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1 INTRODUCTION

In recognition of the importance and complexity of the seismic design of 
the electrical and mechanical equipment in nuclear power plants and 
other critical facilities, several approximate methods have been pro­
posed to facilitate such a design. For the most part, however, these 
approximate methods have been restricted to linear systems, without due 
consideration to the fact that most of the structures to which equipment 
is attached are designed to yield under the effect of a strong earth­
quake. As a result, such methods may overestimate the design seismic 
forces, and thus they may lead to uneconomical and unrealistic designs.

Few investigators have attempted the derivation of simplified methods 
for the nonlinear analysis of secondary systems. Most of the effort has 
been directed towards the development of amplification factors by which 
one can affect linear floor spectra to take into account the nonlinear­
ity of a supporting structure (Kawakatsu et al. 1979, Lin & Mahin 1985, 
Viti et al. 1981). This approach, however, may not always be practical 
or accurate. Many factors influence the response of equipment mounted 
on a nonlinear structure, and thus it would be extremely difficult to 
generalize for all the possible configurations a structure might take. 
In addition, the use of floor response spectra may become even more cum­
bersome than in the linear case when the secondary system is attached to 
its supporting structure or primary system at more than one point. Fur­
thermore, with such an approach it is difficult to visualize the effect 
of changes in the structure or the equipment, which is something that 
may be helpful in their preliminary designs.

The purpose of this paper is to present an alternative approximate 
method for the seismic analysis of light secondary systems attached to a 
nonlinear structure. The method, herein summarized and described in 
detailed elsewhere (Villaverde 1986)', is intended to serve as a tool in 
preliminary designs, and as such its simplicity is emphasized over its 
accuracy. It is formulated for elastic multidegree of freedom (MDOF) 
secondary systems connected at one or two arbitrary points of an elasto­
plastic MDOF primary structure, when the structure is subjected to a 
specified ground excitation. However, it is restricted to primary and 
secondary systems that when independently considered have separated nat­
ural frequencies and proportional damping, and those cases in which the 
mass of the secondary system is small when compared with the mass of the 
primary one. Throughout its derivation, it assumed too that the damping 
forces in the combined system remain linear at all levels of response.
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2 APPROACH

The method is formulated on the basis of: (a) the consideration of a 
primary and a secondary system as a single combined system; (b) the der­
ivation of simplified formulas to determine the initial natural frequen­
cies, mode shapes, and damping ratios of such a combined system in terms 
of the corresponding parameters of the independent components; and (c) a 
formulation to express the maximum response of the combined system, and 
hence that of the secondary system, in terms of its initial natural fre­
quencies and mode shapes, and the nonlinear response spectrum of a spec­
ified ground motion. To account for the fact that a combined primary­
secondary system cannot be considered classically damped, the analysis 
is based on the modified response spectrum method proposed by Villaverde 
(1980) for systems with nonproportional damping. In like manner, to 
validate a linear modal analysis in the response calculation of a non­
linear system, use is made of the modal superposition method suggested 
by Villaverde (1987) for the analysis of nonlinear structures.

3 APPROXIMATE PROCEDURE

Consider a secondary system attached to one or two arbitrary points of a 
supporting primary structure. Let Np denote the number of degrees of 
freedom of the independent structure and N. that of the secondary system 
when it is considered fixed at its points of attachment with the struc­
ture. In terms of the parameters of such independent primary and secon­
dary systems, the steps for the calculation of the maximum distortions 
in the secondary system, when the primary one is subjected to a ground 
motion specified by its nonlinear response spectra, are as follows:

1) Determine the Np circular natural frequencies, 0 i ,unit-participa­
tion-factor mode shapes {}, , generalized masses M,,, and modal damping 
ratios 6 .of the independent structure using its initial elastic proper­
ties. P

2) Determine the N. circular natural frequencies 9 ., unit-participa­
tion-factor mode shapes {},, generalized masses mj, and modal damping 
ratios E . of the secondary system considering it fixed at its points of 
connection with the structure.

3) Assume the combined primary-secondary system is a system with Np+Ns 
degrees of freedom whose natural frequencies and damping ratios are 
those of its independent components. Classify a mode of this combined 
system as a resonant mode if its natural frequency is common to both 
independent components, and as a nonresonant mode otherwise. In addi­
tion, classify each nonresonant mode as one with a frequency of the pri­
mary system or one with a frequency of the secondary one.

4) For a given combined system mode, let subscripts I and J respec­
tively identify the parameters of the independent primary and secondary 
systems in those modes whose frequencies are the closest or coincide 
with the frequency of the given combined system mode.

5) Calculate the displacements of the secondary system when one of its 
attachment points is considered free and subjected to a unit force while 
the other is held fixed. Let {o} be the vector with these displace­
ments, and let f be the displacement of the point subjected to the 
unit force. On the basis of these displacements, construct a vector 

{df } with the distortions of the elements of the secondary system, af­
ter they are normalized with respect to f.c For a secondary system 
with a single point of attachment, consider {df} = 0.

