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Abstract
To obtain large speed-up factors in Monte Carlo simulation using irnport.ance sampling

(IS), the modification, or bias of the underlying probability measures must be carefully
chosen. In this paper we present two stochastic gradient op tirnizat ion techniques that lead

to favorable IS parameter settings in the simulation of queueing networks, including queues

with bursty trafIic. Namely, we motivate and describe the Stochastic Gradient Descent
(SCI)) algorithm, aud the Stochastic [lmporimit Event) F1'equcn('y Ascent (SFA) algorithm.

'vVe demonstrate the effectiveness of our algorithms by applying them to the problem

of esl.imal.ing the cell loss probability of several queueing systems: first, a queue with an
Interrupted Beruou lli arrival process, geolnetric service times, and finite capacity 1< (denoted
here by IBP /Geo/ 1/1<:); then, single and tandem configurations of queues with two arrival

streams, a Modified Interrupted Bernoulli stream and a Markov Modulated Bernoulli stream

with batch arrivals, deterministic service times, and finite capacity I( (denoted here by M­
IBP+MlVIBBP/D/l/I\). Such queueing systems arc useful building blocks in performance

models for ATM nodes and networks. Speed-up factors of 1 to H orders of magnitude over

conventional Monte Carlo simulation are achieved for the examples presented.
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1 Irit.roduction

A significant problem when using Monte Carlo (MC) simulation for the performance analysis

of couuuunication networks is the long run times required to obtain accurate estimates.

Under the proper conditions, Importance Sampling (IS) is a l.cclm iquc that call speed lip

simulations involving rare events of network (queuei'lg) systems [1,2,3,4,5].

Large speed-up factors in simulation run time Ca.1I be obtained by using IS if the modifi­

cation or bias of t1)(~ uuderlyiug probability measures is carefully chosen. It is not typically

possible to analytically ruinimize the variance of tho importance sampling estimator, or 18­

variance., with respect to the IS biasing parameter settings for la.rg(~ [multi qneuc] networks

with bursty traffic. Fast simulation methods based on Large Deviation Theory (LDT) [1, 3]

utilize asymptotical a.na.lytical knowledge, and analytical/uumerical manipulations of t.he

system statistics which are not feasible for many realistic systems, An example of the corn­

plexity involved with such analysis is the recent extension of Ll.l'I'<type solul.ious to a large

class of mull.iqueuc networks with input traffic consisting of multiple Markov-modulated

Poisson strearns [5J.

A technique [or Iindiug near-opt.inial bias parameter values, based OIl repetitive, short

sirnulation r1111S and statistical measures of performance, which included statistical estimates

of the estimator variance has been previously presented [6]. Such techniques are not restricted

to any specific type of random process, and do not require any knowledge of the internal

workings of tile system being simulated. The Mean-Field Annealing (MI(A) global optimiza­

tion algorithm, which is a Iorrn of Simulated Annealing (SA), has also been used for finding

near-optimal IS biasing parameter values for queueing system simulation [7]. The MFA ap­

proach is very effective and general, but can be affected by long run times and dimensionality

problems,

In [8] vee Iorrnulated stochastic gradient techniques in the different context of digital

communication systems. In this paper we present two stochastic gradient optimization tcch­

niques for the near-minimization of IS-variance in the simulation of queueing systems. Both

the Slocll,aslic Cradicn! Descent (SeD) algorithoJ, and the Slocliasiic [Itnportani Event}
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Frequency Jlscc11,l (SFA) algorithm involve Me estimates of the gradient of a cost function

using likelihood ratio mclliods, as described in [9, 10, 11, 12, 13]. Tile SeD uses estimates

of the IS-variance and its gradient with respect to t.he biasing parameters, and follows a

stochastic steepest descent path to near-optimal IS settings. The SFA uses estimates of the

biased [requeiicu oj utuioriani events (I~IE), e.g., cell-loss frequency, and its gradient with

respect to the biasing parameters, and searches for thc' minimum IS-variance in the direction

of steepest ascent ill the FIE.

vVe illustrate thp effectiveness of tile techniques with numerical examples. Large speed­

up factors (1 to 8 orders of magni tude) over canveil tional Me si mulation , at low cell loss

probabili ties (e.g., 10-]3) are obtained for queueiug systems with bursty traffic, including

single IBP /Geo/ 1/1( queues, and single and tandem M-IBP+MM BJJl)/D/1/1<. queues.

2 S'irrrulat iorr of Comrnunication Networks

2.1 M'C Est irnat ion in Network Analysis

Let Xi be the vector or observations relevant to a slot ted-t.i me communications network at

time i. Assume that {Xi}i~O is a discrete-time Markov chain wit.h transition matrix P. In

addition, assume that {Xi}i~O has a steady-state distribution, and converges in distribution

to X. Following the formulation in [14], the goal is to estimate the expectation E[f(X)] of

some function J(X) == h(X)/g(X). Let r be a regeneration state. Then , the expectation of

f can be written as

(1)

where X o = r, and Tl is the first time greater than zero that Xi == r.

2.2 Efficient Simulation Using IS

To obtain an est.imator of (1), first write /-/(s) = I:r~~1 h(Xi) and G(s) = I:r~;~l y(Xi), where

s denotes a sample path in the evolution of the system under study. Let Ep[G(s)] denote

the expectation of G(s) with respect to the probability measure P(s). IS is based on the
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observation that the expectation E[G(s)] under measure P can be written as Ep[G(s)]

Ep",[G(s)L*(s)J, wlwre L"'(s) = P(s)/ P"'(s) and provided that P"'(s) i= 0 whenever G(s)P(s)

=1= O. L* is a likelihood ratio or, ill the language of IS, a weight Iuuction. Then Elf] can be

estimated by

E;:[f] = I/N L~=I L;;~I h(XidL'ik
I I!v! L~~l L;;~I g(Xik)Lik

where Lik = P(XOk, · .. , X ik)/ P*(XOk,' .. ,Xik). In general, the uumorator and denominator

of (2) can be estimated separately, with M f:. N and different IS distributions [1tI]. Let the

transition probabilities of the Markov chain he p(Xj , X j +I ) . Within each regeneration cy­

cle (RC) k, the individual weights P(Xik, X i+1,k)/p"'(Xik, Xi+l,k) must be distinguished from

the total or cuuiu lal.ivc weight Lik' at time i. Furthermore, when more than one indepen­

dent random event clel.ormi nes the trausi tion (e.g., arrivals, service completions), individual

weights are again the product of component weights corresponding to these more funda­

mental random eve-nts. Then, by the Markov chain property, and with initial distribution

uubiased under IS,
i-I i-1

L7k = II p(X j k , X j +1,k)1 II p*(X j k , Xj+1,k)
j=O j=O

(3)

In (2) above, the likelihood ratio (or weight) at time i during the simulation depends OIl all

random transitions which previously occurred in the same Re. For tandem networks, this

time dependence will become slightly more complicated.

An additional motivation to use regeneration techniques is to avoid the deleterious effects

of large system memory on the efficiency of IS. As was shown in [2], nonregeuerative IS

brea.ks down as the length of the siruulation approaches infinity. From all IS standpoint, the

memory of the system is increa.sing within each RC~. For cases where true regenerations are

rare, techniques based on approximate regeneration [15], batch means, or A-cycles [5], can

be used to obtain approximately independent trials.

In (2) it is implied that IS is implemented in a static way, where the modified or biased

measures P* do not depend on the state Xi at time i. However, the requirements of re­

generation can be in conflict with static IS [7]. Under certain conditions for the simulation

of Markov chains, the optimal IS is dynamic [14]. III order to combine the advantages of
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regenerative aimulal.ion with efficient IS, IS can be used dynamically within each RC, first

achieving ellicieut esl.irnation of the rare event probability involved, and subsequently driving

the system back to t. he regeneration s t.ate [7].

2.3 Stat iat icnl Optirnizat ion of t he IS Est imat.or

It is well known that the general, nou-parametric, globally optimal IS measure represents

essentially a. tautology, since it requires knowledge of the quantity E[f·] to be estimated.

Most useful an d practical IS schemes are parametric.

In the paramet ric ca.se, Iindi llg the opti mal IS settings can be posed as a 111ultidimcu­

sional , nonlinear opt.imization problem, where the values of the ]8 parameters Blust be set

to opl imize some measure of performance, usually the estimator variance, CTJS(P, P*).

Assuming an exact, closed-form representation of the IS-variance is not available we

have proposed using statistical measures of performance, which are statistical estimates of

the variability (sca.tter) of the IVIC observations involved, and asyrnptotical estimates of the

estiruator varia.nce, o-Js( P, l~*), with respect to the IS parameter values [6, 7]. In [7] we

useel mean field annealing (lVIFA), a stochastic global opt.imizal.iou algorithm, to perform

this IIIini rnizat ion.

