is used to display the current version of the software system release.”
::= { vqContact 3}

–
– Host System Information
–

– Sender Table

sysSenderTable OBJECT-TYPE
SYNTAX SEQUENCE OF sysSenderEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the sysSenderTable for each individual test conducted by this
host. The test Number gives the serial number of the test, and the session ID tells which set of tests
belong to one session.“

::= { vqSystem 1}

sysSenderEntry OBJECT-TYPE
SYNTAX sysSenderEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in sysSenderTable maintains HR metrics in a VidQoS test. A host agent
MUST create a read-only row for each test where datagrams are sent. Rows MUST be created by
the host Agent at the start of a test. The ssSendIndex will uniquely identify each test.”

INDEX { ssSendIndex}
::= { sysSenderTable 1}

sysSenderEntry ::= SEQUENCE{
ssSendIndex Integer32,
ssPkPhyMem Gauge32,
ssLastPhyMem Integer32,
ssPkCommMem Gauge32,
ssLastCommMem Integer32,
ssPkCPUTime Gauge32,
ssLastCPUTime Integer32,
ssPkPageFaults Gauge32

}

ssSendIndex OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies the
test. Follows the values in the QoS subtree Send Index.”

::= { sysSenderEntry 1}
ssPkPhyMem OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak instantaneous physical memory used by this host
during the test, in bytes.”

::= { sysSenderEntry 2}
ssLastPhyMem OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last instantaneous value of physical memory used by this
host during the test, in bytes.”

::= { sysSenderEntry 3}
ssPkCommMem OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak instantaneous Virtual memory used by this host
during the test, in bytes.”

::= { sysSenderEntry 4}
ssLastCommMem OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last instantaneous value of virtual memory used by this
host during the test, in bytes.”

::= { sysSenderEntry 5}
ssPkCPUTime OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak CPU used by this host during the test, as a percentage
value.”

logTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the logTable for each individual
log entered by the test application. This could contain both
errors generated while execution, as well as indicate events
that occur during the runtime of the system.”

::= { vqLogs 1}
LogEntry OBJECT-TYPE

SYNTAX LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

90

“Data in logTable signifies errors and events during runtime of the
testing application. A host agent MUST create a read-only row for
each log. Rows created by the agent MUST be be retained until the
SNMP service is brought down. The logIndex will uniquely identify
each test.”

INDEX { lgLogIndex}
::= { logTable 1}

LogEntry ::= SEQUENCE{
lgLogIndex Integer32,
lgLogTime DisplayString,
lgLogTitle DisplayString,
lgLogType Integer32,
lgLogSessionTestNum Integer32,
lgLogDescription DisplayString

}
lgLogIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies this log.”
::= { LogEntry 1}

lgLogTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time at which this error/event occured, as a string.”
::= { LogEntry 2}

lgLogTitle OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The title of this log.”
::= { LogEntry 3}

lgLogType OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The log category to which this log belongs (Define different
categories here).”

::= { LogEntry 4}
lgLogSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The session test number to which this log applies.”
::= { LogEntry 5}

lgLogDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The description of the log.”
::= { LogEntry 6}

END

::= { sysSenderEntry 6}
ssLastCPU OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last value of CPU used by this host during the test, as a
percentage value.”

::= { sysSenderEntry 7}
ssPkPageFaults OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak number of page faults by this host
during the test.”

::= { sysSenderEntry 8}

– Receiver Table

sysReceiverTable OBJECT-TYPE
SYNTAX SEQUENCE OF sysReceiverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the sysReceiverTable for each individual
test conducted with this system. The test Number gives the serial
number of the test, and the session ID tells which set of tests
belong to one session.”

::= { vqSystem 2}
sysReceiverEntry OBJECT-TYPE

SYNTAX sysReceiverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in sysReceiverTable maintains HR metrics in a VidQoS test. A
host agent MUST create a read-only row for each test where datagrams
are received. Rows MUST be created by the host Agent at the

91

start of a test. The srRecvIndex will uniquely identify each test.”
INDEX { srRecvIndex}
::= { sysReceiverTable 1}

sysReceiverEntry ::= SEQUENCE{
srRecvIndex Integer32,
srPkPhyMem Gauge32,
srLastPhyMem Integer32,
srPkCommMem Gauge32,
srLastCommMem Integer32,
srPkCPUTime Gauge32,
srLastCPUTime Integer32,
srPkPageFaults Gauge32

}
srRecvIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies the test.
Follows the values in the QoS subtree Recv Index.”