6) For each of the component modes, calculate the values of
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(1) 8, - (o) [m] (o}, / (fee (o) [m] (o)o) ;

(2) 0(1,3) - •„() + 8,10 (1) - •()]

where {o} is a vector of size N. whose elements are unity for the de­
grees of freedom in the direction of the excitation, and zero elsewhere;

$ (i) and *(i) are the amplitudes in the mode shape {9}, of the de­
grees of freedom of the primary system to which the secondary system is 
connected. For a single point of attachment, consider 3 = 0.

7) For each mode of the independent secondary system, construct a vec­
tor of mode distortions {dp}., whose entries are the distortions in the 
secondary system when the system, fixed at its points of attachment, vi­
brates in its jth mode. Similarly, construct a vector of mode distor­
tions {d#}. for each of the modes of the independent structure.

8) Let SD(w, 5,x ) signify the ordinate corresponding to a natural fre­
quency 0, damping ratio 5, and yield displacement xy in the specified 
nonlinear displacement response spectrum.

9) For any two resonant modes with the same frequency, combined, and 
any nonresonant mode with a frequency of either the primary or secondary 
system, compute a vector of maximum modal secondary system distortions, 

{X},, with the formulas given below:
(A) Two resonant modes with equal frequency.- Let w = w 1 = w J, 

5 = (5 -+5 T)/2, Y— = mT/MT , and for any circular natural fre- 
quency u and damping ratio S define an equivalent damping ratio as 

E‘ = 5+ 2/w s, where s is an earthquake equivalent duration which 
may be estimated as proposed by Villaverde (1984). In like manner, let

(3) D - te«,3)Y,, - (5 - 5,32111/2

(4) “8r - 18(1,3)//20 < 1e(,3)/(51 - 5,32

Then, if E—E > 4 (I,J)/Y , calculate {X } as follows: ’pl Su 1 o Lu sr

(5) (x} = u.{do}, 2(p— “ &) SD(w,E,X)SD(w,6,x.)sr sr J mn mn m m ym n n y n

in which w = w =w,E = 5 - D/2, 5 =5 + D/2, and m n o m o no

. SD(w ,€ ,x ) SD(w , E ,x ) ______

(6) % - f'SO^A+/ ; Gn ■ 2/6 5/ F+ 5) n n yn mm ym)

(7) %q - { A !d\(q) P„x1211/2/486, , q - m.n

where dy(q) are the entries of {dy,‘q - +pqd@}r and 
• * *

(8) Mq - “pq”I + "sr"J q - m.n

(9) "pa = u * (pr5,3)/01/2 * 1/0515,3), " * m,n

where the negative sign corresponds to u and the positive to u. 
However, if T - 5 T| < 4 (I, J) VY. 3 {x } is given byP- Su O — sr

(1°) (x,) - /2(1-G5 up(a?}, SD(08,€0,xy0)

where N
(11) “s - 1/11 + D2/4521 ; xyo - Eyk1211/2/62 * 
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in which di (r) are the entries of {dip } = u {dd}. and k p r pr I

(12) M=MM*+um*; u = I K (I,J)VY/2D < 1/(5 T- E )r pr l sr J pro IJ1 pi sJ

(B) Nonresonant modes with primary system frequency.-

(13) {X } = {d^ } SD(w E T,x _) 
sr sr pi pl yl

where —N 
s

(14) {dv } = A’(J)[r {df} + I r. {do}.] ; sr o c . i J J
o

A’(J) = A (J)//FT^ o o Lu

(15) re = [Pn(T)-m(T)1/AZ(J) ; rj = sgn(l-6 ) AZ(j)/A(J) 

9 2 2(16) A (j) = $ (I,j)w/(w-.-0-); 6 = (5 w-6.0))/(w-w )o OPlSJPL ij pi pi SJ sj pl SJ

and sgn is a function which reads as ”the sign of.” Similarly,

N
(17) x={IP [dv (r) F 12 }1/2/02M* yl =1 k yk pl I

where dv (r) are the entries of {dip } = {dd}. K DT(C) Nonresonant modes with a secondary system frequency.-

(18) {X } = u {do}. SD(w ,E ,x ) sr sr J sJ sJ yJ

in which
N N

(19) u = {[1 + P B'<1)1 + [ Z P B‘(i)8, ,) )
sr 1=1 0 1-1 0 1J

N
(20) x - (J p[d* (r) F 12}1/2/o2M ! B'(i) - B (1)/(1 + 82 )yj k=1 KYK sJ r o o u

(21)

where
10)

2 2 2
B(i) = 0(i,J)w/(w. - w) ; 8. = (5-0--50)/(w--w) O O Su p1 Su 1u Su Su P1 P1 Su P1

A *

dY(r) are the entries of {dip }r=¥srBZ(I)YJ{de}I and M, = u.rm. 
Estimate the secondary system^s maximum distortions by combining 

the above vectors of maximum modal distortions on the basis of the 
square root of the sum of the squares.

