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Summary

An algorithm is presented for computing an approximation

to the cumulative distribution function of Hotelling's

generalized Té statistic.



DESCRIPTION AND PURPOSE

Hotelling's Generalized Tg statistic is defined as

Té = n, Trace (H E ')

where H and E are independent p x p matrices;

H -~ wp (ny, T , A), and is positive semidefinite;

M
14

wp (n2, = 5 0), and is positive definite;

and where wp (n, £, A) denotes the Wishart distribution for p x p matrices,

with n degrees of freedom, covariance parameter matrix I, and noncentrality

parameter matrix The purpose of the algorithm is to compute an approximation

to the cumulative distribution function of the censral distribution (i.e.,

- 2,
A=20) of To'

~ ~

COF = Pr [T2 < T | a=0] (1)

The central distribution is also called the "null1" distribution, in part

because A is "nul1" and in part because this distribution is usually the .

relevant one under the "null hypothesis" of certain multivariate tests.



METHOD

This algorithm evaluates the cumulative distribution fuction of the
distribution of Hotelling's Tg for certain special cases; for combinations
of the parameters which do not satisfy the special cases the algorthim
evaluates the cdf of a distribution which approximates the Tg distribution.

The following notation will be helpful; let

U(S) = Trace (H E'l)

where H and E are as described above and

s = min {n,, p}

is the number of non-zero eigenvalues of H E™'. The case s = ny <p
leads to difficulties which can be bypassed: the distribution of U(S) can

be derived from the distribution of U(p) [p < n;] by mapping

(N1, N2, P) = (ps N1+ Nz = p, M) (2)

Thus only the case n, > p need be considered. The algorithm automatically

handles this mapping in the case n; < p.



Special cases. The algorithm produces exact results (to the accuracy ‘

of the incomplete beta function algorithm) in the following special cases.

. 2
In the case p = 1 the T, is proportional to an F-statistic:

2
To /ny ~ F (nl’ n,),

hence,
2 2
[To / (n, + Ty)Jn Beta (ng, ﬂz),
2 2

and the algorithm evaluates:

2
Pr [Ty < T] = IW(?_II_’_n_z_)
2

where

=
]

T/(T+n,) = U/(U+1)

5)

(e
|

= T/nz.

In his original paper Hotelling (1951) derived the exact distribution
2

of TO for the special case p = 2:
(n2-1)/2
5 F[(n1+n2-1)/2] 1 -w n]-1 n2+1
Pr[T- < T] = 1 (n]-],n2)+Jﬁ I ) -
0 W F(n]/2) F(n2/2) 1+ w W 2 2

where

w=T /(2n2+T ) = U/(Uu+2).

This result is used by the algorithm when p=2. It is interesting that
Johnson and Kotz (1972, page 199, equation (41)) give an incorrect version of .

this result.



Note that because of the mapping (2) one of these special cases
will be invoked if ny = 1 or ny = 2 and ny < p. Rao(1965, Section
8b(xii)) treats the special case ny = 1 separately and shows that the
cdf of the Tg distribution is equivalent to the incomplete beta function,

but because of the mapping (2) no special coding is needed for this case.

Moment-Based Approximations. Pillai and Young(1971) developed

the technique of approximating the density of U(p) by a density similar
to the density of a central F distribution. The approximation is based
upon finding the parameters of the F-type distribution which make the
first three moments of the distribution of U(p) equal to the first three
moments of the F-type distribution. The first three central moments of
the central distribution of U(p) are given by Pillai(1960), Pillai and
Samson(1959), and again in Pillai and Young(1971) as:

p(2m+p + 1)/ (2n)

H

w=[p@Em+p+1) (2m+2n+p+ 1) (2n + p)1/ [4n2(n - 1) (2n + 1)]

p(2n+n+p+1) (2m+p+1) (2n+2n+p+1) (n+p) (2n+p)
2n® (n - 1) (n - 2) (n +1) (2n + 1)

Hs

where

3
n

(ny-p=-1)/2

(n, -p-1)/ 2.

=
il

The F-type density function
_ A atl b,
f(x; a,b,K) = x°/{8 (a+1, b-a-1) K (1+x/K)"} 0 <X <o

has the following first three central moments



Hgp < K (a+1) / (b-a-2)
upp = [K° (at1) (b-1)1/ [ (b-2-2)? (b-a-3)]
upg = [2 K2 (at1) (b=1) (a*b)] / (b-a-2)3 (b-a-3) (b-a-4)].

This F-type distribution is identical to the standard central F distribution

with ki1 and k, degrees of freedom if one imposes the restriction

K=k2/k1

and uses the relations

= (k1-2) / 2

jo7]
[

o
I

= (kytko) / 2.