Although very general, the Ml''A approach is potentially slow, especially as the dirncn­

sionality of the search (i.e., the number of IS parameters] increases. Therefore, techniques

that perform a directed search through the parameter space (e.g., usi ng deri vati ve inforrna­

tion] while requiring a smaller number of cost function evaluations can provide attractive

alternatives to stochastic annealing techniques.

3 Stochastic Gradient Techniques

3.1 Me Estimation of Gradierits

Performance measures of communicaf.ion systems and networks often take the form of an

expectation a(O) that depends on a vector 0 = (01 , ••• , Od) of parameters. Examples of such

performance measures are the bit-error-rate in digital links, or tile cell loss probability, mean
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delay, and throughput in networks. When analyzing or designing such a stochastic system,

it is often desirable to calculate not only a(6) but also its gradient \7a(O) with respect to

8. Knowledge of V'a(O) facilitates sensitivity analysis, interpolation techniques, and most

importantly design optimization methods, where the vector (Jopt is sought that minimizes (or

maximizes] a(0) [10, 12].

As i II the case of the original expectation a((J), analytical calculation of V'a(8) is of­

ten iul.racl.able. Nu ruerical calculation may be Feasible or even advantageous under certain

coudil.ious, but is usually inefficient when numerical evaluation of a(0) is time consuming

[11].

l'lle Monte Carlo estimation of derivatives and gradients of expectations, based on likeli­

hood ratios lias been previously investigated ill [9, IU. 11, 12, 13]. In a rather general setting

this approach introduces a change of rneasure and the corresponding likelihood ratio, and

then, by essentially int.erchanging the expectation and derivative operators, expresses the

derivative ill question as the expectation of a new random variable. This expectation can be

then est im atcd using lVlC simulal.iou.

Because of their "semi-analytic" nature, such estimates have obvious advantages over

finite di Ilerence ap prox iIllations [11]. A co III parison of likelihood ratio techniques with p~r­

turbaiion a1~alys£s (e.g., [16J) is given in [10]. In [13] likelihood ratio techniques are analyzed

ill the context of higb Iy dependable Markovian models, and IS is successfully applied to

increasing the efficiency of the gradient estimators when rare events are involved.

Focusing OIl a d iscrote-t ime Markov chain {Xn}l'~O and following the notation in [12], an

expectat.iou a(lJ) == E09(lJ,Xo, ... ,Xl') can also be written as

where for any instant 1~

, Jt((J,Xo) lrrt - l P((},Xi,Xi+1 )

Ln(lJ,lJ,Xo, ... ,Xn ) == (£)' X). P((J' X X· )Jl u, 0 t=O ,1, t+l

(4)

(5)

In the followiug we will use Ln((},(}') instead of Ln(O,(}',Xo, . · .,XlI ) in order to simplify the

notation. E(} implies that the transition matrix P((}) depends on (}, P((},Xi,Xi+d is the
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transition probabilities under 0, Jl(O,XO) is the initial state distribution under 0, and T is

a finiLe stopping time. Then, Lhe gradient \7a(O) is given by

(6)

or

(7)

where

and

(9)

Most oflen one takes 0' == O.

When {Xn}n~O has a regenerative structure, tl}(~ above derivation can also be extended

to tile case where a(O) is described by the ratio formula of regcncrati ve analysis [12], and T

coincides wit.h regouerntion epochs.

Clearly, assuming a unique local minimum, deterrninistic gradient descent algorithms can

have guaranteed convergence to the minimizing point. It is shown in [11] that, assuming a

unique mini mum, a stochastic descent algori thrn of the Robbins- Monro type [17, 11],

(10)

that uses fvIC estimates of the derivatives based on eqs. (6)-(9) can also be guaranteed

convergence, for the appropriate selection of step size h(n).

3.2 The SGD Algorithm

We observe IlOW that the variance of the IS estimator in (2) is also an expectation pararne­

terized by the IS settings. Ilecall that we wish to choose IS parameter values in a way that
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minimizes this IS-va.riance. Let Z be equal to the ]S estimate in (2). Therefore, by letting

a(O) = Ep.{(Z - Ep. (Z ))2}, where () is the vector of IS parameters in (2) that. determine

P"; we can formulate the choice of [S parameter values as a minimization problem (i.e.,

111in9 a(9)) tllat can be tackled according to (10).

Such an approach to optimiziug the choice of IS settings is a natural complement to

our previous statistical opl.imization techniques, where we determine near-optimal IS values

by observing est.imal.es of the cost function, namely the IS-varia.nce. Its greatest potential

advantage is that, hy exploiting Inure prior knowledge and inform ation about the problem at

hand (i.e., derivative inlormal.iou], it can potentially zero-in on the opti mal Ib set.tings faster

than global search techniques like the MFA and similar annealing methods. The essential

diITerence from annealing techniques is that gradiellL-based techniques are local optimization

met hods.

Another factor in overall efficiency is the choice of the appropriate step size h(r~). An

h(11,) small enough to guarantee almost sure (a.s.) convergence can lead to im practically long

run times, while an h(11,) that is too large can lead to divergence, Clearly, a trial-and-error

procedure is required to establish the best trade-orr choice.

For a given point () in the parameter space the random numbers used to estirnate \la(8)

are drawn using ()' == (}. Therefore, during the search the simulation sampling distribution

is continuously changing while approaching the optimal IS distribution as (} --t (Jopt. Thus,

the algorithm tends to constantly improve the IS-variance until the near-optimal is found.

OUf Stocllastic Gradient Descent (SGD) algorithm is outlined ill Fig. 1.

3.3 TIle SFA Algorithm

A necessary condition for speed-up when choosing IS settings is that the raw frequency

of important events has to be significantly increased with respect to the original sampling

distri bution before any speed-up factor is realized. Thus, when choosing an IS sampling

distribution a primary concern B1LlSt be to increase the frequency or importaut events (FIE).

It has been a conunou heuristic assumption among practitioners of IS simulation that

the IS parameters have to be modified so that the effect 011 the FIE is maximized. This
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n {:: a /* Initialize iterat.ion count */
8 0 {:: 83tart /* Inil.ialize IS parameter values */
/* Perform gradient descent on estimated IS-variance */
/* until ern pirical precision Q' is su Ilicient */
do {

Calculate h{n) /* (;et new step size */
8 n +1 {= On - h( 1l) Vva1 t

( 9 n ) /* Perforrn descent step */
Calculate V'li'r(On+l) using N A RC's

Calculate Pn +1 using N A rtc's

[~igure 1: Pseudo-code describing the SG D algorithrn.

suggests biasing ill the "direction of steepest ascent. in FIE", since this direction maximizes

the increase ill FI~ for the same "total" modification of the parameter values. More precisely:

Le t () == () 0 sueh t II at n0 IS b ia.s illg is a.pp Jied an d t lJ en itera t ive Jy set

( L1)

where PJE(On) denotes the probability of the important event. as a function of 8, until

PIE((}n) saturates, i.e., attains its maximum value. Then pick (}op Irom the above "search

path" such that the IS-variance is miuimum (or near-miuimum). Clearly, the same likelihood

ratio est ima.t ion techniques previously discussed call be applied to yield efficient and accurate

estimates of the partial derivatives required.

The effectiveness of this directed search procedure is supported by the fact that the t.rue

(or asyrnptotical) global minimum of the IS variance lies on the trajectory (11) for some

interesting cases, namely the case of detection errors in a linear filter under additive white

Gaussian noise (AvVGN) [18], and the case of cell loss probability in a M/M/l/I( queue, as

both theory and empirical results indicate. Enlpirical results also indicate that this is true

for the case of detection errors in mildly nonlinear lilters under AWGN (as those in [3]). For

all lVl/M/l/I( queue the probability that k customers are in the system is given by

o::; k <I(

otherwise
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Figure 2: Example of steepest ascent trajectory for an M/rvl/1/1< queueing system, with A = 0.5, Jl = 1.0
and ( = 10. The opt.irnal IS point is A~pt = 1.0 and Jl~pt =0.5.

\vhere A is the arrival rate and It the service rate. The probability that a custorner will be

lost is equ al to IJK . Let p == AI It. Under IS

and
Dpi< uPi< up* _ Dpi< ( >.* )

Olt* = op* up! - iJp* - f.L*2

where the asterisk (*) denotes the biased quantities, and

opj{ *I( - (1 - p*I< +1
) + (1 - p* )(I( + 1)p* I<

up* P {l-p*l<+l)2

+ 1 - p* K *1<-1

1 - p*l<+l P

Define the steepest ascent trajectoru, S, as the path that starts from the point (A, tt) (the

unbiased operating point of the queueing system) and follows the gradient of pj<, in the space

of .A * and u": Such a trajectory can be defined iteratively from
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A*I
lli

for 1= 0, .. · , lmax - 1, with /\~ = A, It~ = u; and tL\ ", ~/l' are su liicienl.ly small.

