
Abstract

Wu, Ling. Classification of involutions of SL(n, k) and SO(2n+1, k) (Under the
direction of Dr. Aloysius Helminck)

In this paper, we classify the involutions of SL(n, k) and SO(2n + 1, k), where
k is the complex numbers (algebraically closed field in general), real numbers, finite
field and p-adic numbers. We did this in a couple of ways: directly and by using the
characterization given in [Helm2000]. In the case of SO(2n + 1, Q p), we restrict the
classification of the involutions to those fields k = Q p for which −1 is a square. We
also identify those isomorphy classes whose fixed point groups are compact and prove
that the others are not. The classification in this paper will be fundamental for the
analysis of other cases such as SO(2n, k) and SP(n, k).
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Chapter 1

Introduction

1.1 Background and motivation

Symmetric spaces have been studied for over 100 years. Initially they were only
studied over the real numbers, but in the last 15 to 20 years symmetric spaces over
other fields have become of importance in other areas of mathematics as well. In the
following we will give a brief introduction.

1.1.1 Symmetric bilinear forms and Reductive Symmetric
Spaces

Let V = kn be a finite-dimensional vector space over a field k,

Mn(k) = M(n, k) = {n× n-matrices with entries in k},
GL(V ) = GLn(k) = GL(n, k) = {A ∈ Mn(k) | det(A) 6= 0}

and
SL(V ) = SLn(k) = SL(n, k) = {A ∈ Mn(k) | det(A) = 1}.

Let B be a non-degenerate symmetric bilinear form on V , i.e. B(x, y) = TxMy,
where M = MT an invertible symmetric n× n-matrix and x, y ∈ V . If M = id, then
B is the standard innerproduct on R n. For each A ∈ Mn(k) its adjoint A

′ with respect
to B is defined by

B(Ax, y) = B(x,A′y) for all x, y ∈ V.

Therefore
TxTAMy = TxMA′y ⇒ A′ = M−1TAM.

The adjoint defines a map of Mn(k) → Mn(k) and both GLn(k) and SLn(k) are
invariant under this map. A matrix A ∈ GLn(k) is called B-orthogonal if A′A =

1
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AA′ = id, that is if B(Ax,Ay) = B(x, y) for all x, y ∈ V . The orthogonal operators
form an algebraic linear group, denoted by O(V,B). Let SO(V,B) = SLn(k)∩O(V,B).
Consider the map τ : GLn(k) → GLn(k), defined by τ(A) = AA′. Then

O = O(V,B) = τ−1(id) = {A ∈ GLn(k) | AA′ = id}.
Let

X = X(V,B) = Im(τ) = {AA′ | A ∈ GLn(k)}.
The space X = X(V,B) is also called a reductive symmetric space. We will give a
more general definition later.

1.1.2 Examples

(1). G = SL2(R ) and B(x, y) = Txy, where x, y ∈ V . Then

θ

(
a b
c d

)
=

(
a c
b d

)−1

=

(
d −c
−b a

)
=

(
0 1
−1 0

)(
a b
c d

)(
0 −1
1 0

)

for

(
a b
c d

)
∈ SL2(R ), hence

SO(V,B) = O∩ SL2(R ) =

{(
cosφ sin φ
− sinφ cosφ

)
| φ ∈ R

}
= SO(2, R ) ' S1

and

X ∩ SL2(R ) =

{(
cosφ − sinφ
sin φ cos φ

)(
a 0
0 a−1

)(
cosφ sinφ
− sin φ cos φ

)
| φ ∈ R and a ∈ R +

}

since for all A ∈ X there exists an orthonormal basis of V consisting of eigenvectors
of A and all eigenvalues are positive.

(2). G = SL2(R ) and B(x, y) = TxMy, where x, y ∈ V and M =

(
1 0
0 −1

)
. Then

θ

(
a b
c d

)
=

(
1 0
0 −1

)(
a c
b d

)−1(
1 0
0 −1

)
=

(
d c
b a

)
=

(
0 1
1 0

)(
a b
c d

)(
0 1
1 0

)

for

(
a b
c d

)
∈ SL2(R ), hence

SO(V,B) = O∩ SL2(R ) =

{(
a b
b a

)
| a2 − b2 = 1

}
=

{(
cosh φ sinh φ
sinhφ coshφ

)
| φ ∈ R

}



Chapter 1. Introduction 3

which is non compact. In this case

X ∩ SL2(R ) =

{(
a2 − b2 −ca + bd
ca− bd d2 − c2

)
| a, b, c, d ∈ R , ad− bc = 1

}

consists of non-symmetric matrices. Contrary to the previous example this space
contains both a compact (SO(2, R ) ' S1) and a noncompact part. This is an example
of an affine symmetric space and in this case there exists an affine structure.

(3). k = R and G = GLn(k) and B(x, y) = xTy, where x, y ∈ V (the standard inner
product). In this case A′ = AT , so the self adjoint matrices are the exactly the sym-
metric matrices. If A is a real symmetric matrix, then there exists an orthonormal
basis {ei} of V consisting of eigenvectors of A and all eigenvalues are real. Similarly
any matrix AAT is symmetric with positive real eigenvalues. So X is the set of sym-
metric matrices with positive real eigenvalues and all elements of X are semisimple.
Note that if A 7→ ‖A‖ is the operator norm in Mn(k) (i.e. ‖A‖ = maxx 6=0 ‖A(x)‖/‖x‖
with respect to the norm ‖x‖ = (B(x, x))

1
2 in V ), then ‖A‖ = 1 for all A ∈ O, hence

O is compact. In fact it is a maximal compact subgroup of GLn(k).

Theorem 1. X is a closed submanifold of GLn(k) and the mapping π : O×X →
GLn(k) defined by π : (h, x) 7→ hx is a diffeomorphism.

In this case θ is called the Cartan involution of GLn(k) with respect to B and X
is called a Riemannian symmetric space. So it has a pseudo-Riemannian structure
and is totally geodesic.

1.1.3 Another way to look at it

Let θ : GLn(k) → GLn(k) be defined by θ(A) = (A′)−1 = M−1TA
−1
M . Then θ2 = id,

τ(A) = AA′ = Aθ(A)−1 and

O = {A ∈ GLn(k) | θ(A) = A}

is the fixed point group of θ and

X = {Aθ(A)−1 | A ∈ GLn(k)} ⊂ {A ∈ GLn(k) | θ(A) = A−1}.

This leads to the following generalization of the reductive symmetric space X:

Definition 1. Let G be a reductive linear algebraic group defined over a field k of
characteristic not 2, θ ∈ Aut(G) an involution, i. e. θ2 = id and

O = H = Gθ = {x ∈ G | θ(x) = x}
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the fixed point group of θ. Let τ : G → G be the map defined by τ(x) = xθ(x)−1 and

X = τ(G) =
{
xθ(x)−1 | x ∈ G

}
.

Then X ' G/H is called a reductive symmetric space. X is also called a symmetric
k-variety, especially when k 6= R .

If k = R , then X is also called an affine symmetric space. If moreover O is
compact, then X is also called a Riemannian symmetric space. These symmetric
spaces play an essential role in many areas of mathematics including mathematical
physics, Lie theory, representation theory and differential geometry.

We note that with this definition every linear algebraic group itself is a reductive
symmetric space.

Example 1. Groups case: Consider G1 = G × G and θ(x, y) = (y, x), then H =
{(x, x) | x ∈ G} ' G embedded diagonally and X = {(x, x−1) | x ∈ G} ' G
embedded anti-diagonally.)

As we can see from the definition, involutions plays an essential role in the theory
of symmetric spaces.

1.1.4 Motivation and History of Symmetric Spaces

Reductive symmetric spaces occur in many areas of mathematics. Examples include
geometry (see [DCP83, DCP85] and [Abe88]), singularity theory (see [LV83] and
[HS90]) and the cohomology of arithmetic subgroups. (This involves a study of Q -
involutions, see [TW89]). However they are probably best known for their role in
representation theory and harmonic analysis. In the following we will briefly explain
why the reductive symmetric spaces are of importance in harmonic analysis.

Harmonic analysis

Harmonic analyses may be defined broadly as the attempt to decompose functions
by superposition of some particularly simple functions, as in the theory of Fourier
decompositions. To be more explicit:

Let X be a space acted on by a group G (typically a group of symmetries or a
motion group): G×X → X. For example:

(1) X = R 2 and G = {translations} or

(2) X = S1 and G = {rotations}.
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Then G also acts on the functions on X:

g.f(x) = f(g−1x), x ∈ X, g ∈ G, f ∈ Cc(X).

Assume that the action of G on X leaves invariant a positive measure dx on X, i.e.∫
X

f(g.x)dx =

∫
X

f(x)dx, f ∈ Cc(X), g ∈ G

This action of G on X defines a natural “unitary representation” λ (= left regular
representation) of G on the Hilbert space L2(X, dx) of square integrable functions on
X:

λ(g)f(x) = g.f(x) = f(g−1x), x ∈ X, g ∈ G, f ∈ Cc(X).

The aim of Harmonic analysis on X is to decompose this representation into irre-
ducible subrepresentations. This decomposition is known as the abstract “Plancherel
formula”. The following example illustrates this decomposition.

Example 2. Take X = G = S1 = T = {z ∈ C | |z| = 1} unit circle (compact) and
let dx be the Haar measure on X, normalized so that vol(X) = 1. The Hilbert space
L2(X, dx) is basically the space of periodic functions on the interval [0, 2π]:

f ∈ L2(X, dx) : f(t) = f(eiφ), t = eiφ, φ ∈ [0, 2π]

Since f is periodic with period 2π, it has a Fourier series expansion (in periodic
functions).

f(eiφ) =

∞∑
n=−∞

cne
inφ =

∞∑
n=−∞

cnχn

where χn : G = X → C are defined by χn(x) = xn, with x = eiφ ∈ X and

cn =
1

2π

∫ 2π

0

f(eiφ)e−inφdφ.

The χn are the “unitary characters” of X. It follows that L2(X, dx) as a G-module
has a decomposition in 1-dimensional G-modules:

L2(X, dx) =
⊕
n∈Z

C χn.

The coefficients cn are the classical Fourier coefficients of f . We obtained a “Fourier
transform” for the functions on X. From classical analysis it is well known that
such a transform is extremely useful in solving differential equations. In particular
differential equations invariant under the group G, which is often a transformation
group.
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In general a study of the harmonic analysis of a space X is only a viable project
if one has a lot of additional structure on both G and X. The reductive symmetric
spaces have an extremely detailed fine structure what makes them particularly well
suited for studying their harmonic analysis.

The representation theory and Plancherel formulas of reductive symmetric spaces
over the real numbers has been studied extensively in the last few decades. The
first breakthrough was made in the early fifties when Harish-Chandra commenced his
study of general semisimple Lie groups. This finally led to the Plancherel formula
(published 1976). Before that, in 1957, Harish-Chandra already found a Plancherel
formula for any semisimple symmetric space Gk/Hk with Hk compact. (This case
was simpler, since there are no discrete series). The next step was to study the rep-
resentation theory of the general semisimple symmetric spaces. For these most of the
work was done in the late 70’s and 80’s by a number of mathematicians, including Fa-
raut, Flensted-Jensen, Oshima, Sekiguchi, Matsuki, Brylinski, Delorme, Schlichtkrul
and van der Ban (see [HC84, FJ80, ŌS80, ŌM84, BD92, vdBS97, Del98])). The
Plancherel formula for real reductive symmetric spaces was recently completed by
Delorme (see [Del98]).

More recently a number of people have started to study the representation theory
and Plancherel formulas of symmetric k-varieties over the p-adic numbers. This in-
cludes recent work of Jacquet, Lai and Rallis [JLR93] on a trace formula for symmetric
k-varieties, work of Rader and Rallis [RR96] on spherical characters for p-adic sym-
metric k-varieties, a number of results for rank one symmetric k-varieties by Bosman
[Bos92] and some results about the space of Hk-distribution vectors. This includes
sharp estimates for the multiplicities in the Plancherel decomposition of L2(Gk/Hk)
(see [HH99]).

The representation theory of reductive symmetric spaces is also of interest over
other base fields besides real numbers and local fields. For example reductive sym-
metric spaces over the complex numbers play an essential role in the study of Harish
Chandra modules (see for example [BB81] and [Vog83, Vog82])). Another interesting
case are the reductive symmetric spaces defined over a finite field. These have been
studied by Lusztig and his students (see for example [Lus90] and [Gro92]).

1.1.5 Fixed point groups and Symmetric k-Varieties

For k = R the Plancherel formula was first determined in the case of the Riemannian
symmetric spaces (i.e. the case that O is compact). The main reason for this is that
in this case the structure of the corresponding reductive symmetric space is simpler,
then in the general case. For example all elements of X are semisimple and the left
regular representation decomposes multiplicatively free.

For k = Q p, one gets a generalization of the real Riemannian symmetric space.
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The fixed-point group H = Gδ for an involution δ over G is defined by

Gδ = {x ∈ G | δ(x) = x}.

The fixed point group determines much of the structure of the corresponding sym-
metric k-variety

X := {gδ(g)−1 | g ∈ G}.
It is easy to see that X ' G/Gδ. Moreover if Gδ is compact, then from [HW93] it
follows that X consists of semisimple elements.

Proposition 1 ([HW93, Proposition 10.8]). Let G be a connected reductive al-
gebraic k-group with char(k) = 0 and X = {gδ(g)−1|g ∈ G}. Suppose that H ∩ [G,G]
is anisotropic over k. Then Xk consists of semi-simple elements.

We note that for k = R or Q p all k-anisotropic subgroups are compact. There
are many other similarities between the structure of the real and p-adic reductive
symmetric spaces. For example in both cases the left regular representation decom-
poses multiplicatively free (see [HH99, Corollary 8.3]). So for k = Q p this is also the
natural first case to study the Plancherel decomposition. In view of these results it
is important to determine for k = Q p which involutions have a compact fixed point
group. We will determine this for each of the involutions we study in this thesis.

1.1.6 Notations

Throughout this thesis Ḡ will be a reductive algebraic group defined over a field k
of characteristic not 2. We will mainly consider the case that k is an algebraically
closed field, the real numbers, a finite field or the p-adic numbers. We will write k̄ for
the algebraic closure of k and k1 ⊂ k̄ denotes an extension field of k. We will write G
for the set of k-rational points of Ḡ. Following Borel [Bor91, ] the group G is called
k-split if Ḡ contains a maximal torus T , which is k-split as well. We note that every
group Ḡ contains a k-split k-form G, which is unique up to isomorphy.

For A ∈ GL(n, k) let Int(A) = IA denote the inner automorphism defined by
IA(X) = A−1XA, X ∈ GL(n, k). Let Aut(G) denote the set of automorphisms of
G, Intk(G) = {Int(x) | x ∈ G} the set of inner automorphisms of G and Int(G) =
{Int(x) | x ∈ Ḡ and Int(x)(G) ⊂ G}. An automorphism φ of G is called of inner type
if φ = IA for some A ∈ GL(n, k̄). Otherwise φ is called of outer type.

In this thesis we will mainly consider the cases that Ḡ is one of SL(2, k̄), SL(n, k̄)
or SO(n, k̄) and G is the unique k-split k-form of Ḡ. In the case that Ḡ = SL(n, k̄),
then G = SL(n, k). In the case that Ḡ = SO(n, k̄) the k-split k-form comes from a a
bilinear form which is maximally isotropic.
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Some more notation

We will write Is,t for the n× n-matrix

Is,t =

(
Is 0
0 −It

)

where s+ t = n, for p ∈ k̄ we will write Ln,p for the 2n× 2n-matrix

Ln,p =




0 1 . . . 0 0
p 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . p 0


 .

For p = −1 we will also write Jn for the 2n× 2n-matrix Ln,−1. Finally we will write
Kn,x,y,z for the n× n-matrix

Kn,x,y,z =



In−3 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z




where x, y, z ∈ k. We will also write Mn,x for Kn,1,1,x and Nn,x,y for Kn,1,x,y.

1.2 Isomorphy classes of involutions

To study these symmetric k-varieties one needs first a classification of the related
involutions up to isomorphy. Before we define what we mean with isomorphy of
involutions we need a bit more notation.

For A ∈ GL(n, k) let Int(A) = IA denote the inner automorphism defined by
IA(X) = A−1XA, X ∈ GL(n, k). Let Aut(G) denote the set of automorphisms of
G, Intk(G) = {Int(x) | x ∈ G} the set of inner automorphisms of G and Int(G) =
{Int(x) | x ∈ Ḡ and Int(x)(G) ⊂ G}. An automorphism φ of G is called of inner
type if φ = IA for some A ∈ GL(n, k̄). Otherwise φ is called of outer type. Note that
for G = SL(n, k) one can consider conjugation by elements of GL(n, k̄) instead of
conjugation by elements of SL(n, k̄).

Definition 2. θ, φ ∈ Aut(G) are said to be k1-conjugate or k1-isomorphic if and only
if there is a χ ∈ Int(G1), such that χ−1θχ = φ. In the case that k = k1 we will also
say that they are conjugate or isomorphic.
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A characterization of the isomorphy classes of the involutions was given in [Hel00]
essentially using the following 3 invariants:

(1) classification of admissible (Γ, θ)-indices.

(2) classification of the Gk-isomorphy classes of k-involutions of the k-anisotropic
kernel of G.

(3) classification of the Gk-isomorphy classes of k-inner elements of G.

For more details, see [Hel00]. The admissible (Γ, θ)-indices determine most of the fine
structure of the symmetric k-varieties and a classification of these was included in
[Hel00] as well. For k algebraically closed or k the real numbers the full classification
can be found in [Hel88]. For other fields a classification of the remaining two invariants
is still lacking. In particular the case of symmetric k-varieties over the p-adic numbers
is of interest. We note that the above characterization only holds for k a perfect field.

To classify the remaining two invariants we start in this thesis with a full clas-
sification of the cases that Ḡ = SL(n, k̄), resp. Ḡ = SO(2n + 1, k̄) and G is the
corresponding k-split k-form of Ḡ. We will not use the above characterization from
[Hel00] and give a direct classification of the isomorphy classes.

1.2.1 k-inner elements

Assume G is k-split and let T be a maximal k-split torus of Ḡ. Since G is k-split T
is a maximal torus of Ḡ as well. Moreover from [Hel00, Theorem 8.33] it follows that
we have the following characterization of the isomorphy classes:

Theorem 2 ([Hel00, Theorem 8.33]). Any k-involution of G is isomorphic to
one of the form σ Int(a), where σ is a representative of a Ḡ-isomorphy class of k-
involutions, A a maximal (σ, k)-split torus and a ∈ A.

The set of set of k-inner elements of A is defined as the set of those a ∈ A such
that σ Int(a) is a k-involution of G by Ik(A). We recall that from [Hel00, Lemma 9.7]
it follows that one can find a set of representatives for the isomorphy classes of the
involutions σ Int(A) in the set Ik(A)/A

2
k. Here Ak is the set a k-regular elements of

A and A2
k = {a2 | a ∈ Ak}. Note that the set Ak/A

2
k =' (k∗/(k∗)2)n. We rewrote

the representatives for the isomorphy classes in the form σ Int(a) with σ one of the
representatives from the algebraically closed case and in particular find a set of k-inner
elements of A representing these isomorphy classes.
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1.3 Summary of results in this thesis

Case by case, we classify the involutions, and determine the compactness of the fixed
point group of each isomorphy class. We study the cases of SL(2, k), SL(n, k), and
SO(2n+ 1, k), where the field k is one of algebraically closed, real, finite and p-adic.

1.3.1 SL(2, k)

First we study the simple and fundamental case of SL(2, k). For SL(2, k), all invo-
lutions are inner automorphisms. And the representatives of different classes up to

isomorphy can be chosen as

(
0 1
q 0

)
, where q is a representative of k∗/k∗2. The fixed

point groups of these involutions are Hq =

{(
x y
ay x

) ∣∣∣ x2 − qy2 = 1

}
. For k = R

the real numbers only the group H−1 = Hθ is compact. Here θ is the involution
defined by θ(g) = Tg−1. For k = Q p the p-adic numbers, all the fixed point group are

compact except for the class corresponding to the matrix

(
0 1
1 0

)
.

1.3.2 SL(n, k) (n ≥ 3)

The results for SL(n, k) and GL(n, k) are very similar, the result of SL(n, k) can be
extended to GL(n, k). Note that for G = SL(n, k) one can consider conjugation by
elements of GL(n, k̄) instead of conjugation by elements of SL(n, k̄). Recall that if
k is algebraically closed and n ≥ 2, then ‖Aut(G)/ Int(G)‖ = 2. The involution θ
defined by θ(A) = (TA)−1, A ∈ GL(n, k), is of outer type. So any automorphism
(thus involution as well) can be written as IA or θIA. We have the classifications for
individual fields as following.

k = k̄: algebraically closed

(1) If n is odd, there are n+1
2

isomorphy classes of involutions. Representatives are
IA with A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e and θ.

