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Abstract

To obtain large speed-up factors in Monte Carlo simulation using importance sampling
(IS), the modification, or bias of the underlying probability measures must be carefully
chosen. In this paper we present two stochastic gradient optimization techniques that lcad
to favorable IS paramecter settings in the simulation of queueing networks, including queues
with bursty traflic. Namely, we motivate and describe the Stochastic Gradient Descent
(SGD) algorithm, and the Stochastic (Important Event) Frequency Ascent (SFA) algorithm.

We demounstrale the effectiveness of our algorithms by applying them to the problem
of estimaling the cell loss probabilily of several queueing systes: first, a queue with an
Interrupted Bernoulli arrival process, geomelric service times, and finite capacity I (denoted
here by IBP/Geo/1/K); then, single and tandem configurations of queues with two arrival
streams, a Modified Interrupted Bernoulli stream and a Markov Modulated Bernoulli stream
with batch arrivals, deterministic service times, and finite capacity K (denoled here by M-
IBP+MMBBP/D/1/K). Such queueing systems arc useful building blocks in performance
models for ATM nodes and networks. Speed-up factors of 1 to 8 orders of magnitude over
conventional Monte Carlo sitnulation are achieved for the examples presented.
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1 Introduction

A significant problem when using Monte Carlo (MC) simulation for the pecformance analysis
of communication networks is the long run times required to oblain accurate estimates.
Under the proper conditions, Importance Sampling (IS) is a technique that can speed up
simulatious involving rare events of network (queueing) systems [1, 2, 3, 4, 5].

Large speed-up factors in simulation run time can be obtained by using IS if the modifi-
cation or bias of the underlying probability measurcs is carefully chosen. It is not typically
possible to analytically minimize the variance of the importance sainpling estimator, or 1S-
variance, with respect to the IS biasing parameter settings for large (multigneuc) networks
with bursty traflic. Fast simulation methods based on Large Deviation Theory (LDT) [1, 3]
utilize asymptotical analytical knowledge, and analytical/numerical manipulations of the
systemn statistics which are not feasible for many realistic systems. An example of the con-
plexity involved wilh such analysis is the recent extension of LD'T-type solutions to a large
class of multiqueue networks with input traflic consisting of multiple Markov-modulated
Poisson streams [5].

A technique for finding near-optimal bias parameter valucs, based on repetitive, short
sitnulation runs and statistical measures of performance, which included statistical estimates
of the estimator variance has been previously presented [6]. Such techniques are not restricted
to any specific type of random process, and do nol require any knowlcedge of the internal
workings of the system being simulated. The Mean-["ield Annealing (MI'A) global optimiza-
tion algorithm, which is a form of Simulated Annealing (SA), has also been used for finding
near-optimal IS biasing parameter values for queucing system simulation [7]. The MFA ap-
proach is very ellective and general, but can be affecled by long run times and dimensionality
problems.

In [8] we formulated stochastic gradient techniques in the dilferent context of digital
communication systems. In this paper we present two stochastic gradient optlimization tcch-
niques for the near-minimization of IS-variance in the simulation of (ueueing systems. Both

the Stochastic Gradicnt Descent (SGD) algorithm, and the Stochastic (Imporlant Event)
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Frequency Ascent (SFA) algorithm involve MC estimates of the gradient of a cost function
using likelthood ratio mecthods, as described in [9, 10, 11, 12, 13]. The SGD uses estimatcs
of the IS-variance and its gradient with respect to the biasing parameters, and follows a
stochastic steepest descent path to near-optimal IS scttings. The SFA uscs estimates of the
biased frequency of important events (FIE), e.g., cell-loss frequency, and its gradient with
respect to the biasing parameters, and searches for the minimum [S-variance in the direction
of steepest ascent in the FIE.

We illustrate the eflectiveness of the techniques with numerical examples. Large speed-
up factors (1 to 8 orders of magnitude) over conventional MC simulation, at low cell loss
probabilities (e.g., 107'?) are obtained for queueing systems with bursty traflic, including

single IBP/Geo/1/KK queues, and single and tandem M-IBP+MMBBP/D/1/K queues.

2 Simulation of Communication Networks

2.1 MC Estimation in Network Analysis

Let X; be the vector of observations relevant to a slotted-time communications network at
time 7. Assume that {X,-},-zo is a discrete-time Markov chain with transition matrix P. In
addition, assume that {X;}i>o has a steady-state distribution, and converges in distribution
to X. Following the formulation in [14], the goal is to estimate the expectation E[f(X)] of
some function f(X) = h(X)/g(X). Let r be a regeneration stale. Then, the expectation of

f can be written as

E 2" h(XJ)]
E[2ns' 9(X0)]

where Xp = r, and 7 is the first time greater than zero that X; =r.

E[f] = (1)

2.2 Efficient Simulation Using IS

To obtain an estimator of (1), first write H(s) = Yo A(X) and G(s) = Tt 9(Xs), where
s denotes a sample path in the evolution of the system under study. Let Ep|G(s)] denote

the expectation ol G(s) with respect to the probability measure P(s). IS is based on the
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observation that the expectation E[G(s)] under measure P can be written as Lp[G(s)] =
Ep«[G(s)L*(s)], where L*(s) = P(s)/P*(s) and provided that P*(s) # 0 whenever G(s) P(s)
#0. L is a likelihood ratio or, in the language ol 1S, a weight function. Then E(f] can he

estimated by

/N L Yt (X)L, ‘
LML, YL g(Xa) Ly, )
where L}, = P(Xox, ... y X))/ P*(Xoky - .., Xix). In general, the numcrator and denominator

Ep-[f] =

of (2) can be estimated separately, with M # N and different IS distributions [14]. Let the
transition probabilities of the Markov chain he p(X;, Xj41). Within cach regeneration cy-
cle (RC) k, the individual weights p(X,-k,Xi+1,k)/p*(Xik,Xi+1,k) must be distinguished froin
the total or cumulative weight L, at time . Furthermore, when more than onc indepen-
dent random event detcrmines the transition (e.g., arrivals, service completions), individual
weights are again the product of component weights corresponding to these more funda-
mental random events. Then, by the Markov chain property, and with initial distribution

unbiased under IS,

i1 i1
i = 1 Pk, Xjre)/ TT 27 (Xse, X1k) (3)
7=0

7=0
In (2) above, the likelihood ratio (or weight) at time i during the simulation depends on all
random transitions which previously occurred in the same RC. lor tandem networks, this
time dependence will become slightly more complicated.

An additional motivation to use regeneration techniques is to avoid the deleterious effects
of large system memory on the efliciency of IS. As was shown in [2], nonregenerative IS
breaks down as the length of the simulation approaches infinity. I'rom an IS standpoint, the
memory of the system is increasing within each RC. For cases where true regencrations are
rare, techniques based on approximate regeneration [15], batch means, or A-cycles [5], can
be used Lo obtain approximately independent trials.

In (2) it is implied that IS is implemented in a static way, where the modified or biased
measures P* do not depend on the state X; at time i. However, the requirements of re-
generation can be in conflict with static IS [7]. Under certain conditions for the simulation

of Markov chains, the optimal IS is dynamic [14]. In order to combine the advantages of
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regencrative simulalion with efficient IS, IS can be used dynamically within each RC, first

achieving eflicient estimation of the rare event probability imvolved, and subsequently driving

the system back to Lhe regeneration state [7].

2.3 Statistical Optimization of the IS Estimator

It is well known thatl the general, nou-parametric, globally optimal IS measure represents
essentially a tautology, since it requires knowledge of the quantity E[f] to be estimated.
Most useful and praclical IS schemes are parametric.

In the parametric case, finding the optimal IS scttings can be posed as a multidimen-
sional, nonlinear oplimization problem, where the values of the 1S paraineters must be set
to oplimize some measure of performance, usually the estimator variance, o74(P, P*).

Assuming an exact, closed-form representation of the IS-variance is not available we
have proposed using statistical measures of performance, which are statistical estimates of
the variability (scatter) of the MC observations involved, and asymptotical estimates of the
estimator variance, &75(P, P*), with respect to the IS parameter values [6, 7). In [7] we
used mean field annealing (MFA), a stochastic global optimization algorithmn, to perform
this minimization.