::= { sysReceiverEntry 1}
srPkPhyMem OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak instantaneous physical memory used by this host
during the test, in bytes.”

::= { sysReceiverEntry 2}
srLastPhyMem OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last instantaneous value of physical memory used by this
host during the test, in bytes.”

::= { sysReceiverEntry 3}
srPkCommMem OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak instantaneous Virtual memory used by this host
during the test, in bytes.”

::= { sysReceiverEntry 4}
srLastCommMem OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last instantaneous value of virtual memory used by this
host during the test, in bytes.”

::= { sysReceiverEntry 5}
srPkCPUTime OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak CPU used by this host
during the test, as a percentage value.”

::= { sysReceiverEntry 6}
srLastCPU OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The Last value of CPU used by this
host during the test, as a percentage value.”

::= { sysReceiverEntry 7}
srPkPageFaults OBJECT-TYPE

SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The peak number of page faults by this host
during the test.”

::= { sysReceiverEntry 8}
–
– QoS Information
–

– Sender Table

qosSenderTable OBJECT-TYPE
SYNTAX SEQUENCE OF qosSenderEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the qosSenderTable for each individual
test conducted by this system. The test Number gives the serial
number of the test, and the session ID tells which set of tests
belong to one session.”

::= { vqQoS 1}
qosSenderEntry OBJECT-TYPE

SYNTAX qosSenderEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in qosSenderTable uniquely describes a VidQoS test. A

92

host agent MUST create a read-only row for each test where datagrams
are sent. Rows MUST be created by the host Agent at the start of
a test. The sendIndex will uniquely identify each test.”

INDEX { sndSendIndex}
::= { qosSenderTable 1}

qosSenderEntry ::= SEQUENCE{
sndSendIndex Integer32,
sndSessionID Integer32,
sndSessionTestNum Integer32,
sndvidTestStartTime DisplayString,
sndVidTestDuration Counter32,
sndVidActivityLevel Integer32,
sndVidPictureFmt Integer32,
sndVidMaxBW Integer32,
sndVidDataBytesSent Counter64,
sndVidDataBWSent Gauge32,
sndVidDataDgramsSent Counter64,
sndVidDataFramesSent Counter64,
sndVidDataFrameRate Gauge32,
sndvidTestStatus Integer32

}
sndSendIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies the test.”
::= { qosSenderEntry 1}

sndSessionID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The ID of the session. Several tests may be performed as part of one
session.”

::= { qosSenderEntry 2}
sndSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“This object uniquely identifies a test within a given session.”
::= { qosSenderEntry 3}

sndvidTestStartTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time on the local computer this test was started.”
::= { qosSenderEntry 4}

sndTestDuration OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time duration of this test, in seconds.”
::= { qosSenderEntry 5}

sndvidActivityLevel OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The activity level chosen for this test. A Value 0 could
indicate a still picture, 1 could indicate a picture with
some activity and so on.”

::= { qosSenderEntry 6}
sndvidPictureFmt OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The picture format chosen for this test. 0 could indicate
QCIF, 1 could indicate CIF and so on.”

::= { qosSenderEntry 7}
sndvidMaxBW OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The maximum encoding bandwidth chosen for this test, in kbps. “
::= { qosSenderEntry 8}

logTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the logTable for each individual
log entered by the test application. This could contain both
errors generated while execution, as well as indicate events
that occur during the runtime of the system.”

::= { vqLogs 1}
LogEntry OBJECT-TYPE

SYNTAX LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in logTable signifies errors and events during runtime of the
testing application. A host agent MUST create a read-only row for
each log. Rows created by the agent MUST be be retained until the

93

SNMP service is brought down. The logIndex will uniquely identify
each test.”

INDEX { lgLogIndex}
::= { logTable 1}

LogEntry ::= SEQUENCE{
logTable OBJECT-TYPE

SYNTAX SEQUENCE OF LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the logTable for each individual
log entered by the test application. This could contain both
errors generated while execution, as well as indicate events
that occur during the runtime of the system.”