(2) If n is even, there are n
2
+ 2 isomorphy classes of involutions. Representatives

are IA with A is one of the following In−i,i, i = 1, 2, . . . , n
2
, θ and θIJn.

k = R : the real numbers

(1) If n is odd, there are n isomorphy classes of involutions. Representatives are θ,
IA and θIA with A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e.
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(2) If n is even, there are n + 3 isomorphy classes of involutions. Representatives
are IJn, θ, θIJn, IA and θIA with A is one of the following In−i,i, i = 1, 2, . . . , n

2
.

k = F p: finite field, p 6= 2

Let Np be a non trivial representative of F ∗
p/F

∗2
p .

(1) If n is odd, there are n−1
2

+ 2 isomorphy classes of involutions. Representatives
are θ, IA and θIB where A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e and

B is Mn,Np.

(2) If n is even, there are n
2
+ 4 isomorphy classes of involutions. Representatives

are IA, IB, θ, θIJn and θIC with A is one of the following In−i,i, i = 1, 2, . . . , n
2
,

B is Ln,Np, and C is Mn,Np.

k = Q p: the p-adic numbers

If p 6= 2, then we take 1, p, Np, pNp as representatives of Q ∗
p/Q

∗2
p and if p = 2, then

we take {1,−1, 2,−2,−3, 3, 6,−6} as representatives.

(1) If n is even, then there are n
2
+ 9 isomorphy classes of involutions for p 6= 2,

n
2
+ 17 for p = 2. Representatives are

(a) p 6= 2: IA, IB, θ, θIJn and θIC and θID. Here A is one of the following
In−i,i, i = 1, 2, . . . , n

2
, B is Ln,x with x = Np, p, or pNp and C is Mn,x with

x = Np, p, or pNp. For the matrix D we have the following cases:

D =



Kn,p,Np,pNp if − 1 ∈ Q 2

p

Nn,p,p if − 1 /∈ Q 2
p and n = 4k

Kn,p,p,Np if − 1 /∈ Q 2
p and n = 4k + 2

(b) p = 2: The same as p 6= 2, but x in B and C are chosen from 2, 3, 6, −1,
−2, −3, −6, and D is In−2,2 if n = 4k and Kn,2,3,−6 if n = 4k + 2.

(2) If n = 4k + 1, there are n−1
2

+ 2 isomorphy classes of involutions if −1 ∈ Q 2
p,

otherwise n−1
2

+1. Representatives are IA, θ, and possibly ID if −1 ∈ Q 2
p, where

A is one of the following: In−i,i, i = 1, 2, . . . , n−1
2

and D is Kn,p,Np,pNp.

(3) If n = 4k+3, there are n−1
2

+2 isomorphy classes of involutions. Representatives
are IA, θ and θID, where A is one of the following: In−i,i, i = 1, 2, . . . , n−1

2
and

D is

D =



Kn,p,Np,pNp if − 1 ∈ Q 2

p

Nn,p,p if − 1 /∈ Q 2
p

In−2,2 if p = 2



Chapter 1. Introduction 12

Compact fixed point groups

For the classification, we determine which fixed point group are compact. For k = R ,
we proved that the only compact fixed point group is for the involution θ. For Q p

with p 6= 2, the involutions with compact fixed point groups are

(1) rank(G) = n = 3: θIA and θIB, where A is M3,p and B is M3,pNp.

(2) rank(G) = n = 4: θIA if −1 ∈ Q 2
p, where A is N4,p,p.

(3) rank(G) = n > 4. None.

For Q 2 the involutions with compact fixed point groups are

(1) rank(G) = n = 3: θ, θIM3,2 , θIM3,−3and θIM3,−6 .

(2) rank(G) = n = 4: θ.

(3) rank(G) = n > 4. None.

k-inner elements.

We translate those explicit classifications to fit the characterization given in [Hel00]
and introduce the (Γ, σ)-indices, by which we could verify our results in different point
of view.

1.3.3 SO(2n + 1, k)

Classification for individual fields

For k = C , R and F p we have the following classification of the isomorphy classes of
involutions of SO(2n+ 1, k):

(1) k = C , the complex numbers. There is only one SO(2n + 1, k)-conjugacy class
for each GL(2n+ 1, k)-conjugacy class.

(2) k = R , the real numbers. There is only one SO(2n + 1, k)-conjugacy class for
each GL(2n+ 1, k)-conjugacy class.

(3) k = F p, (p 6= 2) a finite field. There are two SO(2n + 1, k)-conjugacy classes
for each GL(2n + 1, k)-conjugacy class. Representatives are IA with A =

X−1

(
Is 0
0 −It

)
X and X = Id or X =



Is−1 0 0 0
0 a b 0
... −b a

...
0 0 . . . It−1


, where a2+ b2 /∈

k2.
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(4) k = Q p, p 6= 2 the p-adic numbers. There are in general more subclasses for
each GL(2n + 1, Q p) class. We have the following possible representatives for
each GL(2n + 1, k) class provided t is big enough. Where c1 + 1, c2 + 1 and
c3 + 1 are in the p, Np and pNp subsets respectively of Q ∗

p/Q
∗2
p .

(a) A(3) =




Is−3 0 0 0 0 0 0 0
0 c1 0 0 0 d1 0 0
0 0 c2 0 0 0 d2 0
0 0 0 c3 0 0 0 d3
0 0 0 0 −It−3 0 0 0
0 d1 0 0 0 −c1 0 0
0 0 d2 0 0 0 −c2 0
0 0 0 d3 0 0 0 −c3



.

(b) A
(1)
1 =



Is−1 0 0 0
0 c1 0 d1
0 0 −It−1 0
0 d1 0 −c1


.

(c) A
(2)
2,3 =




Is−2 0 0 0 0 0
0 c2 0 0 d2 0
0 0 c3 0 0 d3
0 0 0 −It−2 0 0
0 d2 0 0 −c2 0
0 0 d3 0 0 −c3



.

(d) A
(1)
2 =



Is−1 0 0 0
0 c2 0 d2
0 0 −It−1 0
0 d2 0 −c2


.

(e) A
(2)
1,3 =




Is−2 0 0 0 0 0
0 c1 0 0 d1 0
0 0 c3 0 0 d3
0 0 0 −It−2 0 0
0 d1 0 0 −c1 0
0 0 d3 0 0 −c3



.

(f) A
(1)
3 =



Is−1 0 0 0
0 c3 0 d3
0 0 −It−1 0
0 d3 0 −c3


.
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(g) A
(2)
1,2 =




Is−2 0 0 0 0 0
0 c1 0 0 d1 0
0 0 c2 0 0 d2
0 0 0 −It−2 0 0
0 d1 0 0 −c1 0
0 0 d2 0 0 −c2



.

Fixed point groups

For algebraically closed fields and the real numbers there is a unique isomorphy class
of involutions represented by the involution IIs,t , which has as fixed point group{(

Ns 0
0 Nt

)
∈ SO(2n+ 1, k)

∣∣ Ns ∈ SO(s, k) and Nt ∈ SO(t, k)

}
,

which is isomorphic to SO(s, k) × SO(t, k). This group is never compact for alge-
braically closed fields and compact for the field of the real numbers.

The only compact fixed point groups for SO(2n + 1, Q p) are in SO(3, Q p) with
t = 1 or t = 0. All possibilities are for the following values of XTX.

(1) −1 ∈ Q 2
p.

(a) in the GL(3, k)-conjugate class of I2,1:


1 0 0
0 p 0
0 0 p


,


1 0 0
0 Np 0
0 0 Np


,


1 0 0
0 pNp 0
0 0 pNp


.

(b) in the GL(3, k)-conjugate class of I3,0: None.

(2) −1 /∈ Q 2
p.

(a) in the GL(3, k)-conjugate class of I2,1: I,


Np 0 0

0 pNp 0
0 0 p


,


1 0 0
0 Np 0
0 0 Np


,


p 0 0
0 Np 0
0 0 pNp


.

(b) in the GL(3, k)-conjugate class of I3,0: I.

(Γ, σ)-indices

In this section, we only consider the situation −1 ∈ Q 2
p. Since the group is k-split

the (Γ, σ)-indices are exactly the σ-indices of the case that k = k̄ is algebraically
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closed, only with an additional label Γ under all the black nodes in the σ-index.
The latter were classified [Hel88, Table II]. We recall that in the case k = k̄ there
is a bijective correspondence between the isomorphy classes of k-involutions and the
congruence classes of σ-indices (see [Hel88, Theorem 3.11]). For notations on the
(Γ, σ)-indices we refer to [Hel00, Section 5]. And more details are provided in later
chapters. The involutions of Ḡ = SO(2n+ 1, k̄) corresponding to these (Γ, σ)-indices
are the following: IA with A is one of Is,t, s = 1, 2, . . . , t, s ≥ t with

Is,t =

(
Is 0
0 −It

)
.

In some of the above cases the restricted root system for the related symmetric k-
variety changes its type for different values of its rank s. Therefor in some cases we
have more then one type of (Γ, σ)-index related to involutions of similar type.

k-inner elements for SO(2n + 1, k)

In the section, we restrict the field Q p to be the ones in which −1 is a square. We first
determine the maximal (σ, k)-split tori. Let T be a maximal k-split torus of Ḡ. Since
G is k-split T is a maximal torus of Ḡ as well. Our main results and classification

are as following: First we prove that T =




a1 b1 . . . 0 0 0
−b1 a1 . . . 0 0 0
...

...
. . .

...
. . .

...
0 0 . . . an bn 0
0 0 . . . −bn an 0
0 0 . . . 0 0 1




is a maximal

torus for SO(2n+ 1, k), where a2i + b2i = 1, for i = 1, 2, . . . , n.
Furthermore we prove that the maximal (σ, k)-split tori for Is,t, i = 1, 2, . . . , dn−1

2
e

can be chosen as:

As,n =




a1 . . . 0 . . . 0 . . . b1
...

. . .
...

...
...

...
...

0 . . . as . . . bs . . . 0
...

...
... In−2s

...
...

...
0 . . . −bs . . . as . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1




,

the dimension of the maximal (σ, k)-split torus is of course s; Next, we show that the

matrices A =

(−a b
b a

)
and B =

(−c d
d c

)
are conjugate over SO(2, k) iff a + 1 =
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e2(c+1) for some e ∈ k, where a2+b2 = c2+d2 = 1 and a 6= −1, c 6= −1. Thus for the

real numbers the matrices A =

(−a b
b a

)
are all conjugate over SO(2n+ 1, k), while

for the field Q p, the matrices A =

(−a b
b a

)
have four (respective eight) different

isomorphy classes for p 6= 2 (respectively p = 2), where a2 + b2 = 1. Finally we prove
that all the k-inner elements (thus the involutions) for SO(2n+1, k) are conjugate to
one of the following over SO(2n+ 1, k):



−a1 b1 . . . 0 0 0
b1 a1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −at bt 0
0 0 . . . bt at 0
0 0 . . . 0 0 I2n+1−2t




Where a2i + b2i = 1 and ai 6= −1 for i = 1, 2, . . . , t. For k the real numbers, each of
these forms are conjugate over SO(2, R ) as long as long t is fixed. And for p-adic, we
prove that the n× n matrices


−a1 b1 . . . 0 0 0
b1 a1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −at bt 0
0 0 . . . bt at 0
0 0 . . . 0 0 I2n+1−2t




and




−a′1 b′1 . . . 0 0 0
b′1 a′1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −a′t b′t 0
0 0 . . . b′t a′t 0
0 0 . . . 0 0 I2n+1−2t




are conjugate over SO(2n+ 1, k) iff the matrices

(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


 and



(a′1 + 1) . . . 0

...
. . .

...
0 . . . (a′t + 1)




are congruent. Therefore there are at most eight (resp. sixteen) isomorphy classes
over SO(2n+ 1, Q p) for p 6= 2 (resp. p = 2).
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SL(2, k) case

2.1 Involutions and their invariants

In this chapter we give a simple characterization of the isomorphy classes of involutions
of SL(2, k) with k any field of characteristic not 2. We also classify the isomorphy
classes of involutions for k algebraically closed, the real numbers, the p-adic numbers
and finite fields. We determine in which cases the corresponding fixed point group
H is k-anisotropic. In those cases the corresponding symmetric k-variety consists of
semisimple elements.

Let G be a connected reductive algebraic group defined over a field k of char-
acteristic not 2, θ an involution of G defined over k, H a k-open subgroup of the
fixed point group of θ and Gk (resp. Hk) the set of k-rational points of G (resp. H).
The variety Gk/Hk is called a symmetric k-variety. These varieties occur in many
problems in representation theory, geometry and singularity theory. To study these
symmetric k-varieties one needs first a classification of the related k-involutions. A
characterization of the isomorphy classes of the k-involutions was given in [Hel00]
essentially using the following 3 invariants:

(1) classification of admissible (Γ, θ)-indices.

(2) classification of the Gk-isomorphy classes of k-involutions of the k-anisotropic
kernel of G.

(3) classification of the Gk-isomorphy classes of k-inner elements of G.

For more details, see [Hel00]. The admissible (Γ, θ)-indices determine most of the fine
structure of the symmetric k-varieties and a classification of these was included in
[Hel00] as well. For k algebraically closed or k the real numbers the full classification
can be found in [Hel88]. For other fields a classification of the remaining two invariants

17
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is still lacking. In particular the case of symmetric k-varieties over the p-adic numbers
is of interest. We note that the above characterization only holds for k a perfect field.

To classify the remaining two invariants we start in this chapter with a full classi-
fication of the case that G = SL(2, k). This case will be fundamental in the analysis
of the general case. We will first give a simple characterization of the isomorphy
classes of k-involutions, which does not depend on any of the results in [Hel00]. Also
these results hold for any field of characteristic not 2, not only perfect fields. Next
we classify the possible isomorphy classes for k algebraically closed, the real numbers,
the p-adic numbers and finite fields. Finally we determine the fixed point groups
and determine which are k-anisotropic. For k the p-adic numbers the symmetric k-
varieties Gk/Hk with Hk k-anisotropic have a similar structure as the Riemannian
symmetric spaces and therefor these cases are of particular interest for studying their
representations. The results in this paper will play a fundamental role in the classi-
fication of the isomorphy classes of involutions of SL(n, k). This will be discussed in
the following chapters.

2.1.1 Characterization of the isomorphy classes of involu-

tions

Our basic reference for reductive groups will be the papers of Borel and Tits [BT65,
BT72] and also the books of Borel [Bor91], Humphreys [Hum75] and Springer [Spr81].
We shall follow their notations and terminology. All algebraic groups and algebraic
varieties are taken over an arbitrary field k (of characteristic 6= 2) and all algebraic
groups considered are linear algebraic groups.

2.1.2 Automorphisms of G

For A ∈ Ḡ let Int(A) = IA denote the inner automorphism defined by IA(X) =
A−1XA, X ∈ Ḡ. Let Aut(G) denote the set of automorphisms of G and Int(G) =
{Int(x) | x ∈ G} the set of inner automorphisms of G. In this subsection we charac-
terize the group Aut(G). First we recall the following:

Definition 3. θ, φ ∈ Aut(Ḡ) are said to be k-conjugate if and only if there is a
χ ∈ Int(G), such that χ−1θχ = φ.

We recall the following results, which can be found in [Bor91]:

Lemma 1. If k is an algebraically closed field, then we have Aut(G) = Int(G).

Remark 1. For θ ∈ Aut(G) and k is not algebraically closed, there always exists
an extension field k1 of k and τ ∈ Int(G1) such that τ |G = θ, i.e. there exists a
2× 2-matrix A ∈ G1, such that θ = τ |G = IA|G.
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Lemma 2. Suppose A ∈ GL(2, k1). If IA|G = Id, then A = p Id for some p ∈ k1.

Proof. Write A =

(
a b
c d

)
, a, b, c, d ∈ k1. Since IA|G = Id, we have for all X =(

x1 x2

x3 x4

)
∈ G, IA(X) = AXA−1 = X, i.e. AX = XA. So

(
ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4

)
=

(
ax1 + cx2 bx1 + dx2

ax3 + cx4 bx3 + dx4

)
.

Since X is arbitrary, we have a = d and b = c = 0, i.e. A = a Id.

This result enables us to determine when an element of Int(G1) keeps G invariant:

Lemma 3. IA ∈ Int(G1) keeps G invariant if and only if A = pB for some p ∈ k1,
B ∈ GL(2, k).

Proof. Write A =

(
a1 a2
a3 a4

)
, ai ∈ k1, i = 1, 2, 3, 4. So A−1 = (detA)−1

(
a4 −a2
−a3 a1

)
.

For all X =

(
x1 x2

x3 x4

)
∈ G, we have IA(X) = A−1XA =

(detA)−1

(
a1a4x1 + a3a4x2 − a1a2x3 − a2a3x4 a2a4x1 + a24x2 − a22x3 − a2a4x4

−a1a3x1 − a23x2 + a21x3 + a3a4x4 −a2a3x1 − a3a4x2 + a1a2x3 + a1a4x4

)
.

Since X is arbitrary we have

IA(X) ∈ G ⇐⇒ aiaj
(a1a4 − a2a3)

∈ k, ∀i, j = 1, 2, 3, 4 ⇐⇒ ai
aj

∈ k, ∀i, j = 1, 2, 3, 4,

provided aj 6= 0, i.e. A = pB for some p ∈ k1, B ∈ GL(2, k).

Remark 2. Since for all p ∈ k1 and B ∈ GL(2, k1), we always have IpB = IB. It
follows that every automorphism over SL(2, k) can be written as the restriction to
SL(2, k) of a inner automorphism over GL(2, k).

2.2 Involutions on G = SL(2, k)

Now let’s turn to involutions on G = SL(2, k). Suppose θ ∈ Aut(G) is an involution,
i.e. θ2 = Id. By Lemma 1, there is a field k1 ⊃ k and an A ∈ G1 = SL(2, k1) such
that θ = IA|G.
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Lemma 4. Suppose k ⊂ k1, θ ∈ Aut(G) is an involution, then there is a matrix

A ∈ GL(2, k), such that θ = IA|G and A is conjugate to

(
0 p
q 0

)
, for some p, q ∈ k.

Proof. Since θ is an involution, we know there is a matrix A ∈ GL(2, k) such that

I2A = θ2 = Id, i.e. IA2 = Id. Let A =

(
a b
c d

)
, so A2 =

(
a2 + bc (a + d)b
(a + d)c d2 + bc

)
By Lemma 2, we have A2 = p Id, for some p ∈ k, i.e. a2 + bc = d2 + bc and
(a+ d)c = (a+ d)b = 0.

(1) If a + d = 0, then we have two subcases:

(a) If we also have b = c = 0, then we get A =

(
a 0
0 −a

)
.

Let P =

(
1 1
−1 1

)
, then P−1AP =

(
0 a
a 0

)
.

(b) If a + d = 0 and both b and c are not equal to 0, then without loss of

generality, we may assume that b 6= 0. Let P =

(
1 0

−a/b 1

)
, then we

have P−1AP =

(
0 b

a2/b+ c 0

)
.

(2) a + d 6= 0 ⇒ a = d 6= 0, b = c = 0 i.e. A = a Id, a ∈ k, then θ is the identity,
which is not a involution.

Since by remark 2, we can multiply A by any constant without changing the
involution, we get:

Corollary 1. All the classes of involutions over G can be represented by the matrices(
0 1
a 0

)
∈ GL(2, k).

Lemma 5. Let A =

(
0 1
p 0

)
, B =

(
0 1
q 0

)
∈ G. Then IA is conjugate to IB if

and only if there is a matrix X ∈ G and a constant c ∈ k, such that X−1AX = cB.

Proof. The result follows from the following equivalent statements:
• IA is conjugate to IB.
• there is a matrix X ∈ GL(2, k), such that IX−1IAIX = IB.
• IX−1AXB−1 = Id.
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• there is c ∈ k, such that X−1AXB−1 = c Id (Lemma 2, k1 = k).
• X−1AX = cB.

Theorem 3. Suppose θ, φ ∈ Aut(G) involutions of which the corresponding matrices

in G are A =

(
0 1
p 0

)
and B =

(
0 1
q 0

)
. Then θ is conjugate to φ if and only if

q/p is a square in k∗.