Although very gencral, the MFA approach is polentially slow, cspecially as the dimen-
sionality of the search (i.e., the number of IS parameters) increases. Therefore, techniques
that perform a dirccled search through the parameler space (e.g., using derivative informa-
tion) while requiring a smaller number of cost function evaluations can provide attractive

alternatives to stochastic annealing techniques.

3 Stochastic Gradient Techniques

3.1 MUC Estimation of Gradients

Performance measures of communication systems and networks often take the form of an
expectation a(8) thal depends on a vector 9 = (0,,...,04) of parameters. Examples of such

performance measures are the bit-error-rate in digital links, or the cell loss probability, mean
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delay, and throughput in networks. When analyzing or designing such a stochastic system,
it is often desirable Lo calculate not only () but also its gradient Va(@) with respect to
6. Knowledge of V(@) facilitates sensitivity analysis, interpolation techniques, and most
importantly design optimization methods, where the vector 8, is sought that minimizes (or
maximizes) a(0) [10, 12].

As in the case of the original expectation a(8), analytical calculation of Va(8) is of-
ten intractable. Numerical calculation may be [easible or even advantageous under certain
conditions, but is usually inefficient when numerical evaluation of «(8) is time consuming
[LL].

The Monte Carlo estimation of derivatives and gradients of expectations, based on likeli-
hood ratios has been previously investigated in [9, 10, 11, 12, 13]. [n a rather gencral setting
this approach introduces a change of measure and the corresponding likelihood ratio, and
then, by essentially interchanging the expectation and derivative operators, expresses the
derivative in question as the expectation of a new random variable. This expectation can be
then estimated using MC simulation.

Because of their “scmi-analytic” nature, such estimates have obvious advantages over
finite dillerence approximations [L1]. A comparison of likelihood ratio techniques with per-
turbation analysis (e.g., [16]) is given in [10]. In [13] likelihood ratio techniques are analyzed
in the context of highly dependable Markovian models, and IS is successfully applied to
increasing the efficiency of the gradient estimators when rare events are involved.

Focusing on a discrete-time Markov chain {X,}, >0 and following the notation in [12], an

expectation a(8) = Egg(0,Xo, ..., Xr) can also be written as
(1(0) = Eglg(g, Xo, ceey XT)L’]'(0, 01, Xo, PN ,XT) (4)

where for any instant n

. /L(G,Xu) n-l P(B,X,',XH_])

’ . M) 5
Ln(6,8', Xo, ..., Xs) (8, Xo) E) P, X, Xi41) ®)

In the following we will use L, (6, 6') instead of Ln(0, 8', Xy, ..., X,) in order to simplify the
notation. [g implies that the transition matrix P(8) depends on 8, P(6,X;, Xis1) is the
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transition probabilities under 6, 41(6,X,) is the initial state distribution under 0, and T is

a finite stopping time. Then, the gradient Va(8) is given by

or
Jda 07
8_0,-(6) = E9'6_0,~(0) (7)
where
dg Dy ) 9 /
0—9;(9) = a—()i(O,XO,. . Xr) L1(6,0") + ¢(0,X,, . .. ’XT)BH; Lr(68,0") (8)
and
9, (0,0") = @(0 X )LT(O’B')
80; T T 90, (0, X
=1oP(0,X;,X;11)  Lr(6,6")
+ ) Al 7+1 T ) 9
2 a0; B(8,X,,X,11) (9)

Most often oune takes ' = 6.

When {Xn}an) has a regeneralive structure, the above derivation can also be extended
to the case where «(@) is described by the ratio formula of regencrative analysis [12}], and T'
coincides with regeneration epochs.

Clearly, assuming a unique local minimum, deterministic gradient descent algorithms can
have guaranteed convergence to the minimizing point. It is shown in [11] that, assuming a

unique minimum, a stochastic descent algorithm of the Robbins-Monro type (17, 11],
0,01 = 0, — h(n)Va(6,) (10)

that uses MC estimates of the derivatives based on egs. (6)-(9) can also be guarantced

convergence, for the appropriate selection of step size h(n).

3.2 The SGD Algorithm

We observe now that the variance of the IS estimator in (2) is also an cxpectation parame-

terized by the IS settings. Recall that we wish to choose IS parameter values in a way that
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minimizes this IS-variance. Let Z he equal to the 1S estimate in (2). Therelore, by letting
a(8) = Ep-{(Z — I2p«(Z))?}, where 0 is the vector of IS paramecters in (2) that determine
P*, we can formulate the choice of IS parameter values as a minimization problem (i.e.,
ming a(#)) that can be tackled according to (10).

Such an approach to oplimizing the choice of IS settings is a natural complement to
our previous statistical optimization techniques, where we determine near-oplimal IS valies
by observing estimates of the cost function, namely the [S-variance. Its greatest potential
advantage is that, by exploiting more prior knowledge and information about the problem at
hand (i.e., derivative information), it can potentially zero-in on the optimal IS settings faster
than global search techniques like the MFA and similar annealing methods. The essential
difference from annealing techniques is that gradient-based techniques are local optimization
methods.

Another factor in overall efficiency is the choice of the appropriate step size A(n). An
h(n) small enough to guarantee alinost sure (a.s.) convergence can lead to impractically long
run times, while an h(n) that is too large can lead to divergence. Clearly, a trial-and-error
procedure is required to establish the best trade-ofl choice.

For a given point @ in the parameter‘space the random numbers used to estimate Va(8)
are drawn using 8’ = 8. Therefore, during the search the simulation sampling distribulion
is continuously changing while approaching the oplimal IS distribution as 8 — 8,,,. Thus,
the algorithm tends to constantly improve the IS-variance until the near-optimal is found.

Our Stochastic Gradient Descent (SGD) algorithmn is outlined in Fig. 1.

3.3 The SFA Algorithm

A necessary condition for speed-up when choosing IS settings is that the raw frequency
of important events has to be significantly increascd with respect to the original sampling
distribution belore any speed-up faclor is realized. Thus, when choosing an [S sampling
distribution a primary concern must be to increase the frequency ol important events (FIE).

It has been a common heuristic assumption among practitioners of IS simulation that

the IS parameters have to be modified so thal the effect on the FIE is maximized. This
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n < 0 /* Initialize iteration count */

00 <= O,4art /* Initialize IS parameter values */

/* Perform gradient descent on estimated IS-variance */
/* until empirical precision « is suflicient */

do {

Calculate h(n) /* Giet new step size */

Ont1 <= 0, — h(n) Vvar(8,) /* Perform descent step */
Calculate var(6,,41) using N4 RC’s

Calculate P,y using Ny RC’s

} while { \/%a7(8,41)/Pay1 > o )

[Figure 1: Pseudo-code describing the SGD algorithn.

suggests biasing in the “direction of steepest ascent in FIE”, since this direction maximizes
the increase in FIL (or the same “total” modification of the parameter values. More precisely:

Let @ = 0 such that no IS biasing is applied and then iteratively set,
0,41 = 0, + 1 (n)V Prg(8,,) (11)

where Pjp(0,) denotes the probability of the important event as a function of 8, until
P1g(8,) saturates, i.e., attains its maximum value. Then pick 6,, from the above “search
path” such that the IS-variance is minimum (or near-minimum). Clearly, the same likelihood
ratio estimation techniques previously discussed can be applied to yield ellicient and accurate
estimates of the partial derivatives required.

The ellectivencss of this directed search procedure is supported by the fact that the true
(or asymptotical) global minimum of the IS variance lies on the trajectory (11) for some
interesting cases, namely the case ol detection errors in a lincar filter under additive white
Gaussian noise (AWGN) [18], and the case of cell loss probability in a M/M/1/K queue, as
both theory and cmpirical results indicate. Empirical results also indicate that this is true
for the case of detection errors in mildly nonlinear lilters under AWGN (as those in [3]). For

an M/M/1/K quene the probability that k customers are in the syslem is given by

pk={ =ik (M), 0 k<K

0 , otherwise
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Figure 2: Example of steepest ascent trajectory for an M/M/1/K queucing system, with A = 0.5, p = 1.0
and K = 10. The optimal IS point is A7, = 1.0 and pg,, = 0.5.

where X is the arrival rate and j the service rate. The probability thal a customer will be

lost, is equal to pi. Let p = A/p. Under IS

Opic _ Opic 9p" _ dpi

(
DN dpr ON . Op”

2
14

and
Ik _ dpi 9p” _ Ik (__j\;)
dp=  Op* I dpr > pr?

where the asterisk () denotes the biased quantitics, and

0_1’1?_ _ k(- p )+ (1= p) (K + L)p™®
apr P (1= prH1)2
I —p* K-
+ 1 _ p*l(-{-] [<

Defline the stecpest ascent trajectory, S, as the path that starls [rom the point (A, 1) (the
unbiased operating point of the queueing system) and follows the gradient of pg, in the space
of A\* and g*. Such a trajectory can be defined iteratively from

ap;( *
A
oM

Ayt = A+

At=A?
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aﬂ* p’:pl‘ I“‘;‘
* " 0 ),
T —_8[ ; AV
|4 we=p
* 81);( /\; *
= iy + o (- L*2)A//'
pt=p; H
. Al
o= —
Iy

for 1 =0,..., 0 — 1, with Ao = A, iy =g, and AN, A~ are sufficiently small.