An example of a stcepest ascent trajectory is shown in Figure 2, for A = 0.5, Il = 1.0, and

K = 10. Here, ~/\* = ~/l* = 0.0:35 and lmax = 200. For the M/M/l/K queue, the optimal

(and unique asym ptol.icaljy eflicieut ) 1S operating point is A" = It //* =,,\ similar to what
opt , r' opt. ,

was shown in [1] for the rVI/l\1/1/oo queue. For this example (a.lId every other combination

of A and J.l we tried] the trajectory S did include the optirnal IS point.

Furthermore, ill support of this search path, we observe that the IS-variance can be

wri t tell as

while the FI E call be written as

where 1IE is the indicator function of an important event, and 1./*(8) is the cumulative weight

of (2). This indicates that increasing the F'IE should tend to decrease the IS-variance. More

specifically, at 8 == (}BF (i.e., at the brute-force M(~ point) V P1/;;(O) is parallel to VaJs(8),

which means that, for a sufficiently small step size h'(n), the first step away Irom the brute­

force Me point will necessarily lead to a decrease in the IS-variance. Since this alternative

algorithm picks the IS parameter values with the III iniruurn variance over the trajectory (11),

the IS settings chosen have a guaranteed speed-up over the conventional Me estimator.

It is reasonable to assume that the ~PIE estimator will be more accurate [or the same

sample size than the \la7s estimator (~(T;s involves estimates of second order moments).

Furthermore, in a.1l practical cases that we considered, the FII~ was monotonic with respect
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to the biasing parameter values. Also, there are no convergence effects to slow SFA down,

since the gradients guiding the search are not the gradients of the cost function. For these

reasons, following trajectory (11) is rather general and robust, l'l'gardless of the existence of

local minima. in the IS-variance space. Finally, searching along trajectory (11) is guaranteed

to provide speed-up (potentially equivalent to that provided by t.he SGD algorithm).

Partials 0JJ/;; can be found by replacing a(O) wil.h PIE in eq. (7), where g(O,Xo, ... ,XT)
is the number of blocked cells in a RC. Hence g(0, X o, ... , X T ) = L;~o h( 0, X j ), where

ue, X.) == {I if a cell is blocked during slot j
J 0 ot.herwise

Choosing the same initial distributions /1(O,Xo) = /1(O',Xo) and 0' = 0, and choosing T,

the end of aRC, as the stopping time, it follows that ~ = 2:J~o ~~ = 2:}=oO = 0, and

( 12)

Finally, ill order to estimate the partials of PIE( 8) with respect Lo the elements of (J, one can

draw numbers using 0, and then take a sample mean over i.i.d. random repetitions of the

quantity in brackets on the right-hand-side of eq. (12). These partial derivatives can then

be used in the SF'!\. algorithm.

When irn portu.nt events are rare the accuracy of \7PIE(8 n ) will be very poor as long as

PIE is low. III [l:J], IS is applied to \7 PIE((}n) as follows: Let a((}n) == p/E(On). Then

(13)

where Oil is chosen in order to increase the accuracy of the estimation. Therefore, we call use

(J" for the sampling distribution to estimate \7PJI'J,(8 n ) until [J1E becomes large enough to

a.llow us to start using On itself. We call this additional biasing "second-order IS". Heuristic

arguments similar to those we present later for choosing a starting point for the SGD algo­

rithm call be used for the selection of a favorable "second-order-IS" for the SFi\. algorithm.

OUf Stochastic (Irnportant Event) Frequency Ascent (SfA) algorithm is given in Fig. 3.

The outline in Fig. 3 is intended to be general and does not address issues such as search
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n¢:O IT- Initialize iteration COUIlt. */
8 0 ¢:: fJ BF 1* Initialize IS parameter values */
1* Perform gra~ient ascent on estirnated "raw' */
1* probabilit.y [)}E(8 n ) until saturation occurs */
do {

Calculate h( 11) 1* Get new step size */
en +1 ¢= On + h( n) ~Pi E(On) /* Perform ascent step */
Calculate w(On+ I) using N B RC's

Calculate P/E(8n + l ) using NB RC's

} while { PIE(B n +1 ) - ?IE(8n ) > £ }

Rctur n H, Rn such that v;lr( 8 n ) is minimum

Figure 3: Pseudo-code describing the SFJ\ algorithm.

.... <f>(1) ........ ~(2) ....
pIP""" ....... ...... • • • ~(S)

Figure 4: General tandem queueing network.

resolution and statistical accuracy. In [6J vve have described a detailed algorithmic procedure

for near-rninirnizat.ion the IS-variance based on statistical estimates taken on an optimal

search direction, when simulating digital communication links with linear receivers. In the

case of [6J the optimal direction was the direction of the impulse response of the linear receiver

filter. The SFA approach essentially generalizes that algorithm by providing a. (heuristic)

favorable search direction for a much larger class or systems.

4 St.ochast ic Gradients for Tandem Networks

4.1 Likelihood Ratio Techniques for Tandem Networks

As shown in Figure 4, a general tandem queueing network consists of several stages of queues,

the output of one queue feeding the input of the next queue. Assuming a discrete-time or

slotted approach, at least one time slot is need for a cell or packet to propagate through a

single stage of the queueing network.
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Let V~s) be thc vector of observations representing the state of the arrival processes and

tile queue for stage s of S in the taudern network at time i. Let. the vector of observations

relevant to the tandem network at stage S at time i be X· = (V~l). V~2) V~S)) '1'he
t 1-.s+1' 1-5+2"'" 1 •

tirne shift in the observations at each stage resul ts Irorn a cell req uiri ng at least aile time slot

to propagate Lh rough each sta.ge. Now {Xi}i~O is Markovian under general conditions. Let

OJs) he the paraun-tcr associated with the [-th random process at stage s for l = 1, ... , 1Tt s,

and </J(s) = (8~s), ()~s ), ••• , O~l,) be the vector of parameters belonging to stage s so that

0(5) = (</J( 1) , </J(2), ... , </J(S)) is t he overall vector of parameters.

All expectation a(S)(8(S)) = EO(s)g(O(S),XO, ... ,XT ) at the S-th stage in the tandem

network can also IJe \v ri t ten a.s

(5)(0(S)) - E (()(S) X X )/(S)(()(S) (}'(S) X X )a - (}'(S)9 ,0, ... , T JT ., ,0., ... , T ( L4)

where T is a fini t(, stoppi ng time, The expectation a(5) (0(5)) is ta.ken at the S'-th stage ill

the network, otherwise 5 stages would not be needed in the simu lat.ion. We assume that the

opti mization of tlte bias parameters is performed Ior only a single expectation which is at

the S1-th stage in f.he network, since simultaneous opt imizatiou of mult iple estimators could

lead to conflicting bias parameter settings that would not result in performance speed-up.

At sta.ge 5 in the tandem network, the likelihood ratio at time 11- during the simulation,

L~S) ((}(S)., (}/(S) , X o, ... ,Xn ) , depends on all random transitions which previously occurred at

stage S' up to time ii, as well as all random transit.ions which previously occurred at stages

1 to S' - 1 at times 11, - S to 1~ - 1, respectively. As stated before, this time shift results

because one time slot is needeJ for a cell to propagate through a single stage in the network

due to the slotted time operation of the tandem queueing network, as well as the simulation.

The stages at, positions downstream Irom S in the tandem network will have no effect on the

Ii keli It00d rat i0 L~:S~) ( (J(S) , 0/(S) , X o, . . . , X n ) at s t ag< ~ S becaIIse c(' 1Is fI 0 w 0 IIIY fro III stage s to

stage s + 1 in the tandem network. The random processes parameterized by the vector </J(s)

are iudependent [rom stage to stage, even though the expectation a(S)(O(S)) is dependent on

each </J("). Because of the Markovian nature of {X n }n2:0 , the likelihood ratio for any instant
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n ¢= a /* Initialize it.eration count */
(}(S) n(S) r I ' . I'

o ¢= V"tart nit ia IZC IS paramel.er values */
r Perform gradient descent on estimated IS-variance */
/* until empirical precision 0' is sufficient */
do {

C al culate It(n) / * (~e tilew s tepsize */
n(S) n(S) I ( ..... (S) (5')
v n+ 1 {::: un - t 71.) V'Val" ((J n' ) /* Perforrn descent step */
CaIculate var(S) ( e~;~1) lJsing N A ftC's

Calculate PS,n+l using NARC's

} 1 ' ) {J-(S)( -, ""w 11 e uar eu +1(S)) / PS,n+l > n }

Figure 5: Pseudo-code describing the SGD algorithm for tandem networks,

11 at the S-th stage in the network is

n-l P((J(S) X X )
L(S)((}(S) (}/(S) X X ) - IT ,i, i+l

n , ,0,,··, 11. -. P(()'(S) X. X. )
%=0 ,t, t+l

(15)

where P( 0(5), Xi, X i +1 ) is the transition probabi lit ios under (}(S). In the following discussion,

vee use L~tS)(O{S), (J/{S)) instead of the expression shown ill (15) ill order to simplify the

notation.