However, without the restriction on K the F-type distribution has three
parameters: a,b, and K.
Setting the first three moments of the distribution of U(P) and

the F-type distribution equal and solving for a,b, and K yields




3 2 2 2 2
a = (2uip2 + 3pips - buiu - pous) / (Wous + dugus - Uils)
2 2
b= (at1) (a+3) - puy / w2l / [ (a+1) = w1 / 12
K= u, (b-a-2) / (a+1)

Note that in Pillai and Young (1971) there is a typographical error in
the expression for a; the last minus (-) sign in the expression above is

erroneously given as a plus (+) sign in that paper.

The first three moments of these distributions do not exist for
all possible values of the parameters. The following is a summary of

necessary and sufficient conditions for the existence of the indicated

moments :
Distribution
u(P) F-Type
Moment Condition for existence Moment Condition for existence
My n, > p+l MET b-a > 2
Ho n, > p+3 BEo b-a > 3
M3 n, > p+5 ME3 b-a > 4

In each of these cases it is assumed the mapping (2) has been performed if

Ny < p and the statements and expressions apply to the transformed parameters.



If the combination of parameters is such that one of the third-order moments
(u3 or “F3) does not exist, one can obtain a two-moment approximation by
equating the first two moments of the two distributions. The following

expressions for a, b, and K will generate a two-moment approximation:

K=p

a = [u, (uy-p)+ u? (up # P)]/(puz)

2
b = [ uy Wy +p) + Hikp t 2pu2]/(pu2)

Similarly, a one-moment approximation is generated by the following expressions:

K=p

o}
1}

p(2m+ p+ 1) /2 -1

o
]

p(2m+ 2n+ p+1) /2 +1.

Operational procedure. The algorithm first checks the input

parameter values to determine whether they have proper values (e.g.,

T > 0, etc.). The algorithm then checks for the special case n, < ps

if so, the mapping (2) is performed. The upper limit, T, is converted

to a U(p): U= T/n2. The algorithm next checks for one of the special
cases p = 1 or p = 2. If a special case applies, the exact cdf is
evaluated. If neither of the special cases apply, the algorithm computes
m and n (defined above) and determines whethér the third moments of both

distributions exist. If both third moments exist the three-moment .

approximation is used. Otherwise a two-moment approximation is attempted.

If one of the second-order moments does not exist, a one-moment approximation



is attempted. If one of the first-order moments does not exist the
algorithm sets the failure indicator (IFAULT) and returns control to the
calling program. If the three-, two-, or one-moment approximation is

used, the algorithm uses the incomplete beta function subprogram to

evaluate:
CDF = Iw(a+], b-a-1)
= pul 12
=Pl T, <T1]
where
W = T/(T+Kn2) = U/(U + K)

and where a, b, and K are evaluated from the expressions of the

highest-moment approximation applicable.
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STRUCTURE

SUBROUTINE HOTELL (T, N1, N2, IP, CDF, IFAULT, IAPRX)

Formal Parameters:

T Real input: The algorithm computes CDF é:Pr[Tglg T]

N1 Integer input: Number of degrees of freedom of the dis-
tribution of H in T2 =n2Tr(ﬂ E=)

N2 Integer input: Number of degrees of freedom of the dis-
tribution of E.

IpP Integer input: The matrices H and E are IP x IP; IP
corresponds to0 the “parameter p in the
discussion.

CDF Real output: CDF = Pr[T§.5 T].

IFAULT  Integer  output: Failure indicator. o

.IAPRX Integer output: Indicates the type of approximation used.
A IAPRX=-3: Exact computation for
T=0
IAPRX=-2: Exact computation for

special case p=2

IAPRX=-1: Exact computation for
special case p=1

IAPRX=0: Algorithm failure;
approximation technique
not applicable

IAPRX=1: One-moment approximation used
IAPRX=2: Two-moment approxmiation used
IAPRX=3: Three-moment approximation used




Failure Indicators:

IFAULT
IFAULT

IFAULT

IFAULT

]
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indicates no errors were detected.

indicates one of the input parameters has an
improper value [i.e., T¢0, N1 < 1, N2 < 1,
IP < 1]. CDF is returned with a value of -TE75.

indicates the combination of parameters T,

N1, N2, and IP is such that the first moment

of the approximating distribution is not finite,
i.e., the technique is not applicable. CDF is
returned with a value of -1E75 and IAPRX = 0.

indicates W¢O or W 2 1 where W = T/(T + K * N2),
which should never happen, i.e., IFAULT = 2
indicates a programming error. CDF is returned
with a value of -1E75.
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RESTRICTIONS

The parameters Ny Moo and p must satisfy the restrictions
given above for the existence of moments for a particular approximation
to apply; i.e., the minimal restriction is n, > p+l, which applies
to both the original parameters and the transformed parameters if the
mapping (2) is invoked. The restrictions shown for a and b must
also be satisfied, but there is no simple statement of these restrictions
in terms of nys h2, and p . These restrictions guarantee that the
algorithm will operate as described but do not guarantee that the
approximation used will be accurate. Additional restrictions are

described in the section discussing accuracy.
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AUXILLARY ALGORITHMS