Proof. (⇒) By the result of Lemma 5, and by taking determinants on both sides, we
have −p = −c2q, i.e. c2=p/q.

(⇐) Suppose c2=q/p, c ∈ k, X =

(
0 1
pc 0

)
, then X−1BX = cA. By Lemma 5, we’re

done.

For a field k let k∗ denote the product group of all the nonzero elements and
(k∗)2 = {a2 | a ∈ k∗}. Then (k∗)2 is a normal subgroup of k∗.

Corollary 2. The number of isomorphy classes of involutions over G equals the order
of k∗/(k∗)2.

Remark 3. For k a perfect field the results in this section could also have been derived
from the characterization of the k-involutions in [Hel00]. The diagonal subgroup T is
a maximal k-split torus, hence there is no k-anisotropic kernel. Since the root system
Φ(T ) of T with respect to G is of type A1, there is only one nontrivial involution
of Φ(T ). So in this case one only needs to check the third invariant mentioned in
the introduction. Let θ ∈ Aut(G) be the involution defined by θ(g) = Tg−1, g ∈ G.

Note that θ = IA with A =

(
0 1
−1 0

)
. Then any other involution of G is isomorphic

to θ Int(x) for some x ∈ T . It suffices to check then the isomorphy classes of these
involutions. It is easy to check that for the choice of x one can restrict to the elements

x =

(
a 0
0 a−1

)
with a a representative of k∗/(k∗)2. Then finally one has to check that

none of these involutions are isomorphic to each other.

2.3 Classification of the isomorphy classes of invo-

lutions

In this section we give a classification of the isomorphy classes of involutions for k
algebraically closed, the real numbers, finite fields and the p-adic numbers.

Let θ = IA, where A =

(
0 1
−1 0

)
, τ = IB, where B =

(
0 1
1 0

)
.



Chapter 2. SL(2, k) case 22

(1) Algebraically closed fields. In this case |k∗/(k∗)2| = 1, so there is only one
involution θ, where θ(g) = IA(g) =

Tg−1.

(2) Real numbers R . In this case R ∗/(R ∗)2 ' Z 2, so there are two involutions θ
and τ .

(3) Rational numbers Q . In this case |k∗/(k∗)2| = ∞, so there are infinitely
many involutions.

(4) Finite fields (F p, p 6= 2). In this case F ∗
p/F

∗2
p ' Z 2, so there are only two

involutions. This can be seen as follows. Let φ : F p → F p be φ(x) = x2, then
φ(F ∗

p) = F ∗2
p is a normal subgroup of F ∗

p and |F ∗
p/F

∗2
p | = |Ker(φ)| = 2. Let

1, 2, . . . , p− 1 be the the representative of F ∗
p, Np be the “smallest number” in

F ∗
p/F

∗2
p , so 1 and Np are the representatives of F ∗

p/F
∗2
p , hence the corresponding

involutions are also clear now.

(5) p-adic numbers Q p. If p 6= 2, there are four involutions and Q ∗
p/Q

∗2
p ' Z 2×Z 2.

This can be seen as follows. Recall that Q p is the completion of Q relative to
the p-adic norm, and explicitly

Q p =

{ ∞∑
i=−n

aip
i
∣∣∣ ai = 0, 1, . . . , p− 1, with an 6= 0, n ∈ Z

}
.

The norm of x =
∞∑

i=−n

aip
i with an 6= 0, ai = 0, 1, . . . , p − 1 is defined as p−n,

i.e. |x|p = p−n. With this norm, the distance of any two points is one of the
countable choices p−n, n ∈ Z . Now let’s turn to the squares of p-adic numbers.
First of all, p can’t be a square. Otherwise if we have x ∈ Q p such that x2 = p,
then x has to begin with positive power of p, which makes the square of x
begin with p2 at least and disagree with p. Note that the squares of the p-
adic numbers must have its leading coefficient in F ∗2

p , so Np (same notation as
(4)) couldn’t be a square. Npp

−1 is not a square either by the same argument.
That means p and Np are in different cosets and pNp = p−1Npp

2 isn’t a square
either. It’s easy to check 1, p, Np are pNp are in different cosets. And actually
they are representatives for Q ∗

p/Q
∗2
p , i.e. the matrices corresponding to different

involutions for Q p(p 6= 2) are(
0 1
a 0

)
, a = 1, p, Np or pNp. (2.1)
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Interestingly Q 2 has eight involutions. The corresponding matrices are(
0 1
a 0

)
, a ∈ {1,−1, 2,−2,−3, 3, 6,−6} (2.2)

The details about cosets for Q ∗
2/Q

∗2
2 can also be found in Mahler’s book [Mah81].

2.4 Fixed point groups and symmetric k-varieties

The fixed-point group Hδ for an involution δ over G is defined by

Hδ = {x ∈ G | δ(x) = x}.
The fixed point group determines a lot of the structure of the corresponding

symmetric k-variety X := {gδ(g)−1 | g ∈ G}. It is easy to see that X ' G/Hδ.
Moreover if Hδ is compact then from [HW93] it follows that X consists of semisimple
elements:

Proposition 2 ([HW93, Proposition 10.8]). Let G be a connected reductive al-
gebraic k-group with char(k) = 0 and X = {gθ(g)−1|g ∈ G}. Suppose that H ∩ [G,G]
is anisotropic over k. Then Xk consists of semi-simple elements.

In view of this result it is important to determine which involutions have an
k-anisotropic fixed point group. For k = R or Q p all k-anisotropic subgroups are
compact. In this section we determine the fixed point groups of the involutions in
the previous section. Our main focus will be given to the p-adic fields Q p. From
[HW93, Proposition 1.2] we know that two involutions are conjugate if and only if
their corresponding fixed-point groups are conjugate. Combined with Corollary 1, it
follows that it suffices to determine the fixed-point group of the involutions δ = IA

with A =

(
0 1
a 0

)
and a representative of k∗/k∗2. We will also write Ha for Hδ.

Ha =

{
{
(
x y
z w

) ∣∣∣ (0 1
a 0

)(
x y
z w

)(
0 1
a 0

)−1

=

(
x y
z w

)
, xw − yz = 1

}
.

That is

Ha =

{(
x y
ay x

) ∣∣∣ x2 − ay2 = 1

}
.

For k the complex numbers we have only one involution and for k the real numbers
there are two. Corresponding to the involutions θ and τ , the two fixed-point groups
are
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Hθ =

(
a b
−b a

)
and

Hτ =

(
a b
b a

)
They are conjugate over the complex numbers but not over the real numbers, since
over the real numbers Hθ is compact while Hτ is not compact.

For Q p, choose a from (2.1) or (2.2), then the fixed-point groups corresponding to
the representatives of involutions are{(

x y
ay x

) ∣∣∣ x2 − ay2 = 1

}

Consider the curves

Oa = {(x, y) | x2 − ay2 = 1, x, y ∈ Q p}
Where a is chosen from (2.1) or (2.2). Before we go any further, we recall some useful
Lemmas:

Lemma 6. Let x ∈ Q p(p 6= 2). If |x|p ≤ p−1, then 1 + x ∈ Q ∗2
p . If x ∈ Q 2 and

|x|p ≤1
8
, then 1 + x ∈ Q ∗2

2 .

Lemma 7. For p 6= 2, x2 − ay2 ≤ 1 implies max(|x|p, |y|p) ≤ 1. Where a = p, Np or
pNp and x, y ∈ Q p.

Lemma 8. Suppose x, y ∈ Q 2, a = −1,−2,−6, 2, 3 or 6, then x2 − ay2 ≤ 1 implies
max(|x|p, |y|p) ≤ 1; x2 + 3y2 ≤ 1 implies max(|x|p, |y|p) ≤ 2.

Similar results can be found in [Mah81], we omit the proofs here.

Lemma 9. A bounded sequence in Q p has a limit.

Proof. Without loss of generality, suppose {xn ∈ Q p | |xn|p ≤ 1, n = 1, 2, . . .} is a
bounded sequence. Name the sequence Φ0 and write every x0

n = xn as the standard
form

x0
n =

∞∑
i=0

a0nip
i, ani = 0, 1, . . . , p− 1, and n = 0, 1, 2, . . .

Since a0n0 has only p choices, there must be a infinite subsequence {x0
nk
} with the

same value for its first coefficients, i.e. all a0nk0
’s are all the same, say b0. Name the

subsequence Φ1 and write every x1
n as

x1
n = b0 +

∞∑
i=1

a1nip
i, ani = 0, 1, . . . , p− 1, and n = 0, 1, 2, . . .
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To choose b1 and bi, perform the same choice on Φ1 and a1n1
and so on. By construc-

tion, the sequence has limit

x =

∞∑
i=0

bip
i

Theorem 4. (i) The orbits of the curves Oa, a 6= 1 are all closed, bounded and
(sequentially) compact.

(ii) The orbit of the curve O1 is closed, but neither compact nor bounded.

Proof. (i). Take the norm of Q p × Q p to be the maximum of that of its components,
i.e. for z = (x, y) ∈ Q p× Q p, the norm of z is defined by ‖z‖p = max(|x|p, |y|p). First
let’s consider the functional f(x, y) defined by:

(x, y) ∈ Q p × Q p → f(x, y) = x2 − ay2 ∈ Q p.

Since |x2 − ay2|p ≤ |x|2p + |a|p|y|2p, f(x, y) is continuous. The orbit, which is the
preimage of the closed set {1} is also closed. Boundedness is immediate from Lemma
7 and 8. For Q p, compactness and sequential compactness are equivalent. For a
infinite sequence in one of the orbits, it has a limit by Lemma 9. Since it’s closed,
the limit lies on the orbit. That proves the compactness and thus the first part of the
theorem as well.

(ii). The same argument proves that O1 is closed. Now assume x = p−nx and
y = p−n, we prove for some choices of x, (x, y) lies on the orbit. Actually

x2 − y2 = p−2nx2 − p−2n = 1.

But then x2 = 1 + p2n. By Lemma 6, there is a solution for x for n ≥ 2. And
|y|p = pn converges to infinity as n goes to infinity. So O1 is unbounded and thus
noncompact.

2.4.1 k-anisotropic fixed point groups

To determine for general fields k if the fixed point groups Ha are k-anisotropic or
k-split we use the following result:

Lemma 10. The matrix ( x y
ay x ) is k-split (i.e. diagonizable over k) if a ∈ (k∗)2 and

k-anisotropic if a 6∈ (k∗)2.

Proof. The minimum polynomial of ( x y
ax y ) is λ2 − 2xλ + x2 − ay2. This polynomial

factors over k if and only if a ∈ (k∗)2.
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Corollary 3. The fixed point group Ha is k-split if a ∈ (k∗)2 and k-anisotropic if
a 6∈ (k∗)2.

It follows from this result that for k = Q p, when we restrict ourselves to the
representatives of the isomorphy classes, the group Ha is k-anisotropic if and only if
a 6= 1 as we saw earlier in this section.

2.4.2 SO(2, k)

For a = −1 the group Ha is the special orthogonal group SO(2, k) = {( x y
−y x ) |

x2+ y2 = 1}. As we saw above this group is k-anisotropic for k = R . In the following
we determine when this group is k-split or k-anisotropic for k = F q and Q p. For this
we recall the following well known result for k = F q:

Lemma 11. −1 is a square in F q if q ≡ 1( mod 4) and −1 is not a square in F q if
q ≡ 3( mod 4).

Proof. The group F ∗
q is a cyclic group of order q − 1 and −1 is the only element of

order 2. So −1 is a square if and only if the order of F ∗
q is a multiple of 4.

It follows from the above results that for k = F q the group SO(2, k) is k-split if
and only if q ≡ 1( mod 4). A similar results holds in the case that k = Q p.



Chapter 3

SL(n, k), (n ≥ 3)

3.1 Preliminaries

Our basic reference for reductive groups will be the papers of Borel and Tits [BT65,
?] and also the books of Borel [Bor91], Humphreys [Hum75] and Springer [Spr81].
We shall follow their notations and terminology. All algebraic groups and algebraic
varieties are taken over an arbitrary field k (of characteristic 6= 2) and all algebraic
groups considered are linear algebraic groups.

We’ll use the following notations for this chapter: G = SL(n, k), G1 = SL(n, k1),
Ḡ = SL(n, k̄), where field k̄ is the algebraic closure of k and k1 is an extension field of k.
Let k∗ denote the product group of all the nonzero elements and (k∗)2 = {a2 | a ∈ k∗}.
I is the identity automorphism.

3.2 Automorphisms of G

For A ∈ GL(n, k) let Int(A) = IA denote the inner automorphism defined by IA(X) =
A−1XA, X ∈ GL(n, k). Let Aut(G) denote the set of automorphisms of G, Intk(G) =
{Int(x) | x ∈ G} the set of inner automorphisms of G and Int(G) = {Int(x) | x ∈
Ḡ and Int(x)(G) ⊂ G}. An automorphism φ of G is called of inner type or inner
automorphism if φ = IA|G for some A ∈ GL(n, k̄). Otherwise φ is called of outer
type, or outer automorphism.

Definition 4. θ, φ ∈ Aut(G) are said to be k1-conjugate or k1-isomorphic if and only
if there is a χ ∈ Int(G1), such that χ−1θχ = φ. In the case that k = k1 we will also
say that they are conjugate or isomorphic.

Lemma 12. If k is algebraically closed (i.e. k = k̄) and n ≥ 2, then ‖Aut(G)/ Int(G)‖ =
2.

27
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3.3 Inner automorphisms

In this section we will first consider the case of involutions of inner type. By definition,
for any automorphism θ of inner type, there exist a n× n-matrix A ∈ GL(n, k̄), such
that θ = IA|G.

Lemma 13. Let A ∈ GL(n, k̄). If IA|G = I, then A = pI for some p ∈ k̄, i.e. IA = I

over GL(V̄ ).

Proof. Since IA|G = I, we have for all X ∈ SL(n, k), IA(X) = A−1XA = X, i.e.
AX = XA. Since X is arbitrary it follows that A = pI for some p ∈ k̄. Furthermore
IA = IpI = II = I. Let A = (aij)2n+1×2n+1 and for s = 1, 2, . . . , n − 1 let Xs =

Is−1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 In−s−1


. We have Xs ∈ SL(n, k), and AXs = XsA. That forces

aij = 0 if i 6= j and a11 = a22 = · · · = an,n.

Lemma 14. For any inner automorphism φ ∈ Int(G), suppose A ∈ GL(n, k̄). Then
φ = IA ∈ Int(Ḡ) keeps G invariant if and only if A = pB, for some p ∈ k̄ and
B ∈ GL(n, k). In other words, there is a matrix B ∈ GL(V ) such that φ = IB|G.

Proof. To prove (⇐=) is obvious. We’ll concentrate on the other way.
(=⇒) Assume

A = (aij)n×n ∈ GL(V̄ )

and
X = (xij)n×n ∈ G

where aij ∈ k̄, xij ∈ k. We have A−1 =det(A)−1(Aij)n×n, where Aij is the ij-th minor
of A. Then

IA(X) = A−1XA = det(A)−1

(
n∑

k=1

n∑
l=1

Aikxklalj

)
n×n

.

We’ll prove det(A)−1Aijakl ∈ k. Without loss of generality, we prove the case for

det(A)−1Ai1a1l. Let X =


δ 0 0
0 1

δ
0

0 0 In−2


, and Y = (yil) = IA(X), we have

yil = det(A)−1

(
δAi1a1l +

1

δ
Ai2a2l + Ai3a3l + · · ·+ Ainanl

)
∈ k,
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for all i, l = 1, 2, . . . n. Since 0 6= δ ∈ k is arbitrary, det(A)−1Ai1a1l ∈ k and in general
det(A)−1Aijakl ∈ k. Hence aij/akl ∈ k, for all i, j, k, l = 1, 2, . . . n, provided akl 6= 0,
i.e. A = pB, for some p ∈ k̄ and B ∈ GL(n, k). And φ = IA = IpB = IB, where
B ∈ GL(V )

Lemma 15. Suppose A ∈ GL(n, k) with A2 = pI. Then

(1) If p = c2 ∈ k∗2 then A is conjugate to cIi,n−i for some i = 0, 1, . . . , n.

(2) If p is not in k∗2, then n is even and A is conjugate to Ln
2
,p.

Proof. If there is a c ∈ k, such that p = c2, then the characteristic polynomial of A
is (x− c)i(x+ c)n−i, and the minimal polynomial is a factor of (x+ c)(x− c). So A
is conjugate to cIi,n−i for some i = 0, 1, . . . , n.

If p is not in k∗2, then the minimal polynomial is (x2 − p), which does not factor
over k, therefore the characteristic polynomial is a power of the minimal polynomial.
Hence n, which is the degree of the characteristic polynomial, is even. Furthermore, A
is conjugate to Ln

2
,p since they have the same minimal and characteristic polynomials.

Lemma 16. Suppose θ ∈ Aut(G) is an involution of inner type. Then there is a
matrix A ∈ GL(n, k), such that θ = IA, where matrix A is conjugate to cIi,n−i or
Ln

2
,p. Where i ∈ {0, 1, . . . , n}, c ∈ k∗ and p ∈ k̄∗ \ k̄∗2.

Proof. By Lemma 13 we know that there is a matrix A ∈ GL(n, k), such that θ = IA.
Since θ is an involution we have θ2 = IA2 = I. By Lemma 14 we have A2 = pI
for some p ∈ k̄. It follows that it is conjugate to one of the forms in the previous
Lemma.

We established above that for any inner involution θ of G, there exists a matrix
A ∈ GL(n, k), such that θ = IA, and A is conjugate to cIi,n−i for some i = 0, 1, . . . , n
and c ∈ k∗ or conjugate to Ln

2
,p. To determine the isomorphy classes of involutions

of inner type we still need to determine which of these matrices lead to conjugate
involutions. We consider this question in the following.

Lemma 17. The matrices Ii,n−i and cIj,n−j are conjugate for some c ∈ k if and only
if c is one of the following:

(1) c = 1 and i = j.

(2) c = −1 and i+ j = n.

Proof. Since the eigenvalues of both Ii,n−i and cIj,n−j have to be exactly the same,
that forces c to be 1 or −1. If c = 1, Ii,n−i and Ij,n−j are conjugate, therefore i = j. If
c = −1, Ii,n−i and −Ij,n−j = In−j,j are conjugate, therefore i = n−j, i.e. i+j = n.
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Lemma 18. Let p, q ∈ k̄∗ \ k̄∗2. The matrix Ln
2
,p is conjugate to cLn

2
,q for some c ∈ k

if and only if p
q
∈ k∗2.

Proof. The minimal polynomial of Ln
2
,p is (x2 − p) and that of cLn

2
,q is (x2 − c2q).

The characteristic polynomial of Ln
2
,p is (x

2 − p)n and that of cLn
2
,q is (x

2 − c2q)n, so
Ln

2
,p and cLn

2
,q are conjugate if and only p = c2q, what forces p

q
= c2 ∈ k∗2.

Lemma 19. The inner automorphisms θ = IA and φ = IB are conjugate iff the
matrix A is conjugate to cB for some c ∈ k̄.

Proof. The result follows from the following equivalent statements:
• θ = IA is conjugate to φ = IB.
• there is a matrix X ∈ GL(n, k), such that IX−1IAIX = IB.
• IX−1AXB−1 = Id.
• there is c ∈ k, such that X−1AXB−1 = c Id for some c ∈ k̄ (see Lemma 13).
• X−1AX = cB for some c ∈ k̄.
• A is conjugate to cB for some c ∈ k̄.

Theorem 5. Suppose the involution θ ∈ Aut(G) is of inner type. Then up to iso-
morphy θ is one of the following:

(1) IA|G, where A = Ii,n−i ∈ GL(V ) where i ∈ {1, 2, . . . , [n
2
]
}
.

(2) IA|G, where A = Ln
2
,p ∈ GL(V ) where p ∈ k∗ \ k∗2, p 6≡ 1 mod k∗2.

Note that (2) can only occur when n is even.

Proof. By Lemma 16, the matrix A ∈ GL(V ) s.t. θ = IA is conjugate to cIi,n−i for
some c ∈ k∗ and i = 1, 2, . . . , n or Ln

2
,p for some p ∈ k∗ \ k∗2. If A is of the form

Ii,n−i, then A is conjugate to (−1)In−i,i. This limits i to 1, 2, . . . , [n
2
], each of which

represents a unique isomorphy class. The reason for this is Lemma 19.
For (2)Since p ∈ k∗ \ k∗2, by Lemma 18, we can choose a representative q from

k∗ \ k∗2, q 6≡ 1 mod k∗2. Since IA = IcA, we can factor out the constant.
The above two classes are not conjugate to each other since those in (1) are split

and those in (2) are not, thus it’s impossible for them to have same eigenvalues.