4.2 Tile SGD Algorithm for Tandem Networks

The SCI) algorit lun [or tandem queues is outlined in Fig. 5. IS is applied by replacing the

original parameter O~S) with ()(S). 1'lte performance measure of interest is the mean-square

value EO(Sl(PJ) and its gradient with respect to the biased parameters, \lO(slEO(s)(P'§), at

the 5-th stage of the tandem network, where Ps = '[)";01 Iy) Lf')(O~S), 0(5)) is the estimate

of the cell loss at the 5-th stage of the tandem network, Iy) is the indicator function of a

cell block ill slot j at stage S, and

TheIl,

j-l p((J(5) X X )
L(5)(0(5) (}(S)) == IT 0, i, i+l

J 0' ( (5) X· X. )i=O P (J , t, t+ I

(16)
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~E 1(5) [(~ /(
5 )L(S) ((J(S) (J(S))) 2 L(~)((J(S) (J/(S))]

DO~S) (J Z:: J J 0' 1 ,
I )=0

E [(~ /( 5 ) L(5) ((J(S) (J(S))) 2 aL!.;) (0(5) (}'(S))oI( S) Z:: J J 0' (9)'
j=O GO i

-1- {_a_ (~ /(5)l(5)(O(S) (J(s)))2} L(S)((J(S) (}/(S))] (17)
80

(s) c: J..J) 0' T,
1 J=O

where 6' (5 ) parameterizes the actual sampling distribution for tIle S-th stage of the tandem

network. Since

~1J (~) 1'-1 8 [J((J(S) X· X· ) L(~) (8(S) (}/(S))
_u_..J1_ ( (J(S ) (J/(S)) == ~ , ), )+1 1 ,

(9)' c: a (9) P((J(S) X· x· )
U()i j=O 0i '~)' J+1

this results in

(18)

1J · L(8) (()(S) ()(S)) - 1/L(5) ((J(S) ()(S)) to show 1hat
51ng j 0' - ) , 0 , I

Tllen, from
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I t ki (}'(S) - (}(5) (. I . . (5)anc a 109 - i.e., urawuig random numbers uSIng (J ) which implies

L~S) ((}(S) , (J'(S)) == 1, rcsul l.s in

[(
1'_1 .)2 T-I a (5)

== E (5) " I~S)L(S)(()(S) ()(S)) ~ P(O ,Xj,Xj +l ) 1
(} ~)) 0' LJ ~) (s) !J((}(S)

)=0 )=0 UBi , X j , Xj +1 )

(

1' - 1 ) T-I )-1 ~J-J(()(5) X X ) L(5)((}(5) (5) ]
_ 2 ,,/(S) L(S)(O(S) (}(S)) "" I(S)"" U ,k, HI J 0' e )

~) ) 0' LJ J LJ (s) (5)
)=0 j=O k=O aO i P( () .Xs, X k+1 )

(22)

Thus, in order to estimate the partials of the IS rncau-squarc term with respect to the

elements of (}(S), numbers should be draw using (J(S), and then a sample mean taken over

i.i.d. random repetitions of the quantity in brackets on the right-hand-side of (22). These

partial derivatives call then be used in the SeD algorithm.

The task of obt.aiuiug partial derivatives of P(()(S), X k , X k+ l ) is facilitated, among others,

by the mu lti plicat.ive nature of the one-step transit.ion probabilities (due to independence of

Lhe raudom choices involved]. For the random processes considered. here, a transition in a

slot depends on all independent (discrete) randall) events, each occurring with conditional

probability IJl s
) under the origjnal, unbiased. settings. Under IS, these probabilities can be

biased so that Llu-y hecorne O~s)]J~s). Then e(S) = (O~I), ... ,O~~n and p(e(S),Xi,Xi+d =

TI s TInL ... 0t(S)])t(s). leading to
s=1 t=1 I

(23)

(24)1 fJP(O(S),X i , X i+1 ) __1_

P((} (S) X· X.) DO(s) - ()(s)
, I'"'" z+l I l

Several heuristic arguments can be used to identify a start.ing point for the search in

and

(10) when imporf.ant events are rare. For example, near-optimal IS set.tings for a single or

tandem queue case where the important events arc not rare (e.g., smaller buffer size for cell

loss probability) can be found first and then extrapolated to obtain a starting point for the
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and taking 0/(5) = 0(5) (i.e., drawing random numbers using 0(5)) which implies

L~)((}(S),(}/(S)) =: 1, results in

[ (

,,.- 1 ) 2 T-I ~ (5)= E (5) L !(S)L(S)(O~S),O(S)) ~ uP(O ,Xj,Xj+d 1
(} ._ J J c: D()~s) /)(8(5) X· X. )

J-O J=O l , J' J+l

(

1' - 1 ., ) T-l j-I ~p(()(5) X ) L(5)(()(5) (5) ]-2 ~ l~'~)L(S)((J(S) (J(S)) ~ I(S)~ u ,k,Xk+l j 0 ,0 )
~ J ) 0' ~ J ~ (s) (5)
)=0 j=O k=O OOi P(8,Xk,Xk+1 )

(22)

Thus, in order to estimate the partials of the IS rncau-square term with respect to tile

elements of (}(S), numbers should be draw using 8(5), and then a sample mean taken over

i.i.el. random repetitions of the quantity in brackets on the right-hand-side of (22). These

partial derivatives call then be used in the SGD algorif.lim.

The task of obf.ainiug partial derivatives of P( 8(8), X k , X k+ l ) is facilitated, among others,

by the multiplicative nature of the one-step transition probabilities (due to independence of

the random choices involved}. For the random processes considered here, a transition in a

slot depends on all independent (discrete) random events, each occurring with conditional

probability l)~s) under the original, unbiased set tiugs. Under IS, these probabilities can be

biased so that they become Ors)]J~s). Then O(S) = (O~l), ... , O!,~l) and P(O(S), Xi, Xi+d =

TIs TInt .. 01(s)]JI(s), leading to
s=l 1=1

(23)

(24)
and

1 fJP(O(S),X i ,X i+1 ) __1_

P(O(S),Xi,Xi+d a()~s) - ofs)
Several heuristic arguments can be used to identify a starting point for the search in

(10) when import.ant events are rare. For example, near-optimal IS settings for a single or

tandem queue case where the important events arc not rare (e.g., smaller buffer size for cell

loss probability) can be found first and then extrapolated to obtain a starting point for the
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rare event case. "vVe will also demonstrate that the ncar-optimal bias parameters fur as-stage

tandem queue nel.work can be used as a starting point to quickly obtain the ncar-optimal

bias parameters for a (S + 1)-stage tandem queue network.

5 Experinl.ental EXalUples

5.1 TIle IBP /Geo/l/K Queue

The IBP/Geo/l/I( queue 1 is the slotted-time counterpart of tile IPP/l\JI/l/I( queue 2. For

this queue, although the service process is memoryless, the arrival process is bursty, making

this system a useful aud widely used model for the bursty processes involved in 13-ISDN and

ATIVI analyses. Exact solutions for this queue can l,e obtained hy nurnerical solution of the

corresponding Markov chain. vVc include it in our experiments to provide further validation

of our techniques, as was also Jane in [7].

There a.re L\VO stales of the arrival process: active and idle. III the active state, an arrival

carl occur with probaliility Q while ill the idle state no arrivals can occur. While the arrival

process is in the active sta.te, there is a probability p at each slot that tile state will remain

active and a probahility 1 - ]J that it will change to idle. While the arrival process is in the

idle state, there is a probability 'l at each slot that the state will remain idle and a probability

1 - q that it will change to active. When the server is busy, there is a probability 1 - a

ill each slot that a customer will depa.rt. Arrivals and service completions are independent.

There is a finite capacity of 1< customers in the system. In our experiments, Q was assumed

to be equal to 1. The squared coefficient of variation C2 of the interarrival times is used to

measure the burstiness of the arrival process. Typical values are C2 = 1 corresponding to

Poisson arrivals, C12 ~ 20 for voice and C2 ranging [rom 10 to 10,000 for video. A numerical

technique that evaluates cell loss probabilities for this queueing system call be found in [19].