The present version of HOTELL uses BETAIN, Algorithm AS 63,
"The Incomplete Beta Integral ," by Majumder and BhattacCharjee (1973).
BETAIN requires the prior computation of the complete beta function,
B(p,q) = I'(p)Tr(q)/T(p+q). HOTELL assumes the availability of a single
precision function subprogram, ALGAMA (X), which evaluates 1oge r(x).
Virtually all computer manufacturers provide an efficient, accurate
subprogram for log I'(X) and such a routine may be easily substituted
for ALGAMA in HOTELL. If such a routine is not available the algorithm
of Pike and Hi11 (1960) may be implemented in Fortran under the name

ALGAMA.
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ACCURACY

Errors in this approximation have three components: (a) differences
between the cdf's of the F-type distribution and the distribution of U(p),
(b) errors in épproximating the incomplete beta function, and (c) calculations
performed in the routine.

Pillai and Young (1971) included a comparison of the approximations to
the exact distribution for n = (nz—p-1)/2 = 5, 10, 15, 20, 30, 40, 50, 60,
80, and 100, and for (p,m) = (p, (ny-p=1)/2 ) = (3,0), (3,3), (4,0), and (4,2).
They concluded that this approximation "...provides about three significant
digits accuracy in the percentage points for n > 10. In some cases n > 5
is sufficient for this accuracy" and that "...the distribution function for
[this approximation] provides a good approximation [about three decimal places]

(p)

to the exact distribution of U(p) for n > 10 and for the whole range of U

Note that the first quote refers to the percentage points, i.e., the 1nvérse
of the cdf, and the second quote refers to the cdf itself. (Emphasis added.)

In our tests of this routine we reproduced the relevant results of
Table II in Pillai and Young (1971) to the number of digits given there.

Errors of types (b) and (c) above are more within the control of the
user of the algorithm. If HOTELL is implemented on an IBM 360, 370, or other
computer with a short (< 24 bits) single precision floating point mantissa,
double precision is absolutely essential for accurate computation, especially
for the special case p = 2. A double precision version is easily produced; one
need change only the initial declarations, including the declaration of the
arithmetic statement function CBF (complete beta function), the names of the
functions EXP, ALGAMA, and ALOG in statement 9, and function BETAIN. 1In a
double precision version of HOTELL (and BETAIN), or a single precision version ‘

on machines with long floating point mantissas, the computational errors in
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BETAIN and HOTELL will typically be negligible compared to the error of the

approximating technique (type (a), above).
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SUBROUTINE HOTELL LISTING

*
*
*

SUBEFOUTINE HOTELL(T,N1,N2,IP,CDF,IFAULT,IAPRX)

DESCRIPTICN AND PURPOSE
HOTELLING'S GENERALIZFD T(N)**2 STATISTIC TS DEFINFD AS
T(0)**2 = N2*TRPACE(H*EXx*-1)
WHERF H AND E ARE INDEPENDENT P X P MATRICES;
H HAS A W({P;N1,S,D) DISTRIBUTICN AND IS POSITIVE SEMIDEFINITE;
F HAS A W(P;N2,5,0) DISTRIBUTION AND IS POSITIVE DEFINITE;

AND WHTZTE W ({P;N,S,D) D3INOTES THE WISHART DISTRIBUTION FORP P X P
MATRIC®S, WITH N DEGRZES OF FREEZDCM, COVAFIANCF PARAMETER MATFIX
S, AND NONCENTRALITY PARAMETER MATKIX D. THIS ALGORITHM COMPUTES
AN APPROXIMATION OF THE CUMULATIVE DISTRIRUTION FUNCTION COF THE
CENTRAL DISTRIBUTION (I.E., D=0) OF T (0)**2; THAT IS, THIS
ALGORITHM COMPUTES AN APPROXIMATICN TO

CDF = PR(T(0)**2 < T | D=0}

THE CENTRAL DISTRIBUTICN IS ALSO CALLED THE "NULL" DISTRIBUTION,
IN PART BFCAUSE D IS “NULL"™ AND IN PART BECAUSF THIS DISTRIBUTION

MULTIVARIATE TFSTES,

METHOD

THE ALGORITHM PRODUCFS EXACT EESULTS (TO THE ACCURACY OF THE
INCOMPLETE BETA FUNCTION ALGORITHM) IN THE SPFCIAL CASES Ip=1,
IpP=2, AND T=C.