Some more notation

For a field k let k∗ denote the product group of all the nonzero elements and (k∗)2 =
{a2 | a ∈ k∗}. Then (k∗)2 is a normal subgroup of k∗.

Recall from [HW02, Section 2.1] that k∗/(k∗)2 ' {1} if k = k̄, k∗/(k∗)2 ' Z 2 if
k = R or F p and k∗/(k∗)2 ' Z 2 × Z 2 if Q p, p 6= 2. We will denote the nontrivial rep-
resentative of F ∗

p/F
∗2
p by Np. Then 1, p, Np are pNp are representatives of Q

∗
p/Q

∗2
p . In

the case of k = Q 2 a set of representatives of k∗/(k∗)2 are {1,−1, 2,−2,−3, 3, 6,−6}.
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Corollary 4. The number of involutions of inner type of G up to isomorphy is equal
to ‖ k∗/(k∗)2‖+ n

2
− 1 if n is even and n−1

2
if n is odd.

For k = k̄, R , Q , F p and Q p we summarize the number of isomorphy classes of
involutions of inner type in the following.

(1) k = k̄ algebraically closed. There are [n
2
] isomorphy classes of involutions of

inner type.

(2) k = R the real numbers. There are n
2
+ 1 isomorphy classes of involutions of

inner type for n is even and n−1
2

for n is odd.

(3) k = Q the rational numbers. There are infinite many isomorphy classes of
involutions of inner type.

(4) k = F p finite field (p 6= 2). There are n
2
+ 1 isomorphy classes of involutions of

inner type for n is even and n−1
2

for n is odd.

(5) k = Q p the p-adic numbers. For p 6= 2, there are n
2
+ 3 isomorphy classes of

involutions of inner type for n is even and n−1
2

for n is odd. For p = 2 there are
n
2
+ 7 isomorphy classes of involutions of inner type for n is even and n−1

2
for n

is odd.

3.4 Involutions of outer type

By Lemma 12, any outer automorphism can be written as θIA, where θ is a fixed outer
automorphism. We choose the fixed outer automorphism to be the map θ defined by
θ(x) = Tx−1, x ∈ G. This is known to be an outer automorphism for n > 2. In the
remainder of this chapter, let Z(G) denote the center of G.

Lemma 20. Let θ be defined by θ(x) = Tx−1, x ∈ G. Then we have the following
results:

(1) θIA is involution if and only if θ(A)A ∈ Z(G).

(2) θ(A)A ∈ Z(G) if and only if TA = A or TA = −A. The later case only occurs
when n is even.

Proof. θIA is involution, that is θIAθIA(X) = X for anyX ∈ G, i.e. θ(A)−1A−1θ(X)Aθ(A) =
θ(X), i.e. θ(X)Aθ(A) = Aθ(A)θ(X), therefore Xθ(A)A = θ(A)AX. The above also
works reversely. This proves (1).

For our choice of θ, we have θ(A)A ∈ Z(G) if and only if TA = zA for some
z ∈ Z(G). We note that Z(SL(n, k̄)) ' Z n. So TA = tA , where t ∈ k and tn = 1.
Furthermore A = T (TA) = t2A, what forces t = 1 or t = −1. This proves (2).
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Recall that two matrices A and B are called congruent if there exists a matrix X
such that (TX)AX = B.

Lemma 21. The outer automorphisms θIA and θIB are conjugate if and only if the
matrix A is congruent to pB for some p ∈ k̄.

Proof. Since IC−1θIAIC = θITCAC , it follows that IC−1θIAIC = θIB if and only if
θITCAC = θIB, i.e. ITCAC = IB. Then Lemma 13 implies that A is congruent to pB
for some p ∈ k̄.

Essentially congruence means that one applies the same operation on the columns
of a matrix as on the rows. Since all operations on a matrix are the combinations
of three fundamental ones, namely multiplying a row (column) with a constant, ex-
changing two rows (columns) and adding a multiple of a row (column) to another.
Corresponding to these operation, there are three fundamental matrices.

Lemma 22. (1) Symmetric matrices are congruent to diagonal matrices and skew
symmetric matrices of even rank are congruent to Jn.

(2) If b1, . . . bn ∈ k∗, then A = diag(a1, . . . , an) is congruent to B = diag(b21a1, . . . , b
2
nan).

Proof. (1) Assume first that A is a symmetric n× n-matrix. We prove the result by
induction on n.

If n = 1, the result is obvious. Suppose that for n = π all symmetric matrices are

congruent to a diagonal matrix. For n = π+1, let A =




a1 a11 a12 . . . a1π
a11 a2 a22 . . . a2π
a12 a22 a3 . . . a3π
...

...
...

. . .
...

a1π a2π a3π . . . aπ+1


.

Assume first that a1 6= 0 and let P =



1 −a11

a1
. . . −a1π

a1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


. Then TPAP is of the

form

(
a1 0
0 Aπ

)
with Aπ a symmetric matrix of dimension π. Using the induction

hypothesis, the result follows. If a11 = 0, then a1i is not equal to zero for all i, e.g.

without loss of generality we may assume a11 6= 0. Let Q =


1 0 0
1 1 0
0 0 Iπ−1


. Then

TQAQ is a symmetric matrix with the first entry nonzero. A similar matrix moves
a1,i to the first entry, when it is nonzero.
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For skew symmetric matrices, its size has to be even to ensure its non singularity.
Assume its size is 2n. We prove the result by induction on n. If n = 1, then

A =

(
0 a
−a 0

)
. Let P =

(
1
a

0
0 1

)
, then TPAP = J1.

Suppose that all skew symmetric matrices of size 2n = 2π are congruent to Jπ. For

n = π+1, assume A =




0 a1,2 . . . a1,2π
−a1,2 0 . . . a2,2π
...

...
. . .

...
−a1,2π −a2,2π . . . 0


. Assume first that a1,2 6= 0 and

let P =




1
a1,2

0 a2,3
a1,2

. . . a2,2π
a1,2

0 1
a1,2

−a1,3
a1,2

. . .
a1,2π
a1,2

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


. Then TPAP is the form


 0 1 0
−1 0 0
0 0 A2π


,

where A2π is a skew symmetric matrix of size 2π and by the induction hypothesis,
we’re done.

If a1,2 = 0, then using a similar matrix as in the case of symmetric matrices, we
can exchange a1,2 with one of the non zero entries in the first row and then the result
follows using the above argument.

(2) Let P =



b1 0 . . . 0
0 b2 . . . 0
...

...
...

...
0 0 . . . bn


. Then TPAP = B.

It follows from the above result that for the entries of the diagonal matrix one can
mod out squares without changing it’s congruence class. Therefore, for the congruence
classes, it is enough to consider the diagonal matrices with entries chosen from the
representatives of k∗/(k∗)2. For k = k̄, R , F p and Q p a set of representatives is given
in [HW02, Section 2.1] (see also 3.3). Combined with the above results this yields the
following description of the isomorphy classes in the case that k = k̄, R or F p:

Theorem 6. Let θIA be an involution of outer type.

(1) If k = k̄ algebraically closed, then there is only one isomorphy class of involu-
tions of outer type if n is odd and two if n is even.

(2) If k = R the real numbers, then there are n
2
+1 isomorphy classes of involutions

of outer type if n is even and n+1
2

if n is odd. Representatives are the involutions
θIA with A = In−i,i for i ≤ n− i and Jn.
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(3) If k = F p a finite field with p 6= 2, then there are two isomorphy classes of
involutions of outer type if n is odd, three if n is even. Representatives are the
involutions θIA with A = I, Mn,Np and Jn.

Proof. (1) and (2) follow from Lemma 21 and 22. So it suffices to prove (3).
Let σ = θIA be an involution. By Lemma 22 we may assume that A is diagonal or

equal to Jn. In the latter case we are done, so assume A is diagonal. It’s easy to see

that

(
a 0
0 b

)
is congruent to

(
ab/(b+ ak2) 0

0 b+ ak2

)
with b + ak2 6= 0. Since any

elements of F p can be written as the sum of two squares, it follows that

(
a 0
0 b

)
is

congruent to

(
1 0
0 1

)
or

(
1 0
0 Np

)
depending on whether a and b are from the same

coset of F ∗
p/F

∗2
p . Here Np is a representative of the coset of all the non-square ele-

ments. By successively going down the diagonal of A, applying the above congruence
whenever an element is not equal to 1 it follows that A is congruent to I or Mn,Np.
This proves the result.

Next we consider the case that k = Q p the p-adic numbers. We still have that A is
congruent to a diagonal matrix or Jn. Assume that A is diagonal. Since we can mod
out any squares of Q p, the entries on the diagonal can be limited to the representatives
of Q ∗2

p /Q ∗
p, i.e. 1, p, Np and pNp. For details about notations and a discussion about

Q ∗2
p /Q ∗

p, see [HW02, Section 2.1] or 3.3.
Let Di be the i by i determinant in the upper left hand corner of a symmetric

matrix A. For α and β non-zero p-adic numbers we define the symbol

(α, β)p = +1 or − 1

according to whether
αx2 + βy2 = 1

has or has no solution in Q p. Furthermore let cp(A) denote the Hasse symbol of A,
which is defined as

cp(A) = (−1,−Dn)p

n−1∏
i=1

(Di,−Di+1)p.

Lemma 23. For α ∈ F p and n× n matrix A we have

cp(αA) =

{
(α,−1)

n/2
p (α,Dn)pcp(A) if n is even

(α,−1)
(n+1)/2
p cp(A) if n is odd
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Proof. (−1,−αnDn)p = (−1, x)np (−1,−Dn)p, and

(αiDi,−αi+1Di+1)p = (αi, αi+1)p(α
i,−Di+1)p(Di, α

i+1)p(Di,−Di+1)

= (αi,−Di+1)p(Di, α
i+1)p(Di,−Di+1)

=

{
(α,Di)p(Di,−Di+1)p if n is even

(α,−Di+1)p(Di,−Di+1)p if n is odd

But then

cp(αA) = (α,−1)n(α,−D2)(α,D2)(α,−D4)(α,D4) . . . Cp(A)

=

{
(α,−1)

n/2
p (α,Dn)pcp(A) if n is even

(α,−1)
(n+1)/2
p cp(A) if n is odd

Theorem 7. Two symmetric matrices A and B are congruent if and only if

detA = τ 2 detB and cp(A) = cp(B).

where τ ∈ Q ∗
p and cp(X) is the Hasse symbol of X.

Proof. For a proof of this result we refer to [Jon55, Theorem ??].

Modulo a square the determinant of a p-adic matrix is equal to 1, p, Np, pNp if
p 6= 2 and equal to (1, 2, 3, 6,−1,−2,−3,−6) if p = 2, see [HW02, Section 2.1] or
3.3. Moreover for the Hasse symbol we only have two choices 1 or −1. So, up to
isomorphy there are at most eight isomorphy classes of involutions of outer type of
the form θ Int(A) with A symmetric if p 6= 2 and sixteen if p = 2. They are represented
by the dual value (δ, c), where δ is a representative for Q ∗

p/Q
∗2
p , and c is the Hasse

symbol, which is equal to 1 or −1. What remains is to determine whether any of
these dual values give isomorphic involutions.

Theorem 8. Let G = SL(n, k) or GL(n, k) with k = Q p the p-adic numbers and θIA
an involution with A symmetric. Then

(1) If n is even, there are five isomorphy classes of involutions of outer type for
p 6= 2 and nine for p = 2.

(2) If n = 4k + 1, there are two isomorphy classes of involutions of outer type if
−1 ∈ Q p is a square, one otherwise.

(3) If n = 4k + 3, there are two isomorphy classes of involutions of outer type in
SL(n, Q p).
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Remark 4. −1 /∈ Q 2
2, and (2) and (3) hold both in the case that p 6= 2 and p = 2.

Proof. (1). By Lemma 21 it suffices to consider when a matrix is congruent to a
multiple of another matrix. In particular we can multiply a matrix with a constant
without changing the isomorphy class of the corresponding involution. Since n is even
we have det (αA) = detA modulo a square. So in this case each symmetric matrix
with a different determinant modulo a square represents a different isomorphy class
of involutions of type θIA.

First consider the case that n = 4k. Then cp(αA) = (α,Dn)pcp(A). If detA = 1,
then cp(αA) = cp(A), so the two outer automorphisms corresponding to the dual
values (1, 1) and (1,−1) are not conjugate since multiplication by any α can never
make the Hasse symbols equal. In the case that detA is not 1, we have only one outer
automorphism for each value of δ ∈ k∗/(k∗)2 not equal to 1, since we can multiply
with a constant α ∈ k∗ to make the Hasse symbol change sign. That means we can
make the dual value of αA equal to (δ, 1) as well as (δ,−1), so we take (δ, 1) as our
representative.

In the case that n = 4k + 2, then

cp(αA) = (α,−1)p(α,Dn)pcp(A)

= (α,−Dn)pcp(A)

So for detA = −1 there are two outer automorphisms with dual values (−1, 1) and
(−1,−1), and one for each of the others dual values (δ, 1) with δ ∈ k∗/(k∗)2, δ 6= −1.
Note that detA = −1 modulo a square equals 1 or Np depending on p. In both cases
we get five outer automorphisms for p 6= 2 and nine for p = 2.

(2) and (3). In the case that n is odd we can again multiply the matrix A with
a constant α without changing the isomorphy class of the corresponding involution,
but in this case det (αA) = α detA modulo a square. So we can take representatives
whose corresponding matrix have determinant 1.

For n = 4k + 1 we have cp(αA) = (α,−1)pcp(A). Therefore if −1 is a square, no
matter what your choice of α is, the Hasse symbol remains the same and there are
two involutions of outer type with dual values (1, 1) and (1,−1). If −1 is a not square
there is only one isomorphy class of outer automorphism since we can multiply with
a constant α ∈ k∗ to make the Hasse symbol change sign.

For n = 4k + 3 we have cp(αA) = cp(A). So there are two outer automorphisms
since multiplication with any constant α ∈ k∗ can never change the Hasse symbol,
i.e. the involutions with dual value (1, 1) and (1,−1) are never conjugate.

Remark 5. Let D1 = (1, 1), D2 = (1,−1), D3 = (p, 1), D4 = (p,−1), D5 = (Np, 1),
D6 = (Np,−1), D7 = (pNp, 1), D8 = (pNp,−1) be the dual values in Q p, (p 6= 2).
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And let d1 = (1, 1), d2 = (1,−1), d3 = (−1, 1), d4 = (−1,−1), d5 = (2, 1),
d6 = (2,−1), d7 = (−2, 1), d8 = (−2,−1), d9 = (3, 1), d10 = (3,−1), d11 = (−3, 1),
d12 = (−3,−1) d13 = (6, 1), d14 = (6,−1), d15 = (−6, 1), d16 = (−6,−1) be the dual
values in Q 2. Table 1 gives the dual values of the representatives of the isomorphy
classes of the involutions θIA with A symmetric.

dual value −1 ∈ Q 2
p −1 /∈ Q 2

p p = 2

n = 4k D1, D2, D3, D5, D7 D1, D2, D3, D5, D7 d1, d2, d3, d5, d7, d9, d11, d13, d15
n = 4k + 2 D1, D2, D3, D5, D7 D1, D3, D5, D6, D7 d1, d3, d4, d5, d7, d9, d11, d13, d15
n = 4k + 1 D1, D2 D1 d1
n = 4k + 3 D1, D2 D1, D2 d1, d2

Table 3.1: Corresponding dual values (up to isomorphy)

3.5 Summary of the classification on SL(n, k)

As in the previous section we let θ be the involution defined by θ(x) = Tx−1, x ∈ G.
In this section we summarize the classification of involutions in the case that the field
k is algebraically closed, the real numbers, the p-adic numbers or a finite field F p and
we give representatives for each of the isomorphy classes.

k = k̄: algebraically closed

(1) If n is odd, there are n+1
2

isomorphy classes of involutions. Representatives are
IA with A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e and θ.

(2) If n is even, there are n
2
+ 2 isomorphy classes of involutions. Representatives

are IA with A is one of the following In−i,i, i = 1, 2, . . . , n
2
, θ and θIJn.

k = R : the real numbers

(1) If n is odd, there are n isomorphy classes of involutions. Representatives are θ,
IA and θIA with A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e.

(2) If n is even, there are n + 3 isomorphy classes of involutions. Representatives
are IJn, θ, θIJn, IA and θIA with A is one of the following In−i,i, i = 1, 2, . . . , n

2
.
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k = F p: finite field, p 6= 2

Let Np be a non trivial representative of F ∗
p/F

∗2
p .

(1) If n is odd, there are n−1
2

+ 2 isomorphy classes of involutions. Representatives
are θ, IA and θIB where A is one of the following In−i,i, i = 1, 2, . . . , dn−1

2
e and

B is Mn,Np.

(2) If n is even, there are n
2
+ 4 isomorphy classes of involutions. Representatives

are IA, IB, θ, θIJn and θIC with A is one of the following In−i,i, i = 1, 2, . . . , n
2
,

B is Ln,Np, and C is Mn,Np.

k = Q p: the p-adic numbers

If p 6= 2, then we take 1, p, Np, pNp as representatives of Q ∗
p/Q

∗2
p and if p = 2, then

we take {1,−1, 2,−2,−3, 3, 6,−6} as representatives.

(1) If n is even, then there are n
2
+ 9 isomorphy classes of involutions for p 6= 2,

n
2
+ 17 for p = 2. Representatives are

(a) p 6= 2: IA, IB, θ, θIJn and θIC and θID. Here A is one of the following
In−i,i, i = 1, 2, . . . , n

2
, B is Ln,x with x = Np, p, or pNp and C is Mn,x with

x = Np, p, or pNp. For the matrix D we have the following cases:

D =



Kn,p,Np,pNp if − 1 ∈ Q 2

p

Nn,p,p if − 1 /∈ Q 2
p and n = 4k

Kn,p,p,Np if − 1 /∈ Q 2
p and n = 4k + 2

(b) p = 2: The same as p 6= 2, but x in B and C are chosen from 2, 3, 6, −1,
−2, −3, −6, and D is In−2,2 if n = 4k and Kn,2,3,−6 if n = 4k + 2.

(2) If n = 4k + 1, there are n−1
2

+ 2 isomorphy classes of involutions if −1 ∈ Q 2
p,

otherwise n−1
2

+1. Representatives are IA, θ, and possibly ID if −1 ∈ Q 2
p, where

A is one of the following: In−i,i, i = 1, 2, . . . , n−1
2

and D is Kn,p,Np,pNp.

(3) If n = 4k+3, there are n−1
2

+2 isomorphy classes of involutions. Representatives
are IA, θ and θID, where A is one of the following: In−i,i, i = 1, 2, . . . , n−1

2
and

D is

D =



Kn,p,Np,pNp if − 1 ∈ Q 2

p

Nn,p,p if − 1 /∈ Q 2
p

In−2,2 if p = 2

Note that −1 /∈ Q 2, and (2) and (3) hold for p 6= 2 and p = 2.



Chapter 3. SL(n, k), (n ≥ 3) 39

3.6 Fixed Point Groups and Symmetric k-Varieties

The fixed-point group H = Gδ for an involution δ over G is defined by

Gδ = {x ∈ G | δ(x) = x}.
The fixed point group determines a lot of the structure of the corresponding symmetric
k-variety X := {gδ(g)−1 | g ∈ G}. It is easy to see that X ' G/Gδ. Moreover if Gδ

is compact, then from [HW93] it follows that X consists of semisimple elements:

Proposition 3 ([HW93, Proposition 10. 8]). Let G be a connected reductive
algebraic k-group with char(k) = 0 and X = {gδ(g)−1|g ∈ G}. Suppose that H∩[G,G]
is anisotropic over k. Then Xk consists of semi-simple elements.

In view of this result it is important to determine which involutions have an
k-anisotropic fixed point group. For k = R or Q p all k-anisotropic subgroups are
compact. Our main attention will be given to R and Q p. In this section, we’ll study
the compactness of the fixed point groups.

Lemma 24. For the matrix A = In−i,i, the fixed point group GIA consists of the

matrices

(
X 0
0 Y

)
where X ∈ GL(n − i, k), Y ∈ GL(i, k) and detX. det Y = 1 and

the group GIA is noncompact.

Proof. For A = In−i,i and IA(X) = X write X =

(
X1 X2

X3 X4

)
with X1 a n− i× n− i

block and X4 a i× i block. Then

IA(X) =

(
In−i 0
0 −Ii

)(
X1 X2

X3 X4

)(
In−i 0
0 −Ii

)
=

(
X1 X2

X3 X4

)

i.e.