::= { vqLogs 1}
LogEntry OBJECT-TYPE

SYNTAX LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in logTable signifies errors and events during runtime of the
testing application. A host agent MUST create a read-only row for
each log. Rows created by the agent MUST be be retained until the
SNMP service is brought down. The logIndex will uniquely identify
each test.”

INDEX { lgLogIndex}
::= { logTable 1}

LogEntry ::= SEQUENCE{
lgLogIndex Integer32,
lgLogTime DisplayString,
lgLogTitle DisplayString,
lgLogType Integer32,
lgLogSessionTestNum Integer32,
lgLogDescription DisplayString

}
lgLogIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies this log.”
::= { LogEntry 1}

lgLogTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time at which this error/event occured, as a string.”
::= { LogEntry 2}

lgLogTitle OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The title of this log.”
::= { LogEntry 3}

lgLogType OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The log category to which this log belongs (Define different
categories here).”

::= { LogEntry 4}
lgLogSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The session test number to which this log applies.”
::= { LogEntry 5}

lgLogDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The description of the log.”
::= { LogEntry 6}

END

lgLogIndex Integer32,
lgLogTime DisplayString,
lgLogTitle DisplayString,
lgLogType Integer32,
lgLogSessionTestNum Integer32,
lgLogDescription DisplayString

}
lgLogIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies this log.”
::= { LogEntry 1}

lgLogTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only

94

STATUS current
DESCRIPTION

“The time at which this error/event occured, as a string.”
::= { LogEntry 2}

lgLogTitle OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The title of this log.”
::= { LogEntry 3}

lgLogType OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The log category to which this log belongs (Define different
categories here).”

logTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the logTable for each individual
log entered by the test application. This could contain both
errors generated while execution, as well as indicate events
that occur during the runtime of the system.”

::= { vqLogs 1}
LogEntry OBJECT-TYPE

SYNTAX LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in logTable signifies errors and events during runtime of the
testing application. A host agent MUST create a read-only row for
each log. Rows created by the agent MUST be be retained until the
SNMP service is brought down. The logIndex will uniquely identify
each test.”

INDEX { lgLogIndex}
::= { logTable 1}

LogEntry ::= SEQUENCE{
lgLogIndex Integer32,
lgLogTime DisplayString,
lgLogTitle DisplayString,
lgLogType Integer32,
lgLogSessionTestNum Integer32,
lgLogDescription DisplayString

}
lgLogIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies this log.”
::= { LogEntry 1}

lgLogTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time at which this error/event occured, as a string.”
::= { LogEntry 2}

lgLogTitle OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The title of this log.”
::= { LogEntry 3}

lgLogType OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The log category to which this log belongs (Define different
categories here).”

::= { LogEntry 4}
lgLogSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The session test number to which this log applies.”
::= { LogEntry 5}

lgLogDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The description of the log.”
::= { LogEntry 6}

END

::= { LogEntry 4}
lgLogSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only

95

STATUS current
DESCRIPTION

“The session test number to which this log applies.”
::= { LogEntry 5}

lgLogDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The description of the log.”
::= { LogEntry 6}

END

sndVidDataBytesSent OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video data bytes sent in this test.”
::= { qosSenderEntry 9}

sndVidDataBWSent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The bandwidth recorded at the sender for this test, in kbps.”
::= { qosSenderEntry 10}

sndVidDataDgramsSent OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video data datagrams sent in this test.”
::= { qosSenderEntry 11}

sndVidDataFramesSent OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video frames sent in this test.”
::= { qosSenderEntry 12}

sndVidDataFrameRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The rate of video frames sent in this test, multiplied by 100.”
::= { qosSenderEntry 13}

sndVidTestStatus OBJECT-TYPE
SYNTAX Integer32{

InProgress(1),
Completed(2)
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The status of this test. 1 - indicates the test is still in
progress. 2 - indicates the test has ended.”