Under regenerative IS, we choose the times that a customer arri ves to all empty system

and tIle arrival process has just changed to active, as the regeneration points. In each

llllP stands for Interrupted Bernoulli process, Geo stands for Geometric

2IP P stands for Interrupted Poisson process
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Figu re fi: Estimated cell loss probabilities and numerically calculated probabilities [19] for the

II3 P/ (]eo/1/ I( queue.

c 2 CPU 1'irne, seconds

10.0 0.731;'
20.0 1.417
30.0 2.099

Table 1: CPU 'I'irne for 1,000 RC's of the IBP/Geo/l/I( queue on a DECStation 5000/25 when no IS is

applied (K=200).

regeneration cycle (RC), we bias initially p, q and a to p;, q; and (J"~, until one customer has

been blocked, then change IS parameters to ]J;, q~ and O"~ in order to allow fast regeneration.

III our experiments, we set p; = ]1, q; = q, (J"; = (J", and optimized with respect to the

settings of 01 = pUp, O2 = q~/q and 03 = (J"~/(J" using the SGO and the SFA algorithms

from above. Results were obtained for queue set-lips that corresponded to three different

values of C2 , namely 10.0, 20.0, and 30.0 (see Table 2). Estimated loss probabilities are in

a.greement with the numerically calculated probabilities ill [19), a.s illustrated in Figure 6.

The simulation time required for 1,000 RC's on a OECStatioll 5000/25 when no IS was

applied for these three cases is given in Table 1. The queue capacity K was set equal to 200.

In applying the SGD algorithm we used in each case the near-optimal biasing for K = 50

as a starting point. Obtaining the near-optimal IS biasing for K = 50 was not difficult, since
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System Pr[loss] gnpl, Oop2, OopJ Pr[loss] 95 % Interval R n e t

IBP /Geo/ I /1< 1.0457 (7.405 X 10-TI ,

C 2 = 10.0, a = 0.35147, I( = 200 7.530 X 10- 12 0.9244 7.536 X 10- 12 7.666 X 10- 12 ) 1.3 X 10 8

P = 0.932075471, q =0.954716981 1.0763

IBP /Gco/ 1/1< 1.0231 (8.1:35 X 10- 1
,

C 2 = 20.0, a = 0.35147, I( = 200 8.301 X 10- 7 0.9586 8.259 x 10- 7 8.382 X 10-7 ) 1.4 X 103

P = 0.9650'18543, q = 0.97ll699029 1.0'114

I
lBP /Geo/ 1/1< 1.0156 (4.730 X 10-5 ,

C·2 = 30.0, a = 0.35147, J( = 200 ·1.829 X 10- 5 0.9710 4.809 x 10-
r
.) 4.887 X 10-5 ) 2.1 X 10

p = 0.976470588, q = 0.98,1313725 1.0231

Table 2: Est.iruatcd cell loss probabili t.ics and speed-lip factors usuig l.he SGD algor ithrn for the

IBP/C;eo/l/I( queue. For these estiinatcs: Nn = 100, Nne = 300.

the corresponding loss probabilities were high and the space could be searched efficiently

with the SeD algorif.hm starting Irom the brute-force Me point. Furthermore, we used

N A == 300 RC's per simulation run for C2 == 20 and C2 == 30, and IVA == 3,000 for C2 == 10,

TIle algoritlun converged in all cases after ls < 1,000 iterations. The step size h was

obtained by trial-and-error and varied from 5 x 10-3 (C 2 == 30) La 1013 (C 2 == 10).

III applying the SFA algorithm we used in each case the nea.r-optimal biasing for K == 50

as the "second-order' IS. Obtaining the near-optimal If biasing for I( == .50 was not difficult,

since the corresponding loss probabilities were high and the space could be searched efficiently

with the SFi\ algorit lun without any "second-order" IS. Furthcrnlore, we used NB = 300

RC's per simulat.ion run for C2 = :30, and NB = 3, 000 for C'2 = 10 and C2 = 20, The

algorithm required between I a = 300 and I a = 800 to "scan" Lhc search space. The step

size li == 10-4 was obtained by trial-and-error. The saturation tolerance E was set to 0.05.

Tables 2 and :~ summarize tile results, incluuiug the near-opt.im al IS biasing parameter

values (Oopl, (}op2, Oop3) found by the SeD and the SFi\ algorithms, respectively, the corre­

sponding estimated loss probabilities, the estimated confidence intervals and the speed-up

factors with respect to conventional MC simulation. Numerically evaluated loss probabilities

were taken Irom [19]. In order to determine confidence intervals and speed-up factors, Nn of

NRC RC's each were run using the chosen IS biasing values. As in [7], speed-up factors were

obtained assuming consecutive cell losses are independent within each RC for conventional

MC simulation. Furthermore, RC's were assumed to correspond to a constant number of

arrivals equal to the estimated average number. This is a conservative assumption, since
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System Pr[loss] Oopl , Oop2, OopJ Pr[loss] 95 % Interval R n e t

IBP /Geo/ 1/1< 1.0444 (S.123 x 10-1:l,
C 2 = 10.0, a = 0.35147,}( = 200 7.530 X 10- 12 0.9793 8.136 X 10- 12 1.114 X 10-11 ) 4.4 X 10 5

P = 0.932075471, q = 0.954716981 1.0026

IBP /Geo/ l/I( 1.024,1 (7 .2,13 X 10- 7 ,

C 2 = 20.0, a =0.35147, K = 200 8.301 X 10- 7 0.9883 7.807 x 10- 7 8.372 X 10- 7 ) 8.3 X 10

p = 0.965048543, q = 0.976699029 1.0008

IBP /Geo/ 1/1< 1.0179 (4.S:10 X lO-b,

C 2 = 30.0, (j = 0.35147, K = 200 4.829 X 10-'s 0.9925 5.082 X 10-
r
) 5.633 X 10-5 ) Me·

p = 0.976'170588, q = 0.98·1313725 1.0001

Table 3: Estimated cell loss probabilities and speed-lip factors using the SFA algorithm for the
IBP/C~~o/l/I( queue. For these estimates: NR = 100, Nile = 300. The asterisk (*) is used to denote
points where the use of IS did not result in speed-up over lYIC simulation, hence the point used is that found
by 1\1 C simulation.

when important events are bursty more such events would have to be observed for the same

statistical accuracy (see [20]). The net run time speed-up over conventional rvIC simulation

is denoted by Rn e t and takes into account the increase in the length of RC's when IS is used.

The speed-up factors given here describe the factor by which an IS estimator that uses

our chosen para.tucter values is more accurate than a conventional lVlC estimator based on

the same sarnple size. TIle computer run time required to search Ior these favorable IS values

has not been included in this calculation. For the examples shown here, that overhead would

reduce the overall speed-up factor by up to 2 orders of magnitude for some cases.

As expected, the estimated speed-up factors are low for high loss probabilities but increase

consistently as the loss probability decreases. This is a desirable effect since increasing speed­

up factors are crucial in order to estimate very low probabilities within a realistic amount

of run time. Taking into account this trend, as well as the overhead involved ill the search

for near-optimal IS settings, one can determine in each case the break-even loss probability,

below which employing IS is favorable in terms of total run time required. Our results clearly

indicate that, for realistically low loss probabilities (~ 10-7
) , tile statistically optimized IS

settings yield significant speed-up factors over Me simulation. Furthermore, near-optimal

IS parameter values are consistent with those found by MFA in [7].
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Figure 7: lVl-II3P+l\IMBBP/0/ l/J< tandem queues.

5.2 M-IBP+MMBBP/D/l/K Tandem Queues

5.2.1 Description

As described in [21] and shown in Figure 7, a single stage of this slotted-time queueing

1110del has one server with a deterministic service rate of one cell per slot. There are two

independent traffic streams entering the first stage of the tandem M-IBP+lVllVIBBP/D/l/I<

queue. The first stream, called the tagged traffic [21], is modeled by a Modified Interrupted

Bernoulli Process (M-IBP), which differs from the standard IBP in that the busy periods

have a deterministic, constant length equal to lip slots, where !([> is referred to as the packet

size or number of cells in a packet, and one cell is assumed to arrive in each busy slot. When

the tagged traffic is idle, there are no arrivals, and there is a probability qr that the traffic

remains idle.