IF NONW OF T™HE SPECIAL CASES APPLY, THEN THE ALGORITHM

IS AN IMPLEMENTATION OF AN APPROXIMATINN DEVELOPED BY PILLAT
AND YOUNG (1971). THE APPROXIMATION IS BASED UPON SELECTING AN
F-TYPE DISTRIBUTION WHICH HAS THE SAME FIRST THREE MOMENTS AS
THE DISTRIBUTION OF

U = (T(0)*%2) /N2

A TEANSFORMATION, PE(F < T/N2) IS EVALUATED AS
PF (BETA < W = T/ (T4+K*N2)) = INCOMPLETE BRTA FUNCTION EVALUATED AT
W, WHERE BETA HAS THE APPROPFIATE BETA DISTEIBUTION,

TF THE THIKD MOMENT OF THE F=-TYPE DISTRIBUTION DOES NOT EXIST,
BUT THE SECOND MOMENT DOES EXIST, THE APPROXIMATICN IS BASED ON
THE FIRST TWO MOMENTS. LIKEWISE, IF BOTH THE THIFD AND SECOND
MOMENTS DO NOT EXIST, BUT THE FIPST MOMENT DOES EXIST, THE
APPROXIMATION IS BASED ON THE FIRST MOMENT. IF NONE OF THE
THEEZ MOMENTS EXISTS, THE APPROXIMATION IS NOT APPLICABLE AND
THE ALGORITHM DOES NOT ATTEMPT AN APPROXIMATION.

USAGE

fTOOOQaOOaO0O0N0OO000CcO00A0O00a000NNNO 0N a0 aNOONNNO00NOOAaA0N00aNANaNN00AN

HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL

Ts USUALLY THE RELTVANT ON® UNDER THE "NULL HYPOTHFSIS" OF CERTAINHOTL

HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL

THEN PR (T (0) *¥*2 < T) IS APPROXIMATED BY PR(F < T/N2). AFTERHOTL

HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTT.

20
30
40
50
60
70
80

100
110
120
13C
140
150
160
170
180
190
200
210
220
230
2ucC
250
260
270
280
290
200
310
320
3130
340
350
360
370

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
£10
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NE HOTELL LISTING

CALL HOTELL (T,N1,¥2,IP,CDF,IFAULT,IAPRX)

DISCRIPTION OF PARAMETERS

N1

N2

COF

IFAULT

IRPRX

=-RFAL INPUT: THE
Cor

-INTEGER INPUT:

=INTEGFR TNPUT:

~INTEGFR® INPUT:

=FEAL OUTPUT: CD

-INTEGER FAILURE
IFAULT=0

IFAOLT==1

IFAULT=1

IFAULT=2

- INTEGER INDICATO
TAPRX==3
IAPEX==2
TAPRX==1

IAPRX=0

IAPRX=1
IAPRX=2

IAPKX=3

SUBFOUTINES RFQUIEED

ALGORITHM COMPUTES
= DPR(T(0)**2 < T) APPROXIMATELY

NUMBFR OF DFGREES OF FREEDOM OF THE
DISTRIBUTION OF H IN T (0)*#2=TR (H*E*x%-1)

NUMBEP OF DEGREES OF FREEDOM OF THE
DISTRIBUTION OF E

THF MATRICES H AND E ARE IP X IP; IP
COKRESPONDS TO THE PARAMETER P IN THE
DISCUSSICN

F = PR(T(0)**2 < T) APPKROXIMATELY

INDICATOR:
INDICATES NO TRRORS WERE DETECTED

TNDICATES ONE OF THF INPUT PARAMFTFRS
HAS AN IMPROPFR VALU®, (I,E, T<O, N1<1,
N2<1, IP<1). CDF IS RETURNED WITH A
VALUT™ OF -1E75,

INDICATES THE COMBINATION OF PARAMETERS
T, N1, N2, AND IP IS SUCH THAT THE
FIFST MOMENT OF TH® APPROXTIMATING
DISTRIBUTION IS NOT FINITE, I.E., THE
TECHNIQUE IS NOT APPLICABLE, CDF IS
PETURNED WITH A VALUE OF =-1%75 AND
TAPRX=0.

INDICATES W ,LE. O OF W .53F, 1 WHERF
W=T/(T4+K*N2), WHICH SHOULD NEVER
HAPPEN, I.E., IFAULT=2 INDICATES A
PROGRAMMING EREROR, CDF IS5 RETURNED
WITH A VALIO® OF =-1E7S.

P OF TYPE OF APPKCXIMATION USED

EXACT COMPUTATION FOR T=0

EXACT COMPUTATION POR SPECIAL CASE P=2
EXACT COMPUTATION FOR SPECIAL CASE P=1

ALGORITHM FAILUFE; APPROXIMATION
TECHNIQUE NOT APPLICABLE

ONE=-MOMENT APPROXIMATION USED
TWO=-MOMENT APPRCXIMATION USED

THREE-MOMENT RPPROXIMATION USED

HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOT L
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL
HOTL

620
630
640
650
660
67¢C
680
69¢C
700
710
720
730
740
750
760
770
780
790
80¢C
810
820
8130
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
590