An example of a steepest ascent trajectory is shown in Figure 2, for A = 0.5, 1 = 1.0, and
K =10. Here, AN = Ap* = 0.035 and ,,,, = 200. For the M/M/1/K queue, the optimal
(and unique asymyptotically efficient) IS operating point is A%, = p1, u3,, = A, similar to what
was shown in [1] for the M/M/1/co queue. For this example (and every other combination
of A and p we tricd) the trajectory S did include the optimal IS point.

Furthermore, in support of this search path, we observe that the IS-variance can be

written as
Eg {1ipL"(0)}
while the FIE can be written as

Lg {li5/L"(0)}

where 1;g is the indicator function of an important cvent, and L*(8) is the cumulative weight
of (2). This indicales that increasing the I'1E should tend to decrease the IS-variance. More
specifically, at = OpF (i.e., at the brute-force MC point) VP;;z(8) is parallel to Vaig(0),
which means that, for a sufliciently small step size h'(n), the first step away from the brute-
force MC point will necessarily lead to a decrease in the IS-variance. Since this alternative
algorithm picks the IS parameter values with the minimum variance over the trajectory (11),
the IS settings chosen have a guarantced speed-up over the conventional MC estimator.

[t is reasonable to assume that the /\71715 estimator will be more accurate for the same
sample size than the /V\CT?S estimator (’V\O'?S involves estimates of second order moments).

Furthermore, in all practical cases that we considered, the FIE was monotonic with respect
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to the biasing parameter values. Also, there are no convergence ellects to slow SFA down,
since the gradients guiding the search are not the gradients of the cost function. For these
reasons, following trajectory (11) is rather general and robust, regardless of the existence of
local minima in the IS-variance space. Finally, searching along trajectory (11) is guaranteced
to provide speed-up (potentially equivalent to that provided by the SGD algorithm).
Partials %}ﬂ can be found by replacing a(8) with Pz in eq. (7), where g(8,Xo,...,X7)

is the number of blocked cells in a RC. Hence 9(0,X,,...,X7) = ZJT:O h(6,X;), where

h(0,X,) = { 1 if a cell is blocked during slot j

0 otherwise

Choosing the same initial distributions u(8,X,) = 1(8',Xo) and 8’ = 6, and choosing T,
the end of a RC, as the stopping time, it follows that 22 = T ok = ZJ-T=0 0 =0, and

30 1=0 3¢
APy ~LOP(0,X;,Xi41) 1
_ Q,X ,.”’ 73435+
00; 6 [g( " ; a0; P(6,X;,X;41) "

Finally, in order to estimate the partials of Prg(8) with respect, Lo the elements of 8, one can
draw numbers using 6, and then take a sample mean over i.i.d. random repetitions of the
quantity in brackets on the right-hand-side of eq. (12). These partial derivatives can then
be used in the SI'A algorithm.

When important events are rare the accuracy of /V\PIE(O,L) will be very poor as long as

Prg is low. In [13], IS is applied to /\-7\])15(0”) as {ollows: Let a(6,) = P;g(0,). Then
Va(8,) = EGHVj(O”)LT(O',H”) (13)

where 8" is chosen in order to increase the accuracy of the estimation. Therefore, we can use
8" for the sampling distribution to estimate V P;1,(8,) until P;g becomes large enough to
allow us to start using 8, itsell. We call this additional biasing “sccond-order 1S”. Heuristic
arguments similar to those we present later for choosing a starting point for the SGD algo-
rithm can be used for the selection of a favorable “second-order-1S” for the SFA algorithm.

Our Stochastic (Important Event) Frequency Ascent (SFA) algorithm is given in Fig. 3.

The outline in Fig. 3 is intended to be general and does not address issues such as search
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n <=0 /* Initialize itcration count */
0o <= Opr /* Initialize IS parameter values */
/* Perform gradient ascent on estimated “raw” */

/* probability P;£(8,) until saturation occurs */
do {

Calculate h(n) /* Get new step size */

6.41 <= 6, + h(n) €7P”.;(9n) /* Perforin ascent step */
Calculate @(9,,+.) using Ng RC’s
Calculate Prg(6,41) using Ng RC’s

} while { Prg(6n41) — Pi(6n) > ¢ )

Return n, 6,, such that vav(8,,) is minimum

Figure 3: Pseudo-code describing the SFA algorithm.

> (b( 1) > q)(2) > e o o > ¢(5) >

[Figure 4: General tandem queueing network.

resolution and statistical accuracy. In [6] we have described a detailed algorithmic procedure
for near-minimization the IS-variance based on slatistical estiimates taken on an optimal
search direction, when simulaling digital communication links with linear receivers. In the
case of [6] the optimal direction was the direction of the impulse response of the linear receiver
filter. The SFA approach essentially generalizes that algorithm by providing a (heuristic)

favorable search direction for a much larger class of systems.
4 Stochastic Gradients for Tandem Networks

4.1 Likelihood Ratio Techniques for Tandem Networks

As shown in Figure 4, a general tandem queueing nctwork consists of several stages of queues,
the output of one queue feeding the input of the next queue. Assuming a discrete-time or

slotted approach, at least one time slot is need for a cell or packel to propagale through a

single stage of the queueing network.
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Let st) be the vector of observalions representing the state of the arrival processes and
the queue for stage s of S in the tandem network at time i. Let the vector of observations
relevant to the tandem network at stage S al timed e X; = (VEI_)SH , VEE)SH, e, st)>. The
time shift in the ohservations at each stage results from a cell requiring at least one time slot
to propagate through cach stage. Now {Xi}iso is Markovian under general conditions. Let
0,(5) be the paramecter associated with the [-th random process al stage s for [ = 1,... 1y,
and ¢! = (0&”,0&”,...,0&1) be the vector of parameters belonging to stage s so that
6'S) = (d)(l), e .., (z,')(s)) is the overall vector of parameters.

An expectation a!M(9%)) = EB(S)g(O(S),Xo,...,XT) at the S-th stage in the tandem

network can also be written as
a(S)(O(S)) = EO’(S)g(O(S)')Xow s 7XT)I"(T5)(9(S)’ 81(5)1X07 s 1XT) (14)

where 7' is a finile stopping time. The expectation a(5)(8(%)) is taken at the S-th stage in
the network, otherwise S stages would not be needed in the simulation. We assume that the
optimization of the bias paramelers is performed lor only a single expectation which is at
the S-th stage in the network, since simultancous optimization of multiple estimators could
lead to conflicting bias parameter settings that would not result in performance speed-up.
At stage S in the tandem network, the likelihood ratio at time n during the simulation,
Lff)(g(s), 6'9) X, ..., X,), depends on all random trausitions which previously occurred at
stage S up lo time n, as well as all random transitions which previously occurred at stages
1 toS—1 at timesn — S ton — 1, respectively. As stated belore, this time shift results
becanuse one time slot is needed for a cell to propagate through a single stage in the network
due to the slotted time operation of the tandem qucueing network, as well as the simulation.
The stages at posilions downstream from S in the tandem network will have no cffect on the
likelihood ratio Lff)(a(s), 0'5) Xo,...,X,) at stage S because cells flow only from stage s to
stage s + | in the tandem network. The random processes paraineterized by the vector o)
are independent from stage to stage, even though the expectation a®(09)) is dependent on

each ¢*). Becausc of the Markovian nature of {X, }n30, the likelihood ratio for any instant



Fast Simulation of Queueing..., Devetsikiotis, Al-Qaq, Freebersyser, and Townsend 14

n <=0 /* Initialize itcration count */
s s -
Gg ) & 95,3,, /* Initialize IS parameter values */
/* Perforin gradient descent on estimated IS-variance */
/* until empirical precision « is sufficient */

do {

Calculate h(n) /* (et new step size */
95;1)1 <= 05 — h(n) VoartS)(8(5)) /* Perform descent step */
Calculate 171\7'(5)(9("‘?]) using Ny RC’s

Calculate 135',,4_1 using Ny RC’s

} while { \/Wr(s)(e,,+1(.S'))/I35_,,+1 >}

Iligure 5: Pseudo-code describing the SGD algorithm for tandem networks.

n at the S-th stage in the network is

PO X X))
1=0 P(OI(S)aXiaXH-l)

L(69),0"9 Xy, ..., X,) = (15)

where P(O(s),Xi, Xiy1) is the transition probabilitics under 8(%). In the following discussion,
we use L0 09 justead of the expression shown in (15) in order to simplify the

notation.