The seconel stream, called the external traffic [21], is modeled by a Markov Modulated

Bernoulli Process with Batch arrivals (MlVIBBP). It differs Irom the standard MMBP (of

which the IBP is a, special case) in that more than one cell call arri ve during a busy slot, i.e.

batch arrivals. TIle number of cells 11t arriving in a busy slot is described by some distribution
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bi (111, ) [or each state i == 1, ... , Ns of the NllVIBP. Assume the MIvIBBP has two states, active

ancl idle, i.e. an lnterrupted Bernoulli Batch Process (IBBP). When the external traffic is

active, arrivals occur and there is a probability ]J that the external traffic remains active. In

state 1, the active state, bI (0) == 0 and arrivals occur with a uniform batch-size distribution,

i.e., b1(rn.) == 1/1t n t a x for 171, == 1, ... , 1tm a x ' When the external traffic is idle, there are no

arrivals, and there is a probahilil.y 'l that the external traffic remains idle. In state 2, the

iclle sl.atc, b2 (O) == 1, and b2( 11 1.) == 0 for 17t == 1, ... , 1t 11t ax . When tagged and external arrivals

occur in the same slot, the queue is filled randomly with tagged and external arrivals.

for tandem configurations of lV'I-Il3P+lVIIVIBBP/D/l/I< queues, p and q are indexed for

each stage as Ps and (Is [or s == 1, ... ,.S. Similarly, each queue ill the tandem network has a

finite buffer of length !\"s' The tagged traffic always continues Irom one node in the network

to the next node ill the network, while the external traffic exits the system. Thus, the input

streams of the stages following the first stage of the tandem network are characterized by the

taggeu traffic stream exiting the previous stage and an additional MlVIB8P process modeling

the ex ternal tram c.

v\l'e denote by Cb the squared coefficient of variation or burst.incss parameter of the

external traffic, which describes the variability of the interarrival time of the external cells

entering the network at each stage. The corresponding burstiuess parameter for the tagged

traffic interarrival t ime variability, C;, is measured at the input of each stage s ill the network

for s == 1, ... , S'.

1'he recent attention paid to A'I'M technology has made sj mu lat iou of tandem networks of

great interest. Tandem networks of lVI-IBP+MMBI3P/l/D/I< queues can comprise an end­

to-end model of the nodes in an ATM network, where the M-IllP lagged traffic represents

tile stream under observation (e.g., a specific virtual circuit), and the MMBBP external

traffic represents the aggregation of all the other virtual circuits through the same node.

The deterministic server models the link carrying the traffic to the next node in the network.

A numerical technique that evaluates cell loss probabilities for a single stage of the

M-IBP+MMBBP/D/1/K queueing system is given in [21], although the numerical stability

of that technique is still under study. Since the technique in [21] involves the numerical
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System C~PU 'rilne, seconds
1 O.57:J
2 0.3'1~

3 20.772

TabIe 4: CPU Tim C for 1,000 RC'S 0 f tile sill gIp tvl-113 P+tvl IVt IJ Br / 0 / 1/ I( que lJ e 0 It a 0 ECS tat ion 5000/25
when no IS is applied.

solution of Markov chains with dimensionality proportional to the queueing capacity, the

requirecl run time quickly becomes forbiddingly long for large buffer sizes and/or tandem

networks of queues. Furthermore, problems with numerical precision and stability may

arrse.

III the following, vve first consider single M-IBIJ+lY1MBBP /D/l/I< queues, and then 1\11­

IBP+NIlVIBBP /D/l/I< queues in tandem.

5.2.2 St.o chastic Gradient.s for t he Single M-IBP+MMBBP/D/l/K Queue

vVe let regeneration epochs be the instants where the queue is empty, the ta.gged traffic

stream is idle, anel the external traffic stream is just going active and is generating a cell. In

each IlC, we bias initially p, q and qr to ]Ji, q~ and qT,t' until aile customer is blocked, then

change IS pararneters to ]J;, q; and QT,2 in order to allow fast regeneration.

In our experiments, we set I); == ]J., q; == q, ql\2 == qr, and opl.itnized with respect to the

settings of 01 = pi!p, O2 = q;!q and 03 = 'lr,t/qT using the SeD and the SFA algorithms.

For our example cases, the total offered traffic load was held fixed at 0.7, with the offered

external traffic load ranging fro III 0..5 to 0.6. Table 5 describes the system set.-up for our

three example cases (referred to as systems 1, 2, and :3, respectively). The simulation time

required for 1,000 RC's on a DECStation 5000/25 when no IS was applied for these three

cases is given in Table 4.

In applying the SeD algorithm we used the same approach as in the previous subsec-

tion, always starting with a small queue capacity and increasing until we reached the desired

capacity. In each case we used the near-optimal biasing for the immediately smaller queue

capacity as a starting point. Obtaining the near-optimal IS biasing [or the initial queue



Fast Sinllllation of Qlleueing ... , Deveisikioiis, AI-Claq, Fvcebersyser, and Townsend 24

System Oopl, (}op2, Oop3 P;[loss] 95% Interval Rn et

~l- IBP+ MlVlIl BP/ lJ/ 1/ I( 1.:307 t1 (1.469 x 10- 7
,

1. P = 0.45, q = 0.89, C~ = 1.68 0.91'19 1.56'1 x 10- 7 1.660 x 10- 7
) 1.2 X 103

tr = 0.95, K» = 5, K = 100 0.9682

M-IBP+MlVIBBP /0/11I( 1.4693 (1.498 x 10--g-,
2. p = 0.3, q = 0.825, Cb = 1.1 0.8593 1.710 x 10- 9 1.921 x 10- 9 ) 6.5 X 104

qT =0.97778, I(p = 5, I( = 100 0.9745

~l-l 8 P+ ('vI M 13 BPI D/ 1/ ( 1.0234 (1.174 x 10- 9 ,

3. P = 0.95, q = 0.99, C~ = 26.9 0.9919 1.207 x 10- 9 1.~t10 x 10- 9 ) 2.3 X 105

qT =0.95, [tp = 5, !( = 1700 0.9978

Table 5: Estimated cell loss probabilities and speed-up factors using the SG I) algorithm for the M­
IBP+l'vIMBBP/D/I/I( queue. For these estimates: Nn = 100, Nne = 1,000.

capacity (typically K = 20 or I( = 50) was not difficult, since the corresponding loss proba­

bilities were high aud the space could be searched efliciently with the SeD algorithm starting

from the brute-force lYle point. Furthermore, we used NA = 1, OUO RC's per simulation run.

The algorithm converged in all trials after fA < 7,000 iterations. The step size h was

obtained by trial-aud-error , with a typical value of h == 1 X 10-3
.

In applying the SFA algorithm to systems 1 and 2 we first found the near-opt irnal biasing

for 1\ = 40 without using any "second-order" IS. This was possible since the corresponding

loss probability was high. 'vVe then used the near-optimal for K = 40 as the "second-order"

IS while searching for the optimal at l( = 80. Finally, vee used the near-opl imal for K = 80

as the "second-order" IS while searching for the optimal at 1< = 100. vVe used NB = 1, 000

Re's per simulation run. A similar procedure was used for system 3, however the progression

of increasing buffer sizes was K = 500, K = 1100, and finally K = 1700. In each case, the

algorithm required approximately I B = 1,000 to "scan" the search space. The step size

It = 5 X 10-4 was obtained by trial-and-error.

Tables 5 and 6 describe the parameter set-up, the noar-opt imal IS settings (00 1'1 ' 00p2, Oop3)

found by the seo and SFA algorithms, respectively, the estimated loss probabilities, and

the speed-up factors over conventional Me simulation. The same assumptions stated for the

IDP /Ceo/1/K case were used while calculating speed-up factors.

Finally, Figure 8 illustrates the results of applying the same IS setting chosen by SeD

for the simulation of systems 2 and :3 in Table 5, as the queue size varies.
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System (Jopl , (Jop2, (Jop3 Pr[loss] 95% Interval Rn e t

1'',11-1 BP+IVI rvl BBPID I1/1( 1.0128 (7.747 x 10-8 ,

1. P = 0.45, q = 0.89, C~ = 1.68 0.9217 1.097 x 10- 7 1.,11 9 x 10- 7) 8.9 x 10
qr = 0.95, [(p = 5, I( = 100 0.9296

I\1-IBP+ rvl M1313 PIlJ I1/ l( 1.0073 (4.675 x 10- LO,

2. p = 0.3, q = 0.825, Cf~ = 1.1 0.9382 1.02'1 x 10- 9 1.581 x 10- 9 ) 1.3 X 102

sr = 0.97778, !(p = 5, ( = 100 0.8951

1\'1-1 BP+ !VI IVII3I3 P/ 0 / 1/ K 1.00G8 (3.298 x lO-rIT,
3. »= 0.95, q = 0.99, C/f~ = 26.9 0.9839 R.921 x 10- 10 1.454 x 10- 9 ) 1.9 X 10 2

qT = 0.95, I\p = 5, !( = 1700 0.9993

Table 6: Estimated cell loss probabilities and speed-up factors using the SFA algorithm for the M­
IBP+l\:lrvlBBP/D/1/1( queue. For these estimates: NR = 100, Nne = 1,000, except for system 2, where

NR = 500, NRC = 10, 000 were used.