HOTL1000
HOTL1010
HOTL1020
HOTL 1030
HOTL10LO
HOTL1050
HOTL1060
HOTL1070
HOTL1080
HOTL1090
HOTL 1100
HOTL111¢
HOTL1120
HOTL113¢C
HOTL1140
HOTL1150
HOTL1160
HOTL 1170
HOTL1130
HOTL1190
HOTL1200
HOTL 1210
HOTL1220
HOTL1230
HOTL12u0
HOTL1250
HOTL 1260
HOTL1270
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SUBROUTINE HOTELL LISTING

BETAIN (RPPLIED STATISTICS ALGORITHM AS63. SEF FIRST
REFEFTUNCE BELOW)
RIFEPENCES
MAJUMDZ®R, K,L. AND G.P. BHATTACHARJFE (1973). ALGORITHM AS€3.
THE INCOMPLETE BFTA INTEGRAL. APPLIED STAIISTICS, 22,
L09-411.
PILLAI, K.C.S. AND D.L. YOUNG (1971). ON THE EXACT DISTRIBUTION

OF HOTSLLING'S GENERALIZED T (0)**2, JOUFRNAL OF
MULTIVAFTIATY RNALYSIS, 1, 9C-107,

SUBFQUTINE HOTELL(T,N1,N2,IP,CDF,IFAULT,IAPRX)
THIS ALSORITHM COMPUTFS AN APPROXIMATION TC THE CUMULATIVE
DISTRIBUTION FUNCTION OF THE CENTPAL DISTRIBUTION OF HOTELLING-S
GENERALIZED T (Q) *%2 STATISTIC, I.E.,

CDF = PR(T(0)**2 .LT. T), APPRCXIMATELY.

VERSTION DATF 14 JULY 1975
SURKNUTINE HOTELL(T,N?1,N2,IP,CDF,IFAULT,IAPEX)
DECLARATIONS
ARGUMENTS

REAL CDF,T
INTEGER N1,N2,TP,IFAULT,IAPEKX

FUNCTION SUBPECGRAMS

RFAL BETAIN,CBF
CBF (A,B)= EXP(ALGAMA(A) +ALGAMA(B)=ALGAMA(A+B))

INTEFNAL VARIABLES

REAL A,A1,A2,B,BY,RETA,TADD,TEMPY,TERMT, T ERM2,TK, TM, THUY, TMO2
RTAL TMU3,TMU1SQ,TMU2SQ,TN,TN1,TN2, TP, TWOTN, U, W

INTEFNAL CONSTANTS

REAL ZERO/0E0/,ONE/VEQ/,TWO /2R0/,THRFE/3FE(/,FOUR/UED/,SIX/6FD/
REAL SQRTPI/1,7724539/

BEGIN EXECUTION

IAPEX = 0
IFAULT = =%
CDF = =-1E7S

CHECK POR T .LF. ZERD OPF INVALID VALUES OF N1, N2, AND IP

IF(¥1 .LT. 1 .Ok. VN2 (LT. 1 .0Ok. IP .LT. 1) GO TO 20
IF(T)20, 2, 3

CDF=ZEFO

IAPRX = -3

IFAULT = O

<0 TN 20

HOTL1280
HOTL1290
HOTL 1300
HOTL1310
HOTL1320
HOTL?1330
HOTL1 340
HOTL135¢C
HOTL1360
HOTL1370
HOTL1380
HOTL1390
HOTL1400
HOTL1410
HOTL1420
HOTL 1430
HOTL1440
HOTL1450
HOTL1460
HOTL1470
HOTL1480
HOTL1490
HOTL1500
HOTL1510
HOTL1520
HOTL1530
HOTL 1540
HOTL1550
HOTL 1560
HOTL1570
HOTL 158¢C
HOTL1590
HOTL1600
HOTL1610
HOTL1620
HOTL1639
HOTL1640
HOTL 1650
HOTL1660
HOTL1670
HOTL1680
HOTL1690
HOTL1700
HOTL1710
HOTL1720
HOTL1730
HOTL1740
HOTL1750
HOTL1760
HOTL1779
HOTL1780
HOTL1790
HOTL1800
HOTL1810
HOTL 1829
HOTL1830
HOTL18UD
HOTL1859
HOTL 1860
HOTL1870
HOTL 1880
HOTL1890
HOTL 1900
HOTL1910
HOTL1920
HOTT.1910
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SUBROUTINE HOTELL LISTING

IF N1 JLT. IP,

(X1,N2,1P)

Tt p
TN2

TP = NY

GO TO S

™1 = N1
TNZ2 = N?
TP = IP

U = T/N2

IF (N1 .GE.

MARPS TO (IP,N14N2-P,NT)

1P) GO TN 4

I
N14N2=-TP

CHFCK FOR SPECTAL CASE P =1

IF (TP. GT.