4.2 The SGD Algorithm for Tandem Networks

The SGD algorithm [or tandem queues is outlined in Fig. 5. IS is applied by replacing the
original parameter 085) with @), The performance measure of interest is the mean-square
value Ee(s)(ﬁsz) and its gradient with respect to the biased paramecters, V0<5)E0(5)(P§), at
the S-th stage of the tandem network, where Ps = Z}:ol ]J(S) L;S)(GE,S),O(S)) is the estimate
of the cell loss at the S-th stage of the tandem nelwork, IJ(S) is the indicator [unction of a

cell block in slot j at stage S, and

- s
L(S)(g(s) 3(5)) — ]Hl P(H(() )axi7Xi+1)
7 0 -

5] (16)
im0 P(0Y), X, Xit1)

Then,
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0 T-1 2
= S e [(Z 1}5)4_5)(035),0(5))) Lgﬁ)(g(s),gl(S))}
) j=0
09091 p5) A
—_ N S S P <
) 2
o (= s (5)n(S) (s (5)
| 90® Y L7(657,010) | L (01, 1)) (17)
i =0

where 6'(S) parameterizes the actual sampling distribution for the S-th stage of the tandem

network. Since

. S — S '
OLy gis) gy _ 5 9P X, X) L5689, ')

—— . (18)
a0t fur 96 P8 X X;41)

this results in

8 1
gt 6

T-1 2
$5 I;S)L;S><egs>,e<s>>) ]
i=0

_ S ’
_ 5 5O g65) Z ), X5, Xj1) L7(8),0")
A = 60}5) PO X, X;41)

7=0

2
n { 0 (Z[(S)L(S)(Ggs)’g(b‘))) }Lg)(g(m,gm)} (19)

96
Using L9 (857,8) = 1/L17(6),65), to show that

aL.(IS)(O( = 6P ’kaXkH) LE'S)(OBS)va(S))
96 = 90" PO, Xy, Xe41)

t

(20)

Then, from

2
0 (Z 191588, 0(5)))

2

Il

B 1915019, 09 = s 0LY s s
00 s j:U . N

1(5)L ()9, 615)) 7(9)
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and taking 0'5) = 9() (i.e., drawing random numbers using 8'%)) which implies

LSFS)(G(S),OI(S)) =1, resulls in

J (9 1(5), (5 :
20 Zges S 1L ’,9<5>))

r-i PT-1 9P X. X.
9(5) (Z[ 0“’)) ZdP(O ’X]7X]+|) 1

3=0 ()01(5) ])(g(lS)’X]‘7XJ'+1)

(22)

1=0

Z 1(*)L(¢) 819 (o)) Z / S)JXE OP(8') Xy, Xeq1) Lﬁs’(egs’,e'(s))
‘ k=0 86" P Xy, Xyy1)

Thus, in order to estimale the partials of the IS mean-squarc term with respect to the
elements of 85, numbers should be draw using 8%, and then a sample mean taken over
i.1.d. random repctitions of the quantity in brackets on the right-hand-side of (22). These
partial derivatives can then be used in the SGD algorithm.

The task of obtaining partial derivatives of P(0") Xy, Xy41) is facilitated, among others,
by the multiplicative nature of the one-step transition probabilities (due to independence of
the random choices involved). For the random processes considercd here, a transition in a
slot, depends on all independent (discrete) random events, each occurring with conditional
probability p(f’) under the original unbiased settings. Under IS, these probabilities can be
biased so that they become 0 ]), () Then 99 = (051),...,0ms) and P(09 X, Xiyy) =
| ,(S)p, leading to

IP(0), X;, X, 9T ’”’ :
PO R R o T oY (23)
a9, J=1 k=1(k#l and 7#s)
and s
| 61)(9( ),Xi,Xi+1) — 1 (24)
P8, X, Xip1) a0 0

Several heuristic arguments can be used to identily a starting point for the search in
(10) when important cvents are rare. For example, near-optimal IS settings for a single or
tandem queue case where the important events arc not rare (e.g., smaller buffer size for cell

loss probability) can be found first and then extrapolated to oblain a starting point for the
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and taking 9'5) = (9 (i.e., drawing random numbers using 8'5)) which implies

L%‘S)(g(s),el(s)) = I, results in

= T ) x. x.
59(3) Z /}S)LES)(GE,S),H(S)) Z OP(0™,X;, X;41) _ 1
=0 i= 06" P(e%) X, X 1)

Z 1901 ) Tf 1(5)j_Zl OP(6), Xy, Xupr) L57(657,6'9) (22)
] j=0 ’ k=0 8053) P(G(S)>Xkaxk+1)

Thus, in order to estimate the partials of the IS mean-square term with respect to the
elements of 8%), numbers should be draw using 8, and then a sample mean taken over
i.i.d. random repctitions of the quantity in brackels on the right-hand-side of (22). These
partial derivatives can then be used in the SGD algorithm.

The task of obtaining partial derivatives of P8 Xy, Xy y1) is facilitated, among others,
by the multiplicative nature ol the one-step transition probabilities {due to independence of
the random choices involved). For the random processes considercd here, a transition in a
slot. depends on all independent (discrete) random events, each occurring with conditional
probability pfs) under the original, unbiased settings. Under IS, these probabilities can be
biased so that they become 0,(5)])55). Then 95 = (051),...,0,:5)) and P(O(S) X, Xip1) =
e, Ik, 0 01 p) | leading to

oP 0(5),Xi,Xi . S my .
( 3 +1) = 7)} ) H H OJ(CJ)PL]) (23)
a0, J=1 k=1(k#! and j#s)
and s
1 oP(0"), Xi, Xiy1) _ | (24)
PO®, X, Xin1) 0" 0

Several heuristic arguments can be used to identify a starting point for the search in
(10) when important events are rare. For example, near-optimal IS settings for a single or
tandem queue case where the inportant events arc not rare (e.g., smaller buffer size for cell

loss probability) can be found first and then extrapolated to obtain a starting point for the
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rare event case. We will also demonstrate that the ncar-optimal bias parameters for a S-stage
tandem queue network can be used as a starting point to quickly obtain the near-optimal

bias parameters for a (S + 1)-stage tandem queue network.

5 Experimental Examples

5.1 The IBP/Geo/1/K Queue

The IBP/Geo/1/K queue ! is the slotted-time counterpart of the IPP/M/1/K queue 2. For
this queue, although the service process is memoryless, the arrival process is bursty, making
this system a useful and widely used model for the bursty processes involved in B-ISDN and
ATM analyses. Exact solutions for this queue can he obtained hy numerical solution of the
corresponding Markov chain. We include it in our experiments to provide further validation
of our techniques, as was also doune in [7].

There are two stales of the arrival process: active and idle. In the active state, an arrival
can occur with probability o while in the idle state no arrivals can occur. While the arrival
process is in the active state, there is a probability p al each slot that the state will remain
active and a probability 1 — p that it will change to idle. While the arrival process is in the
idle state, there is a probability ¢ at each slot that the state will remain idle and a probability
1 — q that it will change to active. When the server is busy, there is a probability 1 — ¢
in each slot that a customer will depart. Arrivals and service completions are independent.
There is a finite capacity of K customers in the system. In our experiments, a was assumed
to be equal to 1. The squared coeflicient of variation C? of the interarrival times is used to
measure the burstiness of the arrival process. Typical values are C? = 1 corresponding to
Poisson arrivals, C'? & 20 for voice and C? ranging [rom 10 to 10,000 for video. A numerical
technique that evaluates cell loss probabilities for this queueing system can be found in [19].