(
X1 −X2

−X3 X4

)
=

(
X1 X2

X3 X4

)
.

So X2 = 0 and X3 = 0. Since X ∈ SL(n, k) and detX = detX1. detX4 the result
follows.

Lemma 25. For the matrix B = Ln,p, the noncompact fixed point group GIB consists
of the elements 


X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
. . .

...
Xm1 Xm2 . . . Xmm


 ,

where m = n
2
, and Xij =

(
xij yij
pyij xij

)
.
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Proof. Let X =




X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
. . .

...
Xm1 Xm2 . . . Xmm


 and assume IB(X) = X. Then

−



J2 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . J2






X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
. . .

...
Xm1 Xm2 . . . Xmm





J2 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . J2


 =




X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
. . .

...
Xm1 Xm2 . . . Xmm




That is −J2XijJ2 = Xij for all i, j = 1, . . . , n. Let Xij =

(
xij yij
zij wij

)
. Then

−J2XijJ2 = Xij implies that wij = xij and zij = pyij, what proves the result.

Lemma 26. x2
1 + x2

2 + x2
3 + ax2

4 = 1 has only bounded solutions in Q 2 if and only if
a ∈ Q 2

2.

Proof. Assume first that a = 1, i.e. x2
1+x2

2+x2
3+x2

4 = 1 and write xi = 2si+
∞∑

j=si+1

δij2
j.

Then x2
i = 22si +

∞∑
j=2si+3

πij2
j. Without loss of generality we may first assume that

s1 ≤ s2 ≤ s3 ≤ s4. If s1 6= s2, then

x2
1 + x2

2 + x2
3 + x2

4 = 22s1 +

∞∑
j=2si+2

φij2
j .

To make this equal to 1, we must have s1 = 0 and x1, x2, x3 and x4 are units. If
s1 = s2 and s2 6= s3, then

x2
1 + x2

2 + x2
3 + x2

4 = 22s1+1 +

∞∑
j=2si+2

φij2
j

which cannot equal 1. If s1 = s2 = s3 and s3 6= s4, then x2
1 + x2

2 + x2
3 + x2

4 =

22s1 +22s1+1+

∞∑
j=2si+2

φij2
j, which is not going to equal to 1. If s1 = s2 = s3 = s4 then

x2
1 + x2

2 + x2
3 + x2

4 = 22s1+2 +
∞∑

j=2si+3

φij2
j,
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To make this equal to 1, we need to have s1 = −1, which forces the norms |xi| = 2.
So x2

1 + x2
2+ x2

3 + x2
4 = 1 forces |xi| ≤ 2. Thus all solutions are in the ball with radius

2. On the other hand if a /∈ Q 2
2 we can take a to be one of the representatives 2, 3, 6,

−1, −2, −3 or −6 of Q ∗
2/Q

∗2
2 , which can all be written as δ0 + 2δ1 + 4δ2 +

∞∑
s=3

φs2
s.

Since δi and φs are 0 or 1 we get

ax4 = δ02
2s4 + δ122s4 + 1 + δ222s4 + 2 +

∞∑
k=2s4+3

πs2
s.

No matter what δi is, we can carefully choose x1, x2 and x3 to make the coefficients
all zero for those whose powers are less than 2s4+3. For the coefficients whose power
are larger or equal to 2k4+3, we can choose x1, x2 and x3 as we desire. In particular
we can make the sum equal to 1. Since s4 ≤ −2 is an arbitrary integer we can get as
large a solution as we desire.

Lemma 27. The fixed point group of θ is the group SO(n, k) = {A ∈ G | TAA = Id}.
For k = R , the group SO(n, k) is compact, for k = Q p the p-adic numbers (p 6= 2),
it’s not. For Q 2, if the rank of G is 3 or 4, it’s compact, noncompact if the rank of
G is larger than or equal to 5.

Proof. For k = R and Q p compactness means closed and bounded. It’s easy to see
that the fixed point group is closed. For k = R , since the norm ‖A‖ = n, it follows
that it is bounded.

For Q 2, consider the case of rank(G) = 4 first. If x2
1 + x2

2 + x2
3 + x2

4 = 1, then by
Lemma 26 |xi| ≤ 2. Therefore for rank(G) = 4 (thus 3 as well), the fixed point group
is compact.

For rank of G of 5 or bigger, let x5 = x4, we have x2
1 + x2

2 + x2
3 + 2x2

4 = 1, also by
Lemma 26 we know we can choose xi as big as we want, so it’s noncompact.

For Q p, consider first the case n = 3. The matrices A3 =


 a b c

ac
b−1

c 1 + c2

b−1

b+ c2

b−1
−a − ac

b−1




are in the fixed point group as long as a2+ b2+ c2 = 1. We know when n ≥ 3, we can
choose a, b, c as large as we want, hence the norms of the matrices are not all finite,
therefore the set of these matrices is not bounded. For G of higher rank the matrices(
A3 0
0 In−3

)
are in the fixed point group.

Lemma 28. The fixed point group of θIJn is noncompact.
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Proof. The fixed point group is H = {A | θ(A) = IJn(A)}. Clearly


r1 0 . . . 0 0
0 r−1

1 . . . 0 0
...

...
. . .

...
...

0 0 . . . rm 0
0 0 . . . 0 r−1

m




is in H , which is not bounded.

Lemma 29. Let k = R or Q 2 and A = In−i,i. Then the fixed point group of θIA is
noncompact.

Proof. The matrix 

In−i−1 0 0 0

0 a b 0
0 b a 0
0 0 0 Ii−1




is in the fixed point group as long as a2 − b2 = 1.

So far we proved that the only compact fixed point group is that of the involution
θ for k = R and k = Q 2 and n = 3 or 4.

Lemma 30. Let k = Q p, (p 6= 2 and p = 2) and C = Mn,x. The fixed point group of
θIC is noncompact if the rank(G) = n ≥ 4.

Proof. For p 6= 2 The matrices

(
M 0
0 1

)
, where M is n− 1× n− 1 matrix such that

TMM = Id, is in the fixed point group. By Lemma 27, if n ≥ 4, it’s unbounded,
therefore the fixed point group is unbounded, thus noncompact. For p = 2, by Lemma
26, for rank of G bigger than or equal to 4, it’s noncompact.

For the matrices form C, we still need to consider the situation of rank(G) = n = 3.

Lemma 31. Let k = Q p and C = M3,x. The fixed point group of θIC is noncompact
if −1 ∈ Q 2

p.

Proof. The matrices


 a b 0

−b 1−b2

a
0

0 0 1


 are in the fixed point group as long as a2+b2 = 1.

While −1 ∈ Q 2
p, the norm of a and b can be chosen as big as we want, hence the fixed

point group of θIC is noncompact.
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Lemma 32. Let k = Q p and C = M3,Np . The fixed point group of θIC is noncompact.

Proof. The matrix A3 =


 a b c

x2c−a2b
1−b2

a ac
b−1

acx
b−1

xc xc2

1−b
− 1


 is in the fixed point group as long

as a2 + b2 + xc2 = 1 has a solution. For x = Np, we have infinite solutions, and we
can choose the norms of the roots to be as large as we want.

Lemma 33. Let k = Q p and C = M3,x, where x is p or pNp. The fixed point group
of θIC is compact if −1 /∈ Q 2

p.

Proof. The fixed point group of θIC is the set of the matrices


a11 a12 a13
a21 a22 a23
a31 a32 a33


, where


 a11 a12 xa13

a21 a22 xa23
1
x
a31

1
x
a32 a33




a11 a21 a31
a11 a22 a32
a13 a23 a33


 = I.

For x is Np or pNp and −1 /∈ Q 2
p, all the solutions for a

2
i1+a2i2+xa2i3 = 1 or x are unit

(norm less or equal 1), therefore the fixed point group is bounded, hence compact.

Lemma 34. Let k = Q 2 and C = M3,x, where x ∈ {2, 3, 6,−1,−2,−3,−6}. The
fixed point group of θIC is compact if x = 2 ,−3 or −6, noncompact otherwise.

Proof. Whether the fixed point group is bounded or not depends on whether the
equation a21+a22+xa23 = 1 has only bounded solutions or not, as follows from Lemma

32 and 33. Let ai = 2ki +
∞∑

j=ki+1

δij2
j. Without loss of generality we may assume

k1 ≤ k2. If k1 ≥ k3 + 1, with x ∈ {−1,−2,−3,−6, 2, 3, 6}, then a21 + a22 + xa23 =

x22k3 + x +
∞∑

j=2k3+2

δij2
j is either not equal to 1 or k3 = 0. This forces |a3| = 1, thus

max(|a1|, |a2|) ≤ 1
2
. So we can possibly only get a noncompact fixed group when

k3 ≥ k1. Therefore we can write a22 = 22k1
∞∑
j=0

δj2
j, and xa23 = 22k1

∞∑
j=0

π2j. We also

know that a21 = 22k1 + 22k1
∞∑
j=3

φj2
j If we want k1 ≤ −1 and a21 + a22 + xa23 = 1, then

we must have 1 + δ0 + π0 = 2, δ1 + π1 = 1, δ2 + π2 = 1. Furthermore, we know that

if δ0 = 1, then δ1 = δ2 = 0 and if δ0 = 0, then δ1 = 0 since a22 = 22k1
∞∑
j=0

δj2
j. So if
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δ0 = 1, we have φ0 = 0, and φ1 = φ2 = 1, so x = 6 or −2. If δ0 = 0, we have φ0 = 1
and φ1 = 1, so x = 3, or −1. From the above discussion we know that for x is −1,
−2, 3 and 6, we can choose aij to be as big as possible, thus the fixed point group
is noncompact while for x is 2, −3 or −6 the aij ’s can only be chosen from the unit
ball.

Lemma 35. For the matrix D =


x 0 0
0 y 0
0 0 z


, the fixed point group of θID are the

matrices




a b c
δybi−zacf
xa2+yb2

− δxai+zbcf
xa2+yb2

f

−z(aci+δbf)
xa2+yb2

z(δxaf−ybci)
y(xa2+yb2)

i


 where δ is 1 or −1 and a, b, c, f and i satisfy

the following equations:

a2 +
y

x
b2 +

z

x
c2 = 1

and
z

x
c2 +

z

y
f 2 + i2 = 1.

Proof. Let X =


a b c
d e f
g h i


 be in the fixed point group of θID. Then θ(X) = ID(X),

that is D−1XDTX = I, i.e.
 a y

x
b z

x
c

x
y
d e z

y
f

x
z
g y

z
h i




a d g
b e h
c f i


 = I.

From x
y
ad+ be + z

y
fc = 0, it follows that e = − (xad+zfc)

yb
. Therefore

x

y
d2 + e2 +

z

y
f 2 = 1

=⇒ x

y
d2 +

(
xa

yb

)2

d2 +

(
2xzacf

yb

)
d+

z2f 2c2

y2b2
+

z

y
f 2 − 1 = 0

=⇒ (
xyb2 + x2a2

)
d2 + (2xzacf) d+ z2c2f 2 + yzb2f 2 − y2b2 = 0

Solve

d =
δybi− zacf

xa2 + yb2
, where δ is 1 or − 1.

Then

e = −xad + zcf

yb
= −δxai + zbcf

xa2 + yb2
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Furthermore we have
ag +

y

x
bh =

z

x
ci = 0

and
x

y
d+ eh+

z

y
fi = 0

So

g =
z (ce− bf) i

y (bd − ae)

h =
z (af − cd) i

y (bd − ae)

And if we plug in d and e into db− ae, we have db− ae = δi, So

g = δz (ce− bf) = −z (aci+ δbf)

xa2 + yb2

and

h =
δz

y
(af − cd) =

z (δxaf − ybci)

y (xa2 + yb2)

Lemma 36. For matrix D = Kn,p,Np,pNp, and −1 ∈ Q 2
p the fixed point group of θID

is noncompact.

Proof. matrix

(
In−3 0
0 M3

)
is in the fixed point group if and only if M3 is the form

of Lemma 35. For −1 ∈ Q 2
p, we can choose a, b and c as large as we want to make

the equations in Lemma 34 satisfied.

Lemma 37. Assume −1 /∈ Q 2
p. For the matrix D = Nn,p,p with n ≥ 5, or D =

Kn,p,p,Np with n ≥ 6, the fixed point group of θID is noncompact.

Proof. The result follows with a simular arguments as in Lemma 30, using Lemma
27.

This proves that for each choice of the matrices D in section 3(5)(a)(i) the fixed
point groups are noncompact except in the case that the rank of G is 4 and −1 /∈ Q 2

p,
which is compact as follows from the following Lemma.

Lemma 38. For the matrix D = N4,p,p, and −1 /∈ Q 2
p, the fixed point group of θID

is compact.
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Proof. The fixed point group is the set of all the matrices



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


,

where 


a11 a12 pa13 pa14
a21 a22 pa23 pa24
1
p
a31

1
p
a32 a33 a34

1
p
a41

1
p
a42 a43 a44





a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 = I.

Since −1 /∈ Q p, x
2+y2 begins with even power of p if we write it in the standard form.

So consider the diagonal element in the above matrix identity. a211+a212+pa213+pa214 =
1 can only occur inside the unit ball (with norm less or equal 1). A similar arguments
hold for the other rows.

Summary of the compact fixed groups

For R , we proved that the only compact fixed point group is for the involution θ, and
for Q p with p 6= 2, the involutions with compact fixed point groups are

(1) rank(G) = n = 3: θIA and θIB, where A is M3,p and B is M3,pNp.

(2) rank(G) = n = 4: θIA if −1 ∈ Q 2
p, where A is N4,p,p.

(3) rank(G) = n > 4. None.

Finally for Q 2 the involutions with compact fixed point groups are

(1) rank(G) = n = 3: θ, θIM3,2 , θIM3,−3and θIM3,−6 .

(2) rank(G) = n = 4: θ.

(3) rank(G) = n > 4. None.

3.7 Involutions and k-inner elements

Let G be a connected reductive algebraic group defined over a field k of characteristic
not 2, σ an involution of G defined over k, H a k-open subgroup of the fixed point
group of σ and Gk (resp. Hk) the set of k-rational points of G (resp. H). The variety
Gk/Hk is called a symmetric k-variety. To study these symmetric k-varieties one needs
first a classification of the related k-involutions. In [Hel00] the isomorphy classes of
k-involutions were characterized by essentially using the following 3 invariants:
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(1) classification of admissible (Γ, σ)-indices.

(2) classification of the Gk-isomorphy classes of k-involutions of the k-anisotropic
kernel of G.

(3) classification of the Gk-isomorphy classes of k-inner elements of G.

For more details, see [Hel00]. The admissible (Γ, σ)-indices determine most of the
fine structure of the symmetric k-varieties and a classification of these was included
in [Hel00] as well. To complete the classification it remains to classify the second
and third invariant. As was shown in [Hel00] a classification of the k-inner elements
depend on the base field k and for general G a classification of this second and third
invariant can be quite complicated. For k = R the k-inner elements were classified in
[Hel88] by using signatures as an invariant. For other fields additional invariants are
needed. To get a good idea of the kind of invariant that might be needed we study
the case that G is k-split first. In this case there is a maximal torus T which is k-split
and hence there is no k-anisotropic kernel. So in this case we only need to classify
the third invariant: the Gk-isomorphy classes of k-inner elements. In this chapter we
study the case that Gk = SL(n, k), which is k-split. In the previous sections we gave
a characterization of the isomorphy classes of k-involutions and classified them for k
algebraically closed, the real numbers, the p-adic numbers or a finite field F p. This
classification was independent of the characterization in [Hel00]. To be able to use
these results as an indication of how to proceed with a general classification of the
k-inner elements we need to translate the results in this chapter to fit the invariants/
characterization given in [Hel00]. We discuss this in this section.

3.8 (Γ, σ)-indices

3.8.1 (σ, k)-split tori

Since the group is k-split the (Γ, σ)-indices are exactly the σ-indices of the case that
k = k̄ is algebraically closed, only with an additional label Γ under all the black
nodes in the σ-index. The latter were classified [Hel88, Table II]. We recall that in
the case k = k̄ there is a bijective correspondence between the isomorphy classes of
k-involutions and the congruence classes of σ-indices (see [Hel88, Theorem 3.11]). So
the (Γ, σ)-indices for Gk = SL(n, k) are:

A
(1)
n,n(I): e

1
e
2

e
n−1

e
n

A
(1)
2n+1,2n+1(II): u

Γ
e
1

u
Γ

e
n

u
Γ
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A
(1)
n,n(IIIpa):

e e e u
Γ

��
u
Γ

u
Γ

@@6

?

6

?

6

?

6

?

σ∗

e
1

e
2

e
p

u
Γ

A
(1)
2n−1,2n−1(IIIb):

e e e��
e
n@@6

?

6

?

6

?
σ∗

e
1

e
2

e
n−1

For notations on the (Γ, σ)-indices we refer to [Hel00, Section 5]. The involutions of
Ḡ = SL(n, k̄) corresponding to these (Γ, σ)-indices are respectively θ, θIJn and IA
with A is one of In−i,i, i = 1, 2, . . . , dn−1

2
e. The latter two (Γ, σ)-indices are both

related to the involutions of inner type, but since the restricted root system for the
related symmetric k-variety is of a different type both (Γ, σ)-indices occur in the list
of (Γ, σ)-indices.

3.8.2 k-inner elements

Let T be a maximal k-split torus of Ḡ. Since G is k-split T is a maximal torus of
Ḡ as well. Since G is k-split it follows from [Hel00, Theorem 8.33] that we have the
following characterization of the isomorphy classes:

Theorem 9 ([Hel00, Theorem 8.33]). Any k-involution of G is isomorphic to
one of the form σ Int(a), where σ is a representative of a Ḡ-isomorphy class of k-
involutions, A a maximal (σ, k)-split torus and a ∈ A.

The set of set of k-inner elements of A is defined as the set of those a ∈ A such
that σ Int(a) is a k-involution of G by Ik(A). We recall that from [Hel00, Lemma 9.7]
it follows that one can find a set of representatives for the isomorphy classes of the
involutions σ Int(A) in the set Ik(A)/A

2
k. Here Ak is the set a k-regular elements of

A and A2
k = {a2 | a ∈ Ak}. Note that the set Ak/A

2
k =' (k∗/(k∗)2)n.

In the remainder of this section we will rewrite the representatives for the isomor-
phy classes in the form σ Int(a) with σ one of the representatives from the algebraically
closed case and in particular find a set of k-inner elements of A representing these
isomorphy classes. This will lead to a set of invariants classifying these elements in
the cases that G = SL(n, k).

Computing the maximal (σ, k)-split tori

For each of the different types of involutions over the algebraically closed field k̄ we
will compute in the following first the maximal (σ, k)-split torus A and after that the
k-inner elements representing the different isomorphy classes of involutions. In the
following let T be the maximal k-split torus consisting of all the diagonal matrices.
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(1) If σ = θ, then the maximal (σ, k)-split torus is S1 = T−
σ = {t ∈ T | σ(t) =

t−1} = T .

(2) If σ = θIJn , then let T ′ = X−1TX with X ∈ SL(n, k). We need to choose X
such that S2 = T−

σ = {X−1tX | t ∈ T, σ(X−1tX) = (X−1tX)−1}0 has maximal
dimension. Note that

σ(X−1tX) = (X−1tX)−1 ⇒ θIJn(X
−1tX) = X−1t−1X

⇒ J−1
n (X−1tX)Jn = θ(X−1t−1X) = TXtTX−1

⇒ XJn
TXt = tXJn

TX.

For X = I, the dimension of A2 is maximal and equal to n
2
. In particular the

maximal (σ, k)-split torus is:

A2 = {diag(a1, a2, . . . , an) | a1 = a2, a3 = a4, . . . an−1 = an} .
(3) If σ = IA with A one of In−i,i, i = 1, 2, . . . , dn−1

2
e, then let T ′ = X−1TX with

X ∈ SL(n, k). We need to choose X such that Sn−i,i = T−
σ = {X−1tX | t ∈

T, σ(X−1tX) = (X−1tX)−1}0 has maximal dimension.

For the maximal (σ, k)-split torus and their dimensions, we have

Lemma 39. The maximal (σ, k)-split torus for In−i,i, i = 1, 2, . . . , dn−1
2
e can be

chosen as:

An−i,i = {X−1 diag(a1, . . . , ai, a
−1
i , . . . , a−1

1 , 1, . . . , 1)X},

where X satisfies XAX−1 =

(
J 0
0 In−2i

)
. The dimension of the maximal (σ, k)-split

torus is of course i.