IAPPX = =1

A1=TN1/TWO
B1=TN2/THO
W=1l/ (I4ONF

GO TO 15

)

ONE) GO TO 6

CHECK FOR SPECIAL CASE P=2

6

1

IF (TP .GT.

IAPFX==2

TWO) GO TO 10

NOTE THAT TN1 .GT. 1 BFCAUSE 2 = TP .LF. TN1

A1=TN1-0ONE

W=U/ (U4THO)
BETA=CBF (A1,TN2)
TFEM1=BETAIN(W,A1,TN2,BETA,IFAULT)

IF(IFAULT
At=21/7WO

.

NE. 3) GO TO 20

A2= (TN?4ONF) /TWO

TEMPI=W*W

BFTA=CHF (A1,A2)
TFEM2=BFTAIN (TEMP1,A1,22,BETA,IFAULT)

TFE(TFAOLT

NE, 0) GO TO 20

TFEM2=TERM2*SQRTPI* EXP( ALGAMA ((TNI14TN2=-0ONE) /TWO)
~ALGAMA (TN1/TWO) <-ALGAMA (TN2/TWO)

2 +((TN2=ONF) /TWO) *ALOG ( (ONT=W) / (ONF+W)))

CDF=TFRM1-TFRM2

G0 TO 2C

COMPUTE Y (I

IF

IF

™
TN

Hon

TN .LE. & THE FIRST MOMENT (TMU1) OF THE DISTRIBUIION OF T (0)*%2
DOES NOT EXIST AND THE APPROXIMATION TECHNIQUE IS INVALID.

IF(TN .LF.

N

TM) AND N (IN TN)

(TN1=-TP=0ONE) /TWO
(TN2-TP=-ONE) /THWO

ZERO) GO TO 13

THWOTN = TWO*TN

TADD
THMU

o

TN JLEZ. 1

IF(TN .LE.

TMU2 = TMUT*(TWOTN4TADD) *{TWOTN4TP) / (THOTN* (TN-ONE) * (TWOTN{+ONE) )

TWO*TM{TP{ONE
TP*TAID/TWGTN

THE SFCOND MOMENT (TMU2) DOES NOT EXIST

ONE)GO TN 12

TMU1SO= TMITT*THMO

HOT L1940
HOTL 1950
HOTL1960C
HOTL13970
HOTL1980
HOTL1990
HOTL2000
HOTL201"
HOTL2020C
HOTL2030
HOTL2040
HOTL2G50
HOTL2060
HOTL2070
HOTL2080
HOTL2090
HOTL2100C
HOTL2110
HOTL2120
HOTL2130
HOTL2140
HOTL2150
HOTL2160
HOTL217C
HOTL21R0C
A0TL2190
HOTL2270
HOTL2210
HOTL222¢C
HOTL223C
HOTL2240
HOTL2250
HOTL2260
HOTL2270
HOTL 2280
HOTL22990
HOTL2 300
HOTL2 310
HOTL2320
HOTL2330
HOTL2340
HOTL2350
HOTL2360
HOTL237C
HOTL2380
HOTL2 39C
HOTL2400
HOTL2410
HOTLZ42C
HOTL2430
HOTL2u40
HOTL2450
HOTL2460
HOTL2470
HOTL2489
HOTL 2490
HOTL2500
HOTL2510
HOTL2520
HOTL2530
HOTL2540
HOTL2550
HOTL2560
HOTL2570
HOTL2580
HOTL2590
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SUBROUTINE HOTELL LISTING

IF IN ,L3. 2 THE THIRD MOMENT (TMU3) DOES NOT EXIST
IF(TN .LE, TWO)GN TO 11
TMU3 = (TWO*TMO2* (TN4TADD) * (TN TP)) / (TN* (TK=TWO) * (TN4{ONF) )
TMU2SQ = TMU2*TMU2

COMPUTE A AND B FOR THE THREE-MOMENT APPROXIMATICN

HOTL2600
HOTL2610
HOTL2620
HOTLZ€3C
HOTL264C
HOTL2650
HOTL2660
HOTL2670
HOTL2680

A = (Tﬁ01*(-SIX*TMHZSQ+TMU1*(THREE*TMU3+THO*THU1*TMUZ))-TMUZ‘THU3)HOTL2690

1 /(THU2*TMU3 4+ FOUR*THUT*TMU2SQ~THUTSQ*TNUI)
B = ((A+ONE)*(A+TH?EE)-THUTSQ/THUZ)/((A+ONE)-THU1SQ/TMU2)

CHECK FOR (B-=A) .LE. 4
IF (B-A .LE. FOUE) GO TO 11
IAPRXY = 3
TK = TMU1*(B=A-TWO) /(A+ONE)
W=U/ (U+TK)

W IS THF UPPER LIMIT FOR USE WITH THE CUMULATIVE DISTRIBUTION
FUNCTION OF THE BETA(AY,B1) DISTRIBUTION;