Under regenerative IS, we choose the times thal a customer arrives to an empty system

and the arrival process has just changed to active, as the regeneration points. In each

1IBP stands for Interrupted Bernoulli process, Geo stands for Geometric
2IPP stands for Interrupted Poisson process
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[igure 6: Estimated cell loss probabilities and numerically calculated probabilities [19] for the
IBP/Geo/1/K queue.

C? || CPU Time, seconds
10.0 0.731H
20.0 1.417
30.0 2.099

Table 1: CPU Time for 1,000 RC's of the IBP/Geo/1/K quene on a DECStation 5000/25 when no IS is
applied (K=200).
regeneration cycle (RC), we bias initially p, ¢ and o to pj, ¢f and o7, until one customer has
been blocked, then change IS parameters to p3, q3 and o3 in order to allow fast regeneration.
In our experiments, we set p; = p, ¢; = ¢, 03 = 0, and oplimized with respect to the
settings of 0; = p}/p, 02 = qi/q and 03 = o7/0 using the SGD and the SFA algorithms
from above. Results were obtained for queue set-ups that corresponded to three different
values of C2, namely 10.0, 20.0, and 30.0 (see Table 2). Estimated loss probabilities are in
agreement with the numerically calculated probabilities in [19], as illustrated in I"igure 6.
The simulation time required for 1,000 RC’s on a DECStation 5000/25 when no IS was
applied for these three cases is given in Table 1. The queue capacity K was set equal to 200.

In applying the SGD algorithm we used in each case the near-optimal biasing for K = 50

as a starting point. Obtaining the near-optimal IS biasing for K = 50 was not dilficult, since
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System Pr(loss] 0op1, Oop2, Oups Pr(loss] 95% Interval Rnee

IBP/Geo/1/K 1.0457 {7.405 x 10~ 12,
C? =10.0,0 = 0.35147, K = 200 | 7.530 x 10~ 12 0.9244 7.536 x 10~'%2 | 7.666 x 107'?) | 1.3 x 10®
p = 0.932075471, ¢ = 0.954716981 1.0763

IBP/Geo/1/K 1.0231 (8135 x 10~ 7,
C? =20.0,0 = 0.35147, K = 200 | 8.301 x 107 0.9586 8.259 x 10~7 8.382x 10~7) | 1.4x10°
p = 0.965048543, ¢ = 0.976699029 1.0114

IBP/Geo/1/K 1.0156 (4.730 x 107>,
C? =30.0,0 =0.35147, K =200 | 1.829x 10™° 0.9710 4.809 x 10" 4.887 x 1073) 2.1 x 10
p = 0.976470588, ¢ = 0.984313725 1.0231

Table 2: Estimated cell loss probabilities and speed-up factors using the SGD algorithm for the
IBP/Geo/1/K queue. For these estimates: N = 100, Nre = 300.

the corresponding loss probabilities were high and the space could be searched efficiently
with the SGD algorithm starting {rom the brute-force MC point. Furthermore, we used
N4 = 300 RC's per simulation run for C? = 20 and C? = 30, and N4 = 3,000 for C?* = 10,
The algorithm converged in all cases after [, < 1,000 iterations. The step size h was
obtained by trial-and-error and varied from 5 x 1073 (C? = 30) Lo 10" (C? = 10).

In applying the SFA algorithm we used in each case the near-optimal biasing for K =50
as the “second-order” IS. Obtaining the near-optimal IS biasing for K = 50 was not difficult,
since the corresponding loss probabilities were high and the space could be searched efficiently
with the SFA algorithin without any “second-order” IS. Furthermore, we used Ng = 300
RC’s per simulation run for C* = 30, and Ng = 3,000 for C* = 10 and C* = 20, The
algorithm required between /g = 300 and Ig = 800 to “scan” the search spacc. The step
size h = 10~* was obtained by trial-and-error. The saluration tolerance e was sct to 0.05.

Tables 2 and 3 summarize the results, including the near-optimal IS biasing parameter
values (0,p1, Oop2, Vop3) found by the SGD and the SFA algorithms, respectively, the corre-
sponding estimated loss probabilities, the estimatced confidence intervals and the speed-up
factors with respect to conventional MC simulation. Numerically evaluated loss probabilities
were taken from [19]. In order to delermine confidence intervals and speed-up factors, Nz of
Nprc RC’s each were run using the chosen IS biasing values. As in (7}, speed-up factors were
obtained assuming consecutive cell losses are independent within cach RC for conventional
MC simulation. [Furthermore, RC’s were assumed to correspond to a constant number of

arrivals equal to the estimated average number. This is a conservative assumption, since
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System Pr(loss] O0p1+ op2, 0op3 Pr{loss] 95% Interval Rnet

IBP/Geo/ /K 1.0444 (5.123 x 10~ 1%,
C? =10.0,0 =0.35147, K = 200 | 7.530 x 10~'2 0.9793 8.136 x 10~'2 | 1.114 x 10~!!) | 4.4 x 10°
p = 0.932075471, ¢ = 0.954716981 1.0026

IBP/Geo/1/K 1.0244 (7.243x 1077,
C? =20.0,0 =0.35147, K =200 | 8.301 x 10~7 0.9883 7.807 x 10~7 8.372x 1077) 8.3 x 10
p = 0.965048543, ¢ = 0.976699029 1.0008

IBP/Geo/1/K 1.0179 (4.530 x 1075,
C? =30.0,0 =0.35147, K =200 | 4.829x 10~° 0.9925 5.082 x 10~" 5.633 x 10~%) McC*
p = 0.976470588, q = 0.984313725 1.00041

Table 3: Estimaled cell loss probabilities and speed-up factors using the SFA algorithm for the
IBP/Geo/1/K queuc. For these estinates: Ng = 100, Npec = 300. The asterisk (#) is used to denote
points where the use of IS did not result in speed-up over MC siinulation, hence the point used is that found
by MC simulation.

when importaunt events are bursty more such events would have Lo be observed for the same
statistical accuracy (see [20]). The net run time speed-up over conventional MC simulation
is denoted by Rne; and takes into account the increase in the length of RC’s when IS is used.

The speed-up factors given here describe the factor by which an IS estimator that uses
our chosen parameter values is more accurate than a conventional MC estimator based on
the same sample size. The computer run time required to search [or these favorable IS values
has not been included in this calculation. For the examples shown lere, that overhead would
reduce the overall speed-up factor by up to 2 orders ol magnitude for some cases.

As expected, the estimated speed-up factors are low for high loss probabilities but increase
consistently as the loss probability decreases. Thisis a desirable cffect since increasing speed-
up factors are crucial in order to estimate very low probabilitics within a realistic amount
of run time. Taking into account this trend, as well as the overhead involved in the search
for near-optimal IS settings, one can determine in cach case the break-even loss probability,
below which employing IS is favorable in terms of total run time required. Our results clearly
indicate that, for realistically low loss probabilities (> 1077), the statistically optimized IS
settings yield significant speed-up factors over MC simulation. Furthermore, near-optimal

IS parameter values are consistent with those found by MFA in [7].
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Figure 7: M-IBP+MMBBP/D/1/K tandem queues.

5.2 M-IBP+MMBBP/D/1/K Tandem Queues

5.2.1 Description

As described in [21] and shown in Figure 7, a single stage of this slotted-time queucing
model has one server with a deterministic service rate of one cell per slot. There are two
independent traflic streams entering the first stage of the tandem M-IBP+MMBBP/D/1/K
queue. The first stream, called the tagged trallic [21], is modeled by a Modified Interrupted
Bernoulli Process (M-IBP), which dilfers from the standard IBP in that the busy periods
have a deterministic, constant length equal to I{p slots, where I(p is referred to as the packet
size or nuinber of cells in a packet, and one cell is assumed to arrive in each busy slot. When
the tagged traffic is idle, there are no arrivals, and there is a probability g7 that the traffic
remains idle.