::= { qosSenderEntry 14}

– Receiver Table

qosReceiverTable OBJECT-TYPE
SYNTAX SEQUENCE OF qosReceiverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the qosReceiverTable for each individual
test conducted with this system. The Test Number gives the serial
number of the test, and the session ID tells which set of tests
belong to one session.”

::= { vqQoS 2}
qosReceiverEntry OBJECT-TYPE

SYNTAX qosReceiverEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in qosReceiverTable uniquely describes a VidQoS test. A
host agent MUST create a read-only row for each test where datagrams
are received. Rows MUST be created by the host Agent at the start of
a test. The receiveIndex will uniquely identify each test.”

INDEX { rcvsRecvIndex}
::= { qosReceiverTable 1}

qosReceiverEntry ::= SEQUENCE{
rcvRecvIndex Integer32,
rcvSessionID Integer32,
rcvSessionTestNum Integer32,
rcvvidTestStartTime DisplayString,
rcvvidTestDuration Counter32,
rcvVidDataBytesRecd Counter64,
rcvVidBandwidth Gauge32,
rcvVidDataDgramsRecd Counter64,
rcvVidLostDatagrams Counter64,
rcvVidDataFramesRecd Counter64,
rcvVidLostFrames Counter64,
rcvVidDataIntraJitter Gauge32,
rcvvidMaxIntraJitter Gauge32,
rcvVidDataFrameRate Gauge32,
rcvvidTestStatus Integer32

96

}
rcvRecvIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies the test.”
::= { qosReceiverEntry 1}

rcvSessionID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The ID of the session. Several tests may be performed as part of one
session.”

::= { qosReceiverEntry 2}
rcvSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“This object uniquely identifies a test within a given session.”
::= { qosReceiverEntry 3}

rcvvidTestStartTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time on the local computer this test was started.”
::= { qosReceiverEntry 4}

rcvvidTestDuration OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time duration of this test in seconds.”
::= { qosReceiverEntry 5}

rcvVidDataBytesRecd OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video data bytes received in this test.”
::= { qosReceiverEntry 6}

rcvvidBandwidth OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The video bandwidth that was found at the receiver for
this test, in kbps.”

::= { qosReceiverEntry 7}
rcvVidDataDgramsRecd OBJECT-TYPE

SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video data datagrams received in this test.”
::= { qosReceiverEntry 8}

rcvvidLostDatagrams OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video datagrams that were lost during this
test.”

::= { qosReceiverEntry 9}
rcvVidDataFramesRecd OBJECT-TYPE

SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video frames received in this test.”
::= { qosReceiverEntry 10}

rcvvidLostFrames OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The number of video frames that were lost during this test.”
::= { qosReceiverEntry 11}

rcvvidIntraJitter OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The datagram jitter that was determined while
performing this test.”

::= { qosReceiverEntry 12}

rcvvidMaxIntraJitter OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The maximum datagram jitter that was determined while
performing this test.”

::= { qosReceiverEntry 13}

97

rcvvidFrameRate OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The frame rate at the receiver for this test, multiplied by 100.”
::= { qosReceiverEntry 14}

rcvVidTestStatus OBJECT-TYPE
SYNTAX Integer32{

InProgress(1),
Completed(2)
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The status of this test. 1 - indicates the test is still in
progress. 2 - indicates the test has ended.”

::= { qosReceiverEntry 15}
–
– Logs
–

– Log Table

logTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“There’s one entry in the logTable for each individual
log entered by the test application. This could contain both
errors generated while execution, as well as indicate events
that occur during the runtime of the system.”

::= { vqLogs 1}
LogEntry OBJECT-TYPE

SYNTAX LogEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“Data in logTable signifies errors and events during runtime of the
testing application. A host agent MUST create a read-only row for
each log. Rows created by the agent MUST be be retained until the
SNMP service is brought down. The logIndex will uniquely identify
each test.”

INDEX { lgLogIndex}
::= { logTable 1}

LogEntry ::= SEQUENCE{
lgLogIndex Integer32,
lgLogTime DisplayString,
lgLogTitle DisplayString,
lgLogType Integer32,
lgLogSessionTestNum Integer32,
lgLogDescription DisplayString

}
lgLogIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The index of the conceptual row which uniquely identifies this log.”
::= { LogEntry 1}

lgLogTime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The time at which this error/event occured, as a string.”
::= { LogEntry 2}

lgLogTitle OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The title of this log.”
::= { LogEntry 3}

lgLogType OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The log category to which this log belongs (Define different
categories here).”