Proof. Note that

σ(X−1tX) = (X−1tX)−1 ⇒ IA(X
−1tX) = X−1t−1X

⇒ A−1(X−1tX)A = X−1t−1X

⇒ tXAX−1 = XAX−1t−1.

Since t is conjugate to t−1, then highest possible dimension can only be less or equal
to n

2
. Furthermore, if t = diag(a1, . . . , ai, a

−1
i , . . . , a−1

1 , 1, . . . , 1), and tY = Y t−1, then

we have Y =

(
J 0
0 Yn−2i

)
, therefore, if the (σ, k)-split tori has dimension of i, the

corresponding In−j,j has to be conjugate to

(
J 0
0 Yn−2i

)
. Hence the (σ, k)-split tori

has dimension of i iff the corresponding In−j,j s.t. j ≥ i, i.e. the maximal (σ, k)-split
tori is dimension j for In−j,j.
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Computing the k-inner elements representing the isomorphy classes

From [Hel00, Theorem 8.33] we know now that any k-involution is conjugate to one
of the following:

(1) θ Int(a), a ∈ S1 = T,,

(2) θIJn Int(a), a ∈ S2,

(3) IA Int(a), A = In−i,i, a ∈ Sn−i,i.

Next we will compute the k-inner elements corresponding to the representatives of the
isomorphy classes of involutions in Section 3.5. Note that for k = R a classification
of these k-inner elements can also be found in [Hel88, Table II and IV], where they
are called quadratic elements.

(1) k = R : the real numbers (see Section 3.5)

(a) θ is in case (1) with a = I.

(b) IA is in case (3) with a = I.

(c) IJn is in case (3) with a = X−1tX ∈ An
2
,n
2
, where t = diag(i, . . . , i,−i, . . . ,−i).

(d) θIJn is in case (2) with a = I.

(e) θIA is in the case (1) with a = A.

(2) k = Q p: the p-adic numbers (see Section 3.5)

(a) θ is in case (1) with a = I.

(b) IA is in case (3) with a = I.

(c) θIA is in case (1) with a = A.

(d) IB is in case (3) with a = X−1tX ∈ An
2
,n
2
, where t = (

√
x)−1 diag(x, . . . , x, 1 . . . , 1),

and x is p, Np, pNp for p 6= 2 and −1,−2,−3,−6, 2, 3, 6 for Q 2.

(e) θIJn is in case (2) with a = I.



Chapter 4

Involutions of SO(2n + 1, k)

4.1 Preliminaries

For this chapter, let k be a field and k1 is an extension field of k, k̄ the algebraic
closure of k, G = SO(2n + 1, k), G1 = SO(2n + 1, k1) and Ḡ = SO(2n + 1, k̄). We
assume that the characteristic of k, k1 and k̄ is not equal to 2.

Definition 5. θ, φ ∈ Aut(G1) are said to be k-conjugate if and only if there is a
χ ∈ Int(G), such that χ−1θχ = φ.

Similar as in the case of SL(2, k̄) in general we have the following result, which
can be found in [Bor91]:

Lemma 40. If k is an algebraically closed field, then we have Aut(G) = Int(G).

4.2 Isomorphy classes of Involutions of SO(2n +

1, k)

From Lemma 40 it follows that for any θ ∈ Aut(G), there is a (2n + 1) × (2n + 1)
matrix A ∈ GL(2n + 1, k̄), such that θ = IA|G. So any automorphism θ is an inner
automorphism. We will also call this an innermorphism. For inner automorphisms,
we have the following:

Lemma 41. If IA|G = I for some A ∈ GL(2n+ 1, k̄), then A = pI for some p ∈ k̄.

Proof. Since IA|G = I, we have for all X ∈ G, IA(X) = A−1XA = X i.e. AX =

XA. Let A = (aij)2n+1×2n+1 and Xs,t =




Is−1 0 . . . 0 0
0 0 . . . 1 0
...

... It−s−1
...

...
0 −1 . . . 0 0
0 0 . . . 0 I2n+1−t


, where

51
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s < t ≤ 2n + 1. We have Xs,t ∈ SO(2n + 1, k), and AXs,t = Xs,tA. From
AXs1,t1Xs2,t2 . . .Xsr,tr = Xs1,t1Xs2,t2 . . .Xsr,trA with si < ti ≤ 2n + 1, i = 1, . . . r,
it follows that aij = 0 if i 6= j and a11 = a22 = · · · = a2n+1,2n+1. That is A = p Id for
some p ∈ k̄.

Next we characterize the inner automorphisms IA with A ∈ GL(2n + 1, k̄) which
keep Ḡ and G invariant. We have the following result.

Lemma 42. Suppose A ∈ GL(2n+ 1, k̄), G = SO(2n+1, k) and Ḡ = SO(2n+ 1, k̄).

(a) The inner automorphism IA keeps Ḡ invariant if and only if A = pM , for some
p ∈ k̄ and M ∈ Ḡ.

(b) If A ∈ Ḡ, then IA keeps G invariant if and only if A = pM , for some p ∈ k̄
and M ∈ G.

In particular any inner automorphism σ ∈ Int(G) can be written as σ = IM , where
M ∈ SO(2n+ 1, k).

Proof. (a). The proof of (⇐=) is obvious.
(=⇒) Let X ∈ Ḡ. Then B = IA(X) = A−1XA ∈ Ḡ. From TB−1 = B it follows

that ATAX(ATA)−1 = X. But then by Lemma 41 we have ATA = q Id for some
q ∈ k̄∗. Let p ∈ k̄∗ such that p2(2n+1) = q−1. Then A1 = pA satisfies A1

TA1 = Id, so
A1 ∈ O(2n+1, k̄). If det(A1) = 1 we are done and if det(A1) = −1, then since 2n+1
is odd the matrix −A1 ∈ SO(2n+ 1, k̄).

(b). The proof of (⇐=) is obvious.
(=⇒) Since A ∈ Ḡ we have that A−1 = TA. Let X = (xij)2n+1×2n+1 ∈ SO(2n +

1, k) with xij ∈ k and assume A = (aij)2n+1×2n+1 ∈ SO(2n+ 1, k̄) with aij ∈ k̄. Then

IA(X) = A−1XA =

(
2n+1∑
s=1

2n+1∑
l=1

asixslalj

)
(2n+1)×(2n+1)

Let es,t be the matrix (xi,j) where xi,j = 0 except xs,t = 1.

(1) Let Xs,t = I−2es,s−2et,t, then X ∈ G for s 6= t. Since IA(I), and IA(Xst) ∈ G,
then IA(Xst)− IA(I) ∈ k, i.e. IA(ess) + IA(ett) ∈ k. i.e. asiasj + atiatj ∈ G for
all i, j, s 6= t. Next we prove asiasj ∈ G for all i, j, s. Without loss of generality
it suffices to prove that a1ia1j ∈ G. Since a1ia1j + · · · + a2n+1,ia2n+1,j ∈ G (in
fact it must be 1 or 0 since ATA = I), we have

a1ia1j =
1

2
(2(a1ia1j + · · ·+ a2n+1,ia2n+1,j)− (a2ia2j + a3ia3j)−

− · · · − (a2n+1,ia2n+1,j + a2ia2j)) ∈ G.
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(2) We prove next that asiatj ∈ G for s 6= t. Without loss of generality it suf-

fices to prove that a1ia2j ∈ G. Let X1 =


 0 1 0

−1 0 0
0 0 I2n−1


, and X2 =



0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 I2n−2


, Since IA(X1) ∈ G and IA(X2) ∈ G, i.e. −a2ia1j + a1ia2j +

a3ia3j+a4,ia4j+· · ·+a2n+1,ia2n+1,j ∈ G, and a2ia1j+a1ia2j−a3ia3j+a4,ia4j+· · ·+
a2n+1,ia2n+1,j ∈ G. By (1) asiasj ∈ G, therefore we have −a2ia1j + a1ia2j ∈ G
and a2ia1j + a1ia2j ∈ G. Hence a1ia2j ∈ G.

By (1) and (2), aisatj ∈ k for all i, j, s, t. Therefore A = pB, where p = a−1
st 6= 0 and

B ∈ GL(n, k) for some s, t.
Furthermore, IA = IB and IB(X) ∈ SO(2n + 1, k), i.e. IB(X)T IB(X) = I, i.e.

XBTB = BTBX, so BTB = qI for some q ∈ k. Taking determinants on both
sides, we get (detB)2 = q2n+1, so q = r−2 for some r ∈ k. Let M = rB, we have
MTM = I and IA = IM . If M /∈ G, i.e. detM = −1, we choose instead −M ∈ G
and IA = IM .

Now let’s turn our attention to involutions of G = SO(2n+1, k). Since θ ∈ Aut(G)
is always an inner automorphism, furthermore by Lemma 42, there is a matrix A ∈
SO(2n+ 1, k) such that θ = IA. And if it’s involution, i.e. θ2 = I. Then we have the
following

Lemma 43. Suppose θ is an involution of G = SO(2n + 1, k). Then there is a

matrix A ∈ SO(2n + 1, k), such that IA = θ and A = X−1

(
Is 0
0 −It

)
X for some

X ∈ GL(n, k) with XTX a diagonal matrix with s+ t = 2n+ 1 and s is odd.

Proof. By Lemma 42 we know there is a matrix A ∈ G, such that θ = IA. Since θ is
an involution we have θ2 = I2A = I. By Lemma 41, A2 = δI. Since A ∈ SO(2n+1, k)
it follows that δ = 1 and A2 = I. So A is semisimple and the eigenvalues of A are 1

and/or −1. Then there is a matrix Y ∈ GL(n, k) such that A = Y −1

(
Is 0
0 −It

)
Y .

Since A ∈ G and the determinant of A is 1, s must be odd. Since A = TA, we get

Y −1

(
Is 0
0 −It

)
Y = TY

(
Is 0
0 −It

)
TY −1,

i.e. (
Is 0
0 −It

)
Y TY = Y TY

(
Is 0
0 −It

)
.
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Therefore

Y TY =

(
Y1 0
0 Y2

)
,

where TY1 = Y1 and TY2 = Y2. Since symmetric matrices are congruent to diagonal

matrices (ref to Lemma 22), there is a matrix N =

(
N1 0
0 N2

)
such that NY TY TN

is diagonal. Let X = NY . Then

XTX = diag(a1, . . . , a2n+1),

and

X−1

(
Is 0
0 −It

)
X = (NY )−1

(
Is 0
0 −It

)
NY = Y −1

(
Is 0
0 −It

)
Y = A.

It follows from the above result that for any involution θ of G, we have a matrix
A ∈ G, such that θ = IA, and A satisfies the conditions in Lemma 43. Since IA = I−A,
instead of restrict s to be odd, we assume s > t to iterate all situations. For such a
choice, we must pay attention we don’t require A ∈ SO(2n + 1, k) anymore. All we
need is ATA = I.

Now we need to figure out which of these matrices A give involutions which are
isomorphic over SO(2n + 1, k). Since SO(2n + 1, k) is a subset of GL(2n + 1, k),
whenever two matrices are conjugate over SO(2n+1, k), they are also conjugate over
GL(2n+1, k), so we only need to find out how many conjugate SO(2n+1, k)-subclasses
there are within each GL(2n+ 1, k)-conjugate class. For fixed s > t (s+ t = 2n+ 1)

all the matrices, which are GL(2n+ 1, k)-conjugate to

(
Is 0
0 −It

)
can be written as



X−1

(
Is 0
0 −It

)
X

∣∣∣∣∣ XTX =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1






(4.1)

In the following for the field of Q p, we let cp(x1, . . . , xj) denote the Hasse symbol
of the diagonal matrix 


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xj


 .
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Lemma 44. Suppose θ and φ are two involutions of SO(2n+1, k) in the same GL(2n+
1, k)-conjugacy class, and let A and B be two matrices satisfying the conditions in

Lemma 43, such that IA = θ and IB = φ. Remember Is,t =

(
Is 0
0 −It

)
Write

A = X−1Is,tX, B = Y −1Is,tY where XTX =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 and Y TY =



b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . b2n+1


. Then the following are equivalent

(1) θ is conjugate to φ (over SO(2n+ 1, k));

(2) A is conjugate to B (over SO(2n+ 1, k));

(3)



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


 is congruent to



b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bs


 and



as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1




is congruent to



bs+1 0 . . . 0
0 bs+2 . . . 0
...

...
. . .

...
0 0 . . . b2n+1


;

(4) For k the p-adic numbers: a1a2 . . . ai = τ 2b1b2 . . . bi, cp(a1, . . . , as) = cp(b1, . . . , bs)
and cp(as+1, . . . , a2n+1) = cp(bs+1, . . . , b2n+1).

Proof. (2) ⇐⇒ (1) is obvious thanks to Lemma 42 and 43.
(2) =⇒ (3): Assume there is a N ∈ G, such that N−1AN = B. Then

N−1X−1Is,tXN = Y −1Is,tY,

i.e.
Is,tXNY −1 = XNY −1Is,t.

ThereforeXNY −1 =

(
N1 0
0 N2

)
, where N1 is an s×s-matrix andN2 is an t×t-matrix,
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i.e. XN =

(
N1 0
0 N2

)
Y. But then

XTX = XNTNTX =

(
N1 0
0 N2

)
Y TY

(
TN1 0
0 TN2

)
,

i.e. 

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 =

(
N1 0
0 N2

)
b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . b2n+1



(

TN1 0
0 TN2

)
.

It follows that 

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


 = N1



b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bs


 TN1

and 

as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 = N2



bs+1 0 . . . 0
0 bs+2 . . . 0
...

...
. . .

...
0 0 . . . b2n+1


 TN2.

(3) =⇒ (2): Assume there is a s× s-matrix N1 and a t× t-matrix N2 such that

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


 = N1



b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bs


 TN1

and 

as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 = N2



bs+1 0 . . . 0
0 bs+2 . . . 0
...

...
. . .

...
0 0 . . . b2n+1


 TN2.
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Let N =

(
N1 0
0 N2

)
and M = X−1NY . Then

M−1AM = Y −1N−1XX−1

(
Is 0
0 −It

)
XX−1NY

= Y −1N−1

(
Is 0
0 −It

)
NY

= Y −1

(
N−1

1 IsN1 0
0 −N−1

2 ItN2

)
Y

= Y −1

(
Is 0
0 −It

)
Y

= B.

Furthermore, MTM = X−1(NY TY TN)TX−1 = X−1(XTX)TX−1 = I. If M /∈ G,
i.e. detM = −1, choose −M and all of the above still hold.

The equivalence of (4) and (3) is immediate from Theorem 7:

So for k the p-adic numbers, by (4) of Lemma 44, the triple values (δ, t1, t2) deter-
mine the SO(2n + 1, k)-conjugacy classes, where δ = a1a2 . . . ai is the representative
in Q ∗

p/Q
∗2
p of the determinant of the upper-left part of the diagonal matrix in (4.1), t1,

resp. t2 is the Hasse symbol of the upper-left resp. bottom-right part of the diagonal
matrix in (4.1).

Lemma 45. cp(a1, . . . , a2n+1) = cp(a1, . . . , as)cp(as+1, . . . , a2n+1)(−1,−1)p(δ1, δ2)p,
where δ1 = a1 . . . as, δ2 = as+1 . . . a2n+1.

Proof. In general cp(x1, x2, . . . , xm) = (−1,−Dn)p
∏m−1

i=1 (Di,−Di+1)p, where Di =
x1x2 . . . xi. So

cp(x1, x2, . . . , xm) = (−1,−1)p

m∏
i=1

(−1, xi)
m−1∏
j=1

m∏
i=j+1

(xj, xi)p.
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Therefore

cp(a1, . . . , as)cp(as+1, . . . , a2n+1)(−1,−1)p(δ1, δ2)p =

=(−1,−1)p

s∏
i=1

(−1, ai)
s−1∏
j=1

s∏
i=j+1

(aj, ai)p(−1,−1)p

2n+1∏
i=s+1

(−1, ai).

2n−s∏
j=1

2n+1−s∏
i=j+1

(as+j, as+i)p(−1,−1)p(δ1, δ2)p

=(−1,−1)p

2n+1∏
i=1

(−1, ai)

s−1∏
j=1

s∏
i=j+1

(aj, ai)p

2n∏
j=s+1

2n+1∏
i=j+1

(aj, as+i)p

s∏
i=1

2n+1∏
j=s+1

(ai, aj)p

=(−1,−1)p

2n+1∏
i=1

(−1, ai)
2n∏
j=1

2n+1∏
i=j+1

(aj, ai)p

=cp(a1, . . . , a2n+1).

Theorem 10. For k = C , R and F p we have the following classification of the
isomorphy classes of involutions of SO(2n+ 1, k):

(1) k = C , the complex numbers. There is only one SO(2n + 1, k)-conjugacy class
for each GL(2n+ 1, k)-conjugacy class.

(2) k = R , the real numbers. There is only one SO(2n + 1, k)-conjugacy class for
each GL(2n+ 1, k)-conjugacy class.

(3) k = F p, (p 6= 2) a finite field. There are two SO(2n+1, k)-conjugacy classes for

each GL(2n+1, k)-conjugacy class. Representatives are IA with A = X−1

(
Is 0
0 −It

)
X

and X = Id or X =



Is−1 0 0 0
0 a b 0
... −b a

...
0 0 . . . It−1


, with a2 + b2 /∈ k2.

Proof. As in Lemma 44 suppose θ = IA with A = X−1

(
Is 0
0 −It

)
X and XTX =

(
N1 0
0 N2

)
, where N1 =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


, N2 =



as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


.



Chapter 4. Involutions of SO(2n+ 1, k) 59

(1) Since for k algebraically closed all diagonal matrices are congruent to the
identity matrix the result in this case is immediate from Lemma 44(3).

(2) For k = R all the diagonal entries a1, a2, . . . , a2n+1 of X
TX are positive since

XTX is positive-definite. So XTX is congruent with Id and the result follows from
44(3).

(3) By Theorem 6 we may assume thatN1 is congruent to Id orMs,Np and similarly
that N2 is congruent to Id or Mt,Np . Since det(XTX) = 1 modulo a square we get
that det(N1) = det(N2) modulo a square. So either both N1 and N2 are congruent
to Id or N1 is congruent to Ms,Np and N2 is congruent to Mt,Np . In the first case we

have X = Id and in the second case we can take X =



Is−1 0 0 0
0 a b 0
... −b a

...
0 0 . . . It−1


, where

a2 + b2 /∈ k2.

4.2.1 Classification for k = Q p: the p-adic numbers

Theorem 11. Suppose θ = IA is an involution of SO(2n + 1, k). Assume X ∈
GL(2n + 1, k) such that A = X−1Is,tX, with XTX =

(
N1 0
0 N2

)
, where

N1 =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


 and N2 =



as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 .

Let δ = a1a2 . . . as, δ′ = as+1as+2 . . . a2n+1 be the representative in Q ∗
p/Q

∗2
p for the

determinants of N1 and N2 respectively and let t1, t2 be the Hasse symbol of N1 and
N2 respectively. For each GL(2n+1, k)-conjugacy class of an involution θ = Ia there
are at most 8 SO(2n+ 1, k)-conjugacy classes of θ corresponding to the triple values
(δ, t2(δ, δ)p, t2).

Proof. By (4) of Lemma 44, the triple value (δ, t1, t2) determines the SO(2n + 1, k)-

conjugacy classes. SinceXITX = XTX =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


, i.e.



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1




is congruent to I, cp(a1, a2, . . . , a2n+1) = (−1,−1)p, and δ = τ 2δ′. By Lemma 44
(−1,−1)p = t1t2(−1,−1)p(δ, δ

′)p i.e. t1 = t2(δ, δ)p.
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Remark 6. The triple value only has two independent unknowns.

Next we will determine which of the triple values (δ, t2(δ, δ)p, t2) in Theorem 11
give different SO(2n+1, k)-conjugacy classes and give representatives for each of these
conjugacy classes.

Corollary 5. Let L2 =

(
p 0
0 Np

)
, M2 =

(
Np 0
0 pNp

)
, N2

(
p 0
0 pNp

)
and M3 =

p 0 0
0 Np 0
0 0 pNp


. Then all the conjugacy classes fill into one of the SO(2n + 1, k)-

conjugacy subclasses in Table 4.1 and 4.2 where s + t = 2n+ 1 and s > t.

4.2.2 The matrix representatives A such that θ = IA

From the Tables 4.1 and 4.2, we know the representatives of XTX. In this subsection
we’ll choose a representative X for each value of XTX and compute A.