PR (T (D) *#%2 .LT. T) = PR(BETA .LT. W), APPROXIMRTELY
GO TO 14

COMPUTE A AND B FOR THE TWO-MOMENT APPROXIMATION

11 TEMP1 = TP*TMJ2

A
B

(TMU2* (TMU1=TP) +TMU1SQ* (TMU1T4TP)) /TEMP1
(TMU1% (TMUA14TD) **%2 $ THO1*THU24+TWOXTENPY) /TENPY

"Hon

CHECK FOR B-A .LE, 3

TF (B=A .LE. THEFE) GO TO 12
TAPEX = 2

W=U/ (U4 P)

GO TO 10

COMEUTE A AND B FOR THE CNF-MOMENT APPROXTMAT ION

12 A
B

TP*TADD/THWO-NNE
TP* (TALD{ TWOTN) /TWOH+ONE

Hon

CHECK FOR B=A .LE, 2

I¥ (B-A ,LE., TWO) GO TO 13
IAPRX = 1

W=U0/{(U4+"P)

GO TO 14

WHEN B=-A .LE. 2 THE APPROXIMATICN TECHNIQUF TS NOT APPLICABLE.

13 TAPFX = O
TFAULT = 1
GO TO 20

14 A1=A4ONE
B1=B=A=ONE

A CHFCK IS MADE TO INSURF THAT THE PARAMETERS W, 21, B1, ARE
WITHIN THF RANGE OF THE INCOMPLETE BETA FUNCTION.

15 IF (W .LT. ZERO) GO TO 20
IF (At ,LE, Z®EEO .OR. BY1 .L¥®. ZERO) GO TO 20
BETA=CBF(A1-81)

HOTL2700
HOTL271C
HOTL2720
HOTL2730
HOTL2740
HOTL2750
HOTL2760
HOTL2770
HOTL2780
HOT L2790
HOTL2800
HOTL2810
HOTL2820
HOTL2830
HOTL2840
HOTL2850
HOTL2860
HOTL2870
HOTL2880
HOTL2890
HOTL290C
HOTL2910
HOTL2920
HOTL2930
HOTL2940
HOTL2950
HOTL2960
HOTL2970
HOTL2980
HOTL2990
HOTL3000
HOTL3010
HOTL3020
HOTL3030
HOTL 3040
HOTL3050
HOTL3060
HOTL3070
HOTL3080
HOTL3090
HOTL3100
HOTL3110
HOTL3120
HOTL3130
HOTL3 140
HOTL3150
HOTL3160
HOTL3170
HOTL3180
HOTL3190
HOTL3200
HOTL3210
HOT L3220
HOTL3230
HOTL3240
HOTT.R 280
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SUBROUTINE HOTELL LISTING

CDF=BETAIN(W,A1,B?,BFTA,IFAULT) HOTL3267
I¥ {IFAULT .NE. ny CDF = -1875 HOTL3270
RFTURN HOTL3280

END : HOTL3290
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SUBROUTINE BETAIN LISTING

CHxx BETH N
FUNCTION BETAIN(X,P,Q,BETA,IFAGLT) bETA 10

C SETA 20
C ALSOFTTHM AS 512 APPL STATIST. (1973), VOL.22, NO.,3 4T TA 30
c JETR U<
C COMPYTES INCOMPLETFT BETA INTEGRAL FOx ARGUMENTS SeTh 5N
o) X BLTWEEN ZEEFO AND CNE, P AND 9 POSITIVE. RETD A
C COMPLET!E DYETA FUNCTION IS ASSUMED TO BE KNDJWX, 3iThA 70
C BETA 87
LOGICHRL INDEX 3ZTA 30

C BETA 100
cC DEZFINE ACCURACY AND INITIALISE pETA 110
C BETH 120
DATA ACUG /0.1E=T7/ BETA 130
BETAIN = X BETA 1LQ

C S3IZTA 150
C T?ST FOR ADMISSIBILITY OF ARGUMFNTS BETA 16D
C 3ETA 170
IFANLT = 1 BLTR 18O

IF (P.LE.G.0,0R.Q.LE.C.0Q) ERETTIEN BFTA 190
IFAULT = 2 BETA 200

IF (X.LT.0.0.0K.X.GT.%.0) KETJRN BETA 210
IFAUL™ = 0 gx™a 220

IF (XeB2Q.0.C.0P.X,EQ.1.0) RETJEN SETA 230

c BETA 240C
C CHANGE TAIL IF NECESSARY AND DETEFRMINE S BETA 250
C 3ETA 260
PSQO = D2 4+ Q BETA 272

cx = 1.0 - X BEETA 280

IF (P.GE.PSQ*X) GC™I 1 B3LTA 29C

XX = CX 3ETA 30v

CX = X BETA 310

PP = Q BFTA 32€C

Q0 = P 3FTA 339

INDEZX = .TRUE, BLTA 347

GOTO 2 BPTA 150

1 XX = X BETA 360

PP = P 3ETA 370

20 = Q BRFTA 380

INDEX = ,FALSE, BETA 39¢

2 TEFM = 1.0 BETA 4rr

AT = 1.0 BETA 419
BETAIN = 1,0 DFTA 420

NS = QQ + €X * PSQ BFTA 430

C EETA 4u4cC
C USE SOPFE=S RELUCTION FORMULAF, SETA 450
C BETA U4€C
RX = XX/CX BETA 470

3 TEMP = ¢y = AI BRLTA u48C

IF (NS.EQ.0) RX = XX BETA 493)