::= { LogEntry 4}
lgLogSessionTestNum OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The session test number to which this log applies.”
::= { LogEntry 5}

lgLogDescription OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“The description of the log.”
::= { LogEntry 6}

END

98

Appendix C

Datagram Jitter defined in RFC 1889

This appendix quotes the various sections in RFC 1889 [2] that define and explain the

method of calculation of datagram inter-arrival Jitter.

C.1 Section 6.3.1 - SR: Sender report RTCP packet

Interarrival jitter: 32 bits

An estimate of the statistical variance of the RTP data packet interarrival time, measured in

timestamp units and expressed as an unsigned integer. The interarrival jitterJ is defined to

be the mean deviation (smoothed absolute value) of the differenceD in packet spacing at

the receiver compared to the sender for a pair of packets. As shown in the equation below,

this is equivalent to the difference in the “relative transit time” for the two packets; the

relative transit time is the difference between a packet’s RTP timestamp and the receiver’s

99

clock at the time of arrival, measured in the same units.

If Si is the RTP timestamp from packeti, andRi is the time of arrival in RTP timestamp

units for packeti, then for two packetsi andj, D may be expressed as

D(i,j) = (Rj − Ri) − (Sj − Si) = (Rj − Sj) − (Ri − Si)

The interarrival jitter is calculated continuously as each data packeti is received from

source SSRCn, using this differenceD for that packet and the previous packeti − 1 in

order of arrival (not necessarily in sequence), according to the formula

J = J + (|D(i−1,i)| − J)/16

Whenever a reception report is issued, the current value ofJ is sampled. The jitter calcula-

tion is prescribed here to allow profile- independent monitors to make valid interpretations

of reports coming from different implementations. This algorithm is the optimal first- order

estimator and the gain parameter1/16 gives a good noise reduction ratio while maintain-

ing a reasonable rate of convergence [11]. A sample implementation is shown in Appendix

A.8.

C.2 Section 6.3.4 - Analyzing sender and receiver reports

The interarrival jitter field provides a second short-term measure of network congestion.

Packet loss tracks persistent congestion while the jitter measure tracks transient conges-

tion. The jitter measure may indicate congestion before it leads to packet loss. Since the

100

interarrival jitter field is only a snapshot of the jitter at the time of a report, it may be neces-

sary to analyze a number of reports from one receiver over time or from multiple receivers,

e.g., within a single network.

C.3 Appendix A.8 - Estimating the Interarrival Jitter

The code fragments below implement the algorithm given in Section 6.3.1 for calculating

an estimate of the statistical variance of the RTP data interarrival time to be inserted in the

interarrival jitter field of reception reports. The inputs arer− > ts , the timestamp from

the incoming packet, and arrival , the current time in the same units. Here s points to state

for the source;s− > transit holds the relative transit time for the previous packet, and

s− > jitter holds the estimated jitter. The jitter field of the reception report is measured

in timestamp units and expressed as an unsigned integer, but the jitter estimate is kept in a

floating point. As each data packet arrives, the jitter estimate is updated:

int transit = arrival − r− > ts;

int d = transit − s− > transit;

s− > transit = transit;

if(d < 0)d = −d;

s− > jitter+ = (1./16.) ∗ ((double)d − s− > jitter);

101

When a reception report block (to which rr points) is generated for this member, the current

jitter estimate is returned:

rr− > jitter = (u int32)s− > jitter;

Alternatively, the jitter estimate can be kept as an integer, but scaled to reduce round-off

error. The calculation is the same except for the last line:

s− > jitter+ = d − ((s− > jitter + 8) >> 4);

In this case, the estimate is sampled for the reception report as:

rr− > jitter = s− > jitter >> 4;

102

List of References

[1] J. Postel.User Datagram Protocol. RFC 768. August 1980

[2] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson.RTP: A Transport Protocol

for Real-Time Applications. RFC 1889. January 1996

[3] C. Zhu.RTP Payload Format for H.263 Video Streams. RFC 2190. September 1997

[4] J. Case, M. Fedor, M. Schoffstall and J. Davin.A Simple Network Management

Protocol (SNMP). RFC 1157. May 1990

[5] J. Case, K. McCloghrie, M. Rose and S. Waldbusser.Introduction to version 2 of the