The second stream, called the external traffic [21], is modeled by a Markov Modulated
Bernoulli Process with Batch arrivals (MMBBP). It differs from the standard MMBP (of
which the IBP is a special case) in that more than one cell can arrive during a busy slot, i.e.

batch arrivals. The number of cells m arriving in a busy slot is described by some distribution
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bi(m) for each state i = 1,..., Ns of the MMBP. Assume the MMBBP has two states, aclive
and idle, i.e. an Interrupted Bernoulli Batch Process (IBBP). When the external traffic is
active, arrivals occur and there is a probabilily p that the external traffic remains active. In
state 1, the active state, b;(0) = 0 and arrivals occur with a uniformn batch-size distribution,
Le., bi(m) = /npee fovr m = 1,... nmes. When the external traflic is idle, there are no
arrivals, and there is a probabilily q that the external traflic remains idle. In state 2, the
idle state, b,(0) = L, and by(m) =0 for m = 1,..., npas. When tagged and external arrivals
occur in the same slot, the queue is filled randomly with tagged and external arrivals.

For tandem coufigurations of M-IBP+MMBBP/D/1/K queues, p and ¢ are indexed for
each stage as p; and ¢, for s = 1,...,S. Similarly, cach queue in the tandem network has a
finite bulfer of length I{s. The tagged traflic always continues [rom one node in the network
to the next node in the network, while the external trallic exits the system. Thus, the input
streams of the stages [ollowing the first stage of the tandem network are characterized by the
tagged trallic stream exiting the previous stage and an additional MMBBP process modeling
the external traffic.

We denote by C% the squared coefficient of variation or burstiness parameter of the
external traffic, which describes the variability of the interarrival time of the external cells
entering the network at each stage. The corresponding burstiness parameter for the tagged
traflic interarrival time variability, C2, is measured at the input of each stage s in the network
fors=1,...,5.

The recent attention paid to ATM technology has made simulation of tandem networks of
great interest. Tandem networks of M-IBP+MMBBP/1/D/K queues can comprise an end-
to-end model of the nodes in an ATM network, where the M-IBP tagged traffic represents
the stream under observation (e.g., a specific virtual circuit), and the MMBBP external
traflic represents the aggregation of all the other virtual circuits through the same node.
The deterministic server models the link carrying the traflic to the next node in the network.

A numerical technique that evaluates cell loss probabilities for a single stage of the
M-IBP+MMBBP/D/1/K queueing system is given in [21], although the numerical stability

of that technique is still under study. Since the technique in [21] involves the numerical
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System || CPU Time, seconds
1 0.573
2 0.342
3 20.772

Table 4: CPU Time for 1,000 RC’s of the single M-IBP+MMBBP/D/1/K qucue on a DECStation 5000/25
when no IS is applied.
solution of Markov chains with dimensionality proportional to the queueing capacity, the
required run time quickly becomes forbiddingly long for large bulfer sizes and/or tandem
networks of queues. Furthermore, problems with numerical precision and stability may
arise.

In the following, we first consider single M-1BP+MMBBP/D/1/K queues, and then M-
IBP+MMBBP/D/1/K queues in tandem.

5.2.2 Stochastic Gradients for the Single M-IBP+MMBBP/D/1/K Queue

We let regeneration epochs be the instants where the queue is empty, the tagged trafhic
stream is idle, and the external traflic stream is just going active and is generating a cell. In
each RC, we bias initially p, ¢ and qr to pj, qi and g, until one customer is blocked, then
change IS parameters to p3, 5 and g7, in order to allow fast regeneration.

In our experiments, we set p; = p, q3 = ¢, ¢1, = qr, and oplimized with respect to the
settings of #; = p;/p, 02 = ¢;/q and 03 = q7,,/qr using the SGD and the SFA algorithms.
For our example cases, the total offered traflic load was held fixed at 0.7, with the offcred
external traflic load ranging from 0.5 to 0.6. Table 5 describes the system set-up for our
three example cases (referred to as systems 1, 2, and 3, respectively). The simulation time
required for 1,000 RC’s on a DECStatioun 5000/25 when no 1S was applied for these three
cases is given in Table 4.

In applying the SGD algorithm we used the same approach as in the previous subsec-
tion, always starting with a small queue capacity and increasing until we reached the desired
capacily. In each case we used the near-optimal biasing for the immediately smaller queue

capacity as a starting point. Obtaining the near-optimal IS biasing [or the initial queue
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System Oopt, Oop2, Oop3 Pr[loss] 95% Interval Rpet
M-IBP+MMBBP/D/1/K 1.3074 (1.469 x 107,
l. = 0.45,¢9 =0.89, C% = 1.68 0.9149 1.564 x 10~7 | 1.660 x 10~7) | 1.2 x 10?
qr = 0.95, Kp =5, K = 100 0.9682
M-1BP+MMBBP/D/1/K 1.4693 (1.498 x 1079,
2. p=03,¢=0.825CE% =11 0.8593 1710 x 10=° | 1.921 x 10~°) | 6.5 x 10*
qr = 0.97778, Kp = 5, K = 100 0.9745
M-IBP+MMBBP/D/1/K 1.0234 (1.174 x 1077,
3.1 p=0.954¢=0.99, C%Z =269 0.9919 1.207 x 1072 | 1.240 x 107%) | 2.3 x 10°
qr =0.95, Kp =5, K = 1700 0.9978

Table 5: Estimated cell loss probabilities and speed-up factors using the SGD algorithin for the M-
IBP+MMBBP/D/1/K queue. For these estimates: Ng = 100, Npc = 1,000.

capacity (typically K = 20 or K = 50) was not difficult, since the corresponding loss proba-
bilities were high and the space could be searched efliciently with the SGD algorithm starting
from the brute-force MC point. Furthermore, we used N4 = 1,000 RC’s per simulation run.
The algorithin converged in all trials after [4 < 7,000 ilerations. The step size h was
obtained by trial-and-error, with a typical value of h =1 x 107°.

In applying the SFA algorithm to systems 1 and 2 we first found the near-optimal biasing
for K = 40 without using any “second-order” IS. This was possible since the corresponding
loss probability was high. We then used the near-optimal for I{ = 40 as the “second-order”
IS while searching for the optimal al I = 80. Finally, we used the near-optimal for K = 80
as the “second-order” IS while searching for the optimal at K = 100. We used Np = 1,000
RC'’s per simulation run. A similar procedure was used for system 3, however the progression
of increasing bulffer sizes was K = 500, K = 1100, and finally K = 1700. In each case, the
algorithm required approximately /g = 1,000 to “scan” the scarch space. The step size
L =5 x 10~* was obtained by trial-and-error.

Tables 5 and 6 describe the parameter set-up, the ncar-optimal IS settings (0op1, Oop2, op3)
found by the SGD and SFA algorithmns, respectively, the estimated loss probabilities, and
the speed-up factors over conventional MC simulation. The same assumptions stated for the
IBP/Geo/1/K case were used while calculating spced-up factors.

Finally, Figure 8 illustrates the results of applying the samc IS setting chosen by SGD

for the simulation of systems 2 and 3 in Table 5, as the queue size varies.
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System op1,0op2, Bop3 Pr[loss] 95% Interval Rpet
M-IBP+MMBBP/D/1/K 1.0128 (7.747 x 1077,
l.| p=0.45¢=0.89, C% =168 0.9217 1.097 x 1077 | 1.419x 10-7) | 8.9x 10
qr =0.95, Kp =5, K = 100 0.9296
M-IBP+MMBBP/D/1/K 1.0073 (4.675 x 10~10,
2. p=103,¢=0825Ci =11 0.9382 1.024 % 107° | 1.581 x 107%) | 1.3 x 102
qr = 0.97778, Kp =5, K = 100 0.8951
M-IBP+MMBBP/D/1/K 1.0068 (3.298 x 10717,
3.1 p=0.954=0.99 C} =269 0.9839 8.921 x 1071% | 1.454 x 107%) | 1.9 x 10?
qr = 0.95, K'p =5, K = 1700 0.9993

Table 6: Estimated cell loss probabilities and speed-up factors using the SFA algorithin for the M-
IBP+MMBBP/D/1/K queue. For these estimates: N = 100, Nrc = 1.000, except for system 2, where
Ngr =500, Nrec = 10,000 were used.
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es and 1S speed-up factors, Ryer, as a function of the queue capacity,

for two example M-IBP+MMBBP/D/1/K queues (systems 2 and 3). For both cases, the IS settings were
taken from Table 5, and remained fixed as K varied.
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5.2.3 The SGD Algorithm for Tandem M-IBP+MMBBP/D/1/K Queues

Here, the estimatc of the cell loss probability at the input of the S-th stage in the tandem
nelwork is obtained by using the SGD algorithm to minimize the estimate of the variance
of the average number of tagged cells blocked per RC at the S-th stage with respect to the
IS bias parameters. This requires that S stages be used to estimate the cell loss probability
at the input of the S-th stage. The average number of arrivals per RC is estimated using
conventional MC simulation since arrivals are not rare events.