"0 Pr[lossJ (Importance Sampling)

0 R (IS Speed-Up)

0.1
net: 1e+12

0.01 1e+11
0.001 1e+10

0.0001
1e-05 1e+09 .....

r:J'J
>- 1e-06 1e+08 rJ'J
:3 ~

tD..c 1e-07 1e+07 tD
~ Q.

..c 1e-08 ~0 1e+06
""" 1e-09 "'0c,

~
CI'J 1e-10 100000 C)
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1e-15 10
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Figure 8: Estimated cell loss probabilities and IS speed-up factors, Rile! I as a function of the queue. capacity,
for two example M-II3P+MrvlI3I3P/D/l/l( queues (systems 2 and 3). For both cases, the IS settings were

taken from Table 5, and remained fixed as I( varied.
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5.2.3 Tile SGD Algorithrn for Tandem M-IBP+MMBBP/D/l/K Queues

Here, the estimate of the cell loss probability at the input of the ,S'-til stage in l.he tandem

network is obtained by using the SeD algorithm to minimize the estimate of the variance

of the average number of tagged cells blocked per ItC at the S~-th stage with respect to the

IS bias parameters. This requires that S stages be used to estimate the cell loss probability

at the input of the S-th stage. The average number of arrivals per RC is estimated using

conventional rvrc sirnulation since arrivals are not rare events.

n.egelleration epochs are defined as the instants where each queue in the network is empty,

the ta.gged traffic stream is going active and gelleratillg a cell, and all the external traffic

streams in the network are idle. In each Re, qr, P«. and 'l» are initially biased to q;~;),

P:~~), q;'\S) respectively, where s indexes the stage in the tandem network and S indexes the

position in the tandem network which is being optimized, until one customer is blocked, then

the IS parameters are changed to q;~;), ]J:~;), and q;,~S) in order to allow fast regeneration.

In these simulations, q;~;) = qr, P:~;) = n.. and q;\S) = qs, and the optimization was

performed with respect to the settings of 01 = q;~'i') l rr, 02s = ]J:~;) Ips, and 02s+1 = q;\S) /qs

for s == 1, ... , ,5 using the SeD algorithm. In addition, each stage in the network was

assumed to have identical parameters, p == Ps, q == qs, and J( == !(s' The external traffic

was not allowed to propagate through more than one stage in the tandem network. For the

example cases, the total offered ta.gged traffic load at each node was held fixed at 0.7, with

the offered external traffic load ranging from 0.5 to 0.6. Table 7 describes the system set-up

that was optimized for the example cases, referred to as systems 2 and 3 (consistently with

Section 5.2.2.) for 1, 2, and 3-stage tandem networks.

As with the single queue case, the SeD algorithm was applied by using as the starting

point the near-optimal biasing for a smaller queue capacity. Obtaining the near-optimal IS

biasing for shorter buffers was not difficult, since the corresponding cell loss probabilities

were high and the space could be searched efficiently with the SeD algorithm starting from

the brute-force Me point. Initially, this was done for the tandem configurations as well

until it was determined that the near-optimal bias parameters for a single stage could be
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System ivl- IBP+MlVIBBP/ D/1/1< eP ) e(2) 8(3)
opt opt opt

qT - 0.97778, /{p - 5 (0.9808
2 [( = 100 (0.9745, (0.9794, L.0004, 0.9980

p = 0.3, q = 0.825 1.469:l, 0.85U3) 1.0009, 0.D987 1.0042, 0.9944
C~ = 1.1, Tl,nax = 5 1.4551,0.8991) 1.4427,0.9046)
qT - 0.95, J(p = 5 (0.9981

3 tc = 2000 (0.9978, (0.9979, 1.0013,0.9999
p = 0.95, q = 0.99 1.023'1, 0.99 19) 1.0028,0.9992 1.0018, 0.9998

c1 = 26.9, nnlC1X = 5 1.0220, 0.9929) 1.0211,0.9936)

'-fable 7: Optirnal bias pararnetcrs using the SeD algorithm for the 1, 2, and 3 stage tandem lVI­
I BP+rvlIVIBBP /D /1/1< queues.

used as the sf.art iug point for the 2-stage tandem network by using the translation 8~2~. ==initial

(O~~~Pt, 1.0, 1.0, e~~~Pt, e1~~Pt). Thus, the near-optimal bias parameters at the s-th stage can be

used as a starting point for the opt.imizatiou runs for the (s + 1)-th stage. In fact, the near­

optimal bias parameters for a single stage can be used as a sl.arl.ing point for the optimization

runs for any multiple sta.ge system by using the near-optimal bias parameters for the external

traffic of the first stage as the initial bias parameters for the external traffic at the stage of

interest. For NA == 1,000 RC's per simulation iteration, the algorithm converged in all trials

after fA < I, 000 iterations for the first stage (as in Section 5.2.2), and fA < 300 iterations

for the subsequent stages. The step size h was obtained by trial-and-error, with a typical

value of h == 1 X 10- 3
.

Table 7 shows the near-optimal bias found using the SeD algorithm for 1,2, and 3-stage

tandem networks for systems 2 and 3. Notice that the amount of biasing required for the

near-optimal parameters at each stage decreases as the number of stages increases. This

phenomenon has been seen previously in [8] when the SeD algorithm was applied to the

area of wireless communications links with diversity reception. As the amount of diversity

increased, the amount of biasing required for speed-up decreased. The technique of using

the parameters from one stage as a starting point for an increased number of stages was also

incorporated in [8] with increasing amounts of diversity instead of queueing stages.

Tables 8 - 13 illustrate the results of applying the IS setting chosen by the se D algorithm

III the simulation used to estimate the cell loss probability of systems 2 and 3 in Table 7
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10

140

(5.30 X 10- 4
,

6.03 x 10- 1 )

(2.:31 x 10- 6 ,

3.31 x 10- 6
)2.81 X 10- 6

5.67 X 10-4

(1.18 X 10- 9 ,

II100 1.38 x 10- 9 1.59 x 10- 9 ) 2.5 X 105

(2.28 x 10- 14
, I150 2.68 x 10- 13 5.12 x 10- 13 ) 2.3 X 107

!( l> r[hlock] 1 95% Interval Rn e t

(2.26 X 10- 2
,

10 2.38 X 10- 2 2.50 x 10- 2 ) 1.1

!able 8: Estimated cell loss probabilities and speed-up factors for the simulation of one stage of system 2
III Tahle 7, as the queue size varies for qT == 0.9778 J{p ==!) 1) = 0 3 n - U S'lh) Cf2

- 1 1 and n - 5• ' , .' , 'f - • L.', E - . , max - , .

IS settings were taken frorn Table 7, and remained fixed as !( varied from 10 to 150. For these estimates:

NR = 20, NRC = 1,000.

as the queue size and number of stages ill the tandem network varies. As in [22, 21], the

cell loss probability for the tagged traffic is of interest. Speed-up factors are calculated as in

Section 5.1. Unlike the first sta.ge, there are no known results for the second and third stage

cell loss probability. The informat ion in Tables 8 - 1:3 is also plotted in Figures 9 and 10

for systems 2 and 3 respectively. III order to determine confidence intervals and speed-up

factors, NR runs of Nne == 1000 llC's for each run were performed for varying buffer sizes

using the near-optimal IS biasing values in Table 7. The estimate of the end-to-end cell loss

probability is obtained from the estimates of the individual stage cell loss probabilities, given

that the probability of a cell block at anyone stage is mutually exclusive from the other

sta.ges.

The burstiness characteristic of the external traffic in system 2 is nearly Poisson, com-

pared to the mildly bursty external trafIic in system 3. For system 2, the cell loss probability

decreases as the tagged traffic propagates through the tandem network because of the low

external burstiness. This behavior is in contrast to system 3, where the cell loss probability

of the tagged traffic stays relatively coustant. as it propagates through the tandem network

because of the higher external burst.iuess. The change in the burstiness of the tagged traffic,

shown in Table 14, is due to the fact. that the external traffic is mixed into the tagged traffic

stream by the random queue-filling discipline, and changes the variability of the interarrival
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I( Prjblockj-, 95% Interval Rn e t Pr[block]systenl
(2.07 x 10- 2 ,

10 2. L4 X 10- 2 2.22 x 10- 2 ) IVIC· '1.47 x 10- 2

(4.71 X 10- 4 ,

30 5.21 X 10- 4 5.71 x 10-'1) MC· 1.09 X 10- 3

(7.12 x 10- (,
60 8.41 X 10- 7 9.71 x 10- 7

) 97 3.G5 x 10- 6

(3.67 X 10- 10 ,

100 5.19 X 10- 10 6.71 x 10- 10
) a.r X 104 1.90 X 10- 9

(3.20 X 10- 14 ,

150 5.27 x 10- 14 7.35 x 10- 14 ) 1.2 X 108 3.20 X 10- 13

Table 9: Estimated cell loss probabilities and speed-up factors for the simulation of two stages of system 2
in Table 7, as the queue size varies for qr = 0.9778, I\.p = 5, p = 0.3, q = 0.825, c1 = 1.1, and n m a x = 5.
IS settings were taken from Table 7, and remained fixed as K varied Irom 10 to 150. For these estimates:
N R = 20, NRC = 1,000. The asterisk (*) is used to denote points where the use of IS did not result in
speed-up over 1\1C simulat.ion , hence the point used is that found by M'C simulation.