Internet-standard Network Management Framework. RFC 1441. April 1993

[6] P. Grillo and S. Waldbusser.Host Resources MIB. RFC 2790. March 2000

[7] M. Baugher, B. Strahm and I. Suconick.Real-Time Transport Protocol Management

Information Base. RFC 2959. October 2000

[8] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation H.263. Line transmission of non-telephone signals:

Video coding for low bitrate communication. May 1996

103

[9] Dr. Sidnie Feit.SNMP: A guide to Network Management. McGraw-Hill Inc. Inter-

national Editions, Singapore, 1995

[10] Steve Maxwell.Red Hat Linux Network Management Tools. McGraw-Hill Co. Inc.,

New York, NY, 2000

[11] James A. Cadzow.Foundations of Digital Signal Processing and Data Analysis.

Macmillan, New York, NY, 1987

[12] Zheng Wang.Internet QoS: Architectures and Mechanisms for Quality of Service.

Morgan Kaufmann, San Francisco, March 2001

[13] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation X.680. Abstract Syntax Notation One (ASN.1) &

ASN.1 encoding rules. June 2002

[14] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation H.341. Multimedia Management Information Base.

May 1999

[15] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation H.323. Packet based multimedia communication sys-

tems. November 2000

[16] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation H.245. Control Protocol for multimedia communica-

tions. July 2001

104

[17] International Telecommunication Union - Telecommunications Standardization Sec-

tor (ITU-T). Recommendation H.320. Narrow-band visual telephone systems and

terminal equipment. May 1999

[18] M. Baugher et al.Real-time Transport Protocol Management Information Base. RFC

2979. October 2000.

[19] Hamid Sharif and Bing Chen.End-to-End QoS requirements for real-time video

streaming in Internet2. The Information Society School, 2001

[20] M. Vouk, Z. Ortiz, A. Rindos, S. Woolet, D. Cosby, J. Sents and M. Aydemir.

Throughput and video performance of emerging LAN technologies: Switched Eth-

ernet and LAN emulation over ATM. Proceedings of the IEEE Southeastcon ’97, pp.

131-134, Blacksburg VA, April 1997

[21] Richard Carlson, T. H. Dunigan, Russ Hobby, Harvey B. Newman, John P. Streck,

Mladen A. Vouk.End-to-End Performance on the Internet. To appear in Network

World, 2003

[22] Dimitrios Miras. Network QoS Needs of Advanced Internet Applica-

tions: A Survey. Internet2 QoS Working Group Document available at

http://qos.internet2.edu/wg/apps/fellowship/Docs/Internet2AppsQoSNeeds.pdf,

December 2002

[23] Zhou Wang and Alan C. Bovik.A Universal Image Quality Index. IEEE Signal

Processing Letters, vol. 9, no. 3, pp. 81-84, March 2002

[24] Dapeng Wu, Yiwei Thomas Hou and Ya-Qin Zhang.Transporting Real-time Video

105

over the Internet: Challenges and Approaches. Proceedings of the IEEE, Vol 98, No.

12, December 2000

[25] Andrew Campbell, Cristina Aurrecoechea and Linda Hauw.A Review of QoS Archi-

tectures. Proc. 4th IFIP International Workshop on Quality of Service, Paris. March

1996

[26] Dmitri Loguinov and Hayder Radha.Measurement study of low-bitrate Internet

video streaming. ACM SIGCOMM Internet Measurement Workshop, November

2001

[27] Dmitri Loguinov and Hayder Radha.Large-scale Experimental Study of Internet

Performance using Video Traffic. ACM SIGCOMM Computer Communication Re-

view (CCR), vol. 32, no. 1, January 2002.