4 TEFM = TEFM * TEMP * RX / (PP + AT) BETA 5C0
BETAIN = BFTAIN ¢+ TERA BETA 510

TEMP = ABS({TERM) BETA 520

IF ( TEMP.LE.ACU.AND,TEMP.LE, ACU*BETAIN) GOTO S BFTA 537

Al = AT + 1.0 BETA 540

NS = NS - 1 B3ETA 550

IF (NS.GE.C) GOTO 3 3ETA 560

TFMP = PESY 3FTA 570

PSQ = PSQ + 1.0 3ETA 580

GOTO 4 BETA 590

C BETA 6C0
CALCULATE RESULT 3ETA 61C

ao

BETA 620
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SUBROUTINE BETAIN LISTING

YETAIN = DBETAIN *

I (INDEX)
R®TURN
=yh

RETATIN

W

Xy
1

(r

PERLOG (XX) +(00=1.0) *ALOG (CX) ) / (LP*LiTA)

BITAIN

25

BLTA
dETA
BRETA
BETA

6320
ol )
65)

06"
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THE FOLLOWING RESULTS OBTAINED FROM SUBROUTINE HOTELL AGREE WITH THOSE
OF TABLE II IN PILLAI AND YOUNG (1971)

N1 N2 p T/N2 COF
4 14 3 2.5064 .949997
4 14 3 3.6951 .990000
4 24 3 1.1562 .949993
4 24 3 1.5623 .990000
4 34 3 .74777 .950001
4 34 3 .98252 .990000
4 a4 3 .55207 .9500071
4 44 3 .71559 .990000
4 64 3 .36218 .949999
4 64 3 .46326 .990000
4 84 3 .26943 .949997
4 84 3 .34239 .990000
4 104 3 .21449 .950002
4 104 3 .27151 .989998
4 124 3 .17815 .949996
4 124 3 .22494 .989999
4 164 3 .13306 .949992
4 164 3 .16748 .990001
4 204 3 .10619 .950009
4 204 3 .13340 .990002

10 14 3 5.4723 .949998

10 14 3 7.6114 .990000

10 24 3 2.4700 .950005

10 24 3 3.1258 .990000

10 34 3 1.5845 .950006

10 34 3 .19465 .989999

10 44 3 1.1649 .950006

10 44 3 1.4107 .990003

10 64 3 .76090 .949997

10 64 3 .90866 .990000

10 84 3 .56480 .950003

10 84 3 .66987 .990000

10 104 3 .44901 .949997

10 104 3 .53039 .990000

10 124 3 .37261 .950000

10 124 3 .43896 .990000

10 164 3 .27799 .950004

10 164 3 .32640 .990001

10 204 3 .22168 .949991

10 204 3 .25977 .989998
5 15 4 3.8146 .950001
5 15 4 5.3980 .990000
5 25 4 1.7419 .950004
5 25 4 2.2532 .990001
5 35 4 1.1230 .950008
5 35 4 1.4127 .989999
5 45 4 .82786 .949999
5 45 4 1.0277 .990003
5 65 4 .54237 .950001
5 65 4 .66464 .990000



N
~

1 N2 P T/N2 CDF

5 85 4 .40321 . 949996
5 85 4 .49103 .990000
5 105 4 . 32087 .950002
5 105 4 .38930 .989999
5 125 4 .26645 . 950005
5 125 4 .32248 .989999
5 165 4 .19895 .949998
5 165 4 .24007 .990001
5 205 4 .15874 .950005
5 205 4 .19120 .990001
9 15 4 6.3433 .950001
9 15 4 8.6636 .990000
9 25 4 2.8631 .950001
9 25 4 3.5626 .990001
9 35 4 1.8384 .950004
9 35 4 2.2236 .990002
9 45 4 1.3525 . 949994
9 45 4 1.6140 .990002
9 65 4 .88428 .949999
9 65 4 1.0416 .990001
9 85 4 .65673 .950001
9 85 4 .76869 .990000
9 105 4 .52228 . 949997
9 105 4 .60905 .990000
9 125 4 .43352 .950002
9 125 4 .50430 .990001
9 165 4 .32353 .949997
9 165 4 .37521 .990000
9 205 4 .25806 .950006
9 205 4 .29874 .990002