Regeneration epochs are defined as the instants where each queue in the network is empty,
the tagged traflic stream is going aclive and generating a cell, and all the external trafhic

streams in the network are idle. In each RC, g7, ps, and ¢, are initially biased to q}(ls),

*(S *(S . . .
ps'(1 ), qs_(1 ) respeclively, where s indexes the stage in the tandem network and S indexes the
position in the tandem network which is being optimized, until one customer is blocked, then

the IS parameters are changed to q;‘(‘f), ]):ff), and (I:,(QS) in order to allow fast regeneration.

* S * S
) = qr1, ps,(Z) = Ds, a'“d (/s,(2)

In these simulations, q;w(f = q¢,, and the optimization was
performed with respect to the settings of 0; = qr}(’f)/qq', 025 = p:fls)/ps, and Oysqy = q:,(ls)/qs
for s = 1,...,5 using the SGD algorithm. In addition, each stage in the network was
assumed to have identical parameters, p = p;, ¢ = ¢s, and /' = K,. The external traffic
was not allowed to propagate through more than one stage in the tandem network. For the
example cases, the total offered tagged traflic load at cach node was held fixed at 0.7, with
the offered external traflic load ranging from 0.5 to 0.6. Table 7 describes the system set-up
that was optimized for the example cases, referred to as systems 2 and 3 (consistently with
Section 5.2.2.) for 1, 2, and 3-stage tandem networks.

As with the single queue case, the SGD algorithm was applied by using as the starting
point the near-optimal biasing for a smaller queue capacity. Obtaining the near-optimal IS
biasing for shorter buffers was not difficult, since the corresponding cell loss probabilities
were high and the space could be searched efficiently with the SGD algorithm starting from

the brute-force MC point. Initially, this was done for the tandem configurations as well

until it was determined that the near-optimal bias parameters for a single stage could be
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System | M-IBP+MMBBP/D/1/K 6. 6.2 6
qr =0.97718, Kp =5 (0.9808
2 K =100 (0.9745, (0.9794, 1.0004, 0.9980
p=03,q=0825 1.4693, 0.8593) | 1.0009, 0.9987 | 1.0042, 0.9944
CL =11, nypaz =5 1.4551, 0.8991) | 1.4427, 0.9046)
qr =0.95, Kp = 5 (0.9981
3 K = 2000 (0.9978, (0.9979, 1.0013, 0.9999
p =095 ¢=0.99 1.0234,0.9919) | 1.0028,0.9992 | 1.0018, 0.9998
C% =269 nmas =5 1.0220, 0.9929) | 1.0211, 0.9936)

Table 7: Optimal bias parameters using the SGD algorithin for the 1, 2, and 3 stage tandem M-
IBP+MMBBP/D/1/K queues.

used as the starting point for the 2-stage tandem network by using the translation 91(-2“&, =
(0&%3’“, 1.0, 1.0, 0&13;,,, 9:(,2”). Thus, the near-optimal bias parameters at the s-th stage can be
used as a starting point for the optimization runs for the (s 4 1)-th stage. In fact, the near-
optimal bias parameters for a single stage can be uscd as a starting point for the optimization
runs for any multiple stage system by using the near-optimal bias parameters for the external
traffic of the first stage as the initial bias parameters for the external traffic at the stage of
interest. For N4 = 1,000 RC’s per simulation iteration, the algorithm converged in all trials
after 14 < 7,000 iterations for the first stage (as in Section 5.2.2), and [4 < 300 iterations
for the subsequent stages. The step size h was obtained by trial-and-error, with a typical
value of h = 1 x 1073,

Table 7 shows the near-optimal bias found using the SGD algorithm for 1, 2, and 3-stage
tandem networks for systems 2 and 3. Notice that the amount ol biasing required for the
near-optimal parameters at each stage decreases as the number of stages increases. This
phenomenon has been seen previously in (8] when the SGD algorithm was applied to the
area of wireless communications links with diversity reception. As the amount of diversity
increased, the amount of biasing required for speed-up decreased. The technique of using
the parameters from one stage as a starting point for an increased number of stages was also
incorporated in [8] with increasing amounts of diversity instead of queueing stages.

Tables 8 — 13 illustrate the results of applying the IS setting chosen by the SGD algorithm

in the simulation used to estimate the cell loss probability ol systems 2 and 3 in Table 7
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K Pr{block], 95% Interval Rt
(2.26 x 1077,

10 || 2.38x 1072 | 2.50 x 1072) 1.1
(5.30 x 1074,

30 || 5.67x10=* | 6.03x 10-%) 10
(2.30x 1078,

60 || 2.81x107% | 3.31 x 107%) 140
(1.18 x 1079,

100 | 1.38x 107° | 1.59x 10~%) | 2.5 x 10°
(2.28 x 10717,

150 || 2.68 x 1013 | 5.12x 10~'3) | 2.3 x 107

Table 8:_ Estimated cell I.oss prgbabilities and speed-up factors for the simulation of one stage of system 2
e e e e 20 K e fom 10 15 140, Fo these esmates
Nr =20, Npc = 1,000.

as the queue size and number of stages in the tandem network varies. As in [22, 21}, the
cell loss probability for the tagged traflic is of interest. Speed-up factors are calculated as in
Section 5.1. Unlike the first stage, there are no known results for the second and third stage
cell loss probability.  The information in Tables 8 - 13 is also plotted in Figures 9 and 10
for systems 2 and 3 respectively. In order to determine confidence intervals and speed-up
factors, Np runs of Nrc = 1000 RC’s for each run were performed for varying buffer sizes
using the near-optimal IS biasing values in Table 7. The estimate of the end-to-end cell loss
probability is obtained from the estimates of the individual stage cell loss probabilities, given
that the probability of a cell block at any one stage is mutually exclusive from the other
stages.

The burstiness characteristic of the external traffic in system 2 is nearly Poisson, com-
pared to the mildly bursty external traffic in system 3. For systemn 2, the cell loss probability
decreases as the tagged traflic propagates through the tandem network because of the low
external burstiness. This behavior is in contrast to system 3, where the cell loss probability
of the tagged trallic stays relatively constant as it propagates through the tandem network
because of the higher external burstiness. The change in the burstiness of the tagged traffic,

shown in Table 14, is due to the fact that the external traffic is mixed into the tagged traffic

stream by the random queue-filling discipline, and changes the variability of the interarrival
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K Pr{block], ?;?7["L16(;VZI Rnet Pr[l)lock]s),stem
07 x 1074,
10 || 2.14x 1072 | 2.22x 1072) MC* 4.47 x 10~2
(471 x 1077,
30 || 5.21x 1074 | 5.71x 107" MC* 1.09 x 1073
(T 12x 1077,
60 || 8.41x10=7 | 9.71x 1077) 07 3.65 x 1075
(3.67 x 1019,
100 || 5.19x 1071 | 6.71 x 10-'%) | 3.1 x 10* 1.90 x 107°
(3.20 x 10~ 1%,
150 || 5.27 x 10-'* | 7.35 x 10~'%) | 1.2 x 108 3.20 x 107!3

Table 9: Estimated cell loss probabilities and speed-up factors for the simulalion of two stages of system 2
in Table 7, as the qucue size varies for qr = 0.9778, K'p =5, p = 0.3, ¢ = 0.825, Cf; = 1.1, and nmaz = 5.
IS settings were taken from Table 7, and rewmained fixed as K varied (romn 10 to 150. For these estimates:
Ngr = 20, Ngc = 1,000. The asterisk (*) is used to denote points where the use of IS did not result in

speed-up over MC siinulation, hence the point used is that found by MC simulation.