[28] Michael R. Izquierdo and Douglas S. Reeves.A Survey of Statistical Source Models

for Variable Bit-Rate Compressed Video. Multimedia Systems 7 Issue 3, pp 199-

213, 1999

[29] E. Casilari, A. Reyes, A. Daz-Estrella and F. Sandoval.Characterization and mod-

eling of VBR video traffic. Electronic Letters, Vol. 34, no. 10, pp. 968-969, May

1998

[30] Deepak S. Turaga and Tsuhan Chen.Modeling of dynamic video traffic. Interna-

tional Symposium on Circuits and Systems, June 2000

[31] N. Doulamis, A. Doulamis and S. Kollias.Modeling and Adaptive Prediction of

VBR MPEG Video sources. IEEE Third Workshop on Multimedia Signal Process-

ing, pp. 27-32, September 1999

106

[32] Mark Claypool and Jonathan Tanner.The effects of jitter on the perceptual quality

of video. ACM Multimedia, Volume 2, Orlando, FL, November 1999

[33] Olivier Cappe, Jean-Christophe Pesquet and Athina Petropulu.Long-range depen-

dence and heavy-tail modeling for teletraffic data. Vol. 19, no. 3, IEEE Signal Pro-

cessing Magazine, May 2002

[34] David L. Mills. Network Time Protocol (Version 3) Specification, Implementation

and Analysis. RFC 1305. March 1992

[35] Chidambaram Arunachalam.Implementation and Validation of Network Policy Ser-

vices. Master’s Thesis, NC State University, 2002

[36] E. Brent Kelly. Quality of Service In Internet Protocol (IP) Networks. Prepared

for the International Communications Industries Association to support Infocomm

2002. Wainhouse Research 2001

[37] The Moving Picture Experts Group. MPEG Home page.

http://mpeg.telecomitalialab.com/ ISO/IEC Working committees, Telecom Italia

Lab, Italy

[38] Ajay Tirumala et. al.Iperf home page. http://dast.nlanr.net/Projects/Iperf/ 2003

[39] Network Research Group.VIC home page. http://www-nrg.ee.lbl.gov/vic/ 2002

[40] Gerald Combs et. al.Ethereal home page. http://www.ethereal.com/ 2002

[41] LBNL Network Research Group.Tcpdump home page. http://www.tcpdump.org/

2003

[42] Loris Degioanni et. al.Windump home page. http://windump.polito.it/ 2002

107

[43] Jon Sevy. Java SNMP query Open Source code.

http://edge.mcs.drexel.edu/GICL/people/sevy/snmp/snmppackage.html 2000

[44] Microsoft MSDN Development Network. MSDN home page.

http://www.msdn.microsoft.com

[45] IANA Authority. IANA SNMP Private Enterprise Numbers page.

http://www.iana.org/assignments/enterprise-numbers May 2003

[46] Daniel Forsgren.Digital Video over IP. http://www.online.kth.se/projects/csd/content/dv/dv.pdf

KTH-IT, January 2001

[47] Polycom Videoconferencing solutions. Polycom web page.

http://www.polycom.com

[48] PictureTel Corporation. iPower Video Technology white paper.

http://www.polycom.com/common/pwitem showdoc/0,1449,692,00.pdf April

2001

[49] Microsoft Corporation. Using Performance Monitor Counters with

SNMP. Chapter 11 - Using SNMP for Network Management.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol

/winntas/reskit/net/sursnmp.asp

[50] VCon Videoconferencing solutions.Vcon home page. http://www.vcon.com

[51] Roel Jonkman et. al.Netspec: A tool for network experimentation and measurement,

home page. http://www.ittc.ku.edu/netspec/

108

[52] Beng Ong Lee, Victor S. Frsot, Roelof Jonkman.Netspec 3.0 source models for tel-

net, ftp, voice, video and WWW traffic. ITTC-TR-10980-19, University of Kansas,

January 1997

[53] UNC-Chapel Hill.Videnet Scout home page. http://scout.video.unc.edu/

[54] NetIQ Corporation. NetIQ Chariot Test tool home page.

http://www.netiq.com/products/chr/default.asp

[55] Delta Information Systems.Delta Information home page. http://www.delta-

info.com

[56] Internet2 community.Internet2 home page. http://www.internet2.edu/

[57] Institute for Telecommunication Sciences.Video Quality Experts Group Home page.

http://www.its.bldrdoc.gov/n3/video/Default.htm

109