I( P~[block]3 95% Interval R n e t Pr[block]syst.em

(1.98 x 10- 2 ,

]0 2.00 X 10- 2 2.03 x 10- 2) Me'" 6.38 x 10- 2

(4.89 X 10- 5 ,

:30 5.29 x 10- 5 5.68 x 10- 4 ) lYIC'" 1.62 x 10-3

(1.74 x 10- (,

60 1.05 X 10- 6 1.93 x 10- 6
) 1.:J 4.70 x 10- 6

(1.73 X 10-10,

2.13 X 10- 9
100 2.28 X 10- 10 2.83 x 10- 10

) 5.8 X 104

(3.17 X 10- 15
,

2.8 X 107 3.l18 X 10- 13
150 2.82 x 10- 14 5.33 x 10- 14

)

Table 10: EstimateJ cell loss probabilities and speed-up factors for the simulation of three stages of system 2

in Table 7, as the queue size varies for sr = 0.9778, K» = 5, p = 0.3, q = 0.825, C1 = L.l, and nm~., = 5.
IS settings were taken from Table 7, and remained fixed as J( varied from 10 to 150. For ~hese estlmate.s:
NR = 20, Nnc = 1, 000. The asterisk (*) is used to denote points where the use of IS did not result In

speed-up over Me simulation, hence the point used is that found by Me simulation.
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28

430

5000

(1.35 X 10- 5 ,

1.t11 x 10- 5 )

(6.05 X 10- 1
,

6.47 x 10- 7 )

(2.77 X LO- B,

3.01 x 10- 8 )

K Pr[block]1 95% Interval u.:
(3.04 x 10- 4 ,

500 3.11 X 10- 4 3.18 x 10- 4 ) 4.3

~ 800 ~ 1.39 X 10- 5

~ 1100 ~ 6.26 x 10- 7

~ 1400 ~ 2.89 x 10-8

(1.17 X 10- 9 ,

1700 1.21 x 10- 9 1.24 x 10- 9 ) 2.3 X 105

(5.08 X lO-II,
2000 5.29 X 10- 11 5.49 x 10-l1) 2.3 x 106

Table 11: Estimated cell 1055 probabilities and speed-up factors for the simulation of one stage of system 3
in Table 7, as the queue size varies for qr = 0.95, !(p = 5, ]J = 0.95, q = 0.99, C~ = 26.9, and nm ax = 5. IS
settings were taken from Table 7, and remained fixed as K varied from GOO to 2,000. For these estimates:
NR = 100, NRC = 1,000.

K P~[block]2 95% Interval Rn et P; [b lock ]SYStern
(2.74 x 10- 4

,

500 3.01 X 10-4 3.28 x 10-4 ) 1.0 6.12 X 10- 4

(1.28 X 10- 5 ,

800 1.35 X 10- 5 1.41 x 10-5) 20 2.74 X 10-5

(6.14 x 10- ',
1100 6.72 x 10- 7 7.29 x 10- 7 ) 100 1.30 X 10- 6

(2.32 X 10-8 ,

5.41 X 10-81400 2.52 x 10-8 2.72 x 10-8 ) 2500

(1.12 x 10- 9 ,

2.43 X 10- 91700 1.22 x 10- 9 1.31 x 10- 9 ) 1.4 X 104

(4.90 X 10- 1 1,

1.06 X 10- 10
2000 5.30 X 10- 11 5.70x 10- l 1 ) D.2 x 105

Table 12: Estimated cell loss probabilities and speed-up factors for the simulation of t\VO stages of system 3

in Table 7, as the queue size varies for sr = 0.95, f(p = 5, p = 0.95, q = 0.!J9, C~ = 26.9, and n m ax ~ 5. IS
settings were taken from Table 7, and remained fixed as I( varied from 500 to 2, 000. For these estimates:

NR = 20, NRC = 1,000.
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I( Pr[block]3 95% Interval n.: Pr[block]systeln
(2.46 x 10- 4

,

500 2.74 X 10- 4 3.02 x 10- 4 ) 1.0 8.86 X 10- 4

(1.03 X 10- 5
,

800 1.15 X 10- 5 1.26 x 10- 5) 3.2 3.89 x 10- 5

(4.29 x 10- ( ,
1100 4.97 x 10- 7 5.66 x 10- 7 ) 30 1.79 X 10- 6

(2.24 x 10-~,

1400 2.56 x 10-8 2.88 x 10- 8 ) 580 7.97 x 10- 8

(9.28 X 10- Lu ,

1700 1.14 x 10- 9 1.34 x 10- 9 ) 5100 :3.56 x 10- 9

(4.05 X 10-11,

2000 4.58 X 10- 11 5.11 x 10- 11) 2.8 X 105 1.52 X 10- 10

Table 13: Estimated cell loss probabilities and speed-up factors for the simulation of three stages of system 3
in Table 7, as the queue size varies for qT = 0.95, lip = 5, p = 0.95, q =0.99, C~ = 26.9, and n m a x = 5. IS
settings were taken from Table 7, and remained fixed as K varied from 500 to 2, 000. For these estimates:

NR = 20, NRC = 1,000.
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Figure 9: Cell loss probability (decreasing curves) and speed-lip factors ( increasing curves) for system 2.
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Figure 10: Cell loss probability (decreasing curves) and speed-up factors (increasing curves) for system 3.

System External Cb Tagged C{ Tagged Cj Tagged Cj 'ragged CJ Tagged C~

2 1.1 7.2 6.7 6.3 6.0 5.7
3 26.9 5.6 7.6 9.1 10.8 12.0

Table 14: Burstiness parameter of the external traffic, C~, and the tagged traffic, C;, at the input of the
1st through 5th stages for tandem M-IBP+MMBBP/0/1/1< queues (systems 2 and 3 from Table 7).
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Figure 11: Tagged traffic burstiness for the first five stages of a tandem network for systems 2 and 3.

time of the tagged traffic arrivals at each stage. The change in the tagged traffic burstiness

is plotted for the two systems for a five stage tandem network in Figure 11.

As with the single queue case, the statistical accuracy of the tandern cell loss estimates

indicates a significant robustness of the IS speed-up factor with respect to the queue capacity,

when all other system parameters remain fixed. This can be very useful in increasing the

efficiency of the simulation, since the search for near-optimal IS values needs to be performed

only once for the largest buffer size at each stage. Thus, when cell loss probabilities are

required for several buffer sizes and stages in the network, the search overhead is divided

among all cases.

TIle simulation time required for 1,000 RC's on a DECStation 5000/25 when no IS

was applied for the two different systems and the three different tandem queue network

configurations is givell in Table 15. The increase in simulation time for system 2 from 1­

stage to 2-stages is due to to a change in the RC conditions and tile addition of the code

required to handle multiple stages.
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i-Stage 2-Stage 3-Stage
System CPU Time, seconds CPU TiTTle, seconds CPU Time, seconds

2 0.342 54.025 232.175
3 20.772 56.514 256.401

Table 15: CPU Time for 1,000 RC's of tandem fVl-IBP+l\tIl\t1 BBP/D/l/I< queues on a DECStation 5000/25
when no IS is applied (systems 2 and 3 from Table 7).

6 Conclusions

Monte Carlo simulation using importance sampling (IS) can obtain large speed-up factors if

the modification or bias of the underlying proba.bility measures is properly chosen. In this

paper, we presented the Stochastic Gradient Descent (SG D) algori thm and tile Stochastic

(Important Event) Frequency Ascent (SFA) algorithm , which used stochastic gradient opti­

mization techniques to arrive at favorable IS parameter settings that increase the efficiency

of the simulation of queueing networks, including queues with bursty traffic.

We demonstrated the effectiveness of our algorithms by applying them to the prob­

lem of estimating the cell loss probability of the IBP/Geo/ 1/1< queue and tandem M­

IBP+NIl\JIBBP /D/1/I< queues. These queueing systems are useful building blocks in perfor­

mance models for ATlVI switches and networks. For the examples presented, our methods

achieve speed-up factors of 1 to 8 orders of magnitude over conventional Monte Carlo simu-

lation of the estimation of the cell loss probability.
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