In using the method, a mode of the combined primary-secondary system 
with natural frequency w and damping ratio 5 is in resonance with a 
close mode with a natural frequency 0. and damping ratio 5 if

(22) | «2- u2 |/u2 < 8(1,3) /Y,31/01+.2,

4 NUMERICAL EXAMPLE

Consider the structure-equipment system shown in Figure 1, when the base 
of the structure is subjected to the first ten seconds of the N-S com­
ponent of El Centro, May 18, 1940, earthquake ground acceleration. The 
structure and the equipment are idealized as 3 and 2-DOF shear-beam sys­
tems, respectively, whose parameters and initial dynamic properties are 
listed in Tables 1 and 2. The damping ratios of the structure and the 
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equipment in their respective fundamental modes are considered to be 5 
and 0.1 % of critical, respectively, and their individual damping matri­
ces assumed proportional to their respective stiffness matrices. The 
load-deformation behavior of each of the floors of the structure is con­
sidered elastoplastic defined by the initial stiffnesses and yield 
strengths given in Table 1.

Table 1. Parameters of structure-equipment system

Mass Mi M2 M3 m1 m2
(Mg) 3.0 1.5 1.0 0.0009 0.0003

Stiffness K1 K2 K3 k1 k2 k3
(412 kN/m) 9.0 6.0 3.0 0.0054 0.0009 0.0006

Yield Strength Fy1 F 2 Fy3
(kN) 8.33 4.00 2.00 Ms

Ks m2

Ma k.
Table 2. Initial dynamic properties of structure

System 
Mode

Primary Secondary
1 2 3 1 2

Frequency (Hz) 1.0 2.0 3.0 2.0 2/2
Gen. Mass (Mg) 4.5 0.9 0.1 0.0009 0.0003
Damping Ratio 0.05 0.10 0.15 0.0010 0.0014

0.5 0.4 0.1 0.5 0.5
Mode Shape 1.0 0.2 -0.2 1.5 -0.5

1.5 - -0.6 0.1

M,

K2
k.

m.

K, Fyl

Figure 1. Structure­
equipment system in 
numerical example

According to the established procedure, the combined primary-secondary 
system represents thus a 5-D0F system whose initial natural frequencies 
are approximately 1.0, 2.0, 2.0, 212, and 3.0 Hz. As such, the system 
possesses two resonant modes, two nonresonant modes with a frequency of 
the primary system, and a nonresonant mode with a frequency of the 
secondary one. Hence, considering only the first four modes of the 
combined system, and since in this case B1 ■ 0.250, 82 = -0.125,

{df} = { 0.0625 0.3750 0.5625 }, and the elements of the matrix of
4 (i,j) factors, reading from left to right and from top to bottom, are 

0.750, 0.375; 0.150, 0.525; 0.100, 0.100; the equipment’s maximum modal 
distortions are as follows:

For the first mode, 1=1 and J=1; therefore, from equations 13 to 17 
one obtains {dy}1={0.5 0.5 0.5}T, x,1=0.0266m, SD( 1.0,0.05,0.0266) = 
9.82cm, and {X 7. = {2.10 5.60 2.1T}T. For the second and third, res­
onant modes, 1=2, J=1, and thus, from equations 3 to 9, D=0.09889,

{di,} = {0.00022 -0.00011 -0.00045}T; {di} = {0.40022 
-0.20011 -0.80045}, x = 0.0111m; x = 0.0266m, SD(2.0, 0.00106, 
0.0111) = 3.66cm, SD(2.0; 0.09995, 0.0266) = 4.49cm, p=1.118, a = 
0.607, and {X.}2 “ {1*55 3.11 -4.66}^ cm. For the fourth mode"I=3 
and J=2. Then from equations 18 to 21, one gets u.3 = 0.606, {dy,}3
= {1.873 5.618 5.618} X 10 5, x 2 = 0.0052m, SD(2/2, 0.0014 , 0.0052) 
= 3.95cm and {X } = {1.20 -2.40y 1.20}T cm.

Combining all8these vectors of maximum modal distortions on the basis 
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of the square root of the sum of the squares, estimates of the maximum 
distortions in the secondary system result thus as {2.87 6.84 5.25}icm.

5 COMPARATIVE STUDY

The accuracy of the proposed approximate procedure is evaluated by 
comparing the approximate and direct numerical integration solutions of 
nine different 2-DOF secondary systems attached to a basic 3-DOF elasto- 
plastic structure, when the base of the structure is subjected to four 
different earthquake ground motions. Various frequency distributions, 
points of attachment, and attachment configurations are considered. The 
details of the study are reported elsewhere (Villaverde 1986), and the 
results summarized in Tables 3. This table gives the average for the 
four earthquakes considered of the error percentages obtained when com­
paring the approximate with the direct integration solutions.

Table 3. Error percentages for secondary systems in comparative study

System
Element Al A2 A3 Bl B2 B3 Cl C2 C3

1 4.97 7.05 12.8 5.94 -6.86 10.5 29.3 -20.0 -5.28
2 1.76 11.4 7.73 10.0 -14.3 5.53 19.0 -34.5 -2.33
3 - - - — — — 32.3 -42.7 2.10
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