K Pr{block]s 95% Interval Rpet Pr[block]system
(1.98 x 1072,

10 || 2.00x 1072 | 2.03x 107%) MC* 6.38 x 1072
(4.89 x 1072,

30 || 5.29%x 1075 | 5.68x 1074 McC* 1.62 x 10-3
(1.74 x 1077,

60 || 1.05x 1075 | 1.93 x 10~°%) 1.3 4.70 x 10~
(1.73 x 10717,

100 || 2.28 x 10-19 | 2.83 x 10719 | 5.8 x 10 2.13 x 107°
(3.17 x 10713,

150 || 2.82 x 10~ | 5.33 x 10~'%) | 2.8 x 107 3.48 x 10713

Table 10: Estimated cell loss probabilities and speed-up faclors for the simnulation of three stages of system 2
in Table 7, as the queue size varies for g = 0.9778, Kp =5, p = 0.3, ¢ = 0.825, Ct = 1.1, and Nmaz = 5.
IS settings were taken from Table 7, and remained fixed as I varied from 10 to 150. For t:hese estlma.te.s:
Nr = 20, Nrc = 1,000. The asterisk (*) is used to denote points wherfe the use of IS did not result in
speed-up over MC simulation, hence the point used is that found by MC simulation.
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K Pr(block], 95% Interval Roet
(3.04 x 10—7,

500 || 3.11x107* | 3.18 x 10-%) 4.3
(1.35 x 1077,

800 || 1.39x 1075 | 1.44 x 10-5) 28
(6.05 x 1077,

1100 || 6.26 x 10~7 | 6.47 x 10~7) 430
(2.77 x 1078,

1400 || 2.89x 107% | 3.01x 10°%) 5000
(1.17 x 1077,

1700 || 1.21 x 107° | 1.24 x 10~°%) | 2.3 x 10°
(5.08 x 10~TT,

2000 || 5.29 x 107" | 5.49 x 10~'1) | 2.3 x 108

Table 11: Estimated cell loss probabilities and speed-up factors for the simulation of one stage of system 3
in Table 7, as the queue size varies for qr = 0.95, Kp = 5, p=0.9549=0.99, C% =26.9, and npner = 5. IS
settings were taken from Table 7, and remained fixed as K varied from 500 to 2,000. For these estimates:
Np =100, Nre =1, 000.

K Pr[block], 95% Interval Roet Pr[block]system

(274 x 1077,

500 || 3.01x 10=* | 3.28 x 10™7) 1.0 6.12 x 104
(1.28 x 1077,

800 || 1.35x 10=5 | 1.41 x 10~%) 20 2.74 x 105
(6.14 x 10~ 7,

1100 || 6.72x 107 | 7.29 x 10~7) 100 1.30 x 10~°
(2.32 x 1078,

1400 || 2.52x 1078 | 2.72x 10~8) 2500 5.41 x 10~8
(1.12 x 1079,

1700 || 1.22x 107° | 1.31x 107%) | 4.4 x 10* 2.43 x 10~°
(4.90 x 10=TT

2000 || 5.30 x 107! | 5.70 x 10~!") [ 9.2 x 10° 1.06 x 10~10

Table 12: Estimated cell loss probabilities and speed-up factors for the simulation of two stages of system 3
in Table 7, as the queue size varies for qr = 0.95, Kp =5, p=0.95, ¢ = 0.99, C% =269, and nmaz = 5. 1S
settings were taken from Table 7, and remained fixed as /{ varied from 500 to 2, 000. For these estimates:

NH = 20, NRC = 1,000
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K Pr[block]; 95% Interval Ruce Pr[bIOCk]sxstem
(2.46 x 107,

500 || 2.74x 107* | 3.02 x 10~%) 1.0 8.86 x 10~4
(1.03 x 1073,

800 || 1.15x 1075 | 1.26 x 10~5) 3.2 3.89 x 105
(4.29 x 10~7,

1100 || 4.97 x 1077 | 5.66 x 10~7) 30 1.79 x 10~°
(2.24 x 1078,

1400 || 2.56 x 1078 | 2.88 x 10~%) 580 7.97 x 10~8
(9.28 x 10~T19

1700 || 1.14x 10=° | 1.34 x 10~°) 5100 3.56 x 10~°
(4.05 x 10~TT

2000 || 4.58 x 10~'' | 511 x 10~'1) | 2.8 x 10° 1.52 x 1010

Table 13: Estimated cell loss probabilities and speed-up factors for the simulation of three stages of system 3
in Table 7, as the qucue size varies for q¢r = 0.95, I{p =5, p = 0.95, ¢ = 0.99, C% = 26.9, and npe, = 5. IS
settings were taken from Table 7, and remained fixed as K varied from 500 to 2,000. For these estimates:

Ngr =20, Nrc = 1,000.
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Figure 9: Cell loss probability (decreasing curves) and speed-up factors (increasing curves) for systemn 2.



Fast Simulation of Queueing..., Devetsikiotis, Al-Qaq, I'reebersyser, and Townsend 32

- 8
Ix10 3 1x10

~ \ IxID7

" \
s / 1x10

1x10 4
\\ &
Z -6 b ) Ul
2 wmo Py A NPT
z \ / L7 E':
o 7 SF 4 °
S io v 1x10
B Sd * 2
- 0 e (2]
3 38 X 3
= 1o . L 1xt0 3 -
0] SA =
© //. B
Y o 2 e
Lx10 - 1x10
10 A \
1x10 o !
1xto ! .

500 1000 2000
Buffer Capacity, K

4

——0——Stage 1 ©*** Slage 2 Stage J

Figure 10: Cell loss probability (decreasing curves) and speed-up factors (increasing curves) for system 3.

System || External C% || Tagged C? | Tagged C7 | Tagged C3 | Tagged C? | Tagged C?
2 1.1 7.2 6.7 6.3 6.0 9.7
3 26.9 5.6 7.6 9.4 10.8 12.0

Table 14: Burstiness parameter of the external traflic, C%, and the tagged traffic, C2, at the input of the
Ist through 5Hth stages for tandem M-IBP+MMBBP/D/1/K quecues (systems 2 and 3 from Table 7).
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Figure 11: Tagged traffic burstiness for the first five stages of a tandem network for systems 2 and 3.

time of the tagged traffic arrivals at each stage. The change in the tagged traffic burstiness
is plotted for the two systems for a five stage tandem network in Figure 11.

As with the single queue case, the statistical accuracy of the tandem cell loss estimates
indicates a significant robustness of the IS speed-up [actor with respect to the queue capacity,
when all other system parameters remain fixed. This can be very useful in increasing the
efficiency of the simulation, since the search for near-optimal IS values needs to be performed
only once for the largest buffer size at each stage. Thus, when cell loss probabilities are
required for several b;ffer sizes and stages in the network, the search overhead is divided
among all cases.

The simulation time required for 1,000 RC’s on a DECStation 5000/25 when no IS
was applied for the two different systems and the three different tandem queue network
configurations is given in Table 15. The increase in simulation time for system 2 from 1-

stage to 2-stages is due to to a change in the RC conditions and the addition of the code

required to handle multiple stages.
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1-Stage 2-Stage 3-Stage

System || CPU Time, seconds | CPU Time, seconds | CPU Time, seconds
2 0.342 54.025 232.175
3 20.772 56.514 256.401

Table 15: CPU Time for 1,000 RC’s of tandem M-IBP+MMBBP/D/1/K queues on a DECStation 5000/25
when no IS is applied (systems 2 and 3 from Table 7).

6 Conclusions

Monte Carlo simulation using importance sampling (1S) can obtain large speed-up factors if
the modification or bias of the underlying probability measures is properly chosen. In this
paper, we presented the Stochastic Gradient Descent (SGD) algorithm and the Stochastic
(Important Event) Frequency Ascent (SFA) algorithm, which used stochastic gradient opti-
mization techniques to arrive at favorable IS parameter settings that increase the efficiency
of the simulation of queueing networks, including queues with bursty traffic.

We demonstrated the effectiveness of our algorithms by applying them to the prob-
lem of estimating the cell loss probability of the IBP/Geo/1/K queue and tandem M-
IBP+MMBBP/D/1/K queues. These queueing systems are useful building blocks in perfor-
mance models for ATM switches and networks. For the examples presented, our methods
achieve speed-up factors of 1 to 8 orders of magnitude over conventional Monte Carlo simu-

lation of the estimation of the cell loss probability.
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