Assume a21 + b21 = p, a22 + b22 = Np,a
2
3 + b23 = pNp and for i = 1, 2, or 3 ci =

a2i−b2i
a2i+b2i

,

di =
2aibi
a2i+b2i

. (Note that c2i + d2i = 1). In the following we list for each type of XTX

a representative X and the corresponding matrix A. The notation in the following
follows the pattern: the sup index in parenthesis indicates how many independent
variables there are, and the sub indexes indicating which ones of the ci’s. For example
A

(2)
1,2 means there are 2 of c1, c2, c3 occur in the matrix and these two are c1 and c2.

And we brief A
(3)
1,2,3 as A(3) since for sup index is three ,there is only one choice.

(1) −1 ∈ Q 2
p.

(a) XTX =



Is−3 0 0 0
0 M3 0 0
0 0 It−3 0
0 0 0 M3


, we choose

X =




Is−3 0 0 0 0 0 0 0
0 a1 0 0 0 b1 0 0
0 0 a2 0 0 0 b2 0
0 0 0 a3 0 0 0 b3
0 0 0 0 It−3 0 0 0
0 −b1 0 0 0 a1 0 0
0 0 −b2 0 0 0 a2 0
0 0 0 −b3 0 0 0 a3




,
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hence

A(3) = X−1Is,tX =




Is−3 0 0 0 0 0 0 0
0 c1 0 0 0 d1 0 0
0 0 c2 0 0 0 d2 0
0 0 0 c3 0 0 0 d3
0 0 0 0 −It−3 0 0 0
0 d1 0 0 0 −c1 0 0
0 0 d2 0 0 0 −c2 0
0 0 0 d3 0 0 0 −c3




.

(b) XTX =



Is−1 0 0 0
0 p 0 0
0 0 It−1 0
0 0 0 p


, we choose X =



Is−1 0 0 0
0 a1 0 b1
0 0 It−1 0
0 −b1 0 a1


,

hence A
(1)
1 = X−1Is,tX =



Is−1 0 0 0
0 c1 0 d1
0 0 −It−1 0
0 d1 0 −c1


.

(c)XTX =



Is−2 0 0 0
0 M2 0 0
0 0 It−2 0
0 0 0 M2


, we chooseX =




Is−2 0 0 0 0 0
0 a2 0 0 b2 0
0 0 a3 0 0 b3
0 0 0 It−2 0 0
0 −b2 0 0 0 a2 0
0 0 −b3 0 0 0 a3



,

hence A
(2)
2,3 = X−1Is,tX =




Is−2 0 0 0 0 0
0 c2 0 0 d2 0
0 0 c3 0 0 d3
0 0 0 −It−2 0 0
0 d2 0 0 −c2 0
0 0 d3 0 0 −c3



.

(d) XTX =



Is−1 0 0 0
0 Np 0 0
0 0 It−1 0
0 0 0 Np


, we choose X =



Is−1 0 0 0
0 a2 0 b2
0 0 It−1 0
0 −b2 0 a2


, hence

A
(1)
2 = X−1Is,tX =



Is−1 0 0 0
0 c2 0 d2
0 0 −It−1 0
0 d2 0 −c2


.
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(e)XTX =



Ii−2 0 0 0
0 N2 0 0
0 0 I2n+1−i 0
0 0 0 N2


, we chooseX =




Is−2 0 0 0 0 0
0 a1 0 0 b1 0
0 0 a3 0 0 b3
0 0 0 It−2 0 0
0 −b1 0 0 0 a1 0
0 0 −b3 0 0 0 a3



,

hence A
(2)
1,3 = X−1Is,tX =




Is−2 0 0 0 0 0
0 c1 0 0 d1 0
0 0 c3 0 0 d3
0 0 0 −It−2 0 0
0 d1 0 0 −c1 0
0 0 d3 0 0 −c3



.

(f) XTX =



Ii−1 0 0 0
0 pNp 0 0
0 0 I2n−i 0
0 0 0 pNp


, we choose X =



Is−1 0 0 0
0 a3 0 b3
0 0 It−1 0
0 −b3 0 a3


,

hence A
(1)
3 = X−1Is,tX =



Is−1 0 0 0
0 c3 0 d3
0 0 −It−1 0
0 d3 0 −c3


.

(g) XTX =



Ii−2 0 0 0
0 L2 0 0
0 0 I2n+1−i 0
0 0 0 L2


, we choose

X =




Is−2 0 0 0 0 0
0 a1 0 0 b1 0
0 0 a3 0 0 b3
0 0 0 It−2 0 0
0 −b1 0 0 0 a1 0
0 0 −b3 0 0 0 a3




,

hence A
(2)
1,2 = X−1Is,tX =




Is−2 0 0 0 0 0
0 c1 0 0 d1 0
0 0 c2 0 0 d2
0 0 0 −It−2 0 0
0 d1 0 0 −c1 0
0 0 d2 0 0 −c2



.

(2) −1 /∈ (Q ∗
p)

2. For those cases that also appear in case −1 ∈ (Q ∗
p)

2, the same
matrices still hold, for the rest, we decide to leave it open since it requires to compute
XTX = M3, which does not have a nice representative.
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4.3 Fixed Point Groups

Lemma 46. Suppose θ = IA with A = X−1Is,tX, XTX =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


.

Let

Ms =



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . as


 and Mt =



as+1 0 . . . 0
0 as+2 . . . 0
...

...
. . .

...
0 0 . . . a2n+1


 .

Then the fixed point group is

Gθ =

{
X−1

(
Ns 0
0 Nt

)
X

∣∣∣∣∣ NsMs
TNs = Ms, NtMt

TNt = Mt

}
.

Proof. Suppose Y ∈ SO(2n + 1, k) such that θ(Y ) = Y , i.e. X−1Is,tXYX−1Is,tX =

Y . So we have Is,tXYX−1 = XYX−1Is,t. So XYX−1 =

(
Ns 0
0 Nt

)
, i.e. Y =

X−1

(
Ns 0
0 Nt

)
X. Since Y ∈ SO(2n+1, k), we haveX−1

(
Ns 0
0 Nt

)
XTX

(
TNs 0
0 TNt

)
TX−1 =

I, i.e. (
Ns 0
0 Nt

)
XTX

(
TNs 0
0 TNt

)
= XTX.

i.e. NsMs
TNs = Ms, NtMt

TNt = Mt.

It follows from this result that in order to determine whether the fixed point group
is compact comes down to determining whether the two parts N1 and N2 are compact,
where

N1



a1 . . . 0
...

. . .
...

0 . . . as


 TN1 =



a1 . . . 0
...

. . .
...

0 . . . as


 and

N2



as+1 . . . 0
...

. . .
...

0 . . . a2n+1


 TN2 =



as+1 . . . 0
...

. . .
...

0 . . . a2n+1


 .

The choices of the ai’s can be limited to those in Corollary 5. In particular for
k = Q p, with m equal to s or t, Ms, Mt are one of the following:
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(1)

(
Im−1 0
0 a

)
, with a = p, Np or pNp.

(2)

(
Im−2 0
0 A2

)
, with A2 = L2, M2 or N2.

(3)

(
Im−3 0
0 M3

)
.

.

4.3.1 k is algebraically closed or k = R the real numbers

The following result gives the fixed point group for the case that A = Is,t, which holds
for any field.

Lemma 47. For the matrix A = Is,t, s+ t = 2n+1, and s > t, the fixed point group

GIA is the matrix

(
Ns 0
0 Nt

)
∈ SO(2n+1, k), where Ns ∈ SO(s, k) and Nt ∈ SO(t, k).

Proof. Choose X to be I, the identity matrix. The result follows immediately from
Lemma 46.

Remark 7. For k is algebraically closed the groups SO(s, k) and SO(t, k) are un-
bounded and therefor GIA is non-compact. For k = R the group SO(2n + 1, R )
itself is compact and any closed subgroup is compact as well. So in this case GIA is
compact.

For k the complex numbers (or an algebraically closed field in general) and k the
real numbers, there is only one conjugacy class of involutions and the the fixed point
group is the one specified by Lemma 47. And it’s compact for the real numbers and
non-compact for the complex numbers (or algebraically closed fields in general).

4.3.2 k is F p, a finite field

Besides the involution IA where A = Is,t, there is another isomorphy class of involu-
tions represented by IB with B = X−1Is,tX, where

X =



Is−1 0 0 0
0 a b 0
... −b a

...
0 0 . . . −It−1


 with a2+b2 /∈ k2. That isB =



Is−1 0 0 0
0 c d 0
... d −c

...
0 0 . . . It−1


,

where c2 + d2 = 1. c = a2−b2

a2+b2
, d = 2ab

a2+b2
, with a2 + b2 /∈ k2.
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4.3.3 k is Q p, the p-adic numbers

Lemma 48. Assume x2 + aby2 = 1 and let C =

(
x ay
by −x

)
. Then

C

(
a 0
0 b

)
TC =

(
a 0
0 b

)
,

where C is compact if and only if −ab ∈ Q 2
p.

Proof. The first part follows immediately from a direct matrix computation.
The compactness is equivalent to closed and bounded. The set of matrices is

closed, and bounded iff x2 + aby2 = 1 has only bounded solution. That is, −ab ∈
Q 2

p.

Lemma 49. For D =


x 0 0
0 y 0
0 0 z


, the matrices N such that NDTN = D are the

following non-compact matrices




a b c
δybi−zacf
xa2+yb2

− δxai+zbcf
xa2+yb2

f

−z(aci+δbf)
xa2+yb2

z(δxaf−ybci)
y(xa2+yb2)

i


, where δ is 1 or −1

and a, b, c, f and i satisfy the following equations:

a2 +
y

x
b2 +

z

x
c2 = 1

and
z

x
c2 +

z

y
f 2 + i2 = 1.

Proof. Let θ be the automorphism such that θ(X) = TX−1. Then N is the fixed
point group of θID and the result follows from Lemma 35.

The above two Lemmas give us the tools to reduce the possible compact situations
to a limited number. Let’s take a look. By Lemma 49, the only possible compact N
would have to come from those whose sizes are less than 3 since the x, y, z have no

restrictions in the Lemma. So N could be

(
a 0
0 b

)
or a 1 × 1-matrix. Furthermore

for the 2× 2-matrices Lemma 48 allows us only those with −ab /∈ Q 2
p. Namely

(1) −1 ∈ Q 2
p.

(
1 0
0 p

)
,

(
1 0
0 Np

)
,

(
1 0
0 pNp

)
, L2, M2, N2.
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(2) −1 /∈ Q 2
p.

(
1 0
0 1

)
,

(
1 0
0 p

)
,

(
1 0
0 pNp

)
,

(
p 0
0 p

)
,

(
Np 0
0 Np

)
,

(
pNp 0
0 pNp

)
, L2,

M2.

Theorem 12. The only compact fixed point groups for SO(2n+1, Q p) are in SO(3, Q p)
with t = 1 or t = 0. All possibilities are for the following values of XTX.

(1) −1 ∈ Q 2
p.

(a) in the GL(3, k)-conjugate class of I2,1:


1 0 0
0 p 0
0 0 p


,


1 0 0
0 Np 0
0 0 Np


,


1 0 0
0 pNp 0
0 0 pNp


.

(b) in the GL(3, k)-conjugate class of I3,0: None.

(2) −1 /∈ Q 2
p.

(a) in the GL(3, k)-conjugate class of I2,1: I,


Np 0 0

0 pNp 0
0 0 p


,


1 0 0
0 Np 0
0 0 Np


,


p 0 0
0 Np 0
0 0 pNp


.

(b) in the GL(3, k)-conjugate class of I3,0: I.

4.4 k-split k-form of SO(n, k̄)

Contrary to the case of SL(n, k) the group SO(n, k) is usually not k-split and actually
the opposite is the case.

For example if k = R the group SO(n, R ) is k-anisotropic, i.e. compact, so the
opposite of k-split. For k = F p and k = Q p the group SO(n, k) is not k-anisotropic, but
not always k-split either. In order to get the k-split k-form of SO(n, k̄), then instead
of the standard symmetric bilinear form B(x, y) = Txy one has to take a different
symmetric bilinear form B1(x, y) = TxMy and consider the group SO(n, k, B1) :=
{A ∈ GL(n, k) | B1(A(x), A(y)) = (x, y) for all x, y ∈ kn}, which is also a k-form of
SO(n, k̄). Naturally the symmetric bilinear forms B and B1 are congruent over k̄ and
consequently the corresponding groups SO(n, k) = SO(n, k, B) and SO(n, k, B1) are
isomorphic. In the next subsection we will discuss the k-split k-form of SO(n, k̄) and
show that for k = F p and k = Q p the group SO(n, k) is k-split if n is odd, but is not
always k-split if n is even.
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A consequence of this all is that for an arbitrary field k we cannot always use the
characterization of the involutions using the k-inner elements, like we did in the case
of SL(n, k), since this holds only for k-split k-forms.

For other k-forms the result could still hold, but there might be fewer isomorphy
classes due to the fact that we need to consider isomorphy under (H.ZG(A))k instead
of Hk. Here ZG(A) is the centralizer of the maximal (θ, k)-split torus A and Xk

denotes the set of k-rational points of a variety X, defined over k. We will discuss
this further in this section.

In general we can get a k-split k-form of SO(n, k̄) as follows. Let B1(x, y) =
TxM1y

be the symmetric bilinear form with M1 the n× n-matrix

M1 =

(
In−l 0
0 −Il

)

and l = bn
2
c. Let

T1 =







a1 0 . . . 0 b1 0 . . . 0 0
0 a2 . . . 0 0 b2 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . an 0 0 . . . bn 0
b1 0 . . . 0 a1 0 . . . 0 0
0 b2 . . . 0 0 a2 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . bn 0 0 . . . an 0
0 0 . . . 0 0 0 . . . 0 1




∣∣∣∣∣ a2i − b2i = 1, for i = 1, 2, . . . , n




and

T2 =







a1 0 . . . 0 b1 0 . . . 0
0 a2 . . . 0 0 b2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . an 0 0 . . . bn
b1 0 . . . 0 a1 0 . . . 0
0 b2 . . . 0 0 a2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . bn 0 0 . . . an




∣∣∣∣∣ a2i − b2i = 1, for i = 1, 2, . . . , n




.

Then we have the following:

Proposition 4. T1 is a maximal torus of SO(2n + 1, k, B1), which is k-split and
T2 is a maximal torus of SO(2n, k, B1), which is k-split. So in particular the group
SO(n, k, B1) is k-split.
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Proof. From Lemma 10 it follows that T1 and T2 consist of k-split semisimple elements.
Since the dimension of T1 and T2 is equal to n, which is equal to the rank of SO(2n+
1, k, B1) and SO(2n, k, B1) the result follows.

Remark 8. If B1 and B2 are symmetric bilinear forms for which the corresponding
matrices M1 and M2 are congruent, then the groups SO(n, k, B1) and SO(n, k, B2)
are k-isomorphic. In particular if X ∈ GL(n, k) such that TXM1X = M2, then
X−1 SO(n, k, B1)X = SO(n, k, B2).

Corollary 6. If −1 ∈ (k∗)2, then SO(n, k, B1) is isomorphic to SO(n, k) and in
particular SO(n, k) is k-split.

Proof. Since M1 is congruent to Id the corresponding groups are isomorphic as well.

Remark 9. For k = F p and Q p we have by 2.4.2 that −1 ∈ (k∗)2 if and only if p ≡ 1(
mod 4).

For many fields one can reduce the number of duplicate diagonal entries:

Lemma 50. Let ε ∈ k such that ε can be written as a sum of 2 squares. Then

M1 =

(
ε 0
0 ε

)
is congruent to Id.

Proof. Let X =

(
a b
c d

)
∈ GL(2, k). Then

TXM1X =

(
a c
b d

)(
ε 0
0 ε

)(
a b
c d

)
=

(
ε(a2 + c2) ε(ab+ cd)
ε(ab+ cd) ε(b2 + d2)

)
.

Taking a = d, b = −c and (a2 + c2) = ε−1 the result follows.

Both k = F p and Q p satisfy the property that any element of k∗ can be written as

a sum of 2 squares, so in these cases M1 =

(
In−l 0
0 −Il

)
is congruent to

(
In−1 0
0 −1

)
or Id. For k = R the element −1 is clearly not the sum of two squares and in this
case we cannot eliminate any −1’s from the diagonal.

We can show now that the group SO(2n+ 1, k) for k = F p and Q p is k-split.

Proposition 5. For k = F p and Q p the group SO(2n+ 1, k) is k-split.

Proof. LetB1(x, y) =
TxM1y be the symmetric bilinear form withM1 =

(
I2n+1−l 0

0 −Il

)
and l = bn

2
c.
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By Proposition 4 the group SO(2n + 1, k, B1) is k-split and as we saw above for

k = F p and Q p the matrix M1 is congruent to

(
I2n 0
0 −1

)
or Id. If M1 is congruent

to

(
I2n 0
0 −1

)
, then by Lemma 50

(
I2n 0
0 −1

)
is congruent to − Id. Since the groups

for M1 = Id and M1 = − Id are the same, the result follows.

Remark 10. The same proof does not work for SO(2n, k, B1) and consequently the
group SO(2n, k) does not need to be k-split for k = F p and k = Q p.

4.5 k-inner elements

For k = R the group SO(2n+1, k) is k-anisotropic, so there are no (θ, k)-split tori, so
consequently also no k-inner elements. By [Hel88, Lemma 10.3] the isomorphy classes
of involutions of k-anisotropic real groups correspond to those of the corresponding
complex group. Moreover for k algebraically closed or the real numbers there is only
one isomorphy class of involutions IA with A = Is,t for each value of s. So also for
this reason there are no k-inner elements in these two cases. In this section we will
determine the k-inner elements for k = Q p, but first we list the admissible (Γ, σ)-
indices for G = SO(2n+ 1, k).

4.5.1 (Γ, σ)-indices

The (Γ, σ)-indices for the involutions of G = SO(2n + 1, k) for those fields for which
we classified the involutions in the previous sections are the following:

k = k̄ : B2n+1,2n+1(I
p), 1 ≤ p ≤ n: e

1
e
2

e
p

u
Γ

u
Γ

u
Γ

k = R : B2n+1,0(I
p), 1 ≤ p ≤ n: u

1

θ
u
2

θ
u
p

θ
u u u

k = F p: B2n+1,2n+1(I
p), 1 ≤ p ≤ n: e

1
e
2

e
p

u
Γ

u
Γ

u
Γ

k = Q p: B2n+1,2n+1(I
p), 1 ≤ p ≤ n− 1: e

1
e
2

e
p

u
Γ

u
Γ

u
Γ

In the case that k = F p and k = Q p the group SO(2n+1, k) is k-split and we can
classify the k-inner elements, similarly as in the case of involutions of SL(n, k).
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4.6 Classification of k-inner elements for SO(2n+

1, Q p)

4.6.1 The case −1 ∈ Q 2
p

As we saw in section 2.4.2 the group SO(2, k) for k = F p and Q p is k-split if −1 ∈ (k∗)2

and k-anisotropic if −1 6∈ (k∗)2. As we saw from Lemma 10 the matrix ( a b
λb a ) is k-split

(i.e. diagonizable over k) iff λ ∈ (k∗)2. We have the following Lemma to determine
the maximal k-split and maximal (θ, k)-split tori.

Lemma 51.

T =







a1 b1 . . . 0 0 0
−b1 a1 . . . 0 0 0
...

...
. . .

...
. . .

...
0 0 . . . an bn 0
0 0 . . . −bn an 0
0 0 . . . 0 0 1



∣∣∣∣∣ a2i + b2i = 1, for i = 1, 2, . . . , n




is a maximal k-split torus of SO(2n + 1, k) if −1 ∈ k∗2.

Proof. From Lemma 11 it follows that T consist of k-split semisimple elements. Since
the dimension of T is equal to n, which is equal to the rank of SO(2n+1, k) it follows
that T is a maximal torus as well.

We know that the involutions of Ḡ are IA where A = Is,t =

(
Is 0
0 −It

)
, s + t =

2n + 1 and s > t. The following Lemma will help us to determine the conjugacy
classes of involutions of G.

Lemma 52. For σ = IA, where A = Is,t, with t = 1, 2, . . . , n, s + t = 2n + 1, the
maximal (σ, k)-split torus can be chosen as:

As,t =







a1 . . . 0 . . . 0 . . . b1
...

. . .
...

...
...

...
...

0 . . . at . . . bt . . . 0
...

...
... I2n+1−2t

...
...

...
0 . . . −bt . . . at . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1




∣∣∣∣∣ a2i + b2i = 1, for i = 1, . . . , t.




.

The dimension of the maximal (σ, k)-split torus is t.
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Proof. It’s obvious that As,t is a (σ, k)-split torus for σ = IA with A = Is,t. We
prove next that the maximal dimension of a (σ, k)-split torus for σ = IA with A = Is,t
is t. Let T1 ∈ SO(2n + 1, k̄) be a maximal torus, then there is X ∈ SO(2n + 1, k̄)
s.t. T = X−1T1X, where T1 is maxiaml torus of diagonal matrices. For a maximal
(σ, k)-split torus T = X−1T1X, we have for τ ∈ T1,

σ(X−1τX) = (X−1τX)−1 ⇒ IA(X
−1τX) = X−1τ−1X

⇒ A−1(X−1τX)A = X−1τ−1X

⇒ τXAX−1 = XAX−1τ−1.

Since τ is conjugate to τ−1, the highest possible dimension can only be less or equal to
n. Furthermore, if τ = diag(a1, . . . , ai, a

−1
i , . . . , a−1

1 , 1, . . . , 1), and τY = Y τ−1, then

we have Y =

(
J 0
0 Y2n+1−2i

)
, therefore, if the (σ, k)-split tori has dimension i, the

corresponding I2n+1−j,j has to be conjugate to

(
J 0
0 Y2n+1−2i

)
. Hence the (σ, k)-split

tori have dimension i if and only if the corresponding I2n+1−j,j such that j ≥ i, i.e.
the maximal (σ, k)-split tori is of dimension t for I2n+1−t,t = Is,t.

Lemma 53. The matrices A =

(−a b
b a

)
and B =

(−c d
d c

)
are conjugate over

SO(2, k) if and only if a + 1 = e2(c+ 1) for some e ∈ k, where a2 + b2 = c2 + d2 = 1
and a 6= −1, c 6= −1.

Proof. Let X =

(
b a+ 1

a+ 1 −b

)
and Y =

(
d c+ 1

c+ 1 −d

)
, I1,1 =

(
1 0
0 −1

)
.

(⇒) A = X−1I1,1X and B = Y −1I1,1Y ,
Since A is conjugate to B over SO(2, k) there is a matrix Z ∈ SO(2, k), such that

Z−1AZ = B, i.e. Z−1X−1I1,1XZ = Y −1I1,1Y , therefore I1,1XZY −1 = XZY −1I1,1,

so XZY −1 =

(
e 0
0 f

)
, i.e. XZ =

(
e 0
0 f

)
Y . Since Z ∈ SO(2, k), we have XTX =

XZTZTX =

(
e 0
0 f

)
Y TY

(
e 0
0 f

)
, i.e.

(
2(a+ 1) 0

0 2(a+ 1)

)
=

(
2e2(c + 1) 0

0 2f 2(c+ 1)

)
,

i.e. a+ 1 = e2(c+ 1).
(⇐) If a+1 = e2(c+1), let Z = eX−1Y , then Z ∈ SO(2, k) and Z−1AZ = B.

Remark 11. Since inner automorphism IA = I−A, at the time a = −1, we can con-
sider −A instead. And in the above proof, if we take Z = eX−1I1,1Y , we still have
Z−1AZ = B, ZTZ = I and detZ = −1.

Corollary 7. For the field Q p, the matrices A =

(−a b
b a

)
have four (respective

eight) different isomorphic classes for p 6= 2(respective p = 2), where a2 + b2 = 1.
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Let T be a maximal k-split torus of Ḡ. Since G is k-split T is a maximal torus of
Ḡ as well. Since G is k-split it follows from [Hel00, Theorem 8. 33] that we have the
following characterization of the isomorphy classes:

Theorem 13 ([Hel00, Theorem 8. 33]). Assume G is k-split. Then any k-
involution of G is isomorphic to one of the form σ Int(a), where σ is a representative
of a Ḡ-isomorphy class of k-involutions, A is a maximal (σ, k)-split torus and a ∈ A.

The set of set of k-inner elements of A is defined as the set of those a ∈ A such
that σ Int(a) is a k-involution of G by Ik(A). We recall that from [Hel00, Lemma 9.
7] it follows that one can find a set of representatives for the isomorphy classes of the
involutions σ Int(A) in the set Ik(A)/A

2
k. Here Ak is the set a k-regular elements of

A and A2
k = {a2 | a ∈ Ak}. Note that the set Ak/A

2
k =' (k∗/(k∗)2)n.

Lemma 54. All the k-inner elements for SO(2n + 1, k) are conjugate to IA over
SO(2n+ 1, k) with A one of the following:



−a1 b1 . . . 0 0 0
b1 a1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −at bt 0
0 0 . . . bt at 0
0 0 . . . 0 0 I2n+1−2t




where a2i + b2i = 1 and ai 6= −1 for i = 1, 2, . . . , t.

Proof. There is only one type of involutions over k̄, IIs,t. Since the maximal (θ, k)-
split torus is As,t (Lemma 52), the k-inner elements are IIs,tIAs,t , i.e. the k-inner
elements are IB with B = Is,tAs,t, which is



a1 . . . 0 . . . 0 . . . b1
...

. . .
...

...
...

...
...

0 . . . at . . . bt . . . 0
...

...
... I2n+1−2t

...
...

...
0 . . . bt . . . −at . . . 0
...

...
...

...
...

. . .
...

b1 . . . 0 . . . 0 . . . −a1




.
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Let

X =




b1 a1 + 1 0 0 . . . . . . 0 0 0
a1 + 1 −b1 0 0 . . . . . . 0 0 0

0 0 b2 a2 + 1 . . . . . . 0 0 0
0 0 a2 + 1 −b2 . . . . . . 0 0 0
...

...
...

...
. . .

. . .
...

...
...

0 0 0 0 . . . . . . bt at + 1 0
0 0 0 0 . . . . . . at + 1 −bt 0
0 0 0 0 . . . . . . 0 0 I2n+1−2t




and

Y =




a1 + 1 . . . 0 . . . 0 . . . b1
...

. . .
...

...
...

...
...

0 . . . at + 1 . . . bt . . . 0
...

...
... I2n+1−2t

...
...

...
0 . . . −bt . . . at + 1 . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1 + 1




,

then

C = X−1AX =




1 0 0 0 . . . . . . 0 0 0
0 −1 0 0 . . . . . . 0 0 0
0 0 1 0 . . . . . . 0 0 0
0 0 0 −1 . . . . . . 0 0 0
...

...
...

...
. . .

. . .
...

...
...

0 0 0 0 . . . . . . 1 0 0
0 0 0 0 . . . . . . 0 −1 0
0 0 0 0 . . . . . . 0 0 I2n+1−2t




and Y −1BY = Is,t. Let Li,j be the fundamental matrix which exchanges the i′-th and
j′-th row(column),

L = L2t,2n+1L2t−2,2n . . . L2,2n+1−(t−1),

and Z = Y L−1X−1 then we have L−1CL = Is,t and

Z−1BZ = XLY −1Y Is,tY
−1Y L−1X−1

= XLIs,tL
−1X−1 = XCX−1 = A

is this form. Furthermore TZZ = I and detZ = 1.
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Lemma 55. Consider the n× n matrices

A =




−a1 b1 . . . 0 0 0
b1 a1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −at bt 0
0 0 . . . bt at 0
0 0 . . . 0 0 I2n+1−2t




and

B =




−a′1 b′1 . . . 0 0 0
b′1 a′1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −a′t b′t 0
0 0 . . . b′t a′t 0
0 0 . . . 0 0 I2n+1−2t




.

They are conjugate over SO(2n+1, Q p) if and only if



(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


 and



(a′1 + 1) . . . 0

...
. . .

...
0 . . . (a′t + 1)


 are congruent.

Proof. Suppose

A =




−a1 b1 . . . 0 0 0
b1 a1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −at bt 0
0 0 . . . bt at 0
0 0 . . . 0 0 I2n+1−2t




and

B =




−a′1 b′1 . . . 0 0 0
b′1 a′1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −a′t b′t 0
0 0 . . . b′t a′t 0
0 0 . . . 0 0 I2n+1−2t



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are conjugate. Let

X =




b1 0 . . . 0 0 . . . 0 a1 + 1 0
a1 + 1 0 . . . 0 0 . . . 0 −b1 0

0 b2 . . . 0 0 . . . a2 + 1 0 0
0 a2 + 1 . . . 0 0 . . . −b2 0 0
...

...
. . .

...
...

...
...

...
...

0 0 . . . bt at + 1 . . . 0 0 0
0 0 . . . at + 1 −bt . . . 0 0 0
0 0 . . . 0 0 . . . 0 0 I2n+1−2t




and

Y =




b′1 0 . . . 0 0 . . . 0 a′1 + 1 0
a′1 + 1 0 . . . 0 0 . . . 0 −b′1 0

0 b′2 . . . 0 0 . . . a′2 + 1 0 0
0 a′2 + 1 . . . 0 0 . . . −b′2 0 0
...

...
. . .

...
...

...
...

...
...

0 0 . . . b′t a′t + 1 . . . 0 0 0
0 0 . . . a′t + 1 −b′t . . . 0 0 0
0 0 . . . 0 0 . . . 0 0 I2n+1−2t




.

Then A = −XIt,sX
−1 and B = −Y It,sY

−1. Since A and B are conjugate over
SO(2n+1, k), there is some Z ∈ SO(2n+1, k) such that Z−1AZ = B, i.e. Z−1XIt,sX

−1Z =

Y It,sY
−1. So It,sX

−1ZY = X−1ZY It,s, thus X
−1ZY =

(
At 0
0 As

)
, where As is s× s

and At is t× t. Therefore ZY = X

(
At 0
0 As

)
. Since Z ∈ SO(2n+ 1, k), we have

TY Y = TY TZZY =

(
TAt 0
0 TAs

)
TXX

(
At 0
0 As

)
.

i.e. 


2(a′1 + 1) . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
...

0 . . . 2(a′t + 1) 0 . . . 0 0
0 . . . 0 2(a′t + 1) . . . 0 0

0 . . . 0 0
. . . 0 0

0 . . . 0 0 . . . 2(a′1 + 1) 0
0 . . . 0 0 . . . 0 I2n+1−2t




=
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(
TAt 0
0 TAs

)



2(a1 + 1) . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
...

0 . . . 2(at + 1) 0 . . . 0 0
0 . . . 0 2(at + 1) . . . 0 0

0 . . . 0 0
. . . 0 0

0 . . . 0 0 . . . 2(a1 + 1) 0
0 . . . 0 0 . . . 0 I2n+1−2t




(
At 0
0 As

)
,

therefore



(a′1 + 1) . . . 0

...
. . .

...
0 . . . (a′t + 1)


 is congruent to



(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


.

(⇐) If



(a′1 + 1) . . . 0

...
. . .

...
0 . . . (a′t + 1)


 is congruent to



(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


, then



(a′t + 1) . . . 0 0

...
. . .

... 0
0 . . . (a′1 + 1) 0
0 . . . 0 I2n+1−t


 is also congruent to



(at + 1) . . . 0 0

...
. . .

... 0
0 . . . (a1 + 1) 0
0 . . . 0 I2n+1−t


,

therefore there is a s×s matrix M and a t×t matrix N , and L =

(
N 0
0 M

)
, such that

TLTXXL = TY Y . Let Z = XLY −1, therefore Z−1AZ = −Y L−1X−1XIt,sX
−1XLY −1 =

−Y L−1It,sLY
−1 = −Y It,sY

−1 = B. Furthermore we have TZZ = TY −1TLTXXLY −1 =
I, if detZ = −1 we take −Z instead, since the size of the matrix is 2n+ 1, therefore
det−Z = 1.

So for the p-adic numbers, by Lemma 55, the dual values (δ, t) determine the
SO(2n + 1, k)-conjugate classes, where δ = (a1 + 1)(a2 + 1) . . . (at + 1)( mod Q ∗2

p ),

the representative in Q ∗
p/Q

∗2
p and τ is the Hasse symbol of



(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


.

Since there are only 2 possibilities for τ and 4 for δ, there are at most eight possible
involutions up to conjugation.

Corollary 8. Let K =

(−a b
b a

)
, where a 6= −1, then K is divided as four subset:

K1, Kp, KNp and KpNp according to which coset of Q ∗
p/Q

∗2
p (p 6= 2) a+1 is in. Then all

the SO(2n+1, k)-conjugacy subclasses are in table 4 for −1 ∈ Q 2
p if we assume s > t,
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Where D is a representative of



(a1 + 1) . . . 0

...
. . .

...
0 . . . (at + 1)


, and IA is a representative

of the conjugacy class of involutions. In particular we can take K1 =

(
0 1
1 0

)
.

Remark 12. Note that the classification is the a variation (up to conjugacy) of that
of the previous section. And we verified our classification.
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δ (δδ)p Triple value representative of XTX t ≥ 3 t = 2 t = 1 t = 0
1 1 (1, 1, 1) I Y Y Y Y

1 1 (1,−1,−1)



Is−3 0 0 0
0 M3 0 0
0 0 It−3 0
0 0 0 M3


 Y N N N

p 1 (p, 1, 1)



Is−1 0 0 0
0 p 0 0
0 0 It−1 0
0 0 0 p


 Y Y Y N

p 1 (p,−1,−1)



Is−2 0 0 0
0 M2 0 0
0 0 It−2 0
0 0 0 M2


 Y Y N N

Np 1 (Np, 1, 1)



Is−1 0 0 0
0 Np 0 0
0 0 It−1 0
0 0 0 Np


 Y Y Y N

Np 1 (Np,−1,−1)



Is−2 0 0 0
0 N2 0 0
0 0 It−2 0
0 0 0 N2


 Y Y N N

pNp 1 (pNp, 1, 1)



Is−1 0 0 0
0 pNp 0 0
0 0 It−1 0
0 0 0 pNp


 Y Y Y N

pNp 1 (pNp,−1,−1)



Is−2 0 0 0
0 L2 0 0
0 0 It−2 0
0 0 0 L2


 Y Y N N

In total 8 7 4 1

Table 4.1: −1 ∈ Q 2
p
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δ (δδ)p Triple value representative of XTX t ≥ 3 t = 2 t = 1 t = 0
1 1 (1, 1, 1) I Y Y Y Y

1 1 (1,−1,−1)



Is−3 0 0 0
0 M3 0 0
0 0 It−3 0
0 0 0 M3


 Y N N N

p −1 (p, 1,−1)



Is−1 0 0 0
0 p 0 0
0 0 It−2 0
0 0 0 M2


 Y Y N N

p −1 (p,−1, 1)



Is−2 0 0 0
0 M2 0 0
0 0 It−1 0
0 0 0 p


 Y Y Y N

Np 1 (Np, 1, 1)



Is−1 0 0 0
0 Np 0 0
0 0 It−1 0
0 0 0 Np


 Y Y Y N

Np 1 (Np,−1,−1)



Is−2 0 0 0
0 N2 0 0
0 0 It−2 0
0 0 0 N2


 Y Y N N

pNp −1 (pNp, 1,−1)



Is−1 0 0 0
0 pNp 0 0
0 0 It−2 0
0 0 0 L2


 Y Y N N

pNp −1 (pNp,−1, 1)



I2−2 0 0 0
0 L2 0 0
0 0 It−1 0
0 0 0 pNp


 Y Y Y N

In total 8 7 4 1

Table 4.2: −1 6∈ Q 2
p
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δ τ rep. for −1 ∈ Q 2
p rep. for −1 /∈ Q 2

p

1 1 I 1
1 -1 Kn,p,Np,pNp, Nn,p,p

p 1 Mn,p Mn,p

p -1 Nn,Np,pNp, Nn,Np,pNp,
Np 1 Mn,Np Mn,Np

Np -1 Nn,p,pNp, Nn,p,p,Np

pNp 1 Mn,pNp Mn,pNp

pNp -1 Nn,p,Np, Nn,p,Np

Table 4.3: Representative of matrices satisfying δ and Hasse symbol value in Q p, (p 6= 2)

δ 1 1 2 2 3 3 6 6
Hasse symbol 1 -1 1 -1 1 -1 1 -1
matrix rep. I Nn,3,3 Mn,2 Nn,−1,−2 Mn,3 Nn,2,6 Mn,6 Nn,2,3

δ -1 -1 -2 -2 -3 -3 -6 -6
Hasse symbol 1 -1 1 -1 1 -1 1 -1
matrix rep. Mn,−1 Kn,2,3,−6 Mn,−2 Nn,3,−6 Mn,−3 Nn,2,−6 Mn,−6 Nn,2,−3

Table 4.4: Representative of matrices satisfying δ and Hasse symbol value in Q 2
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δ τ D A t ≥ 3 t = 2 t = 1 t = 0

1 1 I

(
Is 0
0 It

)
Y Y Y Y

1 −1 Kt,p,Np,pNp



Is−3 0 0 0 0
0 Kp 0 0 0
0 0 KNp 0 0
0 0 0 KpNp 0
0 0 0 0 It−3


 Y N N N

p 1 Mt,p


Is−1 0 0

0 Kp 0
0 0 It−1


 Y Y Y N

p −1 Nt,Np,pNp



Is−2 0 0 0
0 KNp 0 0
0 0 KpNp 0
0 0 0 It−2


 Y Y N N

Np 1 MtNp


Is−1 0 0

0 KNp 0
0 0 It−1


 Y Y Y N

Np −1 Nt,p,pNp



Is−2 0 0 0
0 Kp 0 0
0 0 KpNp 0
0 0 0 It−2


 Y Y N N

pNp 1 Mt,pNp


Is−1 0 0

0 KpNp 0
0 0 It−1


 Y Y Y N

pNp −1 Nt,p,Np



Is−2 0 0 0
0 Kp 0 0
0 0 KNp 0
0 0 0 It−2


 Y Y N N

In total 8 7 4 1

Table 4.5: Representatives of involutions up to conjugacy for SO(2n+ 1, k), (−1 ∈ Q 2
p)
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Annals of Math., 147(2):417–452, 1998.

82



References 83

[FJ80] M. Flensted-Jensen. Discrete series for semisimple symmetric spaces. An-
nals of Math., 111:253–311, 1980.

[Gro92] I. Grojnowski. Character sheaves on symmetric spaces. PhD thesis, Mas-
sachusetts Institute of Technology, June 1992.

[HC84] Harish-Chandra. Collected papers. Vol. I-IV. Springer Verlag, New York,
1984. 1944–1983, Edited by V. S. Varadarajan.

[Hel88] A. G. Helminck. Algebraic groups with a commuting pair of involutions
and semisimple symmetric spaces. Adv. in Math., 71:21–91, 1988.

[Hel00] A. G. Helminck. On the classification of k-involutions I. Adv. in Math.,
153(1):1–117, 2000.

[HH99] A. G. Helminck and G. F. Helminck. Multiplicities for representations
related to p-adic symmetric varieties. To appear, 1999.

[HS90] F. Hirzebruch and P. J. Slodowy. Elliptic genera, involutions, and homo-
geneous spin manifolds. Geom. Dedicata, 35(1-3):309–343, 1990.

[Hum75] J. E. Humphreys. Linear algebraic groups, volume 21 of Graduate Texts in
Mathematics. Springer Verlag, New York, 1975.

[HW93] A. G. Helminck and S. P. Wang. On rationality properties of involutions
of reductive groups. Adv. in Math., 99:26–96, 1993.

[HW02] Aloysius G. Helminck and Ling Wu. Classification of involutions of sl(2, k).
Comm. Algebra, 30(1):193–203, 2002.

[JLR93] H. Jacquet, K. Lai, and S. Rallis. A trace formula for symmetric spaces.
Duke Math. J., 70:305–372, 1993.

[Jon55] Burton W. Jones. The theory of numbers. Rinehart & Company, Inc., New
York, 1955.

[Lus90] G. Lusztig. Symmetric spaces over a finite field. In The Grothendieck
Festschrift Vol. III, volume 88 of Progr. Math., pages 57–81, Boston, MA,
1990. Birkhäuser.
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[ŌS80] T. Ōshima and J. Sekiguchi. Eigenspaces of invariant differential operators
in an affine symmetric space. Invent. Math., 57:1–81, 1980.

[RR96] C. Rader and S. Rallis. Spherical characters on p-adic symmetric spaces.
American Journal of Mathematics, 118(1):91–178, 1996.

[Sch85] W. Scharlau. Quadratic and Hermitian Forms, volume 270 of Grundlehren
der mathematischen Wissenschaften. Springer Verlag, Berlin-Heidelberg-
New York-Tokyo, 1985.

[Spr81] T. A. Springer. Linear algebraic groups, volume 9 of Progr. Math.
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